Competitive Multi-Agent Search

Erkin Bahçeci

November 26, 2014

Motivation

- Example: Innovation search
 - Firms (agents) looking for products (solutions)
 - Agents not in isolation, competing with other agents
- Past work: Aggregate NK simulations
- Scientific goals
 - New domain formalization
 - Method to optimize strategies
 - Help humans/companies do better

Competitive Multi-agent Search

- Multiple agents
- Simultaneous search
- Competing for the same solutions (i.e. peaks)
- Hypothesis:
 - We can use the CMAS formalization to understand such domains, and use evolution to discover good strategies.

Single-Agent Search Methods

- e.g.: A* and IDA* algorithms
- Optimal solutions guaranteed at small scale but doesn't scale up
- Competition: e.g. 2 (or more) player games (minimax)
- Does not support
 - Multiple agents
 - Dynamic fitness landscape (altered by agents)
 - Large search space

Team Search Methods

- e.g.
 - Particle Swarm Optimization [1]
 - Ant-colony Optimization [2]
 - Multi-agent Real Time A* [3]
 - Evolutionary methods
- Does not support dynamic fitness landscape
- Agents do not influence each other's search

^[1] Kennedy, J., Eberhart, R., et al. (1995). Particle swarm optimization

^[2] Dorigo, M., and Stützle, T. (2004). Ant colony optimization

^[3] Knight, K. (1993). Are many reactive agents better than a few deliberative ones?

Agent-based Modeling

- Can explain emergence of higher order patterns
- Artificial Life
 - Rule-based: e.g. cellular automata, boids (flocking)
 - Neural net-based: e.g. Creatures
- Political science, economics, sociology [1,2,3]
 - e.g. seasonal migrations, pollution, sexual reproduction, combat, ethnocentrism, and transmission of disease and culture

^[2] Epstein, J. (1999). Agent-based computational models and generative social science

^[3] Tesfatsion, L. (2002). Agent-based computational economics: Growing economies from the bottom up

Formalization of CMAS

- Multiple agents searching for the same peaks on the same landscape
- Agent actions
 - Moving to a new point in the space
- Direct interactions
 - Knowledge/memory
- Indirect interactions
 - Landscape changes

Outline

- Abstract domain
 - Simulation on NK landscapes
 - Experiments to characterize various effects
 - Evolving strategies in various environments against extreme opponents
- Concrete human game domain
 - Simulation of multi-player game
 - Modeling of human subjects
 - Evolving strategies against human subject models

NK Model

- Boolean space (e.g. point or solution: 0100100111)
- N: Number of dimensions
- K: Ruggedness (number of correlated dimensions)

Shperical NK Visualization

- High resolution and continuous near a specific point
- Low resolution farther away
- Points shown within closest diamond-shaped region

Knowledge About Others

- Memory
 - List of points and their fitness values
- Public memory
 - Common
 - Sharing knowledge among all agents
 - e.g. patents
- Private memory
 - Unique to each agent
 - e.g. trade secrets

Changing Landscape

- Parameters
 - Flocking intensity
 - multiplied with fitness
 - Flocking radius
 - specifies size of affected area
- Decaying flocking (First boosting, then crowding)

Strategy

• S1: Select search method and starting point (memory) probabilistically, e.g.

	Action:	Exploit with	Exploit with	Explore with	Explore with	
St	tate:	public memory	private memory	public memory	private memory	
P	ublic: low fitness	0	0	0.8	0.2	← Sum = 1.0
P	rivate: low fitness			0.0	0.2	
P	ublic: low fitness	0	0	0.8	0.2	← Sum = 1.0
P	rivate: high fitness	0	0	0.0	0.2	Cuiii – 1.0
P	ublic: high fitness	0.8	0.2	0	0	← Sum = 1.0
P	rivate: low fitness	0.0	0.2		0	
P	ublic: high fitness	0.8	0.2	0	0	← Sum = 1.0
P	rivate: high fitness	0.0	0.2	U	0	

• S2: Decide where to put new point probabilistically, e.g:

State: Action:	Place in public memory	Place in private memory	
Point fitness: Low	0.7	0.3	← Sum = 1.0
Point fitness: High	0.0	1.0	← Sum = 1.0

- Pick a search method and source memory probabilistically using S1 strategy component.
- 2. Perform one search step starting with the best point in the source memory.
- 3. **if** found a better point than the last one, **then**
 - a. Pick a destination memory probabilistically using S2 strategy component.
 - b. Place the new point in the destination memory.

