
CS 343 Artificial Intelligence

Gordon S. Novak Jr.

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712

(512) 471-9569

novak@cs.utexas.edu

http://www.cs.utexas.edu/users/novak

Copyright c© Gordon S. Novak Jr.

1

Artificial Intelligence as Science

Intelligence should be placed in the context of biology:

Intelligence connects perception to action to help
an organism survive.

Intelligence is computation in the service of life, just as
metabolism is chemistry in the service of life.

Intelligence does not imply perfect understanding;
every intelligent being has limited perception, memory,
and computation. Many points on the spectrum
of intelligence-versus-cost are viable, from insects to
humans.

AI seeks to understand the computations required for
intelligent behavior and to produce computer systems
that exhibit intelligence.

Aspects of intelligence studied by AI include perception,
motor control, communication using human languages,
reasoning, planning, learning, and memory.

2

Scientific Goals of AI

AI seeks to understand the working of the mind in
mechanistic terms, just as medicine seeks to understand
the working of the body in mechanistic terms.

The mind is what the brain does.
– Marvin Minsky

The strong AI position is that any aspect of human
intelligence could, in principle, be mechanized.

3

A.I. as Engineering

How can we make computer systems more intelligent?

• Perception to get input directly from the real world.

• Autonomy to perform tasks that currently require
human operators without human intervention or
monitoring.

• Flexibility in dealing with variability in the
environment.

• Ease of use: computers that are able to understand
what the user wants from limited instructions in
natural languages.

• Learning from experience.

4

Perception

Machine Vision:
It is easy to interface a TV camera to a computer and get
an image into memory; the problem is understanding
what the image represents. Vision takes lots of
computation; in humans, roughly 10% of all calories
consumed are burned in vision computation.

Speech Understanding:
Speech understanding is available now. Some systems
must be trained for the individual user and require pauses
between words. Understanding continuous speech with a
larger vocabulary is harder.

Touch (tactile or haptic) Sensation:
Important for robot assembly tasks.

5

Robotics

Although industrial robots have been expensive, robot
hardware can be cheap: Radio Shack has sold a working
robot arm and hand for $15. The limiting factor in
application of robotics is not the cost of the robot
hardware itself.

What is needed is perception and intelligence to tell the
robot what to do; “blind” robots are limited to very well-
structured tasks (like spray painting car bodies).

6

Natural Language Understanding:

Natural languages are human languages such as
English. Making computers understand English allows
non-programmers to use them with little training.
Applications in limited areas (such as access to data
bases) are easy.

(askr ’(where can i get ice cream in berkeley))

Natural Language Generation:

Easier than NL understanding. Can be an inexpensive
output device.

Machine Translation:

Usable translation of text is available now. Important for
organizations that operate in many countries.

In a not too far future develops for eleven-year
old David in a research lab the first intelligent
robot with human feelings in the shape. But its
”foster parents” are overtaxed with the artificial
spare child and suspend it. Posed on itself alone
David tries to fathom its origin and the secret of
its existence.

7

Planning

Planning attempts to order actions to achieve goals.

Planning applications include logistics, manufacturing
scheduling, planning manufacturing steps to construct a
desired product.

There are huge amounts of money to be saved through
better planning.

8

Expert Systems

Expert Systems attempt to capture the knowledge
of a human expert and make it available through a
computer program. There have been many successful and
economically valuable applications of expert systems.

Benefits:

• Reducing skill level needed to operate complex
devices.

• Diagnostic advice for device repair.

• Interpretation of complex data.

• “Cloning” of scarce expertise.

• Capturing knowledge of expert who is about to retire.

• Combining knowledge of multiple experts.

• Intelligent training.

9

Theorem Proving

Proving mathematical theorems might seem to be mainly
of academic interest. However, many practical problems
can be cast in terms of theorems. A general theorem
prover can therefore be widely applicable.

Examples:

• Automatic construction of compiler code generators
from a description of a CPU’s instruction set.

• J Moore and colleagues proved correctness of the
floating-point division algorithm on AMD CPU chip.

10

Symbolic Mathematics

Symbolic mathematics refers to manipulation of
formulas, rather than arithmetic on numeric values.

• Algebra

• Differential and Integral Calculus

Symbolic manipulation is often used in conjunction
with ordinary scientific computation as a generator of
programs used to actually do the calculations. Symbolic
manipulation programs are an important component of
scientific and engineering workstations.

>(solvefor

’(= v (* v0 (- 1 (exp (- (/ t (* r c)))))))

’t)

(= T (* (- (LOG (- 1 (/ V V0)))) (* R C)))

11

Game Playing

Games are good vehicles for research because they are well
formalized, small, and self-contained. They are therefore
easily programmed.

Games can be good models of competitive situations, so
principles discovered in game-playing programs may be
applicable to practical problems.

Prof. Peter Stone does research on strategies for bidding
at auctions.

12

Characteristics of A.I. Programs

• Symbolic Reasoning: reasoning about objects
represented by symbols, and their properties and
relationships, not just numerical calculations.

• Knowledge: General principles are stored in
the program and used for reasoning about novel
situations.

• Search: a “weak method” for finding a solution to
a problem when no direct method exists. Problem:
combinatoric explosion of possibilities.

• Flexible Control: Direction of processing can be
changed by changing facts in the environment.

13

Symbolic Representation

Most of the reasoning that people do is non-numeric.
AI programs often do some numerical calculation, but
focus on reasoning with symbols that represent objects
and relationships in the real world.

• Objects.

• Properties of objects.

• Relationships among objects.

• Rules about classes of objects.

Examples of symbolic processing:

• Understanding English:

(show me a good chinese restaurant in los altos)

• Reasoning based on general principles:

if: the patient is male

then: the patient is not pregnant

• Symbolic mathematics:

If y = m*x+b, what is the derivative

of y with respect to x?

14

Knowledge Representation

It is necessary to represent the computer’s knowledge
of the world by some kind of data structures in the
machine’s memory. Traditional computer programs deal
with large amounts of data that are structured in simple
and uniform ways. A.I. programs need to deal with
complex relationships, reflecting the complexity of the
real world.

Several kinds of knowledge need to be represented:

• Factual Data: Known facts about the world.

• General Principles: “Every dog is a mammal.”

• Hypothetical Data: The computer must consider
hypotheticals in order to reason about the effects of
actions that are being contemplated.

15

Semantic Networks / Frames

A semantic network or frame system represents
knowledge by nodes and labeled arcs among nodes.

16

Logic

Facts can also be represented in a logical formalism. In
principle, logic and semantic network representations can
be equivalent.

(huey huey-457)

(all x (if (huey x) (helicopter x)))

(all x (if (huey x) (payload x 4000)))

(all x (if (helicopter x) (can-fly x)))

17

Logic ...

Mathematical logic formalizes certain kinds of reasoning
in terms of operations on mathematical formulas. It is
important for people working in A.I. to know logic for
several reasons:

• Theory: Logic has a sound mathematical
foundation; things can be proved about it.

• Applications: For certain classes of applications
(e.g., proving correctness of programs) logic is the
representation of choice.

• Comparison with Other Methods: Other
representation methods are often reducible to logic.
Knowing logic helps in understanding other methods
and may help prevent reinvention of old techniques.

18

A.I. is the Future of Computing!

Moore’s Law predicts that computation will get
faster/cheaper by a factor of 2 every 1.5 years; this means
a factor of 1000 in 15 years. What will we do with
all that cheap computation? Traditional applications
of computers (with a few exceptions, such as large
simulations) will not absorb enough additional computing
power to make them major growth areas.

In the past, computation was scarce and manufacturers
could just sell cycles. Now that cycles are cheap, ease of
use is a major selling criterion.

Integration of computers with sensors and effectors will be
common and essential for competitive position in many
markets.

Consumer markets will not be similar to existing
computer applications, but will require intelligence to deal
with poorly structured tasks (such as cleaning the house).

19

Advantages of Lisp

• Recursion: A program can call itself as a
subroutine. Dynamic type checking makes recursion
more useful.

• Garbage Collection: automatically recycles
memory.

• Uniform Representation: Programs and data
are the same.

– Programs can examine other programs.

– Programs can write programs.

– Programs can modify themselves (learn).

– Data structures can contain programs; programs
can contain data structures.

• Interaction: User can combine program writing,
compilation, testing, debugging, running in a single
interactive session.

If you want to do AI, and you don’t start with Lisp,
you will have to reinvent it.

You can’t be a true Ninja code warrior unless you
master the ancient art of Lisp!

20

Lisp Code

Lisp code is based on a few simple rules:

• Parentheses enclose a function name and its
arguments: (sqrt x)

• All operations are done by function calls: (+ x y)

• The assignment operator is called setq:
(setq area (* pi (expt radius 2)))

• Every function call returns a value.

(defun abs (x)

(if (>= x 0)

x

(- x)))

• Local variables are declared by a let:
(let (x y) (setq x 3) ...)

21

Quick Lisp

int myfn (a, b) (defun myfn (a b)

{ int i = 3; float x; (let ((i 3) x)

... } ...))

{ statement; ... } (progn statement ...)

i = j + 2; (setq i (+ j 2))

sqrt(x) (sqrt x)

if (i > j && j > k) (if (and (> i j)

(> j k))

statement1 statement1

else statement2; statement2)

for (i=0; i< n; i++) ... (dotimes (i n) ...)

while (i < n) statement; (while (< i n)

statements)

printf("%d\n", i); (print i)

22

Lisp Data

• Symbols may contain letters, nu-
merals, and some special characters
+ - * / @ $ % ^ & _ < > ~ . ?

MASS CS343 WIDGET-ALIGNMENT-SCREW ?X

• Numbers: floating-point, complex, integer (including
bignums or big numbers), rational: 1/3.

• Atoms include symbols and numbers.

• S-expressions (symbolic expressions) are defined
recursively as follows:

– An atom is an S-expression.

– If x1...xn are S-expressions, then (x1...xn), called
a list of x1...xn, is an S-expression.

ONTOGENY

(THIS IS A LIST)

(* PI (EXPT R 2))

(ALL X (IF (HUMAN X) (MORTAL X)))

() ((())) ((()())())

The empty list () is equivalent to the symbol NIL.

23

Quotation

A symbol in Lisp can have a value, also called its binding.
There must be a way to distinguish the symbol itself from
its value. In English these are not formally distinguished.

The President is the chief executive.

The President has a wife named Laura.

In Lisp, we denote the symbol itself by quoting it with a
single-quote symbol.

(GET ’PRESIDENT ’DUTIES)

(GET PRESIDENT ’SPOUSE)

Internally, the ’ symbol becomes the pseudo-function
QUOTE:

(GET (QUOTE PRESIDENT) (QUOTE DUTIES))

Quoting a list makes a constant data structure:

(SETQ FORMULA ’(= AREA (* PI (EXPT R 2))))

24

Variable Values in Lisp

We can think of a symbol as a data structure that includes
a value cell containing a pointer to the value of the atom.
The value of the symbol can be set using the function SET:

(SET ’PRESIDENT ’JEFFERSON)

If we now evaluate PRESIDENT, we get the value
JEFFERSON.

Since the first argument of SET is usually quoted,
there is a special function SETQ that does this
automatically.

(SETQ PRESIDENT ’JEFFERSON)

(SETQ RADIUS 5.0)

(* PI (EXPT RADIUS 2))

25

Constructing Lists

An important feature of Lisp for AI applications is the
ability to construct new symbolic structures of arbitrary
size and complexity at runtime.

A new list structure with a fixed number of elements can
be made using the function LIST. To make a list of items
x1 ... xn, use the form:

(LIST x1 ... xn)

Each argument of LIST is evaluated unless it is quoted.

(LIST ’X ’Y ’Z) = (X Y Z)

(LIST (+ 2 3) (* 2 3)) = (5 6)

(SETQ MAN ’ADAM)

(SETQ WOMAN ’EVE)

(LIST MAN ’LOVES WOMAN) = (ADAM LOVES EVE)

(LIST (LIST ’A ’B) (LIST ’C ’D))

= ((A B) (C D))

26

Extracting Parts of Lists

Parts of lists can be extracted by CAR and CDR:

• CAR or FIRST returns the first element of a list.

• CDR or REST returns the rest of a list after the first
element.

(CAR ’(A B C)) = A

(CAR ’((A) B C)) = (A)

(CAR (CAR ’((A) B C))) = A

(CAR ’A) Error: A is not a list.

(CAR NIL) = NIL

(CDR ’(A B C)) = (B C)

(CDR ’((A) B C)) = (B C)

(CDR (CDR ’(A B C))) = (C)

(CDR (CAR ’((A) B C))) = () = NIL

(CDR ’A) Error: A is not a list.

(CDR NIL) = NIL

27

Combinations of CAR and CDR

Since combinations of CAR and CDR are frequently used,
all combinations up to four uses of CAR and CDR are
defined as functions of the form CxxxR:

(CAAR X) = (CAR (CAR X))

(CADR X) = (CAR (CDR X))

(CADDR X) = (CAR (CDR (CDR X)))

It’s worth memorizing common combinations:

CAR or FIRST = First element of a list
CADR or SECOND = Second element
CADDR or THIRD = Third element
CADDDR or FOURTH = Fourth element

Functions FIRST through TENTH are defined in Common
Lisp.

28

Constructing List Structure

The basic function that constructs new list
structure is the function CONS.

If Y is a list, then we can think of (CONS X Y) as adding
the new element X to the front of the list Y.

(CONS ’A ’(B)) = (A B)

(CONS ’A NIL) = (A)

(CONS ’A ’()) = (A)

(CONS ’(A) ’(B)) = ((A) B)

(CONS ’A ’B) = (A . B)

The following axioms always hold:

1. (CAR (CONS x y)) = x

2. (CDR (CONS x y)) = y

29

List Manipulation Functions

APPEND makes a new list consisting of the
members of its argument lists. APPEND takes any
number of arguments.

(APPEND ’(A) ’(B)) = (A B)

(APPEND ’(A B) ’(C D)) = (A B C D)

(APPEND ’(A) ’(B) ’(C)) = (A B C)

REVERSE makes a new list that is the reverse of the top
level of the list given as its argument.

(REVERSE ’(A B)) = (B A)

(REVERSE ’((A B)(C D))) = ((C D)(A B))

LENGTH returns the length of the top level of the list given
as its argument.

(LENGTH ’(A)) = 1

(LENGTH ’(A B)) = 2

(LENGTH ’((A B))) = 1

30

Substitution

The function SUBST makes a new S-expression tree (not
just a list) with a specified substitution.

(SUBST x y z) means “substitute x for y in z”.

(SUBST ’JONES ’NAME ’(DEAR MR NAME))

= (DEAR MR JONES)

(SUBST 5.0 ’RADIUS

’(* 3.14159 (EXPT RADIUS 2)))

= (* 3.14159 (EXPT 5.0 2))

(SUBST ’SOCRATES ’?X

’(IF (HUMAN ?X) (MORTAL ?X)))

= (IF (HUMAN SOCRATES)

(MORTAL SOCRATES))

31

Evaluation

Evaluation is the process by which Lisp determines the
value of an expression. Expressions are evaluated using
the following recursive algorithm:

1. If the expression to be evaluated is a number, T, or
NIL, its value is the expression itself.

2. If the expression is (QUOTE x), its value is x.

3. If the expression is a symbol, its value is the value of
the symbol (the symbol’s binding).

4. Otherwise, the expression must be a list that
represents a function call:

(a) Evaluate each argument of the function call, in left-
to-right order.

(b) Call the function with the resulting values of the
arguments.

(c) The value returned by the function is the value of
the expression.

32

Requesting Evaluation

Evaluation of an s-expression can be explicitly requested
using the function EVAL. (EVAL x) gives the result of
evaluating the value of the expression x in the current
execution context. That is, EVAL performs an extra level
of evaluation. The argument of EVAL is evaluated once,
and should return as its value some Lisp code; then EVAL

causes that Lisp code to be evaluated.

(EVAL (LIST ’LIST (LIST ’QUOTE ’A)))

= (A)

(EVAL (SUBST 10.0 ’RADIUS

’(* 3.14159 (EXPT RADIUS 2))))

= 314.159

EVAL and its relatives allow Lisp code to be part of a
data structure; the code can be retrieved from the data
structure and executed by calling EVAL.

33

Building Lists Incrementally

Often one wants to build up a list of things
incrementally; this is usually done using CONS. First,
note that for any x,

(CONS x NIL) = (LIST x) :

(CONS ’A NIL) = (A)

(CONS ’(A) NIL) = ((A))

Second, if LST is a list, then (CONS x LST) will make a
new list with x as its first element, followed by the other
elements of LST.

(CONS ’A ’(B C)) = (A B C)

(CONS ’(A) ’(B C)) = ((A) B C)

34

Building Lists Incrementally ...

Therefore, a list LST can be built up as follows:

1. Initially, set LST to NIL or ’() (a list of no
elements).

2. For each new element x, set LST to
(CONS x LST) or use (PUSH x LST).

The following example illustrates “CONSing up” a list.
Note that the element added last will be at the front
of the list; REVERSE can be used to reverse the order if
desired.

LST:

(SETQ LST ’()) NIL = ()

(SETQ LST (CONS ’A LST)) (A)

(SETQ LST (CONS ’B LST)) (B A)

(PUSH ’C LST) (C B A)

(SETQ LST (REVERSE LST)) (A B C)

35

Stepping Through A List

CAR (first element of a list) and CDR (remainder of the
list) can be used to step through a list one element at a
time:

1. Initially, set a variable LST to the list to be processed.

2. If LST is NIL, quit. Otherwise,

(SETQ TOP (CAR LST)) or (SETQ TOP (POP LST))

(SETQ LST (CDR LST))

3. Process the element TOP; go to step 2.

Such loops are so frequently used that a macro is provided
for them:

(DOLIST (var list) code)

will bind var to successive elements of list and execute
code for each element.

(DOLIST (NAME NAMELIST)

(PRINT (SUBST NAME ’TARGET

’(DEAR MR TARGET))))

36

Predicates

A predicate in Lisp is a function that performs a
test and returns either T (True) or NIL (False).
Note: Lisp functions that test predicate values
consider NIL to be False and anything else to be True.
Predicate names often end in P. Some commonly used
predicates are:

(SYMBOLP x) True if x is a SYMBOL.

(ATOM x) True if x is an ATOM

(anything besides a CONS).

(NULL x) True if x is NIL.

(CONSP x) True if x is a CONS cell.

(NUMBERP x) True if x is a number.

(ZEROP x) True if x is zero;

error if x not a number.

