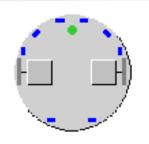
Evolving Multimodal Behavior Through Modular Multiobjective Neuroevolution

By Jacob Schrum

Introduction



- Challenge: Discover behavior automatically
 - □ Simulations, video games, robotics
- Why challenging?
 - Noisy sensors
 - □ Complex domains
 - □ Continuous states/actions
 - Multiple agents
 - Multiple objectives
 - Multimodal behavior required (focus)

Multimodal Behavior

Animals can perform many different tasks

- Imagine learning a monolithic policy as complex as a cardinal's behavior: HOW?
- Problem more tractable if broken into component behaviors

Multimodal Assistants

- Consider all the things we would like computers/robots to eventually do for/with us
- We can program one behavior at a time, but how does it all combine in one brain?

Outline

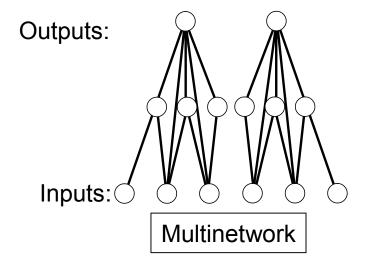
- Motivation
- Multimodal Behavior
 - What is it?
 - ☐ How to learn it?
- Methods
- Domains/Experiments
- Discussion/Conclusion

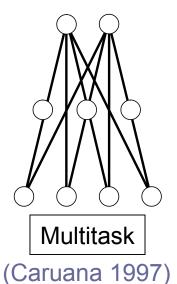
What is Multimodal Behavior?

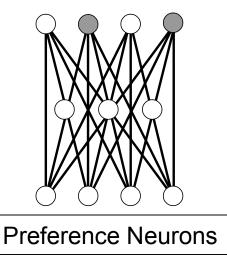
- From Observing Agent Behavior:
 - Agent performs distinct tasks
 - Behavior very different in different tasks
 - Single function would have trouble generalizing
- Reinforcement Learning Perspective
 - Similar to Hierarchical Reinforcement Learning
 - □ A "mode" of behavior is like an "option"
 - A temporally extended action
 - A control policy that is only used in certain states
 - □ Policy for each mode must be learned as well
- Idea From Supervised Learning
 - Multitask Learning trains on multiple known tasks

Modular Policy

- One policy consisting of several policies/modules
 - Number preset, or learned
- Means of arbitration also needed
 - □ Human specified, or learned via preference neurons
- Separate behaviors easily represented
 - Sub-policies/modules can share components





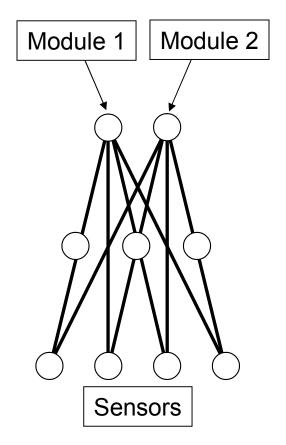


How to Learn Multimodal Behavior?

- Networks with multiple modules
 - Multitask: set the task division
 - □ Preference neurons: learn the task division
 - Module Mutation: learn number of modules as well
- Learning algorithm
 - Multiobjective: mode/objective correspondence
 - □ TUG: Where to focus evolutionary search
- Sensor design
 - □ Split sensors encourage a task division

Behavioral Modes vs. Network Modules

- Different behavioral modes
 - Determined via observation of behavior, subjective
 - Any net can exhibit multiple behavioral modes
- Different network modules
 - Determined by connectivity of network
 - □ Groups of "policy" outputs designated as modules (sub-policies)
 - Modules distinct even if behavior is same/unused
 - Network modules should help build behavioral modes



M

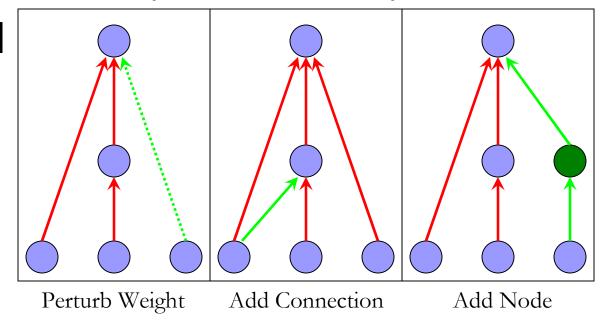
Outline

- Motivation
- Multimodal Behavior
- Methods
 - Neuroevolution
 - Module Mutation (Contribution)
 - Multiobjective optimization
 - TUG (Contribution)
- Domains/Experiments
- Discussion/Conclusion

Constructive Neuroevolution

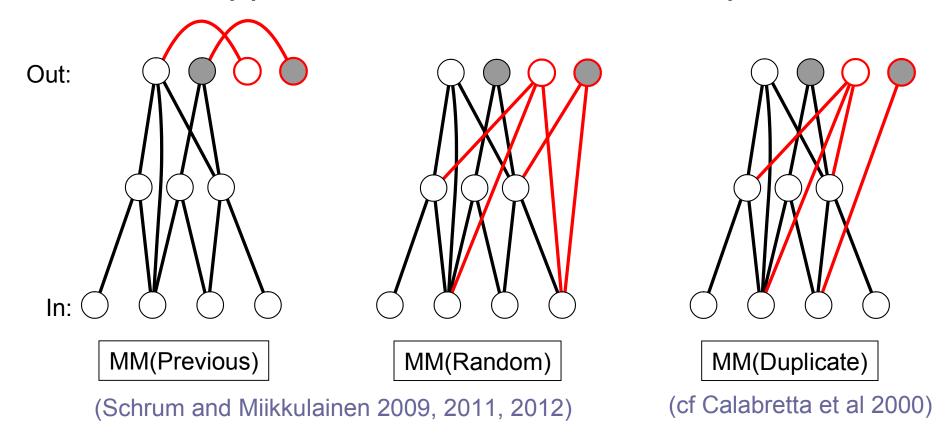
- Genetic Algorithms + Neural Networks
- Build structure incrementally
- Good at generating control policies
- Three basic mutations (+ Crossover)
- Other structural mutations possible

(cf NEAT by Stanley 2004)



Module Mutation

- A mutation that adds a module
- Can be done in many different ways
- Can happen more than once for multiple modules



Pareto-based Multiobjective Optimization

(Pareto 1890)

Imagine game with two objectives:

- Damage Dealt
- Health Remaining

Attack and retreat modes?