4. end if

S1 strategy component

Action:	Exploit with	Exploit with	Explore with	Explore with
State:	public memory	private memory	public memory	private memory
Public: low fitness	0	0	0.8	0.2
Private: low fitness				
Public: low fitness	0	0	0.8	0.2
Private: high fitness				
Public: high fitness	0.8	0.2	0	0
Private: low fitness				
Public: high fitness	0.8	0.2	0	0
Private: high fitness	0.0	0.2	U	U

Agent's current S1 state

- Pick a search method and source memory probabilistically using S1 strategy component.
- 2. Perform one search step starting with the best point in the source memory.
- 3. **if** found a better point than the last one, **then**
 - a. Pick a destination memory probabilistically using S2 strategy component.
 - b. Place the new point in the destination memory.

4. end if

S1 strategy component Chosen S1 action

Action:	Exploit with	Exploit with	Explore with	Explore with
State:	public memory	private memory	public memory	private memory
Public: low fitness	0	0	0.8	0.2
Private: low fitness	U	U	0.0	0.2
Public: low fitness	0	0	0.8	0.2
Private: high fitness	U	U	0.0	0.2
Public: high fitness	0.8	0.2	0	0
Private: low fitness	0.8	0.2	U	U
Public: high fitness	0.8	0.2	0	0
Private: high fitness	0.8	0.2	U	U

Agent's current S1 state

- Pick a search method and source memory probabilistically using S1 strategy component.
- 2. Perform one search step starting with the best point in the source memory.
- 3. **if** found a better point than the last one, **then**
 - a. Pick a destination memory probabilistically using S2 strategy component.
 - b. Place the new point in the destination memory.
- 4. end if

Agent's chosen S1 action: Exploit private memory

Agent picks best point in private memory.

- Pick a search method and source memory probabilistically using S1 strategy component.
- 2. Perform one search step starting with the best point in the source memory.
- 3. **if** found a better point than the last one, **then**
 - a. Pick a destination memory probabilistically using S2 strategy component.
 - b. Place the new point in the destination memory.
- 4. end if

Agent's chosen S1 action: Exploit private memory

Agent exploits (flips one bit of the current point) to get new points.

- Pick a search method and source memory probabilistically using S1 strategy component.
- 2. Perform one search step starting with the best point in the source memory.
- 3. **if** found a better point than the last one, **then**
 - a. Pick a destination memory probabilistically using S2 strategy component.
 - b. Place the new point in the destination memory.
- 4. end if

Agent's chosen S1 action:

Exploit private memory

Action: State:	Place in public memory	Place in private memory
Point fitness: Low	0.7	0.3
Point fitness: High	0.0	1.0

Agent's current S2 state

- Pick a search method and source memory probabilistically using S1 strategy component.
- 2. Perform one search step starting with the best point in the source memory.
- 3. **if** found a better point than the last one, **then**
 - a. Pick a destination memory probabilistically using S2 strategy component.
 - b. Place the new point in the destination memory.
- 4. end if

Agent's chosen S1 action: Exploit private memory

Chosen S2 action

Action:
State:
Place in public memory
Place in private memory
Point fitness: Low
O.7
O.3
Point fitness: High
O.0
O.0

Agent's current S2 state

Outline

- Abstract domain
 - Simulation on NK landscapes
 - Experiments to characterize various effects
 - Evolving strategies in various environments against extreme opponents
- Concrete human game domain
 - Simulation of multi-player game
 - Modeling of human subjects
 - Evolving strategies against human subject models

Experiments

- Systematically characterize effects of
 - 1. Memory
 - 2. Search method
 - 3. An intuitive strategy
 - 4. Exploration focus
 - 5. Environments with (extreme) opponents that exploit or explore with public memory, private memory, or both

Effect of Public vs. Private Memory

- Using only public memory leads to
 - Low diversity

Agent 5: Fitness vs. Time

Fitness of agent's last point

Time (Search steps)

- "Twitter effect"
- Low performance

15

Wave-Riding Behavior

- Exploiting private memory in landscapes with low agent density leads to
 - riding on top of a wave of boosted fitness

Oscillations

 Caused by landscape changes: boosting & crowding

Outline

- Abstract domain
 - Simulation on NK landscapes
 - Experiments to characterize various effects
 - Evolving strategies in various environments against extreme opponents
- Concrete human game domain
 - Simulation of multi-player game
 - Modeling of human subjects
 - Evolving strategies against human subject models

Evolution Experiments

- 8 agents
- Evolve CPPNs with NEAT
- Environments
 - Homogeneous environments
 - Opponents: extreme strategies
 - Heterogeneous environment
 - Multiple homogeneous environments
- 64 evolutionary runs
- 500 generations
- Population size: 100

Evolved Strategies

- Environment 1
 (Opponents exploiting only public memory)
 - Avoid public memory
- Environment 3
 (Opponents exploiting only their private memory)
 - Bimodal behavior

Evolution Results

Comparison with Tree Search

Performance of Strategies in Various Dense Environments

Outline

- Abstract domain
 - Simulation on NK landscapes
 - Experiments to characterize various effects
 - Evolving strategies in various environments against extreme opponents
- Concrete human game domain
 - Simulation of multi-player game
 - Modeling of human subjects
 - Evolving strategies against human subject models