(MINUSP x) True if x is negative;

error if x not a number.

37

More Predicates

(EQ x y) True if x and y are the

same pointer value.

Always works for symbols.

(EQL x y) True if x and y are EQ

or are equal numbers.

(EQUAL x y) True if x and y have

isomorphic structure

(‘‘print the same’’).

(< x y) True if x < y.

Others are >, >=, <=,

=, /= (not equal).

38

Logical Operators

Predicates can be combined by the logical operators AND,
OR, and NOT.

(NOT x) returns T if x is NIL; otherwise, it
returns NIL. NOT is therefore the same as NULL.

(AND x1 ... xn) evaluates each of x1 ... xn in order.
As soon as any xi returns NIL, AND returns NIL without
evaluating any remaining x’s. If every xi returns a non-
NIL value, the value of AND is the value of xn.

(DEFUN SAFE-SQRT (X)

(AND (NUMBERP X)

(NOT (MINUSP X))

(SQRT X)))

(OR x1 ... xn) evaluates each of x1 ... xn in
order. As soon as any xi returns a non-NIL
value, OR returns that value without evaluating any
remaining x’s. If every xi returns NIL, the value of OR is
NIL.

(OR (> CASH 100) (PRINT ‘‘Get money.’’))

39

IF Statement

Common Lisp provides an IF statement:

(IF <test> <then-form>)

(IF <test> <then-form> <else-form>)

The <test> is evaluated first. If it returns a non-NIL
value, the <then-form> is evaluated and its value is the
value of the IF; otherwise, the <else-form> is evaluated
and its value is the value of the IF.

Since NIL is false and anything else is treated as true, a
common convention is for a function to return NIL if it
did not work, or an answer if it did work.

(SETQ Y (IF (< X 0.0)

(* X X)

(SQRT X)))

Note that the <then-form> and <else-form> are single
forms; if multiple things need to be done, they must be
enclosed in a PROGN.

40

EQ Predicate

The predicate EQ tests for equality of pointer
values inside the machine. It is faster than EQUAL, but
less general in its applicability.

EQ always works for comparisons where at least one
comparand is a symbol, since symbols are always unique
structures in memory. Comparisons against constant
symbols are usually done with EQ; EQL is like EQ, but
also works for numbers.

(IF (EQ (CAR FORM) ’+) (PRINT ’ADD))

In general, EQ does not work for numbers or for non-
atomic s-expressions.

(EQ ’A ’A) = T

(EQ ’(A) ’(A)) = NIL

(EQUAL ’(A) ’(A)) = T

(EQ (+ 2 2) 4) = T ? (implementation

dependent)

(EQUAL (+ 2 2) 4) = T

(EQL (+ 2 2) 4) = T

41

Membership Testing

A list of items can be used as a representation of a set.
The function (MEMBER x lst) tests whether the item x

is a member of the list lst. If x is a member of lst,
the value of MEMBER is the tail of the list lst beginning
with the place where x was found; otherwise, the value of
MEMBER is NIL. The default test used by MEMBER is EQL.

(SETQ CLUB ’(TOM DICK HARRY))

(MEMBER ’DICK CLUB) = (DICK HARRY)

(MEMBER ’FRED CLUB) = NIL

(MEMBER ’(JOHN MARY) COUPLES :TEST #’EQUAL)

42

Association Lists

A simple “database” facility is provided by the
association list. This is a list of sublists, in which the first
element of a sublist is the key value and the remainder of
the sublist is the associated data. Association lists are a
simple way to implement small databases.

(ASSOC x l) searches l, a list of lists, for an element
that begins with x. The result is the element that was
found, or NIL if no matching element is found.

(ASSOC ’TWO ’((ONE 1) (TWO 2) (THREE 3)))

= (TWO 2)

Note that an additional operation (in this case, CADR) is
usually required on the result of ASSOC to get the desired
data.

(CADR (ASSOC ’TWO ’((ONE 1) (TWO 2) ...)))

= 2

43

Use of Recursion in Lisp

A recursive program is one that calls itself as a
subroutine. Use of recursion in Lisp can result in
programs that are powerful, yet simple and elegant.
Often, a large problem can be handled by a small program
which:

1. Tests for a basic case and computes the value of a
basic case directly.

2. Otherwise, does part of the job and calls itself
recursively to do the rest of the job.

A good way to learn recursion, and to gain an
appreciation of the beauty of Lisp, is to study definitions
of basic Lisp functions written recursively in Lisp.
Reference to these definitions can also be used to answer
questions about how the functions work in particular
cases.

44

Examples of Recursion in Lisp

; Length of a list

(DEFUN LENGTH (L)

(IF (CONSP L)

(1+ (LENGTH (REST L)))

0))

; Last CONS cell in a list

(DEFUN LAST (L)

(IF L (IF (REST L)

(LAST (REST L))

L)))

; Membership in a list

(DEFUN MEMBER (X L)

(IF L (IF (EQL X (FIRST L))

L

(MEMBER X (REST L)))))

45

More Examples of Recursion

; Append two lists

(DEFUN APPEND (X Y)

(IF X (CONS (FIRST X)

(APPEND (REST X) Y))

Y))

; Reverse a list

(DEFUN REVERSE (L)

(REVERSE1 NIL L))

(DEFUN REVERSE1 (ANSWER LST)

(IF LST

(REVERSE1 (CONS (FIRST LST) ANSWER)

(REST LST))

ANSWER))

; Associate key with list of pairs

(DEFUN ASSOC (X L)

(IF L (IF (EQL X (FIRST (FIRST L)))

(FIRST L)

(ASSOC X (REST L)))))

46

Binary Tree Recursion

The recursions we have seen so far have involved linear
structures, that is, lists in which only the top level was
involved. A second class of recursive programs operates
on both halves of a CONS cell; in general, such functions
call themselves twice.

; Copy a tree structure

(DEFUN COPY-TREE (X)

(IF (CONSP X)

(CONS (COPY-TREE (CAR X))

(COPY-TREE (CDR X)))

X))

; Test equality of structure

(DEFUN EQUAL (X Y)

(COND ((EQL X Y) T)

((OR (ATOM X) (ATOM Y)) NIL)

((EQUAL (CAR X) (CAR Y))

(EQUAL (CDR X) (CDR Y)))))

47

SUBST is COPY-TREE with Substitution

SUBST makes a substitution throughout a
structure; (SUBST x y z) can be read “substitute
x for y in z”.

(DEFUN SUBST (X Y Z)

(IF (EQL Y Z)

X

(IF (CONSP Z)

(CONS (SUBST X Y (CAR Z))

(SUBST X Y (CDR Z)))

Z)))

48

Executing Multiple Statements

Often, one wishes to execute multiple function calls in
order.

(PROGN <statement1> ... <statementn>)

will execute <statement1> through <statementn> in
order; the value of PROGN is the value of <statementn>.

Multiple statements are automatically executed at the
“top level” of a function or within a COND clause; this is
sometimes referred to as an implicit PROGN.

(PROG1 <statement1> ... <statementn>)

will execute <statement1> through <statementn> in
order; the value of PROG1 is the value of <statement1>.

49

The LET Construct

The LET construct allows the programmer to
declare local variables for temporary use and execute
multiple forms within the scope of the variable bindings.

(LET (<variables>)

<statement-1>

...

<statement-n>)

The <variables> are initially bound to NIL when the
LET is entered; their values may be changed using SETQ.

Variables may be initialized to values other than NIL by
specifying a pair, (<var> <init-form>), in the list of
variables.

The value of the LET is the value of <statement-n>,
which could be just a variable name.

50

Example of LET

; Density of a sphere

(DEFUN SPHERE-DENSITY (RADIUS WEIGHT)

(LET (VOLUME

(MASS (/ WEIGHT 9.88)))

(SETQ VOLUME (* 4/3 PI

(EXPT RADIUS 3)))

(/ MASS VOLUME)))

51

Iteration Using DOLIST

The control constructs provided by Common Lisp often
allow shorter and more understandable code than use of
PROG and GO, as illustrated by the following version of
LENGTH:

(DEFUN LENGTH (L)

(LET ((COUNT 0))

(DOLIST (ITEM L) (INCF COUNT))

COUNT))

INCF is a macro that increments a value.
(INCF COUNT) expands into
(SETQ COUNT (1+ COUNT)).

52

Search

Search programs find a solution for a problem by trying
different sequences of actions (operators) until a solution
is found.

Advantage:
Many kinds of problems can be viewed as search
problems. To solve a problem using search, it is only
necessary to code the operators that can be used; search
will find the sequence of actions that will provide the
desired result. For example, a program can be written to
play chess using search if one knows the rules of chess; it
isn’t necessary to know how to play good chess.

Disadvantage:
Most problems have search spaces so large that it is
impossible to search the whole space. Chess has been
estimated to have 10120 possible games. The rapid
growth of combinations of possible moves is called the
combinatoric explosion problem.

53

Why Search is Necessary

There is no model of the world that is complete,
consistent, and computable. Any intelligent system must
encounter surprises.

Solutions to problems cannot be precomputed; many
problems must be solved dynamically, starting from
observed data.

Flexibility to deal with a variable environment requires
search.

Ambiguity in interpretation of perceptual data requires
search. Interpretation may be locally ambiguous, but
global constraints may permit an unambiguous total
interpretation.

Creativity can result from searching through many
possible designs.

54

Outline of Search Topics

• State Space Search

– Combinatoric Explosion Problem

– Search Strategies

∗ Depth-first, Breadth-First

∗ Hill Climbing

∗ Heuristic Search

∗ Iterative Deepening

• Problem Reduction Search

– Game Tree Search

• Other Topics

– Genetic Algorithms

– Example: DENDRAL

55

State Space Search

A state space represents a problem in terms of states and
operators that change states.

A state space consists of:

• A representation of the states the system can be in.
In a board game, for example, the board represents
the current state of the game.

• A set of operators that can change one state into
another state. In a board game, the operators are
the legal moves from any given state. Often the
operators are represented as programs that change a
state representation to represent the new state.

• An initial state.

• A set of final states; some of these may be desirable,
others undesirable. This set is often represented
implicitly by a program that detects terminal states.

56

Tic-Tac-Toe as a State Space

State spaces are good representations for board games
such as Tic-Tac-Toe. The state of a game can be
described by the contents of the board and the player
whose turn is next. The board can be represented as an
array of 9 cells, each of which may contain an X or O or
be empty.

• State:

– Player to move next: X or O.

– Board configuration:

X O

O

X X

• Operators: Change an empty cell to X or O.

• Start State: Board empty; X’s turn.

• Terminal States:
Three X’s in a row; Three O’s in a row; All cells full.

57

Search Tree

The sequence of states formed by possible moves is called
a search tree. Each level of the tree is called a ply .

Since the same state may be reachable by different
sequences of moves, the state space may in general be
a graph. It may be treated as a tree for simplicity, at the
cost of duplicating states.

58

Solving Problems Using Search

• Given an informal description of the problem,
construct a formal description as a state space:

– Define a data structure to represent the state.

– Make a representation for the initial state from
the given data.

– Write programs to represent operators that change
a given state representation to a new state
representation.

– Write program to detect terminal states.

• Choose an appropriate search technique:

– How large is the search space?

– How well-structured is the domain?

– What knowledge about the domain can be used to
guide the search?

59

Basic Recursive Algorithm

• If the input is a base case, for which the solution is
known, return the solution.

• Otherwise,

– Do part of the problem, or break it into smaller
subproblems.

– Call the problem solver recursively to solve the
subproblems.

– Combine the subproblem solutions to form a total
solution.

In writing the recursive program:

•Write a clear specification of the input and output of
the program.

• Assume it works already.

•Write the program to use the input form and produce
the output form.

60

Solving Equations

One way to solve simple equations is to use rules of
algebra to move operations to the opposite side until the
desired variable is reached.

Equations are represented in Lisp as list structures or
trees. The equation y = m · x + b is represented as:

(= Y (+ (* M X) B))

This is equivalent to the tree:

M

*

X

B

+

=

Y

�
�
�
��

�
�
�
��

�
�
�
�� @

@
@
@@

@
@
@
@@

@
@
@
@@

61

Solving Equations by Search

We can solve simple equations in this way:

• If only the desired variable is on the left, succeed:
return the input equation.

(= Y (+ (* M X) B))

• If only the desired variable is on the right, succeed:
return the input equation with the arguments
reversed.

(= (+ (* M X) B) Y)

• If only an undesired variable is on the right, fail:
return NIL.

(= (+ (* M X) B) FOOBAR)

• Otherwise, try using an algebraic law to eliminate
the top operator on the right; usually, there are two
possibilities to try. Then try to solve the resulting
equation; if either one succeeds, return that answer.

The strategy here is to search through every possible
legal rewriting of the equation until we get the one we
want.

62

Rewriting Equations

Given an equation (= ?X (+ ?Y ?Z)), where each of
?X, ?Y, and ?Z could be any expression, we could use the
laws of algebra to rewrite the equation as:

• (= (- ?X ?Y) ?Z)

• (= (- ?X ?Z) ?Y)

Assuming that the variables ?X, ?Y, and ?Z have values,
we could create the first pattern using LIST:

(LIST ’= (LIST ’- ?X ?Y) ?Z)

or using backquote:

• ‘(= (- ,?X ,?Y) ,?Z)

Backquote produces the same code as above; it quotes
everything unless an item is un-quoted with a comma.

63

Examples of Equation Solving

>(solve ’(= x 3) ’x)

(= X 3)

>(solve ’(= 3 x) ’x)

(= X 3)

>(solve ’(= y (+ x b)) ’x)

1> (SOLVE (= Y (+ X B)) X)

2> (TRY-LEFT (= Y (+ X B)))

<2 (TRY-LEFT (= (- Y X) B))

2> (SOLVE (= (- Y X) B) X)

<2 (SOLVE NIL)

2> (TRY-RIGHT (= Y (+ X B)))

<2 (TRY-RIGHT (= (- Y B) X))

2> (SOLVE (= (- Y B) X) X)

<2 (SOLVE (= X (- Y B)))

<1 (SOLVE (= X (- Y B)))

(= X (- Y B))

>(solve ’(= y (+ (* m x) b)) ’x)

(= X (/ (- Y B) M))

64

Basic Depth-first Search Algorithm

; Output: list of operators or FAILURE

(defun search (state)

(let (op oplist newstate)

(if (terminalp state)

(if (goalp state) ’() ’failure)

(progn

(setq op (choose-op state))

(setq newstate

(funcall op state))

(setq oplist (search newstate))

(if (eq oplist ’failure)

’failure

(cons op oplist))))))

Complications:

•We may have to try different operators.
(newstate might be a dead end.)

• It may not be possible to apply op.

• Applying op might violate a constraint.

•We could get into a loop applying op and its inverse.

65

Comments on Search Algorithm

• The program continually goes deeper until it reaches
a terminal state, which is either a goal or a failure.

•When the goal is found, search returns ’() as its
answer. This is an empty list of operators, since no
operators are required to reach the goal.

• At each level as the search unwinds, the operator used
at that level is put onto the front of the operator list
using cons. cons adds a new item onto the front of
a list:
(cons ’a ’(b c)) = (A B C)

66

Recursive Depth-First Search

Function sss(s prev ops):

1. If s is a goal, return ’() as the answer. This is a
list of no operators, since no operators are required to
reach the goal state.

2. If s is a failure, or no operators remain, return
’failure.

3. If the next operator, op, is applicable to the input
state s, compute new by applying it to s.

(a) If new duplicates one of its ancestor states on prev,
try the next operator.

(b) If a search for the goal from the new state,
(sss new (cons s prev) *ops*)

succeeds, return the cons of op onto the front of
its operator sequence, opseq.
s → new → ... → goal

op opseq

(c) Else, try the next operator.

4. Else, try the next operator.

67

State Space Search Program

(defun sss (s prev ops) ; state, prev states,

(let ((op (pop ops))) ; op = next ops to try

(if (goal? s) ; if s is a goal,

’() ; answer = list of no ops

(if (or (failure? s) (null op))

’failure

(if (applicable? op s)

(let ((new (apply-op op s)))

; if it duplicates a prev state

(if (member new prev :test #’equal)

; try the next op

(sss s prev ops)

; else try to search from new

(let ((opseq (sss new

(cons s prev)

ops)))

; if search failed

(if (eq opseq ’failure)

; try the next op

(sss s prev ops)

; else cons op onto answer

(cons op opseq)))))

; try another op

(sss s prev ops))))))

68

Notes on State Space Search Program

• This program is a generic depth-first state space
search program, with detection of duplicate states. It
can be applied to a domain by providing the functions
goal?, failure?, applicable? and apply-op,
and the list of operators *ops*.

• The program is recursive in two directions:

– Down: (sss new (cons s prev) *ops*)

This code tries to find a goal from the new state
produced by applying one operator to the input
state. The input state is added to the list of
previous states, and all operators are available to
be tried (the global variable *ops* is a list of all
operators.).

– Across: (sss s prev ops)

This code tries search from the current state but
using the next operator, since the operator that
was just tried did not work.

69

Missionaries and Cannibals

The Missionaries and Cannibals problem illustrates the
use of state space search for planning under constraints:

Three missionaries and three cannibals wish to
cross a river using a two-person boat. If at any
time the cannibals outnumber the missionaries
on either side of the river, they will eat the
missionaries. How can a sequence of boat trips
be performed that will get everyone to the other
side of the river without any missionaries being
eaten?

70

Missionaries/Cannibals Search Graph

71

Missionaries and Cannibals Representation

State Representation:

1. BOAT position: original (T) or final (NIL) side of the
river.

2. Number of Missionaries and Cannibals on the original
side of the river.

3. Start is (T 3 3); Goal is (NIL 0 0).

Operators:

(MM 2 0) Two Missionaries cross the river.
(MC 1 1) One Missionary and one Cannibal.
(CC 0 2) Two Cannibals.
(M 1 0) One Missionary.
(C 0 1) One Cannibal.

72

Functions for Missionaries and Cannibals

(defun ml (state) (second state)) ; m on left

(defun mr (state) (- *mtotal* (second state)))

(defun m (s) (if (boat s) (ml s) (mr s)))

(defun applicable? (op s)

(and (<= (op-m op) (m s)) (<= (op-c op) (c s))))

; Test for failure: c > m > 0 on either side.