 \vec{v} dominates \vec{u} , i.e. $\vec{v} \succ \vec{u} \Leftrightarrow 1$. $\forall i \in \{1, ..., n\} (v_i \ge u_i)$ and

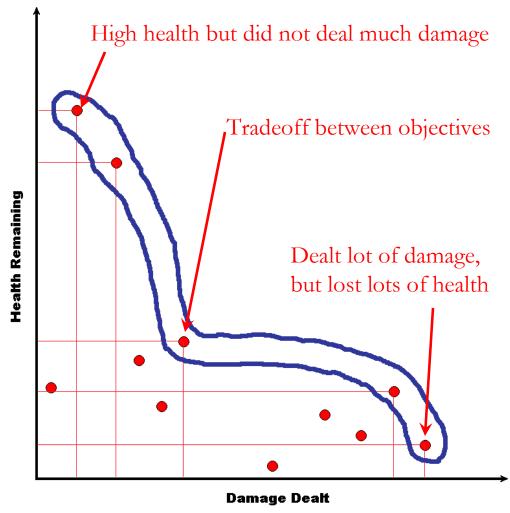
$$2. \exists i \in \{1, ..., n\} (v_i > u_i)$$

Non - dominated points best:

$$A \subseteq F$$
 is Pareto optimal \Leftrightarrow

A contains all points in F s.t.

$$\forall \vec{x} \in A \neg \exists \vec{y} \in F(\vec{y} \succ \vec{x})$$

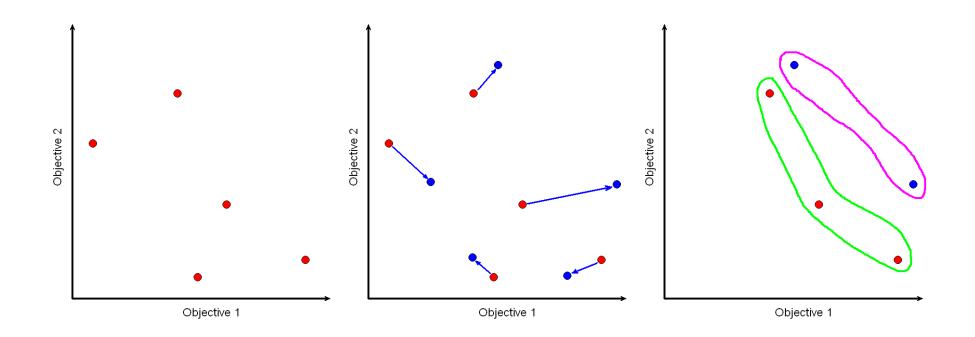


Useful if modes correspond to objectives

Non-dominated Sorting Genetic Algorithm II

(Deb et al. 2000)

- Population P with size N; Evaluate P
- Use mutation (& crossover) to get P' size N; Evaluate P'
- Calculate non-dominated fronts of P ∪ P′ size 2N
- New population size N from highest fronts of P ∪ P'



Targeting Unachieved Goals

(Schrum and Miikkulainen 2010)

- Main ideas:
 - □ Temporarily deactivate "easy" objectives
 - □ Focus on "hard" objectives
- "Hard" and "easy" defined in terms of goal values
 - □ Easy: average fitness "persists" above goal (achieved)
 - □ Hard: goal not yet achieved

Objectives reactivated when no longer achieved.

Increase goal values when all achieved

TUG Goal Achievement

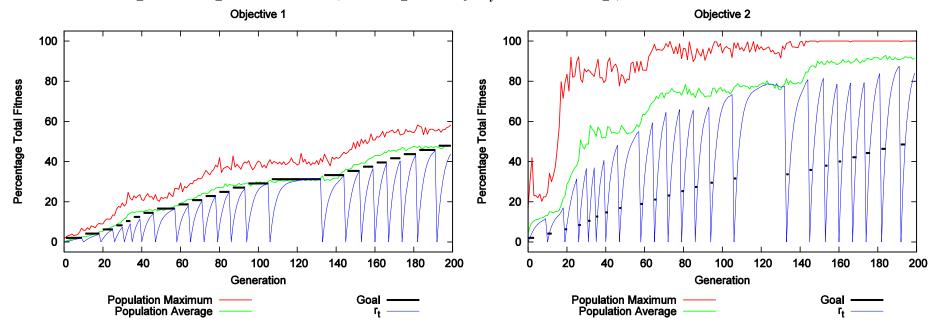
- Persistent goal achievement
 - Recency-weighted average catches up

$$r_t \leftarrow r_{t-1} + \alpha(\overline{x}_t - r_{t-1})$$

 r_t : Recency - weighted average of average score on generation t

 \overline{x}_t : Average population objective score on generation t

 α : Step - size parameter (how quickly r_t catches up)



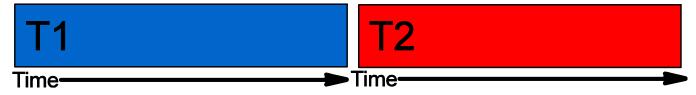
Outline

- Motivation
- Multimodal Behavior
- Methods
- Domains/Experiments
 - Types of divisions
 - □ Front/Back Ramming (constructed)
 - □ Predator/Prey (constructed)
 - □ Battle Domain (constructed)
 - Ms. Pac-Man (real)
- Discussion/Conclusion

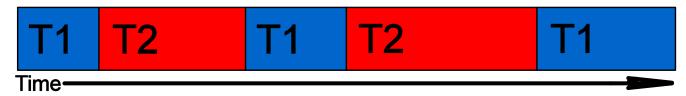
How will these methods work in domains with different types of task divisions?

