
The MARLEDA Manual
version 0.8

Matthew Alden
mealden@uw.edu

FILES

examples/* Example MARLEDA parameter files.
src/* MARLEDA source files, makefile, and chi2.dat (a required data file).
COPYING The GNU Public License (v3).
README.pdf This document.

INSTALLATION

MARLEDA is written in C++ and has been compiled/tested with numerous versions of the GNU C++ compiler through
version 4.3.3. The src directory contains the source code for the MARLEDA executable as well as a GNU make
makefile for building the MARLEDA executable. Appropriate make targets are all and marleda.

When executed, MARLEDA requires the included data file chi2.dat (in the src directory) to be present in the
current working directory. Apart from this restriction, the marleda executable and chi2.dat file may be copied
to any location within the file system.

RUNNING MARLEDA

A single invocation of MARLEDA performs a single optimization experiment. The parameters of that experiment
may be specified in a parameter file, as command line arguments to the MARLEDA executable, or a combination of
both.

Parameters specified on the command line take the form ”-name value”. For example,

marleda -task onemax -genes 20 -popSize 100 -generations 10

Parameter files may contain one or more sets of parameters. A parameter file containing a single set of parameters
consists of lines of the form ”name value” with no blank lines in between. Lines beginning with the # character
denote comments and are ignored. Parameter values may be surrounded by double quotes. A single set of such quotes
will be stripped and not included as part of the value. For example,

# all experiment parameters
task onemax
genes 20
popSize 100
generations "10"

1



Parameters are loaded from a parameter file by specifying the file’s name on the MARLEDA command line. For
example, if the above parameter file was named OneMax.param,

marleda OneMax.param

A parameter file containing multiple sets of parameters must provide a name for each set (placed within [ ] brackets)
and separate each set with a blank line. For example,

[common]
popSize 200
generations 50

[exp1]
task onemax
genes 20

[exp2]
task rosenbrock
genes 32

A single set of parameters is loaded from a parameter file by specifying both the file’s name and the set name (separated
by a colon) on the MARLEDA command line. Reading multiple sets of parameters requires multiple command line
arguments, but the parameter file’s name can be omitted from subsequent arguments. For example, if the above
parameter file was named experiments.param,

marleda experiments.param:common :exp2

Parameters can be loaded from multiple files or specified directly on the command line in any combination. For
example,

marleda OneMax.param experiments.param:common -genes 150

The following table describes the current parameters of the MARLEDA system.

Name Description Required Default
task Specifies the optimization problem for the experiment. Included optimiza-

tion problems are onemax, trapmax, uniform, rosenbrock, and
spin.

X

genes Specifies the number of genes in each chromosome for the duration of
the experiment. Individual optimization problems, such as the included
Ising spin glass problem, may set this parameter based on other problem-
specific parameters, thus this parameter may not always need to be speci-
fied explicitly.

X

popSize Specifies the number of chromosomes in the population (steady-state). X
popFile Specifies a file from which to load the initial population for the experi-

ment. If this parameter is not specified, a random initial population will
be generated. If this parameter is specified, the genes and popSize
parameters will be automatically determined from the initial population,
and therefore shouldn’t be specified explicitly.

modelFile Specifies a file from which to load the initial Markov random field neigh-
borhood system. If this parameter is not specified, a trivial (empty) initial
neighborhood system will be generated.

2



Name Description Required Default
generations Specifies the duration of the experiment in terms of number

of population generations. Only one of generations or
evaluations is required.

X

evaluations Specifies the duration of the experiment in terms of fitness func-
tion evaluations. The actual number of fitness function evaluations
performed may exceed this limit in order to evaluate all new chro-
mosomes within the final population. Only one of generations
or evaluations is required.

X

selectionBasis Specifies the proportion of high-fitness chromosomes within the
population that will contribute to the next generation.

1.0

tournamentSize Specifies the number of chromosomes that compete in a single
round of tournament selection. If the value of this parameter is
less than 2, tournament selection is disabled.

X

mutation Specifies the per-gene probability of mutation. 0.0
elitists Specifies the proportion of high-fitness chromosomes that will be

directly copied to the next generation.
0.0

modelAddTries Specifies the number of randomly selected non-neighbor gene
pairs to test for neighbor status in the Markov random field neigh-
borhood system.

X

modelAddThresh Specifies the minimum confidence level necessary to change the
status of two genes from non-neighbors to neighbors within the
Markov random field neighborhood system.

X

modelSubTries Specifies the number of randomly selected neighbor gene pairs to
test for non-neighbor status in the Markov random field neighbor-
hood system.

X

modelSubThresh Specifies the maximum confidence level necessary to change the
status of two genes from neighbors to non-neighbors within the
Markov random field neighborhood system.

X

monteIters Specifies the number of iterations conducted in the Markov chain
Monte Carlo process used to generate new chromosomes.

X

snapshot Specifies the location and/or prefix for saving population/model
files during the course of the experiment. The file name for pop-
ulation/model snapshots is generated by appending the generation
number and extension pop to the value of this parameter. If this
parameter is not specified, no population snapshots will be saved.

snapshotMin Specifies the first generation for which a population snapshot will
be saved. If snapshotMin is less than zero, then a snapshot
will only be taken of the final generation, provided the snapshot
parameter is also defined.

-1

snapshotFreq Specifies the frequency (in generations) of population snapshots.
If population snapshots are enabled, the final population of the
experiment will always be saved, regardless of the values of
snapshotMin and snapshotFreq.

1

fitnessLog Specifies the location for saving a summary of population statistics
calculated every generation. The special file name ”-” may be
used to specify the standard output stream.

rngSeed Specifies a seed value for the random number generator used by
MARLEDA. If this parameter is not specified, the random number
generator is seeded from the local system time.