(defun failure? (s)

(or (> (cl s) (ml s) 0)

(> (cr s) (mr s) 0)))

(defun goal? (s) ; 0 mis and 0 can on left

(and (= (ml s) 0) (= (cl s) 0)))

(defun apply-op (op s) ; apply op => new state

(if (boat s)

(list nil (- (ml s) (op-m op))

(- (cl s) (op-c op)))

(list t (+ (ml s) (op-m op))

(+ (cl s) (op-c op)))))

73

Testing Missionaries and Cannibals

>(load "/projects/cs381k/miscan.lsp")

>(testmc 1 1)

((MC 1 1))

>(testmc 2 1)

((MM 2 0) (M 1 0) (MC 1 1))

> (testmc 3 3)

((MC 1 1) (M 1 0) (CC 0 2) (C 0 1)

(MM 2 0) (MC 1 1) (MM 2 0) (C 0 1)

(CC 0 2) (M 1 0) (MC 1 1))

> (testmc 4 4)

FAILURE

74

Combinatoric Explosion

Suppose that each node of a search tree has b descendants;
this is sometimes called the average branching factor.1

Then the number of nodes at the bottom of a tree d plies
deep is bd. This number grows exponentially with depth
and can quickly become very large as the search becomes
deeper; this rapid growth is called the combinatoric
explosion problem.

The maximum depth, i.e. maximum number of steps
between any two states, is called the diameter of the
problem space.

In chess, there may be 30 possible moves from each state.
A chess tree 10 plies deep would require searching 3010

or nearly 1015 nodes. On a computer that could examine
one node in a microsecond, it would take over 18 years of
computer time to examine this tree.

1Real search trees often have different numbers of descendants from different nodes.

75

Do Faster Computers Help?

If searching takes too long, the obvious solution would
appear to be to get a faster computer (or many parallel
computers). Unfortunately, this often does not help.

The exponential growth of search trees can outrun
computer power. In chess, a computer 1,000 times as
fast yields a benefit of only two plies deeper search in the
same amount of time; a computer 1,000,000 times as fast
yields four plies.

The Moral:

Use knowledge about the problem domain to
reduce the size of the search space.

76

Irrelevant Operators

Irrelevant operators increase the branching factor b, and
this rapidly increases the size of the search space, bd.

A human chess master considers only 1 to 3 board
positions per second, but considers only at the most useful
moves. A computer chess program may consider millions
of positions per second, but most of those are foolish
moves.

Moral: Use knowledge about the problem domain to
reduce the number of operators considered at any given
time.

77

Search Order

The excessive time spent in searching is almost entirely
spent on failures (sequences of operators that do not lead
to solutions). If the computer could be made to look at
promising sequences first and avoid most of the bad ones,
much of the effort of searching could be avoided.

Blind search methods try operators in some fixed order,
without knowing which operators may be more likely to
lead to a solution. Such methods can succeed only for
small search spaces.

Heuristic search methods use knowledge about the
problem domain to choose more promising operators first.

78

Search Order

Searches can be classified by the order in which operators
are tried: depth-first, breadth-first, bounded depth-first.

79

Depth-First Search

Depth-first search applies operators to each newly
generated state, trying to drive directly toward the goal.

Advantages:

1. Low storage requirement: linear with tree depth.

2. Easily programmed: function call stack does most of
the work of maintaining state of the search.

Disadvantages:

1. May find a sub-optimal solution (one that is deeper
or more costly than the best solution).

2. Incomplete: without a depth bound, may not find a
solution even if one exists.

80

Bounded Depth-First Search

Depth-first search can spend much time (perhaps infinite
time) exploring a very deep path that does not contain a
solution, when a shallow solution exists.

An easy way to solve this problem is to put a maximum
depth bound on the search. Beyond the depth bound , a
failure is generated automatically without exploring any
deeper.

Problems:

1. It’s hard to guess how deep the solution lies.

2. If the estimated depth is too deep (even by 1) the
computer time used is dramatically increased, by a
factor of bextra.

3. If the estimated depth is too shallow, the search fails
to find a solution; all that computer time is wasted.

81

Iterative Deepening

Iterative deepening begins a search with a depth bound
of 1, then increases the bound by 1 until a solution is
found.

Advantages:

1. Finds an optimal solution (shortest number of steps).

2. Has the low (linear in depth) storage requirement of
depth-first search.

Disadvantage:

1. Some computer time is wasted re-exploring the higher
parts of the search tree. However, this actually is not
a very high cost.

82

Cost of Iterative Deepening

In general, (b− 1)/b of the nodes of a search tree are on
the bottom row. If the branching factor is b = 2, half the
nodes are on the bottom; with a higher branching factor,
the proportion on the bottom row is higher.

Korf calculates the work done by iterative deepening as
bd ∗ (1 − 1/b)−2, where the multiplier approaches 1 as b
increases.2

My calculation of the work multiplier for iterative
deepening is (b+ 1)/(b− 1), which is not far from Korf’s
result. The multiplier is a constant, independent of depth.

b multiplier
2 3.00
3 2.00
4 1.67
5 1.50
10 1.22

2Korf, Richard E., “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,” Artificial
Intelligence. vol. 27, no. 1, pp. 97-112, Sept. 1985.

83

Using Heuristics to Guide Search

We now turn to methods for using heuristic knowledge to
make search more efficient.

Finding a route from one city to another city is an
example of a search problem in which different search
orders and the use of heuristic knowledge are easily
understood.

• State: the current city in which the traveler is located.

• Operators: roads linking the current city to other
cities.

• Cost Metric: the cost of taking a given road between
cities (distance, time required, dollar cost, a weighted
sum of costs, etc.).

• Heuristic Information: the search could be guided by
the direction of the goal city from the current city, or
we could use airline distance as an estimate of the
distance to the goal.

84

Hill Climbing

A strategy for climbing a hill in a fog is to move upward.

A heuristic that estimates distance to the goal can be
used to guide a hill-climbing search. A discrete depth-
first search guided by such a heuristic is called greedy
best-first search; it can be very efficient. For example,
in route finding, hill climbing could be implemented by
selecting the next city that is closest to the goal.

Unfortunately, hill-climbing sometimes gets into trouble:

Ramdom restart is one way to recover from local
maxima.

85

Breadth-First Search

Breadth-first search generates new states in the order of
their distance from the start state. All states at level i are
examined before any states at level i + 1 are examined.

Advantages:

1. Guaranteed to find an optimal solution (in terms of
shortest number of steps to reach the goal).

2. Can always find a goal node if one exists (complete).

Disadvantages:

1. High storage requirement: exponential with tree
depth.

86

Breadth-First Search Algorithm

1. Put the start node s on a queue called open. open

contains nodes that are still to be examined.

2. While open is non-empty,

(a) Remove the first node n from open; put n on a list
called closed. If n is a goal node, terminate with
success. The solution path is given by the pointers
from n back to the start node.

(b) Expand node n (generate its successors). For each
successor node m, if it is neither on open nor on
closed, put a pointer from m back to n and record
the operator used; insert m at the end of the open
queue.

3. open is empty; terminate with failure.

87

Uniform-Cost Search

Uniform-cost search is similar to breadth-first search. We
associate with each node n a cost g(n) that measures the
cost of getting to node n from the start node. g(start) =
0. If ni is a successor of n, then g(ni) = g(n) + c(n, ni),
where c(n, ni) is the cost of going from node n to node
ni.

Instead of considering the first node on open, as in
breadth-first search, the least-cost node on open is
expanded.

Advantage:

1. Guaranteed to find the least-cost solution.

Disadvantages:

1. Exponential storage required.

2. open list must be kept sorted (as a priority queue).

3. Must change cost of a node on open if a lower-cost
path to it is found.

Uniform-cost search is the same as Heuristic Search when
no heuristic information is available (heuristic function h
is always 0).

88

Ordered Search

Ordered search is like breadth-first search, except that
it selects for expansion the node generated so far that
looks the most promising according to a chosen heuristic
function.

Advantages:

1. If the heuristic is good, then a good path can be found
quickly.

Disadvantages:

1. Extra overhead to evaluate the heuristic function.

2. Large storage to store open and closed node lists.

3. Large CPU time required if heuristic function is
inaccurate.

89

The Ordered Search Algorithm

1. Put the start node s on open; compute f(s).

2. While open is non-empty,

(a) Remove the lowest-cost node n from open; put n
on closed. If n is a goal, terminate with success.
The solution path is given by the pointers from n

back to the start node.

(b) Expand node n (generate its successors). For each
successor node m,

i. Compute f(m).

ii. If m is neither on open nor on closed, place m

on open so that open remains ordered. Put a
pointer from m back to n and record the operator
used.

iii. If m is already on open or closed, and the path
to m just found is better than the one previously
found, change the cost value and pointer of node
m to the new values and put m on open.

3. open is empty; terminate with failure.

90

Evaluation Functions

• h∗(n) = cost of the shortest path between node n and
a goal node (usually not known).

• h(n) = estimated cost to get to a nearest goal node
from n.

• g(n) = cost to get to node n from the start node via
the lowest-cost path found so far.

91

Heuristic Search: A*

Heuristic Search chooses the next node to expand
(consider descendants of) based on lowest estimated
total cost of a path through the node.

Estimated Total Cost f (n) = g(n) + h(n)
g(n) = Cost from Start to n [known]
h(n) = Cost from n to Goal [estimated]

g(n) h(n)?

Start -------> n -------> Goal

The heuristic function, h, estimates the cost of getting
from a given node n to the goal. If h is good, the search
will be highly directed and efficient; for example, airline
distance is an excellent heuristic distance estimator for
route finding. If h is not so good or has pathologies,
inclusion of the known cost g keeps the search from
getting stuck or going too far astray.

92

Heuristic Search for Route Finding

Route finding is a good example for heuristic search
because an excellent heuristic function exists: straight-
line (or great-circle) distance between points. This
heuristic function has the features:

• It is easily computed.

• It is non-overestimating; therefore, the lowest-cost
solution is guaranteed to be found.

• It is powerful (good estimate of true cost).

93

Ordered Search for Route Finding

• h(n) = 0: Search proceeds in all directions

• f (n) = h(n) + g(n): Search directed toward goal

• h = h∗: Search proceeds directly to goal

94

Effect of Heuristic Function

95

Admissibility of Heuristic Function

A search algorithm is admissible if it always finds an
optimal solution path if a solution path exists.

It can be shown3 that the ordered search algorithm, using
the heuristic function

f (n) = g(n) + h(n)

is admissible iff for all nodes n, h(n) ≤ h∗(n) , where
h∗(n) is the actual cost of getting from node n to a nearest
goal. That is, h(n) must be non-over-estimating;
heuristic search with such an h(n) is called A∗.

A∗ expands the fringe of the search in contours of
increasing f values until a goal is reached. A∗ is the
most efficient admissible graph search possible, in terms
of number of nodes examined for a given h(n).

In practice, one might sacrifice admissibility to have a
more powerful heuristic function and reduce search time.

3Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann Publishers, 1980.

96

Informed Heuristic Functions

Given two heuristic functions h1(n) and h2(n), where
both h1(n) ≤ h∗(n) and h2(n) ≤ h∗(n), we say h2(n)
is more informed than h1(n) if h2(n) > h1(n) for all
nodes n.

Given multiple admissible heuristic functions h1(n),
h2(n), ..., the function h(n) = max(h1(n), h2(n), ...) is
also admissible and at least as informed as any of its
component heuristic functions.

Since heuristic functions can easily be combined in the
above manner, it is possible to learn heuristics from
experience. The simplest case is remembering the true
cost of solving a particular problem. More generally,
features of particular problems can be learned along with
costs.

97

Features of Heuristic Functions

A heuristic function h(n) satisfies the monotone
restriction if for all nodes ni and nj,

h(ni) ≤ h(nj) + c(ni, nj)

If h(n) satisfies this restriction (similar to the triangle
inequality), then a node never has to be moved from
closed back to open. In this case, closed could be
eliminated, saving storage.

The effectiveness of a heuristic can be expressed as
the effective branching factor, b∗. b∗ is the inferred
branching factor that would produce the actual number
of nodes searched at the solution depth d.

98

Heuristic Search Handles Local Maxima

A barrier in the route-finding space creates a local
maximum where hill-climbing would get stuck. Heuristic
search will widen the search until it gets around the
barrier.

h = 0.9 ∗ distance, with barrier.

99

Iterative Deepening A* (IDA*)

Iterative Deepening A* (IDA*)4 combines a depth-
first, iterative-deepening style of search with the use of
heuristic functions as in A*.

1. Initially, set threshold = h(start) .

2. Perform a depth-first search, failing at any node n for
which g(n) + h(n) > threshold .

3. If no solution is found, increase threshold to the
minimum value of g(n) + h(n) that was over
threshold in the previous search, and retry.

Adv.:

• Low storage requirement: O(depth) .

• Makes use of heuristic information: fast.

• Optimal solution if h(n) is admissible.

Dis.:

• Redo search work that was done previously.

• If there are multiple paths to a node, IDA∗ will re-
search the successors of that node (A∗ would not).

4Korf, R. E., “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search”, Artificial
Intelligence, vol. 27, no. 1 (Sept. 1985).

100

Beam Search: MA∗ and SMA∗

For some problems, A∗ produces too large an open list.
IDA∗ may suffer from keeping too little information: in
a search graph with many paths to a given node, IDA∗

must re-search from that node.

One solution is to limit the size of open; this is called a
beam search. The algorithms MA∗ and SMA∗ remove
the worst and oldest node from open when a new space
is needed, while choosing the best and newest node to
expand at each step.

Beam search provides the directedness of depth-first
search while maintaining several open lines of search (the
width of the beam). For some applications (particularly
those dealing with continuous time functions, such as
signal understanding), it is necessary to prune less-
promising search paths in order to keep storage and time
requirements manageable. At the same time, it may be
necessary to carry more than one line of search in case
the current “best” line is not the overall best path.

101

Forward vs. Backward Search

It may be advantageous to search forward (from starting
state towards the goal) or backwards (from goal to the
starting state). Criteria include:

• Number of initial and goal states.

• Direction of greatest branching factor.

In many AI problems, backward reasoning is strongly
preferred. The reason is that starting from the goal causes
many variables to be bound to constants, greatly reducing
the branching factor in the backward direction.

Bidirectional search, searching in both directions until
the fringes of the searches meet in the middle, can save
time: 2 ∗ bd/2 << bd. However, this may take a lot of
storage.

102

Search Tree vs. Search Graph

Many of the search algorithms can be written so that they
consider the search graph to be a tree, even if it actually
is a graph.

Advantages:

1. Simpler programming.

2. Saves computer time required to find duplicated
states.

3. Saves storage: no need to store previous states.

Disadvantage:

1. Larger search space because the same node (and its
descendants) are searched multiple times.

If the problem has a high degree of symmetry or high
probability of duplicated states, detecting duplicates may
have large savings. If the probability of duplicates is
small, treating the graph as a tree is easier and may be
faster.

103

Problem Reduction Search

Problem reduction search is a basic problem-solving
technique of AI. It involves reducing a problem to a set
of easier subproblems whose solutions, if found, can be
combined to form a solution to the hard problem. Such
a search is easily written as a recursive program in Lisp:

1. If the given problem is a primitive subproblem (one
that can be solved by a known technique), return the
solution to it.

2. Otherwise, try breaking the given problem into sets of
simpler subproblems, and call the program recursively
to try to solve the subproblems .

3. If a set of subproblems is found such that all the
subproblems can be solved, combine the subproblem
solutions in an appropriate way to form the solution
to the current problem.

104

Problem Reduction Search: Flowchart

105

Problem Reduction Representations

The given problem is reduced to a set of simpler
subproblems, the solution of which will allow the original
problem to be solved.

This reduction is applied recursively until primitive
subproblems which are immediately solvable are reached.
The resulting structure is called an AND/OR graph .

• AND Node: All subproblems must be solved in
order to solve the main problem. An arc is drawn
across branches of an AND node .

• OR Node: Solution of any subproblem will solve
the main problem. A state space search graph consists
entirely of OR nodes.

106

AND/OR Graph Example

107

Solution to an AND/OR Graph

• A successful terminal node is a solved node.

• If a nonterminal OR node has any solved successors,
then it is a solved node.

• If all of the successors of a nonterminal AND node are
solved, then it is a solved node.

• The problem is solved if the start node is solved.

A solution graph is a subgraph of solved nodes that
demonstrates that the start node is solved.

108

Search of an AND/OR Graph

An AND/OR Graph is searched recursively until the root
node is solved. To solve a node, attempt to solve each
successor of a nonterminal node sequentially.

• If any successor of an AND node fails, the AND node
fails immediately.

• If any successor of an OR node succeeds, the OR node
succeeds immediately.

The search time may be improved by ordering
consideration of the nodes:

• To solve an AND node, try first to solve those
successors that are most likely to fail (so the search
can fail early).

• To solve an OR node, try first to solve those successors
that are most likely to succeed (so the search can
succeed early).

109

Counterexamples

In theorem proving, it may be possible to use a model of
the theorem to be proved to prune the search space.

H. Gelernter5 used a diagram of a geometry theorem as
a filter. If a subgoal to be proved is true in the diagram,
that may be just a coincidence. However, if a subgoal
is false in the diagram, it cannot be part of any general
theorem; thus, the subgoal can be failed at once.

5H. Gelernter, “Realization of a Geometry-Theorem Proving Machine”, in E. A. Feigenbaum and J.
Feldman, Computers and Thought, McGraw-Hill, 1963, pp. 134-152.

110

Searching Game Trees

The games we will consider are:

• two-person: there are two players.

• perfect information: both players have complete
information about the state of the game. (Chess has
this property, but poker does not.)

• zero-sum: if we count a win as +1, a tie as 0, and a
loss as -1, the sum of scores for both players is always
zero.

Examples of such games are chess, checkers, and tic-tac-
toe.

111

Game Trees

The sequence of states formed by possible moves is called
a game tree ; each level of the tree is called a ply. We
call the two players Max (us) and Min (the opponent).

The game tree must be an AND/OR tree. We can make
any move we wish; thus, if any move is a winner, we win,
and we have an OR node. However, we can win on an
opponent’s move only if we can win for every possible
move of the opponent; thus, the opponent’s move is an
AND node.

Each node of a game tree represents the problem of
winning for Max from the corresponding board position.
A winning strategy corresponds to a solution tree .

112

Static Evaluation Functions

A static evaluation function evaluates a position
without doing any search.

Example 1: Chess

e(p) = (sum of values of Max’s pieces)
- (sum of values of Min’s pieces)
+ k * (degree of control of the center)

Example 2: Tic-tac-toe

e(p) = nrows(Max) - nrows(Min)
where nrows(i) is the number of complete rows, columns,
or diagonals that are still open for player i.