Domains with Multiple Tasks

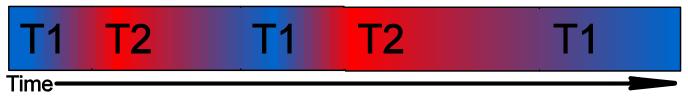
- Tasks can be completely isolated
 - Evaluation in one does not affect other



- Tasks may be interleaved
 - □ Alternates between tasks, but division is clear



- Division can be ambiguous, uncertain
 - □ Are tasks completely separate?



Domains with Multiple Tasks

- Tasks can be completely isolated
 - Evaluation in one does not affect other



- Tasks may be interleaved
 - □ Alternates between tasks, but division is clear

- Division can be ambiguous, uncertain
 - □ Are tasks completely separate?

Outline

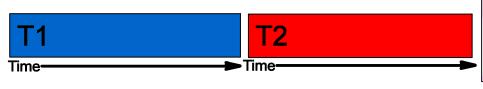
- Motivation
- Multimodal Behavior
- Methods
- Domains/Experiments
 - □ Types of divisions
 - □ Front/Back Ramming
 - □ Predator/Prey
 - Battle Domain
 - Ms. Pac-Man
- Discussion/Conclusion

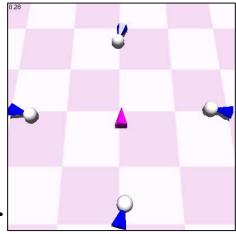
- Two isolated tasks
- Equal difficulty
- Multimodal behavior needed to succeed
 - Are network modules needed?

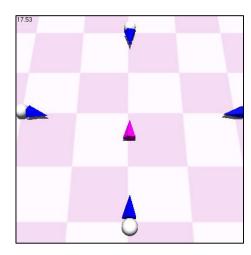
Front/Back Ramming

(Schrum and Miikkulainen 2011, 2012)

- Four evolved monsters surround bot
- Each has a spherical ram attached
 - ☐ Attached either on front or back of monster
- The ram can damage the bot
- Rest of body vulnerable to bot
- Monster goals: in each task
 - □ Damage bot
 - □ Avoid damage
 - □ Stay alive

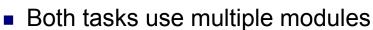




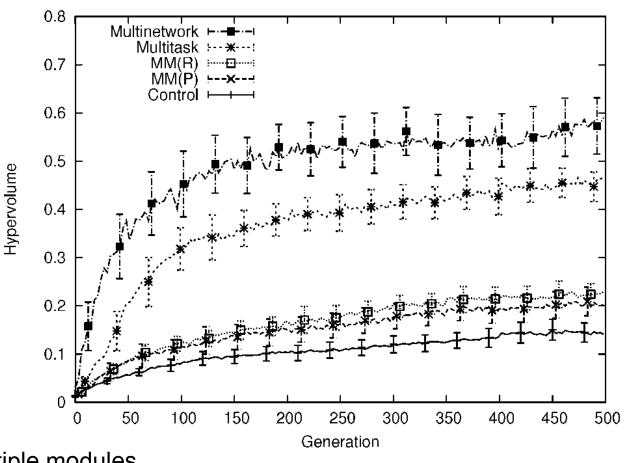


Front/Back Ramming Results

- Two complex tasks
 - Both similar
 - Equal difficulty
- Strong division best
 - Multitask
 - Multinetwork
- Middle division next
 - Module Mutation



- One module helps determine current task
- One module for retreating
- One module for attacking



Outline

- Motivation
- Multimodal Behavior
- Methods
- Domains/Experiments
 - □ Types of divisions
 - □ Front/Back Ramming
 - □ Predator/Prey
 - □ Battle Domain
 - Ms. Pac-Man
- Discussion/Conclusion

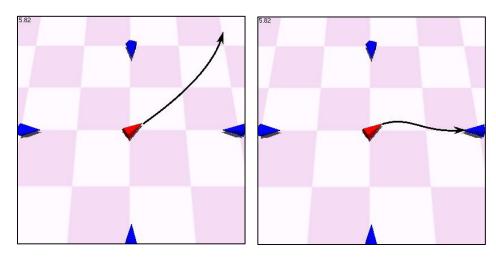
- Two isolated tasks
- Skewed difficulty
- Multimodal behavior needed to succeed
 - ☐ How will it differ?

Predator/Prey

Time Time

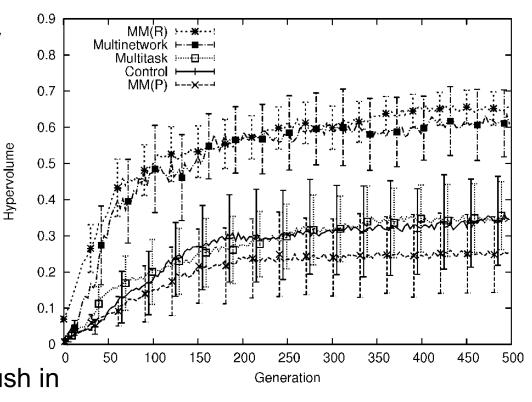
(Schrum and Miikkulainen 2011, 2012)

- Four evolved monsters surround bot
 - □ In Predator evaluation, monster deal damage
 - Bot is safe after escaping ring of monsters
 - □ In Prey evaluation, bot damages monsters
- Clear division, but not equal in difficulty
 - □ Predator task harder: attack and confine
- Predator goals
 - □ Damage bot
- Prey goals
 - □ Avoid damage
 - □ Stay alive



Predator/Prey Results

- Surprisingly, Multitask performs poorly
 - Modules interfering with each other
- But Multinetwork performs well
 - □ The task division does work
- MM(P) performs poorly
- MM(R) works well
 - Multiple modules used
 - One module favored
 - □ Unexpected division
 - Retreating and attacking both in one module
 - Second module restrains
 teammates so one can rush in



Outline

- Motivation
- Multimodal Behavior
- Methods
- Domains/Experiments
 - □ Types of divisions
 - □ Front/Back Ramming
 - □ Predator/Prey
 - Battle Domain
 - Ms. Pac-Man
- Discussion/Conclusion