3



Individual optimization problems may utilize additional parameters. For the included TrapMax problem,

Name Description Required Default
trapSize Specifies the number of bits in each trap. The value of this parameter should

evenly divide genes.
X

For the included uniform strings problem,

Name Description Required Default
alleles Specifies the size of the alphabet strings are drawn from. X

For the included Ising spin glass problem,

Name Description Required Default
spinFile Specifies the file from which coupling coefficients are read. The genes

parameters is automatically set based on the size of the spin glass.
X

ADDING OPTIMIZATION PROBLEMS

MARLEDA represents optimization problems using C++ classes that inherit from the provided class
EvolutionTask. When an optimization experiment is performed, a single object (of the appropriate class) is used
to evaluate all chromosomes generated in the course of the experiment. Included in this distribution are five common
optimization problems, OneMax, TrapMax, uniform strings, the 2D Rosenbrock function, and Ising spin glasses, to
serve as guides for creating new optimization problem classes.

An optimization problem class encapsulates all domain specific aspects of the problem:

• The set of alleles (gene values) appropriate for the problem.

• Instance parameters (if applicable), e.g. spin glass coupling coefficients.

• A fitness function for evaluating chromosomes.

All data (alleles and parameters) must be available via class fields.

An optimization problem class must provide three methods, declared in the in the EvolutionTask class:

• bool initAlleles(const ParameterSet& ps, AllelePool& ap)

• bool init(ParameterSet& ps, const AllelePool& ap)

• double evaluate(const Chromosome& chromosome)

The first two methods are used to initialize the optimization problem object before the optimization experiment begins,
while the last method is the fitness function used during an experiment.

The initAlleles method is the first initialization method called. This method should add alleles appropriate for
the optimization problem to the passed AllelePool object. The AllelePool object manages the mapping from
the internal representation of an allele (an integer) to the serializable form used when reading or writing population
files (a string). Note: due to current constraints on the serialization process, alleles should not contain white space.
The AllelePool object also conveys the set of legal alleles to the rest of the MARLEDA system. For example, an
optimization problem over binary chromosomes such as OneMax would add alleles for 0 and 1.

4



class OneMax : public EvolutionTask {
public:

bool initAlleles(const ParameterSet& ps, AllelePool& ap) {
ap.newAllele("0");
ap.newAllele("1");
return true;

}
...

The initAlleles method has access to the full set of parameters passed to the MARLEDA invocation (via the
command line or parameter files), should those parameters affect the set of legal alleles.

The init method is called after the initAlleles method and should initialize the optimization problem object’s
internal storage of the legal alleles plus any instance data. Continuing the example of OneMax, the OneMax class
requires only two allele fields:

class OneMax : public EvolutionTask {
private:

Allele OFF, ON;

public:
bool initAlleles(const ParameterSet& ps, AllelePool& ap) {

ap.newAllele("0");
ap.newAllele("1");
return true;

}

bool init(ParameterSet& ps, const AllelePool& ap) {
try {

OFF = ap.get("0");
ON = ap.get("1");

} catch (invalid_argument& ex) {
return false;

}
return true;

}
...

The init method may modify the set of global parameters used by the MARLEDA system. This is useful in situ-
ations where MARLEDA parameters depend on instance parameters, e.g. setting the MARLEDA parameter genes
parameter to match the size of a spin glass read from a file (see the SpinGlass class).

Lastly, the evaluate method fills the role of fitness function. The return value indicates the quality of the evaluated
chromosome, which MARLEDA seeks to maximize. Fitness scores are only used to rank chromosomes, thus the
specific range of fitness scores for an experiment will not affect MARLEDA’s performance. Finishing the OneMax
example:

5



class OneMax : public EvolutionTask {
private:

Allele OFF, ON;

public:
bool initAlleles(const ParameterSet& ps, AllelePool& ap) {

ap.newAllele("0");
ap.newAllele("1");
return true;

}

bool init(ParameterSet& ps, const AllelePool& ap) {
try {

OFF = ap.get("0");
ON = ap.get("1");

} catch (invalid_argument& ex) {
return false;

}
return true;

}

double evaluate(const Chromosome& c) {
double sum = 0;
for (size_t i = 0; i < c.size(); i++)

if (c[i] == ON)
sum++;

return sum;
}

}

For convenience, new optimization problem classes for problems over binary chromosomes may inherit from the
provided class BinaryEvolutionTask instead of class EvolutionTask. The BinaryEvolutionTask
class supplies allele fields and implementations of the initAlleles and init methods appropriate for binary
chromosomes (as shown in the OneMax example). The OneMax class above can be simplified by utilizing the
BinaryEvolutionTask class as follows:

class OneMax : public BinaryEvolutionTask {
public:

double evaluate(const Chromosome& c) {
double sum = 0;
for (size_t i = 0; i < c.size(); i++)

if (c[i] == ON)
sum++;

return sum;
}

}

To help support environments where fitness evaluations could be more efficiently performed in batches, the EvolutionTask
class provides an additional method to act as a hook for custom evaluation of a set of chromosomes. The evaluate(PopulationMask&

6



pop) method is called to evaluate the entire set of new chromosomes created every generation. This method may be
overridden to, for example, serialize the chromosomes and evaluate them on a distributed computing cluster.

To fully integrate a new optimization problem into the MARLEDA executable, the problem must be selectable via
the MARLEDA parameter task. In the MARLEDA source file main.cc, the function selectTask controls the
mapping between task arguments and optimization problem objects. This function should be augmented to return
an object of the new optimization problem class when an appropriate task argument is specified.

7