113

Minimax Evaluation

We could play in hill-climbing fashion by making the move
with the highest static value; but this produces weak play
by failing to take the future into account.

A better way is to search to a depth bound, evaluate
positions statically at the bound, and “back up” the
values to the top using the minimax algorithm:

• The value of an OR node (Max’s move) is the
maximum of its successors’ values. (Max can choose
any move, hence will choose the best one.)

• The value of an AND node (Min’s move) is the
minimum of its successors’ values. (Min will choose
the move that is best for Min (worst for Max).)

114

Alpha-Beta Search

As Minimax search proceeds, we could mark each node
with an inequality,≥ max at an OR node or≤ min at an
AND node, representing that the final value is bounded
by the values seen so far.

If two nodes in the hierarchy have incompatible
inequalities (no possible overlap), then we know that the
node below will not be chosen, and we can stop search.

115

Implementing Alpha-Beta Search

Alpha-beta search is easily implemented by adding the
α and β parameters to a depth-first minimax search.
The alpha-beta search simply quits early and returns the
current value when the α or β threshold is exceeded.

Alpha-beta search performs best if the best moves (for
Max) and worst moves (for Min) are considered first; in
this case, the search complexity is reduced to O(bd/2).

For games with high symmetry (e.g. chess), a
transposition table (cf. Closed list) containing values
for previously evaluated positions can greatly improve
efficiency.

116

Alpha-Beta Search Example

117

Game Tree Search

Bounded depth-first search is usually used, with the
alpha-beta algorithm, for game trees. However:

1. The depth bound may stop search just as things get
interesting (e.g. in the middle of a piece exchange in
chess 6). For this reason, the depth bound is usually
extended to the end of an exchange.

2. The search may tend to postpone bad news until after
the depth bound: the horizon effect .

6Hsu et al., “A Grandmaster Chess Machine”, Scientific American, vol. 263, no. 4 (Oct. 1990), pp.
44-50.

118

Samuel’s Checkers Program

Arthur Samuel wrote an early (1959) program that played
Checkers at championship level. This program had
several interesting features:

1. The program learned its heuristic function from
experience playing humans and itself. The heuristic
function was a weighted average of several features
(e.g. piece advantage, mobility, control of the
center). Coefficients of features were “rewarded” or
“punished” depending on whether the program won
or lost.

2. If the program wins (or loses), it is difficult to
determine which move(s) were responsible and should
be rewarded or punished. This is called the credit
assignment problem .

3. Low-pass filtering of coefficients was used to smooth
out the effects of unjust rewards and punishments.

119

General Problem Solver (GPS)

GPS (Newell, Shaw, Simon) was an attempt to construct
a general problem solving mechanism that could solve
problems in a new area given domain-specific knowledge
about that area.

GPS is a generalized state-space search mechanism. It
has the following components:

1. A set of states and operators that change states.
Specification of start and goal states.

2. A procedure for identifying differences between
states.

3. A table of connections that connects observed
differences with operators that may be relevant for
reducing those differences.

GPS works by determining the difference between the
current state and the goal state and selecting operators
relevant to reducing that difference. Hopefully this will
give direction to the search and make it more efficient
than a blind state-space search.

120

Problems with GPS

GPS did solve problems in several different domains, but
was not as useful as had been hoped. Problems included:

1. Keeping a complete world state at each step takes a
lot of storage. This restricted GPS to small problems.

2. The “difference” between the current state and the
goal may not be an adequate guide to action.
(Consider chess: the goal of checkmating the
opponent doesn’t tell how to play the opening.)

3. Accomplishing a subgoal might undo a higher-level
goal. This could lead to loops.

4. We often want to achieve multiple goals simultane-
ously. (“Climb Mt. Everest and live to tell about
it.”)

121

Searching in Abstraction Spaces

The effective depth of a search tree may be reduced by
doing one search in an abstract space to get a rough
solution, then doing another search in the actual space
to refine the solution.

Example: Route Finding Search for a path between
two locations first on a coarse map that includes only
major cities and interstate highways; then refine paths to
get to the interstate highways.

Advantage: Can make an otherwise very large search
tractable.

Disadvantage: The path found may be sub-optimal,
depending on how good the abstraction is.

122

Genetic Algorithms

Genetic algorithms7 mimic biological processes of
evolution ; they can be used to find solutions in domains
where:

• A solution consists of values for several independent
variables.

• Some variables may have discrete values; others may
have continuous numerical values.

• A candidate solution can be evaluated by some
evaluation function.

Example: An animal might have variables color,
percent-body-fat, length-of-legs.

It would be possible to use search on the discrete variables
and hill-climbing on the continuous variables, but often
the search space is too large.

7John R. Koza, Martin A. Keane and Matthew J. Streeter, “Evolving Inventions”, ¡I¿ Scientific
American¡/I¿, vol. 288, no. 2, Feb. 2003¡/A¿]

John R. Koza, Martin A. Keane and Matthew J. Streeter, “Evolving Inventions”, Scientific American,
vol. 288, no. 2, Feb. 2003

123

Outline of Genetic Algorithm

The genetic algorithm operates on a population of
candidate solutions.

1. Initialize the set of candidate solutions.

2. Evaluate each solution in the population.

3. Solutions that are good are allowed to reproduce, with
mutations (changes to variable values) in some copies;
the amount of reproduction can depend on how good a
solution is. (Koza uses 9% clones of the best in the old
population, 90% recombinations, and 1% mutations.)

4. Poor solutions can be eliminated to keep the total
population constant.

5. If the population is dominated by one solution, stop
and return that solution; otherwise, go to step 2.

Compare: hill climbing, beam search.

124

Constraint Satisfaction Problems

Constraint satisfaction problems (CSP) involve assigning
values to variables Xi, each of domain Di, such that all
of a set of constraints Cj are satisfied.

• Cryptarithmetic: SEND + MORE = MONEY

• n Queens

• Map coloring

• Crossword puzzles, Scrabble, logic puzzles

• Boolean satisfiability (SAT)

• Scheduling

• VLSI chip layout

• Building design

125

CSP as Backtracking Search

When the domains Di are finite, CSP problems can be
solved easily using search: at each level of the search tree,
try each possible value of one variable; fail if a constraint
is violated.

While a simple search always works, the time required is
combinatoric. It is possible to do much better by making
use of heuristics based on the structure of the problem:

• Choose which variable to instantiate next

• Choose which value to try first

• Propagate constraints

126

Constraint Network

Constraints can be expressed as a network, where nodes
are linked if they are related by a binary constraint:
Start(job2) ≥ Start(job1) + 5.

Higher-order constraints can be expressed by multiple
binary constraints (by introducing additional variables)
or represented as a hypergraph.

Example: 8

In this example, the nodes for states are linked if
the states are adjacent on the map; links represent 6=
constraints.

8Russell & Norvig, Fig. 5.1.

127

Optimizing Search

• Choose the most constrained variable first.

– Smallest set of remaining possible values

– Largest number of arcs to other nodes

The most constrained variable (smallest number of
possible choices) gives the smallest branching factor
at the top of the tree; a choice for it will constrain
other variables, reducing their branching factors also.

• Choose the least constraining variable value. A more
constraining variable value is more likely to have all
failures below it.

128

Constraint Propagation

As in Waltz filtering, constraint propagation can greatly
reduce the size of a CSP search:

• Initialize nodes to sets of all values in their respective
domains.

•When the possible values of a node constrain the
possible values of its neighbors, remove impossible
values from the sets for the neighbors.

An arc (X, Y) is arc-consistent if for every value
x ∈ X , there is some value y ∈ Y that satisfies
the constraint represented by the arc. k-consistency
follows multiple arcs to check for consistency (arc
consistency is 2-consistency).

Some search may be left after constraint propagation, but
the amount of search can be greatly reduced.

For scheduling problems, possible value sets can be
represented as ranges [min,max]; constraints can allow
the range limits to be reduced.

129

Other Techniques and Kinds of CSP

• Dependency-directed Backtracking can help prevent
thrashing due to repeated choice of incompatible
variable values.

• Linear Programming (LP) can solve optimization
problems where the constraints are linear inequalities.

• Hill climbing: Generate a complete assignment of
variables (which probably violates some constraints),
improve it by modifying variables one at a time using
a heuristic. The min-conflicts heuristic changes a
variable to the value that minimizes the number of
constraint violations that involve that variable.

130

Difficulty of CSP

Most CSP’s are easy to solve.

• Easy problems: mild constraints, many solutions.

• Impossible problems: harsh constraints, no solutions,
search fails quickly.

The most difficult CSP’s are those in a narrow range
where the problem is both difficult and just barely
solvable.

131

DENDRAL (Buchanan and Feigenbaum)

Dendral performs structure elucidation in organic
chemistry based on data from a mass spectrometer (which
bombards chemical samples with electrons, breaking
atomic bonds). Fragments are collected by charge/mass,
and relative abundance is plotted as a histogram. The
goal is to uniquely identify the chemical structure.

Given:

• Empirical formula for a chemical compound, e.g.
C8H16O

• Mass spectrum for that compound, e.g.

Determine: structure of compound: 3-octanone

O

|

CH3-CH2-C-CH2-CH2-CH2-CH2-CH3

132

Underlying State Space:

• States: Molecular substructures containing atoms
from the Empirical Formula.

• Start State: One atom

• Operators: Add an atom to some unbound valence
binding of the current molecular structure.

• Goal States: Molecules which:

– Have all bindings filled

– Use all the atoms in the input formula

– Are chemically stable

– Are plausible for the given mass spectrum.

Problem: This search space is much too large to search
exhaustively.

133

Ways to Reduce Search Space: Heuristics

• Careful design of the move generator so that
equivalent structures are not generated again:
CH3-CH2- vs. -CH2-CH3

• Rules that detect particular substructures in the mass
spectrogram predict some parts of the molecular
structure; these parts are put on a GOODLIST and
are generated first.
Rule: M-44 is a high peak, and 44 is a high peak
Prediction: aldehyde:

O

| |

-C-C-H

|

• A BADLIST contains substructures which are
unstable or could not be present because their
signatures do not appear in the mass spectrogram:
H-C-N=O, O-O, S-S-S are forbidden substructures
because they are unstable. Any move which results
in a BADLIST substructure is immediately detected
and eliminated, pruning the whole search tree below
that node.

134

Goal Testing: The restrictions on the generation of
structures by the search process are so strict that only
a few dozen potential goal nodes are generated in most
cases. Another set of rules (which simulate the behavior
of molecules in a mass spectrometer) is used to predict
the mass spectrum for each potential goal structure. All
possible structures whose predicted spectrum reasonably
matches the input spectrum are returned as answers.

Uses of DENDRAL:

• Determining unknown molecular structures.

• Checking previously published structures.

• META-DENDRAL infers new rules from the
structures found by DENDRAL. These rules have
been published, thus contributing to the science of
mass spectrometry.

135

Search as a Basic Technique

Search should be regarded as a basic technique of
Computer Science, useful for many areas where no nice
algorithm exists.

Example:
William Wulf used search to automatically generate code
generators for new CPUs for an Ada compiler.

• Goal: an instruction sequence that accomplishes
what the generated code is supposed to do (e.g., add
A to B and put the result in C).

• Operators: Instructions of the target CPU.

Search was used to find a minimum-cost sequence of
machine instructions that would accomplish the desired
task.

136

Where Search Should Fit in an AI System

We can identify two extremes in the use of search:

• Traditional programming (no search):
inflexible.

• Doing everything with search: too slow.

The ideal is to:

• Replace search by knowledge when possible.

– Heuristic function is one kind of knowledge.

– Experts vs. novices: Experts “just do the right
thing”; novices search.

• Fall back on search when knowledge is insufficient.

137

Knowledge Representation and Reasoning

Much intelligent behavior is based on the use of
knowledge; humans spend a third of their useful
lives becoming educated. There is not yet a clear
understanding of how the brain represents knowledge.

There are several important issues in knowledge
representation:

• how knowledge is stored;

• how knowledge that is applicable to the current
problem can be retrieved;

• how reasoning can be performed to derive informa-
tion that is implied by existing knowledge but not
stored directly.

The storage and reasoning mechanisms are usually closely
coupled.

138

Representation Hypothesis

A central tenet of A.I. is the representation hypothesis
that intelligent behavior is based on:

• representation of input and output data as symbols
in a physical symbol system9

• reasoning by processing symbol structures, resulting
in other symbol structures.

A central problem of A.I. is to determine what the
symbolic representations and reasoning processes should
be.10

9Newell, A., Physical Symbol Systems, Cognitive Science, 1980, 4, 135-183.
10Diagram by John Sowa, from “The Challenge of Knowledge Soup,” 2005.

139

Computation as Simulation

It is useful to view computation as simulation, cf.:
isomorphism of semigroups.11

(princ-to-string (+ (read-from-string "2")

(read-from-string "3")))

"5"

11Preparata, F. P. and Yeh, R. T., Introduction to Discrete Structures, Addison-Wesley, 1973, p. 129.

140

Alternatives to the Representation
Hypothesis

Not everyone accepts the representation hypothesis.
Some alternatives include:

• Analog information, as in homeostatic control (e.g.,
regulation of body temperature).

• Special-purpose hardware, such as line detectors in
early vision processing.

• Neural networks with weights on the connections
between neurons. It may be difficult or impossible to
identify “symbols” in such a network; the knowledge
is represented by the totality of the set of weights.

• Holograms and various mystical alternatives.

Critics include Brooks,12 McDermott, Dreyfus, Searle.

12Brooks, Rodney A., “Intelligence without representation”, Artificial Intelligence 47 (1991), 139-159.

141

Kinds of Knowledge

Several kinds of information need to be represented:

Long-term Knowledge: This is accumulated
knowledge about the world. It can include simple data,
general rules (every person has a mother), programs, and
heuristic knowledge (knowledge of what is likely to work).
The collection of long-term knowledge is often called a
knowledge base (KB). Human long-term memory seems
unlimited, but writing to it is slow.

Current Data: A representation of the facts of the
current situation. Human short-term memory is very
limited (7± 2 items).13

Conjectures: Courses of action or reasoning that are
being considered but are not yet final.

These will be represented in a knowledge representation
language. Questions that are not directly in the KB may
be answered by inference.

13Miller, George A., “The magical number seven, plus or minus two: some limits on our capacity for
processing information”, Psychological Review vol. 63, pp. 81-97, 1956.

142

Knowledge Representation System

A knowledge representation system will include ways to
store knowledge, ways to add new knowledge, and ways
to query the knowledge. We can think of the interface as
being two procedures:

• Tell(fact)
• Ask(question)

Tell and Ask will be front-end programs that access
a database of facts in some knowledge representation
language.

Either Tell or Ask (or both) may do inference :

• Ask(question) may do backward inference when the
answer is implied but not explicit in the KB.

• Tell(fact) may do forward inference to derive
additional facts from what it is told.

143

Knowledge Representation

Knowledge representation is a central problem because
A.I. attempts to deal with much more complex and less
well-structured data than most computer programs.

There are two major classes of knowledge representation
methods that are used in A.I.:

• Logic: methods based on mathematical logic, i.e.
first-order predicate calculus.

• Frames: methods based on networks of nodes, which
represent objects or concepts, and labeled arcs, which
represent relations among nodes.

The Logic and Frame methods have sometimes been
viewed as competitive, and their proponents have fought.
Each method has some valuable features. More recently,
some have produced representation systems that combine
the good features of both.

144

Symbolic Representation

A.I. programs primarily use symbolic representations:
collections of symbols that represent:

• Objects.

• Properties of objects.

• Relationships among objects.

• Rules about classes of objects.

145

Retrieval: Matching Problem

A central issue in knowledge representation is retrieval:
it is unlikely that the current problem will exactly match
the stored form of knowledge. How can we tell what part
of our knowledge is relevant?

Knowledge:

JAPAN BOUGHT 2,000,000 BARRELS OF OIL FROM IRAN.

Possible Questions:

DID JAPAN BUY 2,000,000 BARRELS OF OIL FROM IRAN?

DID JAPAN BUY 1,000,000 BARRELS OF OIL FROM IRAN?

DID JAPAN BUY OIL FROM IRAN?

TO WHOM DID IRAN SELL OIL?

WHAT ARE MAJOR JAPANESE IMPORTS?

WHAT US ALLIES WOULD BE CRITICALLY AFFECTED

BY BLOCKAGE OF MIDDLE EAST OIL SHIPMENTS?

146

Knowledge Representation Methods

Predicate Calculus

• Strengths:

– Logical power

– Mathematical foundation

Weaknesses:

– Speed

– Rigidity

Frames

• Strengths:

– Speed

– Defaults

– Procedural attachment

•Weaknesses:

– Logical power

147

Knowledge Representation: Hard Problems

Defaults

• Necessary: A.I. programs seldom get good, complete
data.

• Sometimes wrong: may have to retract assumptions,
conclusions based on them.

Time-Varying Data

• How to keep a current model of the world as some
things change (the frame problem).

Uncertainty

• “60% of patients with symptoms A, B, and C have
disease D.”

148

Logic for Artificial Intelligence

Mathematical logic is an important area of AI:

• Logic is one of the major knowledge representation
and reasoning methods.

• Logic serves as a standard of comparison for other
representation and reasoning methods.

• Logic has a sound mathematical basis.

• The PROLOG language is based on logic.

• Those who fail to learn logic are doomed to reinvent
it.

The form of logic most commonly used in AI is First-
Order Predicate Calculus (FOPC or just PC).

149

Logical Representation

Mathematical logic requires that certain strong conditions
be satisfied by the data being represented:

• Discrete Objects: The objects represented must
be discrete individuals: people, trucks, but not 1000
gallons of gasoline.

• Truth or Falsity: Propositions must be entirely
true or entirely false; inaccuracy or degrees of belief
are not representable.

• Non-Contradiction: Not only must data not be
contradictory, but facts derivable by rules must not
contradict.

These strict requirements give logic its power, but make
it difficult to use for many practical applications.

150

Propositional Logic

Formulas in propositional logic are composed of:

• Atoms or propositional variables : P,Q, S

• Connectives (in order of precedence):

Negation ¬ or ∼ not
Conjunction ∧ and
Disjunction ∨ or
Implication → or ⊃ implies or if ... then

↔ iff (if and only if)

• Constants: True True or filled-in box
False (“box”)

151

Interpretation in Propositional Logic

An interpretation of a propositional logic formula is an
assignment of a value (true or false) to each atom. There
are 2n possible interpretations of a formula with n atoms.
Although this is large, it is finite; thus, every question
about propositional logic is decidable.