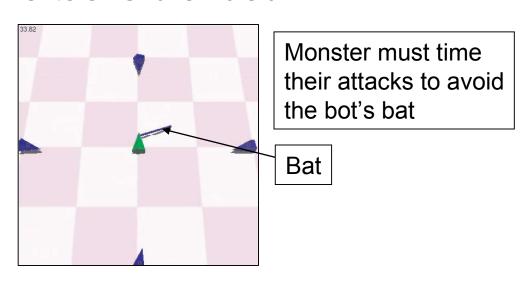
- Two blended tasks
- Evaluate TUG
- Multimodal behaviorneeded to succeed
 - Importance of timing

Battle Domain

T1 T2 T1 T2 T1

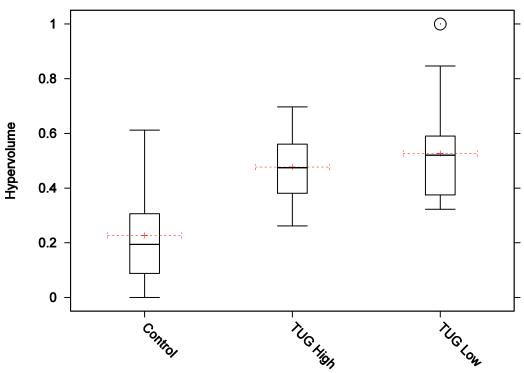
(Schrum and Miikkulainen 2010)

- Four evolved monsters surround opponent
- Bot chases nearest monster
 - □ Repeatedly wings damaging bat
 - Short time between swings
 - □ Body vulnerable to monsters
- Offensive and defensive tasks blended
- Monster goals
 - □ Damage bot
 - □ Avoid damage
 - □ Stay alive



Battle Domain Results

- TUG outperforms plain NSGA-II
- Learns multimodal behavior
 - □ Precise timing of retreat and attack
 - □ Trading roles between teammates
 - □ Baiting
- Different initial goals successful



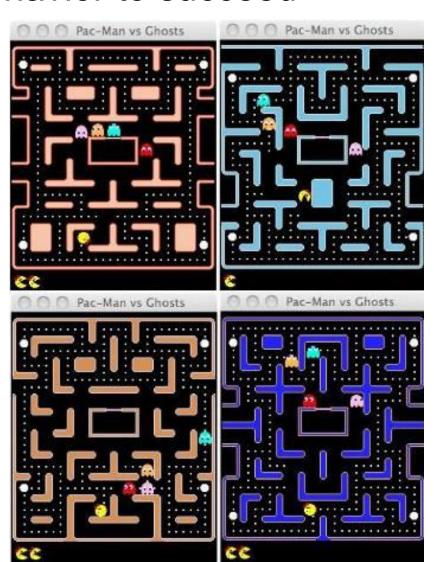
Outline

- Motivation
- Multimodal Behavior
- Methods
- Domains/Experiments
 - □ Types of divisions
 - □ Front/Back Ramming
 - □ Predator/Prey
 - □ Battle Domain
 - Ms. Pac-Man
- Discussion/Conclusion

- Blended tasks
- Scale to real game
- Compare with others

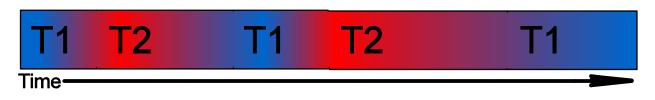
Ms. Pac-Man

- Domain needs multimodal behavior to succeed
- Classic, well-known game
 - □ Lots of previous work
- Predator/prey variant
 - □ Pac-Man takes on both roles
- Goals: Maximize score by
 - □ Eating all pills in each level
 - □ Avoiding threatening ghosts
 - □ Eating ghosts (after power pill)
- Non-deterministic
 - □ Very noisy evaluations
- Four mazes
 - □ Behavior must generalize



Task Overlap

- Distinct behavioral modes
 - □ Eating edible ghosts
 - □ Clearing levels of pills
 - More?
- Are ghosts currently edible?
 - Possible some are and some are not
 - □ Task division is blended
- Test One Life and Multiple Lives
- Compare with scores from literature



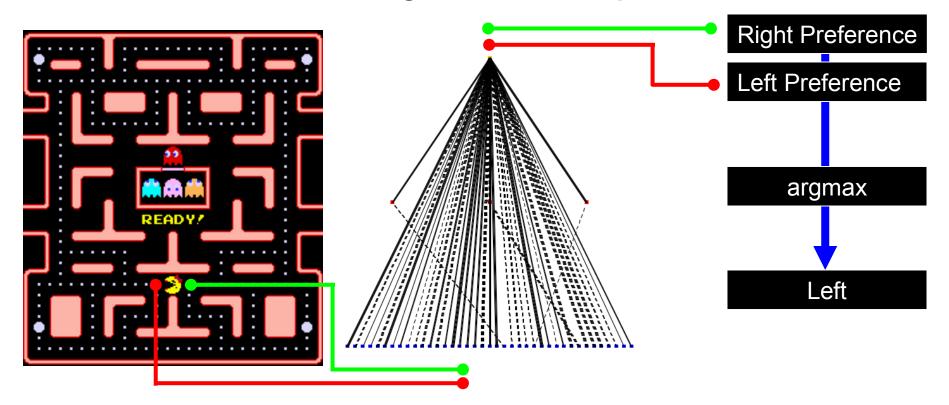
M

Previous Work in Pac-Man

- Custom Simulators
 - Genetic Programming: Koza 1992
 - □ Neuroevolution: Gallagher & Ledwich 2007, Burrow & Lucas 2009, Tan et al. 2011
 - □ Reinforcement Learning: Burrow & Lucas 2009, Subramanian et al. 2011, Bom 2013
 - □ Alpha-Beta Tree Search: Robles & Lucas 2009
- Screen Capture Competition: Requires Image Processing
 - □ Evolution & Fuzzy Logic: Handa & Isozaki 2008
 - □ Influence Map: Wirth & Gallagher 2008
 - □ Ant Colony Optimization: Emilio et al. 2010
 - Monte-Carlo Tree Search: Ikehata & Ito 2011
 - □ Decision Trees: Foderaro et al. 2012
- Pac-Man vs. Ghosts Competition: Pac-Man
 - Genetic Programming: Alhejali & Lucas 2010, 2011, 2013, Brandstetter & Ahmadi 2012
 - □ Monte-Carlo Tree Search: Samothrakis et al. 2010, Alhejali & Lucas 2013
 - □ Influence Map: Svensson & Johansson 2012
 - Ant Colony Optimization: Recio et al. 2012
- Pac-Man vs. Ghosts Competition: Ghosts
 - □ Neuroevolution: Wittkamp et al. 2008
 - Evolved Rule Set: Gagne & Congdon 2012
 - Monte-Carlo Tree Search: Nguyen & Thawonmos 2013