Concrete Domain: Social Innovation Game

- Goal: Build a team with high score
- Score
 - Calculation:

 Icon & pair contributions
 (unknown by players)
 - Shown at the end of each round
 - Opponents' last teams & scores visible

[1] Wisdom, T. N., X. Song, and R. L. Goldstone (2013). Social learning strategies in networked groups. Cognitive Science 37, 1383–1425

Concrete Domain: Social Innovation Game

- Source (action) for each icon
 - o "Innovate" from league
 - o "Imitate" from an opponent
 - "Retrieve" from the best scoring team so far
 - "Retain" from previous round
- 39 sessions
- 1-9 players
- 8 games
- 24 rounds (10 s)
- 5 or 6 icons

Concrete Domain: Social Innovation Game

- Real world application of CMAS
- Game played by human subjects
- Solution: 48-bit number with six 1 bits
- Difference: Static fitness landscape

Outline

- Abstract domain
 - Simulation on NK landscapes
 - Experiments to characterize various effects
 - Evolving strategies in various environments against extreme opponents
- Concrete human game domain
 - Simulation of multi-player game
 - Modeling of human subjects
 - Evolving strategies against human subject models

Modeling Human Behavior

- Goal: Behave "like" the human subject(s)
 - Understand how people do CMAS
 - Create environments for optimization
- Choice of target to model (subset of dataset)
- Supervised learning via Backpropagation
- Distance objectives
 - Absolute and relative score
 - Team and icon action ratios
 - Icon consistency

Two-Tiered Neural Network Model

- Team-level actions (drag&drop whole team)
 - Inputs: current round, relative score
 - Outputs: team-imitate, team-retrieve, none

- Icon-level actions (drag&drop one icon)
 - Inputs: current round, relative score, icon age, icon popularity
 - Outputs: innovate, imitate, retrieve, retain

Modeling Results

1.0

2-tiered NN

- best in team & icon imitation
- worse than 1-tieredNN in retention
- tie with 1-t. NN in score & innovation, icon consistency

Fixed prob. model

Best in innovation& retention

Team & icon retrieval are rare actions.

Outline

- Abstract domain
 - Simulation on NK landscapes
 - Experiments to characterize various effects
 - Evolving strategies in various environments against extreme opponents
- Concrete human game domain
 - Simulation of multi-player game
 - Modeling of human subjects
 - Evolving strategies against human subject models

Evolution Experiments

- Homogeneous environments
 Imitate-, innovate-, retain-, retrieve-dominant opponents
 - Customized strategies
- Heterogeneous environment
- Multiple homogeneous environments
 - General strategies
- Complex environments (human groups)
 - Group 1: 9-player env. x9
 - Group 2: 8-player env. x8
 - Group 3: 8-player env. x8

Evolution Experiments (contd.)

- Evolve combined team+icon networks with NEAT
- 8 or 9 agents
- 64 evolutionary runs
- 500 generations
- Population size: 100

Results

Iomogeneous (Retain-dominant)

omogeneous (Retrieve-dominant

Diagonal

- Evolved in the same environment
- Performs better than all others: Customized for the env.

Multi-homogeneous

Performs better than all except diag.: Generalized for multiple environments

Insights from Evolution

Strategies evolved in this environment, compared to those evolved in other environments:

- Imitation-dominant opponents
 - More innovation
 - Less imitation
- Innovation-dominant opponents
 - More team imitation
- Retrieve-dominant opponents
 - Less innovation
 - More icon imitation

Evolution Results with Complex Subject Model Groups

Environments

- G1: 9-player env. x9
- G2: 8-player env. x8
- G3: 8-player env. x8

Results

Diagonal

- Evolved in the same environment
- Performs better than others:
 - Customized for the env.
- Subtle adaptations make a significant difference
- Score difference smaller due to higher diversity of environments

Evolved Strategies vs. Human Models

- Evolved strategies perform significantly better
- More
 - Imitation
- Less
 - Innovation
 - Retention

Future Work

- Strategy representation
 - Use another network output to choose which icon to copy
- Optimization method
 - Evolve multimodal strategies
 - Multi-objective optimization
- Human model applications
 - Replace human with model
- Evidence-based simulation
 - e.g. based on patent data from industry
- Theory

Contributions

- Formalize & characterize experimentally in an abstract simulation
- Apply it to understand real-world search with concrete human domain
- Evolve
 - customized strategies for specific environments
 - general strategies
 - strategies better than humans
- Spherical visualization of NK landscapes

Conclusion

- Real world agents search in competitive multi-agent environments
- Useful way to study problem solving in the real world
- Potential to improve competitive search in other domains

Questions?