Terminology:

• A formula is valid if it is true under every possible
interpretation. Otherwise, it is invalid.

• A formula is consistent or satisfiable if it is true
under some interpretation. If it is false under every
interpretation, it is inconsistent or unsatisfiable.

Clearly, a formula G is valid iff ¬ G is inconsistent.

If a formula F is true under an interpretation I , I is a
model for F .

Two formulas F and G are equivalent if they have the
same values under every interpretation: F ↔ G.

152

Equivalent Formula Laws

• Implication:
F → G = ¬F ∨G
F ↔ G = (F → G) ∧ (G→ F)

• De Morgan’s Laws:
¬(F ∨G) = ¬F ∧ ¬G
¬(F ∧G) = ¬F ∨ ¬G

• Distributive:
F ∨ (G ∧H) = (F ∨G) ∧ (F ∨H)
F ∧ (G ∨H) = (F ∧G) ∨ (F ∧H)

Inference Rules

• Modus Ponens: P, P→Q
Q

153

Ways to Prove Theorems

Given a set of facts (ground literals) and a set of rules,
a desired theorem can be proved in several ways:

• Truth Table: Write Premises → Conclusion
and show that this sentence is true for every
interpretation. This is also called model checking.

• Algebra: Write Premises → Conclusion and
reduce it to True using laws of Boolean algebra.

• Backward Chaining: Work backward from the
desired conclusion by finding rules that could deduce
it; then try to deduce the premises of those rules.

• Forward Chaining: Use known facts and rules
to deduce additional known facts. If the desired
conclusion is deduced, stop.

• Resolution: This is a proof by contradiction. Using
ground facts, rules, and the negation of the desired
conclusion, try to derive “box” (false or contradiction)
by resolution steps.

154

Backward Chaining

Suppose that we have formulas:14

A
B
D
A ∧B → C
C ∧D → E

A conclusion E can be proved recursively:

1. First check whether the desired conclusion is in the
database of facts. If so, return True.

2. Otherwise, for each rule that has the desired
conclusion (right-hand side), call the algorithm
recursively for each item in the premise (left-hand
side). If all of the premises are true, return True.

3. Otherwise, return False.

In this example, we would know that E is true if we knew
that C and D were true; we would know that C is true
if we knew A and B; A and B are in the database, so C
must be true; and D is in the database, so E is true.

With careful implementation, backchaining can run in
linear time.

14Backward chaining only works for Horn clauses, which have at most one positive literal.

155

Backchaining Example15

The function (backchain goal rules facts) tries to
prove a goal given sets of rules and facts. goal is a symbol
(atom or propositional variable). facts is a list of atoms
that are known to be true. rules is a list of rules of
the form (concl prem1...premn); each rule states that
the conclusion is true if all of the premises are true. For
example, a rule A ∧B → C would be written (c a b).

backchain works as follows: if the goal is known to be
a fact, return true. Otherwise, see if some rule has the
goal as conclusion and has premises that are true (using
backchain).

(defun backchain (goal rules facts)

(or (member goal facts)

(some #’(lambda (rule)

(and (eq (car rule) goal)

(every #’(lambda (subgoal)

(backchain subgoal

rules facts))

(cdr rule))))

rules)))

>(backchain ’e ’((c a b) (e c d)) ’(a b d))

T
15file backch.lsp

156

Forward Chaining

Suppose that we have formulas such as the following:
A
B
D
A ∧B → C
C ∧D → E

From A and B , it is possible to derive C and save it as
a new fact; then from C and D , E can be derived.

The forward chaining algorithm is as follows:

When a new fact is presented to the database manager,

1. Add the new fact to the database.

2. For each rule that has the new fact as part of its
premise, if the rest of the premise is true, add the
conclusion to the database.

This cycle is repeated until activity stops or until the
desired fact is added to the database.

With careful implementation, forward chaining can run
in linear time.

157

Forward Chaining Example16

(defvar *db*) ; atomic facts

(defvar *rules*)

(defun assrt (fact) ; assert a new fact

(or (member fact *db*) ; already known

(progn

(push fact *db*) ; add fact to *db*

(dolist (rule *rules*)

(if (and (member fact (cdr rule))

(every #’(lambda (x)

(member x *db*))

(cdr rule)))

(assrt (car rule)))))))

(setq *db* ’())

(setq *rules* ’((c a b) (e c d)))

>(assrt ’a)

>(assrt ’b)

>*db*

(C B A)

>(assrt ’d)

>*db*

(E D C B A)

16file forwch.lsp

158

Resolution

Suppose that we have formulas such as the following:
A
B
D
¬A ∨ ¬B ∨ C (same as A ∧B → C)
¬C ∨ ¬D ∨ E (same as C ∧D → E)

A desired conclusion, say E, is negated to form the
hypothetical fact ¬E ; then the following algorithm is
executed:

1. Choose two clauses that have exactly one pair of
literals that are complementary (have different signs).

2. Produce a new clause by deleting the complementary
literals and combining the remaining literals.

3. If the resulting clause is empty (“box”), stop; the
theorem is proved by contradiction. (If the negation of
the theorem leads to a contradiction, then the theorem
must be true.)

This assumes that the premises are consistent.

159

Resolution for Propositional Calculus17

; rep.: p -> q is (~p v q) or ((not p) q) .

; example: (resolve ’((not p) q) ’(r (not q)))

(defun resolve (ca cb)

(let (tmp)

(if (setq tmp (resolver ca cb))

(unless (resolver cb ca) tmp)

(resolver cb ca))))

; resolve neg. of ca with pos of cb:

(defun resolver (ca cb)

(let (pairs)

(dolist (lit ca)

(if (and (consp lit)

(eq (car lit) ’not)

(member (cadr lit) cb))

(push lit pairs)))

(if (and pairs (null (cdr pairs)))

(or (union (remove (car pairs) ca)

(remove (cadar pairs) cb)

:test #’equal)

’box))))

17file resolv.lsp

160

Normal Forms

A literal is an atom or negation of an atom: P or ¬P .

A formula F is in conjunctive normal form (CNF) if F
is of the form F = F1 ∧ F2 ∧ ... ∧ Fn where each Fi is a
disjunction of literals. Example: (¬P ∨Q)∧(P)∧(¬Q)

CNF is used for resolution, so it is the one we will use.
There is also a disjunctive normal form.

161

Logical Consequence

We say that a set of formulas F1, F2, ..., Fn entails a
formula G, written F1 ∧ F2 ∧ ... ∧ Fn |= G, or that G
is a logical consequence of the Fi, iff G is true in any
interpretation where F1 ∧ F2 ∧ ... ∧ Fn is true. This is
equivalent to saying that F1∧F2∧ ...∧Fn → G is valid.18

F1∧F2∧ ...∧Fn → G is valid iff F1∧F2∧ ...∧Fn∧¬G
is inconsistent.

Proof: ¬(F → G) = ¬(¬F ∨G) = (F ∧ ¬G).

Note that anything is a logical consequence of (or an
inconsistent set of clauses).

Proof: → X = ¬ ∨X = True ∨X = True.

Thus, if the result that is derived from a set of clauses is
to be meaningful, the set of clauses must be consistent.

We could prove that a formula G follows from formulas
Fi by truth table, or by algebraically reducing one of
the logical consequence formulas to true (false) as in the
example above.

18The fact that α |= β iff α→ β is valid is called the deduction theorem.

162

Resolution for Propositional Calculus

Resolution19 is a method of proof by contradiction.

Given a set of premises F1 ∧ F2 ∧ ... ∧ Fn and a desired
conclusion G, we prove that F1 ∧ F2 ∧ ... ∧ Fn ∧ ¬G is
inconsistent. This is done by adding new clauses Hi, each
of which is a logical consequence of the existing clauses,
to the set. If we can add as a new clause, then the whole
formula collapses to false and is thus inconsistent.

Theorem: If H is a logical consequence of F , F ∧H = F .
Proof: If F is false, then both sides are false. If F is true,
then H must be true, so F ∧H is true.

Thus, we are justified in adding any logical consequence
of our set of formulas to the set without changing its truth
value.

19J. A. Robinson, A machine oriented logic based on the resolution principle, Journal of the ACM, 12,
No. 1, 1965.

163

Resolution Step for Propositional Calculus

A clause is a disjunction of literals (atoms or negations
of atoms).

Select two clauses C1 and C2 that have exactly one atom
that is positive in one clause and negated in the other.

Form a new clause, consisting of all literals of both clauses
except for the two complementary literals, and add it to
the set of clauses.

Theorem: The new clause produced by resolution is a
logical consequence of the two parent clauses.

Proof: Let the parent clauses be C1 = L ∨ C ′1 and C2 =
¬L∨C ′2; the resolvent is H = C ′1∨C ′2. Suppose that C1

and C2 are true in an interpretation I .
Case 1: L = true in I . Then since C2 = ¬L ∨ C ′2, C ′2
must be true in I and H is true in I .
Case 2: L = false in I . Then since C1 = L∨C ′1, C ′1 must
be true in I and H is true in I .

164

Resolution Step

If: C1 ∧ C2 → H
then: C1 ∧ C2 ∧H = C1 ∧ C2

but not: C1 ∧ C2 = H

Example:
C1 = (A ∨B)
C2 = (¬B ∨ C)
H = (A ∨ C)

C1 = C2 = C1 ∧ C2 H = C1 ∧ C2 ∧H
A B C A ∨B ¬B ∨ C A ∨ C
0 0 0 0 1 0 0 0
0 0 1 0 1 0 1 0
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1

When C1 ∧ C2 is false, it is a “don’t care” for H .

165

Examples of Resolution Step

1. F1 = P ∨R, F2 = ¬P ∨Q.
Resolvent: R ∨Q.

2. F1 = ¬P ∨Q ∨R, F2 = ¬Q ∨ S.
Resolvent: ¬P ∨R ∨ S.

3. F1 = ¬P ∨Q, F2 = ¬P ∨R.
Resolution not possible: no complementary literals.

4. F1 = ¬P ∨Q ∨ S, F2 = P ∨ ¬Q ∨R.
Resolution not useful: two complementary literals.

Example of a proof by resolution:
Show that Q is a logical consequence of P ∧ (P → Q).

1. P premise
2. ¬P ∨Q premise
3. ¬Q negated conclusion
4. Q from 1 and 2
5. from 3 and 4: Q.E.D.

166

Example: Propositional Calculus Resolution

Premises:

1. If it rains, the aquaphobes will not vote.

2. John will win only if the aquaphobes and vegetarians
vote.

3. Either John or Peter will win, but not both.

4. (conclusion): If it rains, Peter will win.

1. R→ ¬A 1. ¬R ∨ ¬A
2. J → A ∧ V 2.a. ¬J ∨ A

2.b. ¬J ∨ V
3. (J ∨ P) ∧ ¬(J ∧ P) 3.a. J ∨ P

3.b. ¬J ∨ ¬P
4. ¬(R→ P) 4.a. R

4.b. ¬P
from 3.a., 4.b.: 5. J
from 2.a., 5: 6. A
from 6, 1: 7. ¬R
from 4.a., 7: 8. Q.E.D.

167

Satisfiability Checking

Many problems in CS can be reduced to checking
satisfiability of a propositional calculus formula.

Two efficient algorithms for satisfiability checking (SAT):

• The Davis-Putnam or DPLL algorithm uses heuristics
for early termination (determining the value from a
partially specified model), pure symbols (those that
have the same sign in all clauses) and unit clauses
(those with a single literal).

The CHAFF inplementation of DPLL solves hardware
verification problems with a million variables.

• The WalkSAT algorithm uses a combination of hill
climbing (selecting a literal assignment that makes the
most clauses true) and random steps.

168

Predicate Calculus (First-order Logic)

Propositional logic does not allow any reasoning based
on general rules, so its usefulness is limited. Predicate
calculus generalizes propositional logic with variables,
quantifiers, and functions.

Formulas are constructed from:

• Predicates have arguments, which are terms:
P (x, f (a)). Predicates are true or false.

• Terms refer to objects in the application domain:

– Variables: x, y, z

– Constants: John,Mary, 3, a, b. Note that
a constant is generally capitalized in English:
Austin can be a constant, but dog cannot.

– Functions: f (x) whose arguments are terms.

• Quantifiers: ∀ (“for all”) and ∃ (“there exists” or “for
some”) quantify variables: ∀x, ∃y. If a variable is in
the scope of a quantifier, it is bound; otherwise, it is
free.

169

Overview of Predicate Calculus Resolution

Resolution provides a complete, uniform proof procedure
for predicate calculus that is easily mechanized. A major
benefit of resolution is that the complex formulas of
predicate calculus are reduced to a few simple forms.

In order to perform resolution, we must first convert the
given formulas into standard form:

1. First, a formula is converted into prenex normal
form, in which all quantifiers are at the left.

2. Skolemization eliminates existential quantifiers:
existential variables are replaced by constants or
functions.

3. Universal quantifiers are eliminated; all remaining
variables are assumed to be universally quantified.

4. The resulting formulas are converted to conjunctive
normal form.

170

Prenex Normal Form

A predicate calculus formula is in prenex normal form if
all the quantifiers are at the left.

A formula can be transformed to prenex normal form
using the following identities. The form Qx is used for
either ∀x or ∃x.

QxF [x] ∨G = Qx(F [x] ∨G), x not used in G.
QxF [x] ∧G = Qx(F [x] ∧G), x not used in G.
¬∀xF [x] = ∃x¬F [x]
¬∃xF [x] = ∀x¬F [x]
∀xF [x] ∧ ∀xG[x] = ∀x(F [x] ∧G[x])
∃xF [x] ∨ ∃xG[x] = ∃x(F [x] ∨G[x])
Q1xF [x] ∨Q2xG[x] = Q1xQ2zF [x] ∨G[z]
Q1xF [x] ∧Q2xG[x] = Q1xQ2zF [x] ∧G[z]

171

Order of Quantifiers

The order in which quantifiers appear is very important; it
must be maintained when converting a formula to prenex
normal form.

Consider the ambiguous sentence, “Every man loves some
woman.” This sentence could be interpreted as:

1. For every man, there is some woman (depending on
who the man is) whom the man loves. This would be
written:

∀x[Man(x)→ ∃y[Woman(y) ∧ Loves(x, y)]]

and Skolemized:

Man(x)→
[Woman(lover(x)) ∧ Loves(x, lover(x))]

2. There is some woman (perhaps Marilyn Monroe) who
is loved by every man. This would be written:

∃y∀x[Man(x)→ [Woman(y) ∧ Loves(x, y)]]

and Skolemized:

Man(x)→ [Woman(a) ∧ Loves(x, a)]

172

Skolemization

Skolemization eliminates existential quantifiers by
replacing each existentially quantified variable with a
Skolem constant or Skolem function.

In effect, we are saying “If there exists (at least) one, give
the algebraic name a to it.” Having named the existential
variable, we can eliminate the quantifier.

In general, an existential variable is replaced by a Skolem
function of all the universal variables to its left. (A
Skolem constant is a function of no variables.)

Each Skolem constant or function that is introduced must
be a new one, distinct from any constant or function
symbol that has been used already.

Example: ∃x∀y∀z∃wP (x, y, z, w)
This is Skolemized as P (a, y, z, f (y, z)). ∃x has no
universals to its left, so it is Skolemized as a constant, a.
∃w has universals y and z to its left, so it is Skolemized
as a function of y and z.

After Skolemizing, universal quantifiers are eliminated;
all remaining variables are understood to be universally
quantified.

173

Standard Form

A formula is in standard form after it has been converted
to prenex normal form, Skolemized, and converted into
conjunctive normal form. The result is a conjunction of
clauses, each of which is a disjunction of literals.

Example: “Every man loves some woman.”

∀x[Man(x)→ ∃y[Woman(y) ∧ Loves(x, y)]]

This is Skolemized as:

Man(x)→ [Woman(lover(x)) ∧ Loves(x, lover(x))]

Converted to CNF, it becomes:

(¬Man(x) ∨Woman(lover(x))) ∧
(¬Man(x) ∨ Loves(x, lover(x)))

Since we know where the ∧ and ∨ are in CNF, we can
eliminate them and represent clauses in list form in Lisp.
Note that we have eliminated all of the algebraic structure
in the formulas except for ¬.

(((not (man x)) (woman (lover x)))

((not (man x)) (loves x (lover x))))

174

Proof by Contradiction

It is a theorem that a standard form of a formula F is
inconsistent iff F is inconsistent.

Note that if F is not inconsistent, the standard form is not
in general equivalent to F . This is because Skolemization
replaces an existentially quantified variable by a single
constant or Skolem function; if F is consistent, there
might be many instances of the existential, not just one.

175

Herbrand’s Theorem

A formula is inconsistent iff it is unsatisfiable for any
interpretation over any domain. Since there are infinitely
many domains and interpretations, it is important not to
say what the domain and interpretation are, but to treat
them algebraically.

Our algebraic domain is called the Herbrand universe;
it consists of all the Skolem constants and all the Skolem
functions applied to all constants, recursively. If there
is one constant a and one function f (x), the Herbrand
universe will be {a, f (a), f (f (a)), ...}. The set of all
predicates applied to members of the Herbrand universe
is called the Herbrand base.

Herbrand’s Theorem states that if a set of clauses S is
unsatisfiable, there is a finite unsatisfiable set S ′ of ground
instances of S, where the ground instances are obtained
by substituting members of the Herbrand universe for
variables in S.

176

Resolution for Predicate Calculus

The resolution step is still valid for predicate calculus,
i.e., if clause C1 contains a literal L and clause C2

contains ¬L, then the resolvent of C1 and C2 is a logical
consequence of C1 and C2 and may be added to the set
of clauses without changing its truth value.

However, since L in C1 and ¬L in C2 may contain
different arguments, we must do something to make L
in C1 and ¬L in C2 exactly complementary.

Since every variable is universally quantified, we are
justified in substituting any term for a variable. Thus, we
need to find a set of substitutions of terms for variables
that will make the literals L in C1 and ¬L in C2 exactly
the same. The process of finding this set of substitutions
is called unification. We wish to find the most general
unifier of two clauses, which will preserve as many
variables as possible.

Example: C1 = P (z) ∨ Q(z), C2 = ¬P (f (x)) ∨ R(x) .
If we substitute f (x) for z in C1, C1 becomes P (f (x))∨
Q(f (x)) . The resolvent is Q(f (x)) ∨R(x) .