Evolved Direction Evaluator

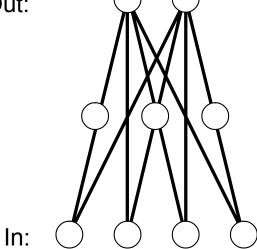
- Inspired by Brandstetter and Ahmadi (CIG 2012)
- Net with single output and direction-relative sensors
- Each time step, run net for each available direction
- Pick direction with highest net output



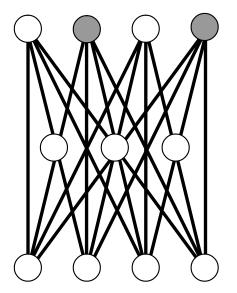
Module Setups

- Manually divide domain with Multitask
 - □ Two-Module: Threat/Any Edible
 - □ Three-Module: All Threat/All Edible/Mixed
- Discover new divisions with preference nodes
 - □ Two Modules, Three Modules, MM(R), MM(D)

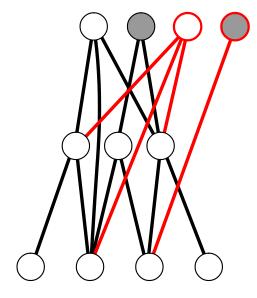
Out:



Two-Module Multitask

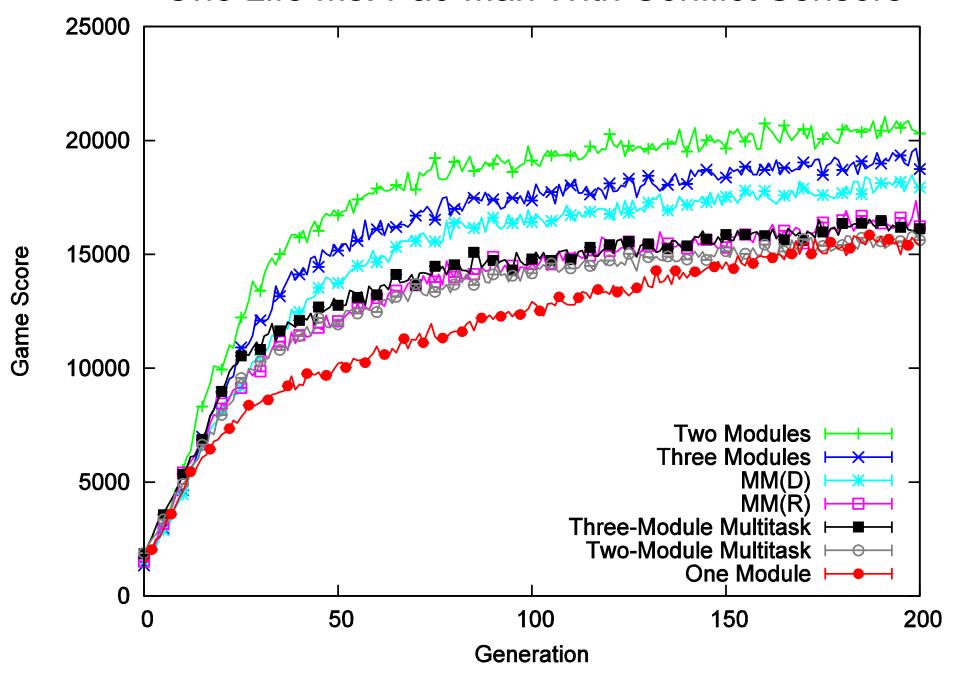


Two Modules

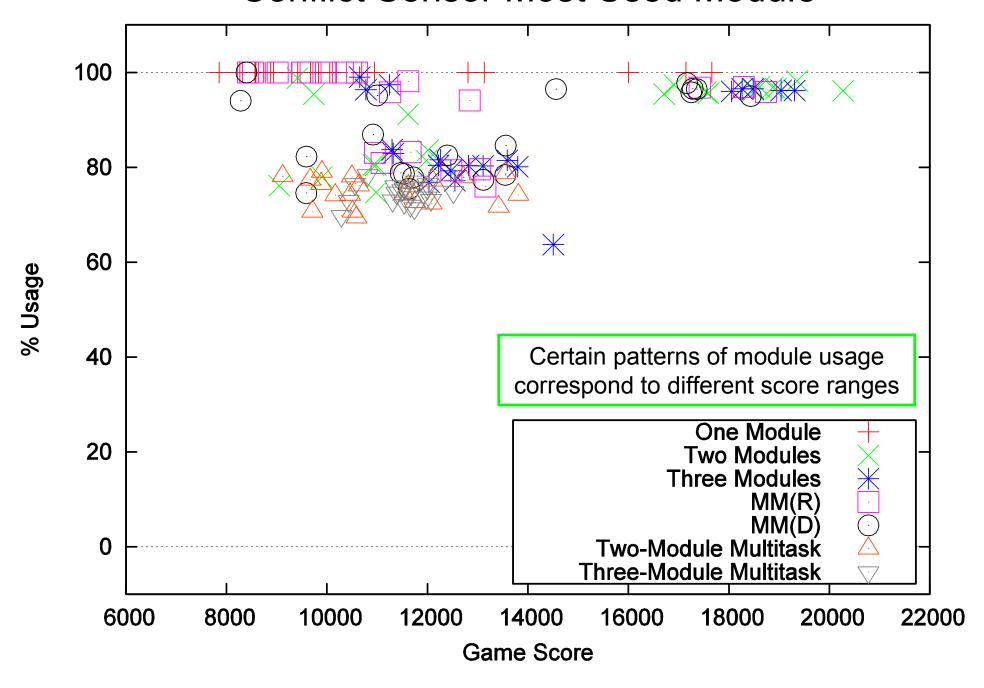


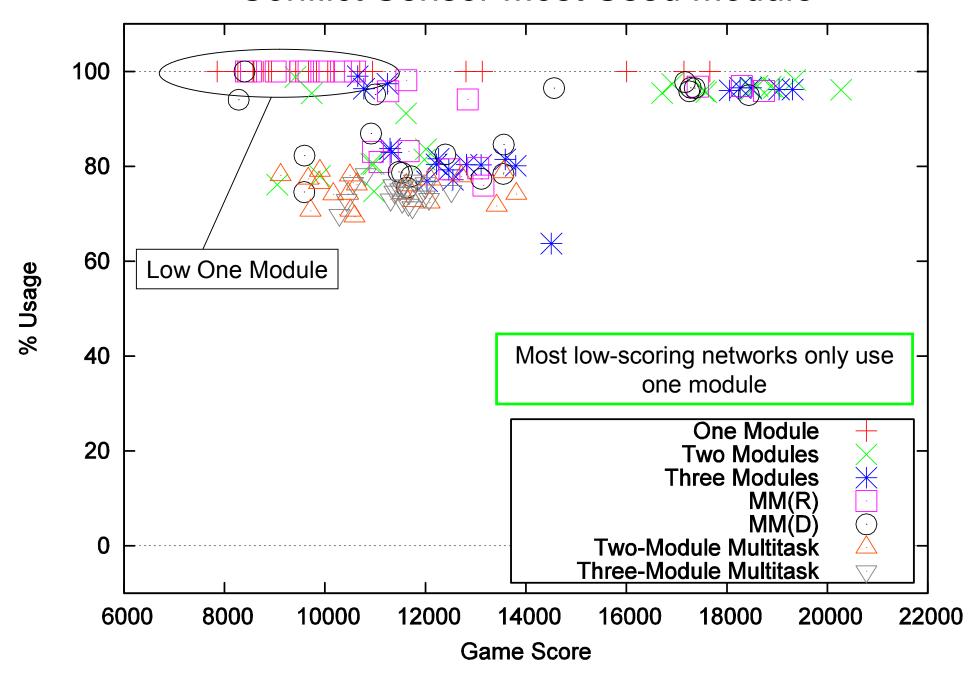
MM(D)

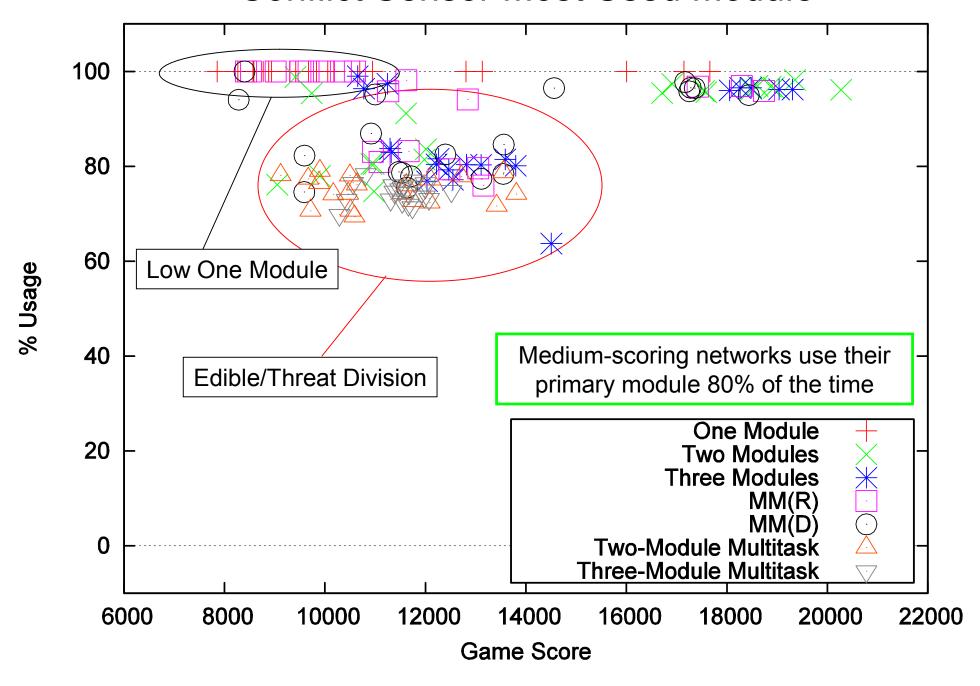
One Life Ms. Pac-Man With Conflict Sensors