177

Examples of Unification

Consider unifying the literal P (x, g(x)) with:

1. P (z, y) : unifies with {x/z, g(x)/y}
2. P (z, g(z)): unifies with {x/z} or {z/x}
3. P (Socrates, g(Socrates)) : unifies, {Socrates/x}
4. P (z, g(y)): unifies with {x/z, x/y} or {z/x, z/y}
5. P (g(y), z): unifies with {g(y)/x, g(g(y))/z}
6. P (Socrates, f (Socrates)) : does not unify: f and g

do not match.

7. P (g(y), y) : does not unify: no substitution works.

178

Substitutions

A substitution ti/vi specifies substitution of term ti for
variable vi. Unification will produce a set of substitutions
that make two literals the same.

A substitution set can be represented as either sequential
substitutions (done one at a time in sequence) or
as simultaneous substitutions (done all at once).
Unification can be done correctly either way.

We will assume a simultaneous substitution, using the
Lisp function sublis. (sublis alist form) performs
the substitutions specified by alist in the formula form.
alist is of the form ((var . term) ...).

Suppose we want to substitute {a/x, f (b)/y} in P (x, y).
In Lisp form, this is:

(sublis ’((x . (a)) (y . (f (b))))

’(p x y))

= (P (A) (F (B)))

179

Unification Algorithm

The basic unification algorithm is simple. However, it
must be implemented with care to ensure that the results
are correct.

We begin by making sure that the two expressions have
no variables in common. If there are common variables,
substitute a new variable in one of the expressions. (Since
variables are universally quantified, another variable can
be substituted without changing the meaning.)

Imagine moving a pointer left-to-right across both
expressions until parts are encountered that are not the
same in both expressions. If one is a variable, and the
other is a term not containing that variable,

1. substitute the term for the variable in both
expressions,

2. substitute the term for the variable in the existing
substitution set 20

3. add the substitution to the substitution set.

20This is necessary so that the substitution set will be simultaneous.

180

Unification Implementation

1. Initialize the substitution set to be empty. We do this
with the set ((t . t)). A nil set indicates failure.

2. Recursively unify expressions:

(a) Identical items match.

(b) If one item is a variable vi and the other is a term
ti not containing that variable, then:

i. Substitute ti/vi in the existing substitutions.

ii. Add ti/vi to the substitution set.

(c) If both items are functions, the function names
must be identical and all arguments must unify.
Substitutions are made in the rest of the expression
as unification proceeds.

181

Simple Unification Algorithm

(defun unify (u v) (unifyb u v ’((t . t))))

; unify terms: subs list or NIL if failure

(defun unifyb (u v subs) ; works if:

(or (and (eq u v) subs) ; identical vars

(varunify v u subs) ; u is a var

(varunify u v subs) ; v is a var

(and (consp u) (consp v) ; both are fns

(eq (car u) (car v)) ; with same name

(unifyc (cdr u) (cdr v) subs)))) ;args

(defun unifyc (args1 args2 subs) ; unify arg lists

(if (null args1) ; if args1 empty

(if (null args2) subs) ; args2 must be

(and args2 subs ; unify first args

(let ((newsubs (unifyb (car args1)

(car args2) subs)))

(unifyc (sublis newsubs (cdr args1))

(sublis newsubs (cdr args2))

newsubs)))))

(defun varunify (term var subs) ; unify with var

(and var (symbolp var) (not (occurs var term))

(cons (cons var term)

(subst term var subs))))

182

>(unify-test ’(p x) ’(p (a)))

((X A) (T . T))

>(unify-test ’(p (a)) ’(p x))

((X A) (T . T))

>(unify-test ’(p x (g x) (g (b))) ’(p (f y) z y))

((Y G (B)) (Z G (F (G (B)))) (X F (G (B))) (T . T))

>(unify-test ’(p (g x) (h w) w)

’(p y (h y) (g (a))))

((X A) (W G (A)) (Y G (A)) (T . T))

>(unify-test ’(p x (h (a)) (f x)) ’(p (g y) y z))

((Z F (G (H (A)))) (Y H (A))

(X G (H (A))) (T . T))

>(unify-test ’(p (f x) (g (f (a))) x)

’(p y (g y) (b)))

NIL

>(unify-test ’(p x) ’(p (a) (b)))

NIL

>(unify-test ’(p x (f x)) ’(p (f y) y))

NIL

183

Soundness and Completeness

The notation p |= q is read “p entails q”; it means that
q holds in every model in which p holds.

The notation p `m q means that q can be derived from p
by some proof mechanism m.

A proof mechanism m is sound if p `m q → p |= q.

A proof mechanism m is complete if p |= q → p `m q.

Resolution for predicate calculus is:

• sound: If is derived by resolution, then the original
set of clauses is unsatisfiable.

• complete: If a set of clauses is unsatisfiable, resolution
will eventually derive . However, this is a search
problem, and may take a very long time.

We generally are not willing to give up soundness, since
we want our conclusions to be valid. We might be willing
to give up completeness: if a sound proof procedure will
prove the theorem we want, that is enough.

184

Resolution Strategies

Many different strategies have been tried for selecting the
clauses to be resolved. These include:

• level saturation or two-pointer method: the outer
pointer starts at the negated conclusion; the inner
pointer starts at the first clause. The two clauses
denoted by the pointers are resolved if possible, with
the result added to the end of the list of clauses.
(There may be multiple resolvents of two clauses.)
The inner pointer is incremented to the next clause
until it reaches the outer pointer; then the outer
pointer is incremented and the inner pointer is reset to
the front. The two-pointer method is a breadth-first
method that will generate many duplicate clauses.

• set of support: One clause in each resolution step
must be part of the negated conclusion or a clause
derived from it. This can be combined with the
two-pointer method by putting the clauses from the
negated conclusion at the end of the list. Set-
of-support keeps the proof process focused on the
theorem to be proved rather than trying to prove
everything.

185

Resolution Strategies ...

• unit preference: Clauses are prioritized, with unit
clauses (those with only one literal) preferred, or more
generally, shorter clauses preferred. Our goal is to
reach , which has zero literals and is only obtained
by resolving two unit clauses. Resolution with a unit
clause makes the result smaller.

• linear resolution: one clause in each step must be
the result of the previous step. This is a depth-
first strategy. It may be necessary to back up to a
previous clause if no resolution with the current clause
is possible.

186

Resolution Example21

1. No used car dealer buys a used car for his family.

2. Some people who buy used cars are absolutely
dishonest.

3. Conclusion: Some absolutely dishonest people are not
used car dealers.

1. ∀x(U(x)→ ¬B(x))

2. ∃x(B(x) ∧D(x))

3. ∃x(D(x) ∧ ¬U(x))

1. ¬U(x) ∨ ¬B(x)

2. a. B(a) b. D(a)

3. ¬(∃x(D(x) ∧ ¬U(x)))
∀x¬(D(x) ∧ ¬U(x))
∀x(¬D(x) ∨ U(x))
¬D(x) ∨ U(x)

4. (1, 2.a.) ¬U(a)

5. (3, 4) ¬D(a)

6. (2.b, 5.)

21Chang and Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.

187

Resolution Example22

1. The customs officials searched everyone who entered
the country who was not a V.I.P.

2. Some of the drug pushers entered the country, and
they were only searched by drug pushers.

3. No drug pusher was a V.I.P.

4. Conclusion: Some of the officials were drug pushers.

1. ∀x(E(x) ∧ ¬V (x)→ ∃y(S(x, y) ∧ C(y)))

2. ∃x(P (x) ∧ E(x) ∧ ∀y(S(x, y)→ P (y)))

3. ∀x(P (x)→ ¬V (x))

4. ∃x(P (x) ∧ C(x))

22Chang and Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.

188

Resolution as Syntax

Resolution is a purely syntactic uniform proof procedure.
Resolution does not consider what predicates may mean,
but only what logical conclusions may be derived from
the axioms.

Advantage: Resolution is universally applicable to
problems that can be described in first-order logic. Work
on the theorem prover can be decoupled from any
particular domain.

Disadvantage: Resolution by itself cannot make use
of any domain-dependent heuristics. Despite many
attempts to improve the efficiency of resolution, it often
takes exponential time.

A contradiction in the axiom set allows anything to be
“proved”. Unfortunately, consistency of the axiom set is
not decidable.

189

Natural Deduction

Natural deduction methods perform deduction in a
manner similar to reasoning used by humans, e.g. in
proving mathematical theorems.

Forward chaining and backward chaining are natural
deduction methods. These are similar to the algorithms
described earlier for propositional logic, with extensions
to handle variable bindings and unification.

Backward chaining by itself is not complete, since it only
handles Horn clauses (clauses that have at most one
positive literal). Not all clauses are Horn; for example,
“Every person is male or female” becomes ¬Person(x)∨
Male(x) ∨ Female(x) which has two positive literals.
Such clauses do not support backchaining.

Splitting can be used with backchaining to make it
complete. Splitting makes assumptions (e.g. “Assume
x is Male”) and attempts to prove the theorem for each
case.

190

Backchaining Theorem Prover

1. ((FATHER (ZEUS) (ARES)))

2. ((MOTHER (HERA) (ARES)))

3. ((FATHER (ARES) (HARMONIA)))

4. ((PARENT X Y) (MOTHER X Y))

5. ((PARENT X Y) (FATHER X Y))

6. ((GRANDPARENT X Y) (PARENT Z Y) (PARENT X Z))

>(goal ’(father x (harmonia)))

1> (GOAL (FATHER X (HARMONIA)))

((X ARES))

>(goal ’(parent z (harmonia)))

1> (GOAL (PARENT Z (HARMONIA)))

2> (GOAL (FATHER Z (HARMONIA)))

<2 (GOAL ((Z ARES)))

((Z ARES))

>(goal ’(grandparent x (harmonia)))

1> (GOAL (GRANDPARENT X (HARMONIA)))

2> (GOAL (PARENT Z (HARMONIA)))

3> (GOAL (FATHER Z (HARMONIA)))

<3 (GOAL ((Z ARES)))

<2 (GOAL ((Z ARES)))

2> (GOAL (PARENT X (ARES)))

3> (GOAL (FATHER X (ARES)))

<3 (GOAL ((X ZEUS)))

<2 (GOAL ((X ZEUS)))

((X ZEUS))

191

; remove the father of ares

>(setf (get ’father ’ground) ’(3))

(3)

>(goal ’(grandparent x (harmonia)))

1> (GOAL (GRANDPARENT X (HARMONIA)))

2> (GOAL (PARENT Z (HARMONIA)))

3> (GOAL (FATHER Z (HARMONIA)))

<3 (GOAL ((Z ARES)))

<2 (GOAL ((Z ARES)))

2> (GOAL (PARENT X (ARES)))

3> (GOAL (FATHER X (ARES)))

<3 (GOAL NIL)

3> (GOAL (MOTHER X (ARES)))

<3 (GOAL ((X HERA)))

<2 (GOAL ((X HERA)))

<1 (GOAL ((X HERA)))

((X HERA))

192

Question Answering

Given a data base of facts (ground instances) and rules
expressed in logic, we can pose questions in logic and
answer them using resolution.

Example:

1. ∀x∀y∀z[Parent(x, z) ∧ Parent(z, y) →
Grandparent(x, y)]

2. ∀x∀y[Father(x, y)→ Parent(x, y)]

3. ∀x∀y[Mother(x, y)→ Parent(x, y)]

4. Father(Zeus,Ares)

5. Mother(Hera,Ares)

6. Father(Ares,Harmonia)

Consider the question, “Who is a grandparent
of Harmonia?” This can be expressed as
∃xGrandparent(x,Harmonia) ; this is negated to
be ∀x¬Grandparent(x,Harmonia) (“Nobody is the
grandparent of Harmonia.”).

We then can use resolution to derive , thus proving that
Harmonia does have a grandparent. But who is it?

193

Answer Extraction

Clearly, if the last resolution step matched
¬Grandparent(x,Harmonia) with a positive clause,
that positive clause would carry a binding for x that
would provide an answer to our question.

The technique of answer extraction augments the
negated conclusion with an Answer predicate to capture
the desired binding. Thus, the negated conclusion
becomes:
¬Grandparent(x,Harmonia) ∨ Answer(x)

The Answer predicate is “invisible” when counting the
number of literals, so that a clause consisting only of the
Answer predicate is recognized as .

More generally, the conclusion can be augmented by
an “invisible” predicate that is the positive form of the
negated question predicate:
¬Grandparent(x,Harmonia)
∨Grandparent(x,Harmonia)

This form can capture multiple variable bindings.

194

Planning

Planning attempts to find a sequence of actions that
will accomplish a goal.

Problems:

• Ordering of actions is important.

• Search space may be very large – even infinite.

• Actions interact. Some actions may undo others or
make later actions impossible.

• Overall constraints may exist, such as total of a
conserved quantity (weight, cost, etc.).

• Minimizing cost of executing the plan is often
important.

195

The Frame Problem

There is a problem23 for a predicate calculus planning
system: how to keep a world model consistent as some
things in the world change.

There are two aspects:

• the frame problem: how to propagate information
to the next situation when an action is taken. For
example, if a box is at position p and the light is
turned off, the box is still at p.

• the ramification problem: indirect effects of actions.
For example, if a book is on the table and we move the
table, the position of the book must also be changed.

Most facts in the world will be unchanged for any given
action. The frame problem is a serious practical problem,
since many solutions to it require vast amounts of storage
and/or computation.

23McCarthy, J. and Hayes, P. J., Some Philosophical Problems from the Standpoint of Artificial
Intelligence, Machine Intelligence 4, American Elsevier, 1969. Note that the frame problem has nothing
to do with frames.

196

Planning: Situation Calculus

It is possible to represent a state space in predicate
calculus and use a proof procedure to find solutions to
problems.

An example of a classical planning problem is the
“Monkey and Bananas Problem:” A monkey in a cage
wants to get some bananas that hang from the ceiling.
The monkey cannot reach the bananas directly. However,
there is a box in the cage; by pushing the box underneath
the bananas and climbing on the box, the monkey can get
the bananas.

Since a state space operator changes the state, we
cannot simply represent facts with predicates such as
At(Monkey, a). While the monkey may be at a in
some state, the monkey can move. Ordinary logic is
monotonic, i.e., the set of true predicates can only
increase; facts cannot be retracted.

One way to represent mutable facts is to add a situation
or state variable to each predicate: At(Monkey, a, s0).
This states that the monkey is at a in state s0, which
remains true even if the monkey moves (which puts it in
a new state).

197

Operators in Situation Calculus

Operators can be represented as functions that change
states into new states:
∀x∀y∀s[¬On(Monkey,Box, s) ∧ At(Monkey, x, s) ∧
At(Box, x, s) → At(Monkey, y, pushbox(x, y, s)) ∧
At(Box, y, pushbox(x, y, s))]

pushbox is a function from states to states.

If we pose a question of “How can the monkey
get the bananas?” and negate it, we will have
¬Has(Monkey,Bananas, s) (“There is no possible
state in which the monkey has the bananas.”) After
proving and using answer extraction, we will have an
answer such as:
Has(Monkey,Bananas,

grasp(climbbox(pushbox(b, c, goto(a, b, s0)))))

Note that the instruction set of any CPU could be
axiomatized as a state space; thus, any computation can
be expressed in predicate calculus. In fact, binary Horn
clauses have the power of a Turing machine.

198

Frame Axioms

There is a problem with situation calculus. Suppose
the bananas are at c in state s0. Where are the
bananas after the monkey pushes the box, in state
pushbox(b, c, goto(a, b, s0)) ?

It is necessary to write frame axioms to describe
what does not change when each operator is applied.
Unfortunately, most things do not change for most
operators. Worse, a combinatoric number of axioms is
required.

This is an instance of the frame problem24: the problem
of maintaining a valid world model as some things in the
world change.

24The frame problem is not related to the representational technique of frames, which uses the same word.

199

Planning: STRIPS

STRIPS25 is a logic-based language designed for robot
problem solving. STRIPS maintains a set of world
models, each of which is a set of ground predicates.

A STRIPS operator (analogous to a clause in predicate
calculus) consists of:

1. precondition list: a set of predicates that must be
true before the operator can be applied.

2. delete list: a set of predicates to be deleted from the
world model when the operator is applied.

3. add list: a set of predicates to be added to the world
model when the operator is applied.

In many cases, the precondition list and delete list turn
out to be the same.

25from STanford Research Institute Problem Solver.

200

STRIPS Operators for Blocks World

STRIPS operators for a robot arm:

1. pickup(x):
P&D: ontable(x), clear(x), handempty()
Add: holding(x)

2. putdown(x):
P&D: holding(x)
Add: ontable(x), clear(x), handempty()

3. stack(x, y):
P&D: holding(x), clear(y)
Add: handempty(), on(x, y), clear(x)

4. unstack(x, y):
P&D: handempty(), on(x, y), clear(x)
Add: holding(x), clear(y)

The variables are instantiated to constants by proving the
precondition wff.

A world model is a set of wffs, mostly ground clauses:

on(a,b)

ontable(b)

clear(a)

ontable(c)

clear(c)

201

STRIPS: Operator Application

A STRIPS operator is applied as follows:

1. Show that the preconditions are satisfied (by deriving
from the negated Precondition and the world model);
this instantiates parameters.

2. Form an offspring world model by first deleting
everything on the Delete List from the existing world
model, then adding everything on the Add List.

This is just state space search, but it is more general
because the robot can perform many possible actions, and
we can ask for many different kinds of goals.

202

Selection of STRIPS Operators

Given a current model of the world and a current goal,
STRIPS attempts to prove the goal in the world model by
resolution. If the goal is satisfied, the search can move on
to the next goal, or succeed if the main goal is satisfied.

If the current goal cannot be satisfied in the current world
model, STRIPS takes clauses derived from the goal as new
subgoals, or as a difference between the world model and
the goal (as in GPS).

Example: Suppose the negated goal is ¬At(Box1, x) ∨
¬At(Box2, x) and the world model has At(Box1, b).
Resolution gives the new subgoal At(Box2, b).

An operator relevant to reducing the difference can be
found by looking for operators whose Add Lists unify
with parts of the subgoal. After selecting an operator, the
preconditions of the operator become additional subgoals.

203

Kinds of Planning

• Non-hierarchical planning: All actions can be
considered at all times.

• Hierarchical planning: Break goal down into
subgoals, recursively. Problem: subgoals may
interact.

• Linear planning: Assume no interactions between
subgoals.

• Nonlinear planning: Subgoals interact.

– Paint the ladder and paint the ceiling.

– Buy a car and a boat for less than $25,000.

204

Criticality Number

Sacerdoti introduced the notion of criticality number to
aid in planning:

• Each type of goal is given a criticality number that
indicates how difficult it is to achieve.

• Planning is done for the highest-criticality goals first.

• In planning for a given criticality level, preconditions
at lower criticality levels are ignored.

• A plan is successively refined by filling in the lower-
numbered goals and preconditions.

The basic assumption is that satisfying a lower-criticality
goal will never undo a higher-criticality goal.

205

Plan Monitoring

In the real world, actions do not always have the
desired effects. In addition, there are other actors
(including nature) that may cause unexpected effects.
Plan monitoring is needed to make sure that a plan can
be carried out. The representation of a plan must include:

• Preconditions of an action. The robot should check
whether these are in fact true before initiating the
action.

• Expected effects of an action. The robot should check
whether these are in fact true after the action.

If things go wrong, either local repair of the plan or
complete replanning may be necessary.

206

Weaknesses of A.I. Planning

Much work on planning in A.I. has been based on
assumptions that are very optimistic:

• The robot knows all the relevant facts about the
world.

• The world can be described by a small set of
predicates.

• The robot is the only actor.

• Actions produce the desired effects.

Planning without such assumptions is a difficult problem
on which more research is needed.

207

Knowledge Rep. in Predicate Calculus

Facts: Facts can be stored in a propositional database:

(DOG DOG1)

(NAME DOG1 FIDO)

(HOUND DOG1)

(LOVES JOHN MARY)

Facts can be retrieved in response to patterns:

(LOVES JOHN MARY) Does John love Mary?

(LOVES JOHN ?X) Whom does John love?

(LOVES ?X MARY) Who loves Mary?

(LOVES ?X ?Y) All pairs of lovers.

Knowledge: Knowledge is stored as logical axioms that
can be used for deduction. For example, the rule that ‘all
hounds howl’ could be represented as:

(ALL X (IF (HOUND X) (HOWL X)))

or

(IF (HOUND ?X) (HOWL ?X))

208

Rules

Rules are typically written in an “If ... then” form:

If <premises> then <conclusion>

If <condition> then <action>

These forms correspond to the logical implication form:

∀xP1(x) ∧ ... ∧ Pn(x)→ C(x)

However, the interpretation of rules may or may not
correspond to a formal logical interpretation.

209

Forward Chaining

In forward chaining, if the premises P1...Pn are known,
the conclusion C is asserted. For example, if we have the
axiom:

∀xMAN(x)→MORTAL(x)

and the fact MAN(Socrates) is added to the database of
facts, the fact MORTAL(Socrates) will also be added.

Problems:

1. Infinite loops. For example, consider:

∀xNUMBER(x)→ NUMBER(x + 1)

NUMBER(0)

2. The forward assertions tend to fill up memory with
uninteresting facts.

210

Backward Chaining

In backward chaining, if it is desired to prove the
conclusion C of a clause, the system tries to do so by
proving the premises P1...Pn.

∀xCAR(x) ∧RED(x)→ EXPENSIV E(x)

Given this axiom, an attempt to prove that BMW1 is
expensive would be reduced to the subproblems of proving
that it is a car and that it is red.

Problems:

1. Infinite loops. For example, consider transitivity:

∀x∀y∀zGREATER(x, y) ∧ GREATER(y, z) →
GREATER(x, z)

2. The system has to keep reproving (and failing to
prove) the same mundane facts.

211

Importance of Backchaining

Backward chaining, rather than forward chaining, is the
method of choice for most search problems. The reason
is that backward chaining causes variables to be bound
to the constant data of the problem of interest, and thus
greatly reduces the size of the search space.

Example:

∀x∀yWIFE(x, y)→ LOV ES(x, y)

WIFE(John,Mary)
WIFE(Bill, Jane)
...

Suppose we want to prove LOVES(John,Mary). Back-
ward chaining will bind x and y in the theorem, do a single
database lookup of WIFE(John,Mary), and succeed.
Forward chaining will assert the LOVES relationship for
every WIFE pair in the database until it happens to hit
LOVES(John,Mary).

212

Reason Maintenance

Reason Maintenance or Truth Maintenance is a
technique for maintaining a propositional database that
has a Retract operation. We assume that the database
has three operations:

• Assert(P): Assert that the proposition P is true.

• Ask(P): Ask whether something that unifies with the
proposition P is true, e.g. Ask(Loves(?x, Mary)).

• Retract(P): Remove the proposition P from the
database.

We assume that the database does forward inference from
assertions, so that if P and P → Q have been asserted, Q
will also be asserted.

For efficiency, the database may be indexed for fast
lookup on predicates and ground terms as arguments of
the predicates.

213

Implementing Retraction

An obvious way to implement retraction would be to
mark propositions that have been asserted by the user; to
implement Retract, start over with an empty database
and Assert all marked propositions except the one that
was retracted. However, this would be inefficient, since
the retraction is likely to have only limited effects.

A Justification-based Truth Maintenance System or
JTMS keeps for each derived proposition a list of
sets of propositions from which it was derived, and
for each proposition, a list of propositions it supports.
When a proposition is retracted, the system checks each
proposition that depends on it, and if the proposition no
longer has support, retracts it.

In some systems, it may be likely that a retracted
proposition may be re-asserted in the future. Rather
than removing a proposition from the database, the
proposition can be marked as IN if it is currently believed,
or OUT if it is currently not believed.

214

Truth Maintenance

The idea of a truth maintenance system (TMS) grew
out of dependency-directed backtracking.

Given a set of boolean variables (or assumptions) Σ and
a set of boolean constraints Γ , the general problem is to
find a set of assignments to the variables that satisfies all
the constraints.

Applications:

• Solve search problems, e.g., schedule meetings so that
everyone can attend.

• Determine what derived conclusions are still true
when some facts change.

• Determine what part failures could have caused a
machine to fail.

Constraints could be expressed as:

• A ‘digital electronics’ network.

• A set of IN and OUT nodes that must be satisfied for
a node to be true (IN).

• Logical relationships among boolean variables.

215

ATMS

An Assumption-based Truth Maintenance System or
ATMS keeps for each proposition a set of sets of
assumptions under which the proposition is true. A
proposition is believed at a given time iff one of the
assumption sets supporting it is satisfied.

216

Closed World Assumption

In some applications it is useful to make the assumption
that the database contains all the relevant facts.
Therefore, if something cannot be proved to be true, it
can be assumed to be false; this is called negation as
failure.

Is there an employee of the company

whose age is greater than 80?

It is probably a good assumption that if no such employee
is represented in the database, there is none.

The opposite assumption, the Open World Assumption,
assumes that if something cannot be proved we do not
know its truth status. This is the normal assumption for
logic.

217

PROLOG

PROLOG is a logic-based programming language. A
PROLOG statement, C ← P1, ..., Pn can be considered
to be a rule. Proofs proceed by backchaining.

Problems:

1. Hard to control search.

2. The Horn clause restriction prevents some kinds of
rules from being written:

(a) Rules which conclude a negated conclusion, or have
a disjunction (OR) in the conclusion.

(b) Rules which depend on a fact being not true.
(Some PROLOGs do this using negation as
failure.)

3. Backchaining is not logically complete. For example,
it cannot do reasoning by cases.

PROLOG has the advantages that search is built into
the language, and that PROLOG programs can run
“forward” or “backward”.

218

Non-Monotonic Logic

Ordinary logic is Monotonic, that is, new facts (axioms)
can never invalidate previous deductions. The set of
derived facts can only increase.

Problem: Real-world problems rarely present us with
a complete set of facts. Usually, we make assumptions
based on what is “usual”; sometimes these assumptions
are incorrect. Non-monotonic logics attempt to allow
assumptions to be made, an if necessary retracted, while
staying within the framework of logic.

BIRD (x): m FLIES (x)

FLIES (x)

“IF BIRD (x) and it is consistent to assume FLIES (x),
then assume FLIES (x).”

219

Induction and Abduction

Deduction: apply general principle to infer a fact.26

Given: Every bird flies. Tweety is a bird.

Infer: Tweety flies.

Induction: assume a general principle that subsumes
many facts.

Given: Tweety, Polly, and Hooty are birds.

Tweety, Polly, and Hooty fly.

Fred is a bat. Fred flies.

Assume: Every bird flies.

Abduction: guess a new hypothesis that explains some
fact.

Given: Every bird flies. Tweety flies.

Guess: Tweety is a bird.

Deduction is sound; induction and abduction are not
sound, but essential for intelligence.

26Examples from John Sowa, “The Challenge of Knowledge Soup.”

220

Predicate Calculus: Representation Language
There are several problems with Predicate Calculus as a

representation language:

1. The level of representation is “frozen” at the level
chosen for predicates and objects. Every predication
made about a type of object restricts the objects
which may be of that type.

Example: ∀x(Bird(x)→ Flies(x))

If we have such an axiom (reasonable at first glance),
we have restricted the set of things which can be birds
to those which fly. We can’t talk about dead birds,
birds that habitually don’t fly, birds which can’t fly
due to injury, etc.; if we have such instances, we can
derive and “prove” anything.

On the other hand, if we enumerate the enabling
conditions for a bird to be able to fly, (a) we couldn’t
enumerate all of them, and (b) we would have to prove
every enabling condition in proving a theorem.

221

2. Predicate Calculus does not easily deal with:

• Decomposition of an object into parts: “A car
without an engine”

• Mass nouns: “five gallons of water”

• Representation at variable levels of detail.

• Meta-rules: “There’s an exception to every rule”

• Things that are usually (but not always)true:
“Most people can drive a car.”

• Knowledge about the state of knowledge: “John
thinks Mary believes unicorns exist.”

• Modals: “You should take your umbrella if it might
rain.”

3. Predicate Calculus requires the Law of the Excluded
Middle: if we use a predicate P to represent
something, then either P or ¬P must be true; “sort
of P” or “probably P” is excluded as a possibility.
The “real intelligence” in a reasoning process may be
in the judgment of whether a proposition is true for a
particular case.

222

Predicate Calculus as Programming Language

1. New knowledge or methods can be added.

Advantage: In theory, at least, the program can
immediately combine new knowledge with existing
knowledge.

Disadvantage: The “new knowledge” may contradict
or subsume existing knowledge without our being
aware of it.

2. Predicate Calculus is completely “unstructured”. Any
two clauses which are unifiable may interact.

3. In order to make a program run in a reasonable length
of time, it is usually necessary to restructure clauses
to:

• Order the search so the desired solution will be
found rapidly.

• Reduce the branching factor of the search tree.

223

When to Use Logic

Logic is a preferred representation and reasoning method
in cases where the data are discrete and there is “absolute
truth”. Such applications include:

• Mathematical theorem proving.

• Proofs of correctness of computer programs.

• Proofs of correctness of logic designs.

224

Semantic Networks and Frames

An alternative to Logic as a representation formalism is
semantic networks and frames.

The property list feature of Lisp was used to represent
networks of nodes connected by labeled arcs, forming
semantic networks, by M. Ross Quillian, Robert F.
Simmons, and others.

Following Minsky’s “frame paper”, procedures and
inheritance were added to semantic networks to form
frame systems.

More recently, frame systems have been interpreted as
having semantics similar to logic, and they have been
seen as more efficient implementations of certain common
types of reasoning.

225

Property List Representation

Lisp provides for every symbol a property list that
associates named properties with the symbol:

binding

PRESIDENT -----------> BUSH

| |

| DUTIES (CINC ...) | WIFE ---> LAURA

| | |

| ... | AGE 57 | ...

This mechanism has several advantages:

1. New properties can be added at any time; there is no
need to pre-declare properties.

2. Only those properties needed for each individual
object need to be stored.

3. A property can have a single value or a list of values
associated with it.

Property lists are a natural mechanism to use in
implementing semantic networks.

226

Property Lists

Each symbol has a property list on which semi-permanent
properties of the symbol can be stored. Each property has
a property name or indicator and a value. Property list
values are retrieved and set by two functions:

(get <symbol> <propname>)

retrieves the value of the specified property for the
specified symbol. If no such property exists, the value
returned is NIL.

(setf (get <symbol> <propname>) <value>)

sets the value of the specified property for the specified
symbol, displacing any previous value.

Each symbol has a single property list, which appears the
same to all parts of a Lisp program and is unaffected by
binding.

227

Advantages of Property Lists

The property list provides an easy way to create a
database of relatively permanent facts about objects, e.g.,
the parts of speech of a word. It is convenient because
additional kinds of facts can be added without interfering
with existing facts, so long as the property names are
different.

(setf (get ’car ’part-of-speech) ’noun)

Note that the symbol car can play several roles: it can
hold facts about the English word “car” on its property
list; it can be used as a variable name; and it is the name of
a system function. These uses of car are entirely separate
and do not conflict.

The property list provides an easy and safe way
to create networks of relationships among objects
(sometimes called semantic networks) while avoiding
potential problems due to circular structures and multiple
references to the same entities. These problems are
avoided because a symbol is always guaranteed to be a
single, unique structure in memory.

228

Frames

The term Frame was introduced in Minsky’s paper “A
Framework for Representing Knowledge”.27

A basic idea of frames is that people make use of
stereotyped information about typical features of objects,
images, and situations; such information is assumed to be
structured in large units representing the stereotypes, and
these units are what are referred to as “frames”.

Frames (or something similar) are important because they
allow deep understanding of new situations about which
only minimal information is directly available. They
represent our understanding of regularities in the universe
that allow intelligent action based on minimal clues.

27MIT AI Memo 306, 1974; reprinted in Brachman, R. and Levesque, H., Readings in Knowledge
Representation, Morgan Kaufmann, 1985. Also see Minsky, Marvin, The Society of Mind, Simon & Schuster,
1986.

229

“Frame” Software Packages

There is no clear definition of what a frame
implementation is. As a first approximation, a frame
can be thought of as an extension of the Lisp property
list. Numerous frame-like software packages have been
developed, including FRL, KRL, KL-ONE, KM.

Object-oriented languages can be considered to belong
to the class of frame languages; CLOS (Common
Lisp Object System) is provided in Common Lisp.
These languages trace their ancestry to the simulation
programming language Simula. Smalltalk is a “pure”
object-oriented language.

230

Typical Features of Frames

A frame can represent an individual object or a class of
similar objects.

Instead of properties, a frame has slots. A slot is like
a property, but can contain more kinds of information
(sometimes called facets of the slot):

• The value of the slot; default value in case no value is
present.

• A procedure that can be run to compute the value (an
if-needed procedure).

• Procedures to be run when a value is put into the slot
or removed (if-added and if-removed procedures).
These can be used to implement demons.

• Data type information; constraints on possible slot
fillers.

• Documentation.

Frames can inherit slots from parent frames. For
example, FIDO (an individual dog) might inherit
properties from DOG (its parent class) or MAMMAL (a parent
class of DOG).

231

Simple Frame Program

Slots are stored on the property list of a symbol as an
alist of facets, e.g. ((value 4)) .

(defun getslot (frame slot-name)

(getslotb frame frame slot-name))

(defun getslotb (orig-frame frame slot-name)

(let (slot if-needed)

(if (setq slot (get frame slot-name))

(or (cadr (assoc ’value slot))

(if (setq if-needed

(assoc ’if-needed slot))

(funcall (cadr if-needed)

orig-frame)))

(some #’(lambda (super)

(getslotb orig-frame super

slot-name))

(get frame ’supers)))))

A stored value is used if available; else an if-needed

method is called if available; else an attempt is made to
get the value from one of the supers.

232

Example Frame Data

(setf (get ’fido ’birth-year) ’((value 2004)))

(setf (get ’fido ’supers) ’(dog))

(setf (get ’dog ’barks) ’((value t)))

(setf (get ’dog ’supers) ’(mammal))

(setf (get ’mammal ’warm-blooded) ’((value t)))

(setf (get ’mammal ’legs) ’((value 4)))

(setf (get ’mammal ’age) ’((if-needed agefn)))

(defun agefn (frame)

(- (current-year) (getslot frame ’birth-year)))

>(getslot ’fido ’birth-year) ; stored

2002

>(getslot ’fido ’barks) ; inherited from dog

T

>(getslot ’fido ’legs) ; inherited from mammal

4

>(getslot ’fido ’age) ; inherited, if-needed

3

233

Shadowing

Because each frame is examined for a value before
superclasses are examined, local values shadow inherited
values.

>(setf (get ’fido ’legs) ’((value 3)))

>(getslot ’fido ’legs)

3

In this example, fido can have only 3 legs, although the
inherited default value is 4.

234

Multiple Inheritance

Multiple inheritance can cause problems if different values
are inherited along different paths.

Suppose clyde28 inherits from both elephant and
albino. Elephants normally have color gray, while
albinos normally have color white. What color is clyde?

albino elephant

\ color: white / color: gray

\ /

\ /

\ /

\ /

\ /

\ /

\ /

clyde

28Example due to Scott Fahlman.

235

Example Frame 29

(defEntity Thermal-component

:documentation "a thermodynamic device"

:subclass-of (Thermal-system)

:quantities

((efficiency :dimension dimensionless

:documentation "the efficiency of ..."

:the-*-the-object ("efficiency" "of")

:abbreviation "e")

(capacity :documentation "the capacity of ..."

:the-*-the-object ("capacity" "of")

:abbreviation "c")

(connected-to-external-heat-source-p

:range-class boolean

:non-numeric t

:documentation "the attribute indicating ..."

:value-names ((true "being heated")

(false "not being heated"))

:the-*-the-object ("predicate indicating ..." "of")

))

:operating-modes

(thermal-component-op-mode cycle-heat-input)

)

29From the How Things Work project at Stanford, Thomas Gruber et al.
http://www-ksl.stanford.edu/htw/htw-demos.html

236

(defEntity extraction-turbine-system

:subclass-of (system-model)

:documentation "the system consisting of ..."

:attributes

((xTbn :type simple-turbine

:abbreviation tbn

:The-*-the-object "turbine"

:documentation "the turbine")

(xtbn-cv :type 1-2-control-volume

:documentation "the control volume ..."

:the-*-the-object ("control volume ..."

)

(expsn-prcs :type steady-flow-expansion

:abbreviation xpn-prcs

:The-*-the-object "expansion process"

:documentation "the expansion process"

:graphical-representation

(:Display-Class ())

))

:consequences

((cv-component (xtbn-cv ?self) (xtbn ?self))

(component-cv (xtbn ?self) (xtbn-cv ?self))

(process-cv expsn-prcs (xtbn-cv ?self))

)

)

237

Advantages of Frames

1. A frame collects information about an object in a
single place in an organized fashion. (Cf. Logic, which
represents information about an object by many small
predicates scattered throughout the database.)