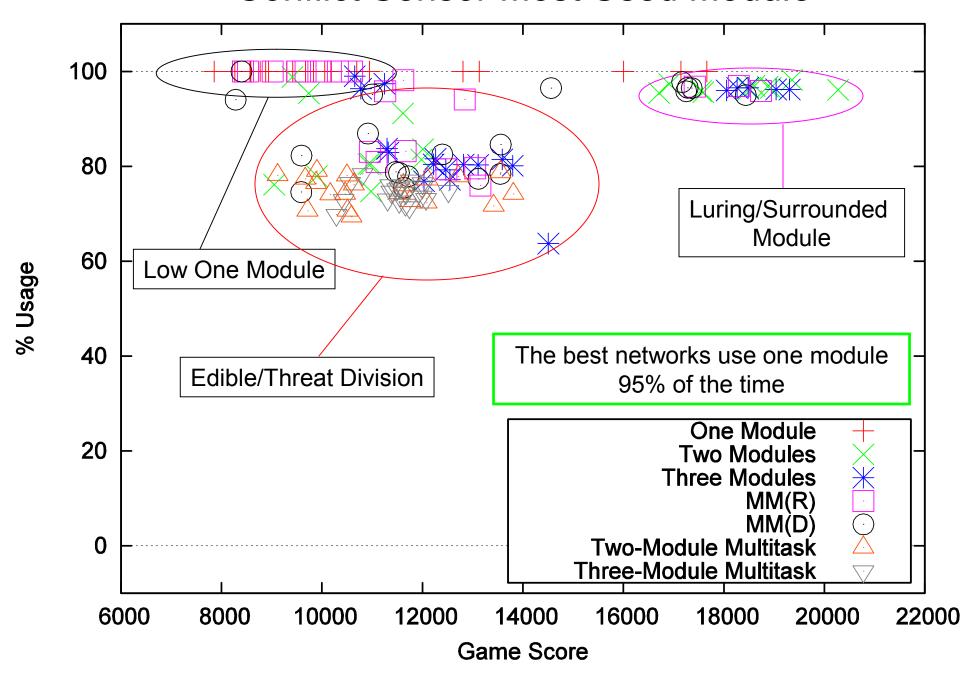


Conflict Sensor Most Used Module









Full Game One Life Behavior

Different colors are for different modules



Three-Module Multitask

Learned Edible/Threat Division

Learned
Luring/Surrounded
Module

b/A

Full Game One Life Conclusion

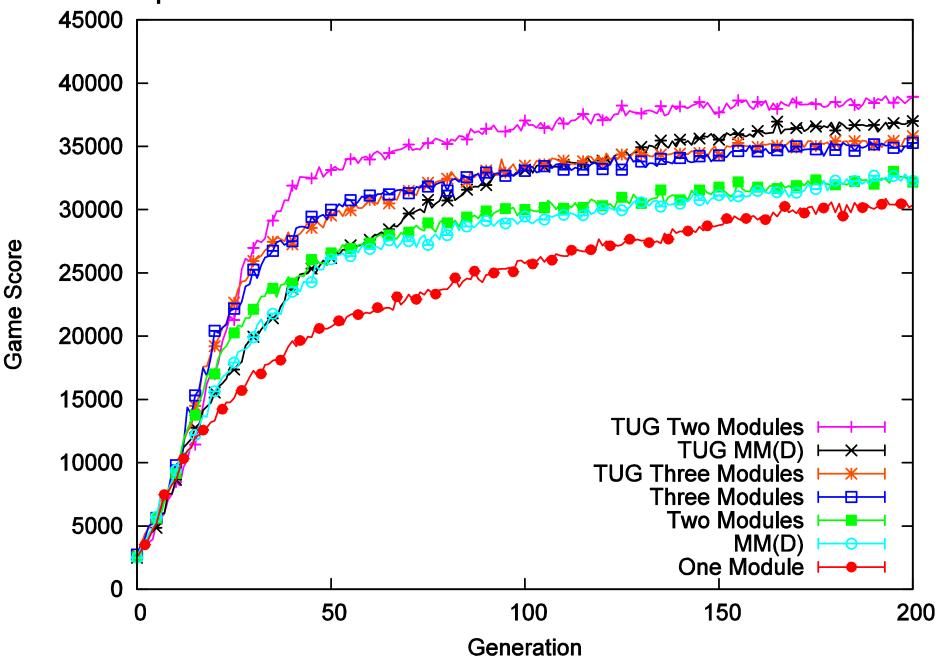
- Obvious division is between edible and threat
 - □ But these tasks are blended
 - Strict Multitask divisions do not perform well
 - Preference neurons can learn when best to switch
- Better division: one module when surrounded
 - □ Very asymmetrical: surprising
 - □ Highest scoring runs use one module rarely
 - Module activates when Pac-Man almost surrounded
 - Often leads to eating power pill: luring
 - Helps Pac-Man escape in other risky situations

Full Game One Life Conclusion

- Good divisions are harder to discover
 - □ Some modular champions use only one module
 - Particularly MM(R): new modules too random
- Are evaluations too harsh/noisy?
 - □ Easy to lose one life
 - ☐ Hard to eat all pills to progress
 - Discourages exploration
 - Hard to discover useful modules
 - Make search more forgiving
 - □ TUG to enhance performance



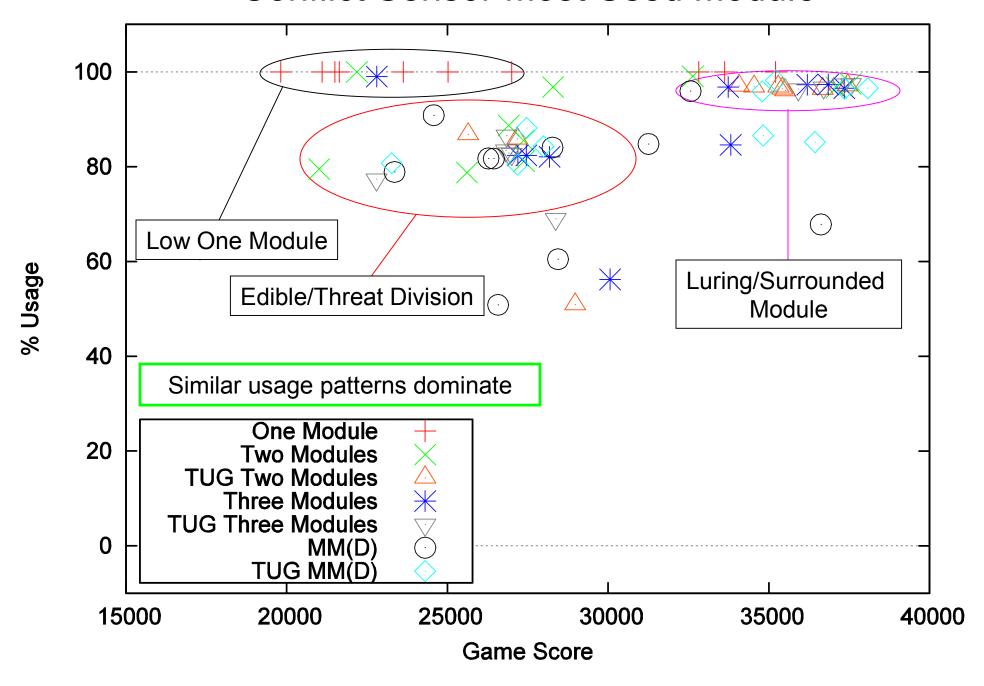
Multiple Lives Ms. Pac-Man With Conflict Sensors

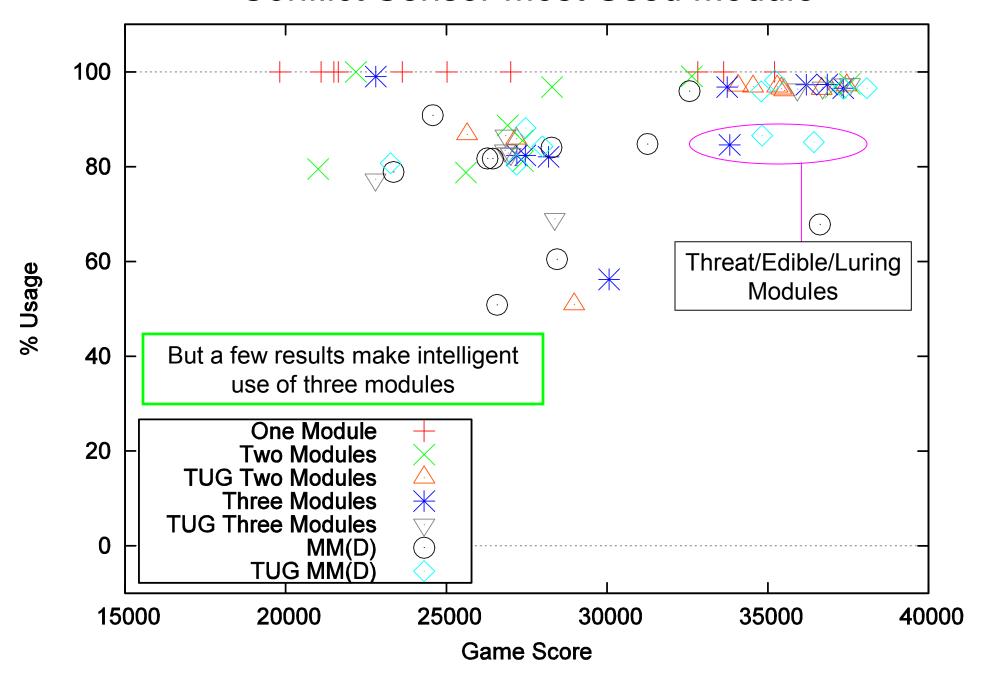


Modular Networks With TUG



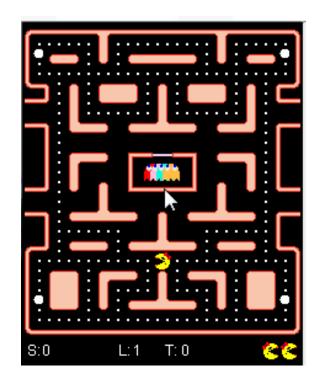
- Extra lives make evaluations easier for all methods
- TUG pushes modular performance significantly higher





Full Game Multiple Lives Behavior

Different colors are for different modules



One Module Stalling

Three Modules: Threat/Edible/Luring

M

Comparison with Other Work

Authors	Method	Eval Type	AVG	MAX
Alhejali and Lucas 2010	GP	Four Maze	16,014	44,560
Alhejali and Lucas 2011	GP+Camps	Four Maze	11,413	31,850
Best Dissertation Result	Con, TUG, 3 Modules	Four Maze	37,549	48,130

Best Dissertation Result	Split, 3 Modules	MPMvsG	68,524	90,890
	MCTS+GP	MPMvsG	32,641	69,010
Alhejali and Lucas 2013	MCTS	MPMvsG	28,117	62,630
Brandstetter and Ahmadi 2012	GP Direction	MPMvsG	19,198	33,420
Recio et al. 2012	ACO	MPMvsG	36,031	43,467

^{*}The MPMvsG evaluation procedure makes the game easier, because Pac-Man gets to skip to the next level after 3000 time steps, allowing hard-to-reach pills to be ignored. This eval scheme also cycles the mazes for multiple visits, allowing for higher scores.

Outline

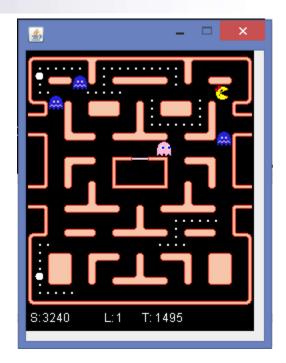
- Motivation
- Multimodal Behavior
- Methods
- Domains/Experiments
- Discussion/Conclusion

Discussion

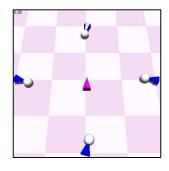
- Intelligent module divisions result in best results
 - Modular networks make learning separate modes easier
 - □ TUG helps take advantage of multiple modules
- Results are better than previous work
- Module division unexpected
 - □ Half of neural resources for seldom-used module (< 5%)</p>
 - □ Rare situations can be very important
 - Some modules handle multiple modes
 - Pills, threats, edible ghosts

Future Work

- Go beyond two modules
 - □ Issue with domain or evolution?
- More consistent success
 - □ How are objectives used? TUG a starting point
 - □ Behavioral diversity/novelty an option
- Multimodal behavior of teams
 - □ Ghost team in Pac-Man
- Physical simulation
 - □ Unreal Tournament, robotics

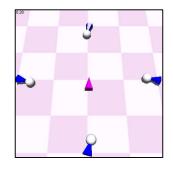


Conclusion



- Domains with clear task division
 - Variety of modular approaches are successful
- Domains with unclear task divisions
 - □ Surprising task divisions perform best
 - Multitask stops working well
 - Best divisions become much harder to learn
 - □ TUG makes learning more reliable
- Results in Ms. Pac-Man surpass previous evolved controllers, and other methods

Conclusion



Contributions

- Identified types of task divisions
 - Isolated, Interleaved, Blended
- Split sensors impose a task division
 - Elaborated on in dissertation
- Modular networks learn multiple behavioral modes
 - Learned task division better than human in blended tasks
- TUG reaches higher scores more consistently
 - Extends benefits of multiobjective approach

Questions?