2. By relating slots to other kinds of frames, a frame can
represent typical structures involving an object; these
can be very important for reasoning based on limited
information.

3. Frames provide a way of associating knowledge with
objects (via the slot procedures).

4. Frames may be a relatively efficient way of
implementing A.I. applications (direct procedure
invocation versus search in a logic system).

5. Frames allow data that are stored and computed to
be treated in a uniform manner. (E.g., AGE might be
stored, or might be computed from BIRTHDAY.)

Object-oriented programming has much in common with
frames.

238

Disadvantages of Frames

Frames encourage baroque representations; little guide to
good structuring of a domain.

Some things that can be represented in logic cannot be
represented well – or at all – in frames:30

1. Slot fillers must be “real” data. For example, it is
not possible to say that John is a butcher or a baker,
since there is no way to deal with a disjunction in a
slot filler.

2. It is not possible to quantify over slots. For example,
there is no way to represent “Some student made 100
on the exam”.

3. It is necessary to repeat the same information to make
it usable from different viewpoints, since methods are
associated with slots or particular object types. (For
example, it may be easy to answer “whom does John
love?” but hard to answer “who loves Mary?”.)

30Michael Genesereth, lecture presented at Stanford.

239

When to Use Frames

Frames are good for applications in which the structure
of the data and the available information are relatively
fixed. The procedures (methods) associated with slots
provide a good way to associate knowledge with a class
of objects.

Frames are not particularly good for applications in which
deep deductions are made from a few principles (as in
theorem proving).

240

Object-Oriented Programming

The SIMULA language, for discrete event simulation,
introduced OOP in 1967. The goal was to efficiently
simulate large numbers of similar objects. A
Class/Instance representation achieves this goal.

Class: Represents behaviors that are shared by all of its
instances.

Instance: Represents the data for a particular
individual.

Classes are arranged in a hierarchy, with inheritance of
behaviors from higher classes.

241

Access to Objects

All access to objects is accomplished by sending messages
to them.

• Retrieving data values:
(send obj x)

• Setting data values:
(send obj x: 3)

• Requesting actions:
(send obj print)

242

Internal Implementation is Hidden

Messages define a standard interface to objects. Objects
may have different internal implementations as long as
the message interface is maintained.

Example: Vector: (send v x)

Vector type 1: x is stored

Vector type 2: r, θ are stored; x is computed.

The two kinds of vectors appear the same to the outside
world.

243

Advantages of Objects

•Modularity

• Flexibility: New kinds of objects can be used
with existing software if they understand the right
messages.

•Modifiability: Internal implementations can be
changed easily.

OOP is provided in Common Lisp by CLOS (Common
Lisp Object System).

244

Object-Oriented Programming vs. Frames

Object-Oriented and Frame systems have much in
common:

• Class/Instance structure.

• Inheritance from higher classes.

• Ability to associate programs with classes and call
them automatically.

Because of these similarities, it is not possible to draw a
sharp distinction between Object-Oriented systems and
Frames. However, there are some differences that are
typically found.

245

Unique Features of Frames

Frame systems typically have the following features in
contrast to typical object-oriented systems:

• Richer slots. A slot can contain more kinds
of information, e.g., documentation, default value,
restrictions on slot fillers, if-added and if-removed
methods.

• Slot orientation. There usually are no “messages”
that are not associated with slots.

• More complex structure. A frame system could
potentially have instance values, default values, and if-
needed methods for the same slot. When all these are
combined with multiple inheritance paths, the result
can be complex.

246

Unique Features of Object-Oriented Systems

Object-oriented systems typically have the following
features in contrast to typical Frame systems:

• Separation between Data and Methods.

• Methods need not be associated with slots. There can
be methods that implement actions on the object as
a whole.

• Regular structure. The structure of an object-oriented
system is typically simpler and cleaner than that of a
frame system.

247

Example: Frame

Ship

latitude type: real

range: (-90.0 90.0)

longitude type: real

range: (-180.0 180.0)

x-velocity type: real

y-velocity type: real

speed type: real

if-needed: ship-speed-fn

If we wish to have an action speedup that doubles the
velocities of the ship, it will have to be separate from the
frame definition, since it is not associated with a slot.

248

Example: Object

(defclass ship ()

((latitude :type real)

(longitude :type real)

(x-velocity :type real)

(y-velocity :type real)))

(defmethod speed ((s ship))

(with-slots (s)

(sqrt (+ (expt x-velocity 2)

(expt y-velocity 2)))))

(defmethod speedup ((s ship))

(with-slots (s)

(setf x-velocity (* x-velocity 2))

(setf y-velocity (* y-velocity 2))

s))

In this example, a method speedup is defined; with
frames, this was not possible because speedup is not
associated with a slot. The frame example showed range

restrictions on the values of latitude and longitude;
the object representation doesn’t handle this.

249

Benefits of Frame Idea

Frames are large, structured units. A major benefit
is that frames provide a large amount of structured
information that can be invoked from a small “trigger”.
This is essential for intelligence:

• An intelligent being never gets complete, consistent
information about the world.

• An intelligent being must jump to conclusions and
make assumptions based on what is usual.

• Sparseness of the universe makes this work: only a
few things are possible.

Problems with Frames

• Inheritance can cause trouble.

• There is more than one way to break down the world
into taxonomies.

• Inference tends to become complex and ill-structured.

• Frames are good for representing static situations;
they are not so good for representing fluents, things
that change over time.

250

Scripts

A Script31 can be viewed as a frame for a sequence of
actions. Understanding natural language often requires
knowledge of typical sequences:

John went to a restaurant.

He ordered a big steak.

He had forgotten his wallet.

He had to wash dishes.

The sequence of sentences mentions only the parts of
the story that are “different” from what might otherwise
be expected. Understanding such a sequence requires
knowledge of a “restaurant script” that specifies typical
sequences of actions involved in going to a restaurant.

In contrast to the relatively static slots of a Frame, a
Script may have a directed graph of events composing
the script.

31Schank, R. C. and Abelson. R P., Scripts, Plans, Goals, and Understanding, Hillsdale, NJ: Lawrence
Erlbaum,1977.

251

Ontology

In philosophy, ontology is the study of being or existence,
or the nature of being and kinds of existents; it comes
from the Greek ont (to be) and -logy (theory of).

An ontology in AI refers to the set of kinds of objects
and relations among objects that are represented in an
AI system and used in reasoning; the ontology provides a
vocabulary for talking about them.

One can have multiple ontologies, e.g. an ontology for set
theory and an ontology for Newtonian mechanics.

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

252

Some Languages / Inference Engines

• Algernon: Kuipers, James Crawford. A
frame system with logical semantics. Socratic
completeness: logical completeness if the right
questions are asked in the right order.

• KM: Porter, Peter Clark. A frame system with
logical semantics. Skolems are lazily instantiated.
KM can simulate actions, using delete and add lists.

• CycL: Logic-like representation language of Cyc.
Microtheory: set of assertions that share assumptions.
cyc.com

• KIF: Knowledge Interchange Format, a logic-like
language for exchanging information among AI
systems.
http://logic.stanford.edu/kif/kif.html

http://www.ksl.stanford.edu/knowledge-sharing

(defrelation natural (?x) :=

(and (integer ?x) (>= ?x 0)))

(believes john ’(material moon stilton))

(=> (believes john ?p) (believes mary ?p))

(=> (= (father ?x) ?y) (male ?y))

• KL-ONE: automatic classification of instances to
the right place in a taxonomy.

253

Knowledge Bases or Ontologies

• Clib: Porter, Ken Barker, et al.: uses KM.

• Cyc KB: 47,000 concepts, 306,000 relations.

• SUMO: Suggested Upper Merged Ontology, mapped
to WordNet.

* Entity

o Physical

+ Object

SelfConnectedObject

* Substance

* CorpuscularObject

* Food

Region

Collection

Agent

+ Process

o Abstract

+ SetOrClass

+ Relation

+ Quantity

Number

PhysicalQuantity

+ Attribute

+ Proposition

254

Overview of Knowledge Representation

• Frames are used more than logic for applications.

• Theorists favor logic.

• Newer knowledge representation systems such as KM
combine features of frames (for efficiency) and logic.

• There are many difficult problems in knowledge
representation.

255

Situated Action

It is a mistake to try to represent everything in the world
and rely too much on reasoning.

An alternative is to use the world as its own best
representation and simulation, and rely on perception.

Rules, of the form:

In situation x, do y.

seem to be good models of how many organisms,
including humans, work.

The Expert System view is to base intelligence on
large amounts of shallow knowledge rather than on
sophisticated inference.

256

Natural Language Processing (NLP)

“Natural” languages are human languages, such as
English, German, or Chinese.

• Understanding text (in machine-readable form).

What customers ordered widgets in May?

• Understanding continuous speech: perception as well
as language understanding.

• Language generation (written or spoken).

• Machine translation, e.g., German to English:32

Vor dem Headerfeld befindet sich eine

Praeambel von 42 Byte Laenge fuer den

Ausgleich aller Toleranzen.

-->

A preamble of 42 byte length for the

adjustment of all tolerances is found

in front of the header field.

32METAL system, University of Texas Linguistics Research Center.

257

Why Study Natural Language?

Theoretical:

• Understand how language is structured:
the right way to do linguistics.

• Understand the mental mechanisms necessary to
support language use, e.g. memory:
language as a window on the mind.

Practical:

• Easier communication with computers for humans:

– Talking is easier than typing

– Compact communication of complex concepts

• Machine translation

• Someday intelligent computers may use natural
language to talk to each other!

258

Model of Natural Language Communication

259

Minimality of Natural Language

William Woods postulated that natural language evolved
because humans needed to communicate complex
concepts over a bandwidth-limited serial channel, i.e.
speech.

All of our communication methods are serial:

• a small number of basic symbols (characters,
phonemes)

• basic symbols are combined into words

• words are combined into phrases and sentences.

Claude Shannon’s information theory deals with
transmission of information with the smallest possible
number of bits. Likewise, natural language is strongly
biased toward minimality:

• Never say something the listener already knows.

• Omit things that can be inferred.

• Eliminate redundancy.

• Shorten!

260

Zipf’s Law

Zipf’s Law says that frequently used words are short.
This is true across all human languages.

More formally, length ∝ −log(frequency) .

If a word isn’t short, people who use it a lot will shorten
it:

facsimile transmission fax
latissimus dorsae lat
Mediterranean Med
robot bot

261

Areas of Natural Language

The study of language has traditionally been divided into
several broad areas:

• Syntax: The rules by which words can be put
together legally to form sentences.

• Semantics: Study of the ways statements in the
language denote meanings.

• Pragmatics: Knowledge about the world and the
social context of language use.

Q: Do you know the time?

A: Yes.

262

Computer Language Understanding

In general, natural language processing involves a
translation from the natural language to some internal
representation that represents its meaning. The internal
representation might be predicate calculus, a semantic
network, or a frame representation.

There are many problems in making such a translation:

• Ambiguity: There may be multiple ways of
translating a statement.

– Lexical Ambiguity: most words have multiple
meanings.

The pitcher broke his arm.

The pitcher broke.

– Grammatical Ambiguity: Different ways of
parsing (assigning structure to) a given sentence.

One morning I shot an elephant

in my pajamas.

How he got in my pajamas

I’ll never know.

263

Problems in Understanding Language ...

• Incompleteness: The statement is usually only the
bare outline of the message. The missing parts must
be filled in.

I was late for work today.

My car wouldn’t start.

The battery was dead.

• Anaphora:33 Words that refer to others.

John loaned bill his bike.

•Metonymy: Using a word associated with the
intended concept.

The White House denied the report.

• Semantics: Understanding what was meant from
what was said.

– Only differences from assumed knowledge are
stated explicitly.

– Reasoning from general knowledge about the world
is required for correct understanding.

– A vast amount of world knowledge is needed.

33The singular is anaphor.

264

Outline of Natural Language Section

• Introduction

• Morphology (word forms) and Lexicon (dictionary).
A morphological analyzer converts words to root
forms and affixes.

• Grammars and Parsing (syntax). A grammar is a
set of rules describing legal ways to combine words
and phrases. A parser analyzes a sentence to
determine its structure according to the Lexicon and
Grammar. A generator converts a meaning structure
to a statement in the language, using the Lexicon and
Grammar.

• Semantics

– Case theory

– Semantic Markers, Selection Restrictions, Case
Frames

• Representation of meaning: semantic networks,
predicate calculus

• Anaphora, reference, discourse

• Applications; semantic grammar; augmented transi-
tion network

265

Morphology

Morphology is the study of word forms. A program
called a morphological analyzer will convert words to
root forms and affixes (prefixes and suffixes); the root
forms can then be looked up in the lexicon.

For English, a fairly simple suffix-stripping algorithm plus
a small list of irregular forms will suffice.34

running --> run + ing

went --> go + ed

If the lexicon needed for an application is small, all word
forms can be stored together with the root form and
affixes. For larger lexicons, a morphological analyzer
would be more efficient. In our discussions of syntax,
we will assume that morphological analysis has already
been done.

34Winograd, T., in Understanding Natural Language, Academic Press, 1972, presents a simple algorithm
for suffix stripping. A thorough treatment can be found in Slocum, J., “An English Affix Analyzer with
Intermediate Dictionary Lookup”, Technical Report LRC-81-01, Linguistics Research Center, University of
Texas at Austin, 1981.

266

Lexicon

The lexicon contains “definitions” of words in a machine-
usable form. A lexicon entry may contain:

• The root word spelling

• Parts of speech (noun, verb, etc.)

• Semantic markers, e.g., animate, human, concrete,
countable.

• Case frames that describe how the word is related to
other parts of the sentence (especially for verbs).

• Related words or phrases. For example, United
States of America should usually be treated as a
single term rather than a noun phrase.

Modern language processing systems put a great deal of
information in the lexicon; the lexicon entry for a single
word may be several pages of information.

267

Lexical Features

These features are the basis of lexical coding.35

philosopher +N, +common, +anim, +human, +concrete,

+count

honesty +N, +common, -concrete, -count,

idea +N, +common, -concrete, +count

Sebastian +N, -common, +human, +masc, +count

slime +N, +common, +concrete, -anim, -count

kick +VB, +V, +action, +one-trans,

own +VB, +V, -action, +one-trans,

honest +VB, -V, +action

tipsy +VB, -V, -action

I told her to kick the ball
* I told her to own the house
* I told her to be tipsy

The philosopher who ate
The idea which influenced me

* The philosopher which ate
* The idea who influenced me

35slide by Robert F. Simmons.

268

Size of Lexicon

Although a full lexicon would be large, it would not be
terribly large by today’s standards:

• Vocabulary of average college graduate: 50,000 words.

• Oxford English Dictionary: 300,000 words.

• Japanese standard set: 2,000 Kanji.

• Basic English: about 1,000 words.

Each word might have ten or so sense meanings on
average. (Prepositions have about 100; the word “set”
has the most in the Oxford English Dictionary – over
200.)

These numbers indicate that a lexicon is not large
compared to today’s memory sizes.

269

Statistical Natural Language Processing

Statistical techniques can help remove much of the
ambiguity in natural language.

A type is a word form, while a token is each occurrence
of a word type. N-grams are sequences of N words:
unigrams, bigrams, trigrams, etc. Statistics on the
occurrences of n-grams can be gathered from text
corpora.36

Unigrams give the frequencies of occurrence of words.
Bigrams begin to take context into account. Trigrams are
better, but it is harder to get statistics on larger groups.

N-gram approximations to Shakespeare:37

1. Every enter now severally so, let

2. What means, sir. I confess she? then all sorts, he is
trim, captain.

3. Sweet prince, Falstaff shall die. Harry of Monmouth’s
grave.

4. They say all lovers swear more performance than they
are wont to keep obliged faith unforfeited!

36corpus (Latin for body) is singular, corpora is plural. A corpus is a collection of natural language text,
sometimes analyzed and annotated by humans.

37D. Jurafsky and J. Martin, Speech and Language Processing, Prentice-Hall, 2000.

270

Part-of-Speech Tagging

N-gram statistics can be used to guess the part-of-speech
of words in text. If the part-of-speech of each word can
be tagged correctly, parsing ambiguity is greatly reduced.

’Twas brillig, and the slithy toves
did gyre and gimble in the wabe.38

A Hidden Markov Model (HMM) tagger chooses the tag
for each word that maximizes: 39

P (word | tag) ∗ P (tag | previous n tags)

For a bigram tagger, this is approximated as:

ti = argmaxjP (wi | tj)P (tj | ti−1)

In practice, trigram taggers are most often used, and
a search is made for the best set of tags for the whole
sentence; accuracy is about 96%.

38from Jabberwocky, by Lewis Carroll.
39Jurafsky, op. cit.

271

AI View of Syntax

We need a compact and general way to describe language:

How can a finite grammar and parser describe an
infinite variety of possible sentences?

Unfortunately, this is not easy to achieve.

But the English ... having such varieties of
incertitudes, changes, and Idioms, it cannot be in
the compas of human brain to compile an exact
regular Syntaxis thereof.40

40James Howell, A New English Grammar, Prescribing as certain Rules as the Language will bear, for
Forreners to learn English, London, 1662.

272

Grammar

A grammar specifies the legal syntax of a language. The
kind of grammar most often used in computer language
processing is a context-free grammar. A grammar
specifies a set of productions; non-terminal symbols
(phrase names or parts of speech) are enclosed in angle
brackets. Each production specifies how a nonterminal
symbol may be replaced by a string of terminal or
nonterminal symbols, e.g., a Sentence is composed of a
Noun Phrase followed by a Verb Phrase.

<s> --> <np> <vp>

<np> --> <art> <adj> <noun>

<np> --> <art> <noun>

<np> --> <art> <noun> <pp>

<vp> --> <verb> <np>

<vp> --> <verb> <np> <pp>

<pp> --> <prep> <np>

<art> --> a | an | the

<noun> --> boy | dog | leg | porch

<adj> --> big

<verb> --> bit

<prep> --> on

273

Language Generation

Sentences can be generated from a grammar by the
following procedure:

• Start with the sentence symbol, <S>.

• Repeat until no nonterminal symbols remain:

– Choose a nonterminal symbol in the current string.

– Choose a production that begins with that
nonterminal.

– Replace the nonterminal by the right-hand side of
the production.

<s>

<np> <vp>

<art> <noun> <vp>

the <noun> <vp>

the dog <vp>

the dog <verb> <np>

the dog <verb> <art> <noun>

the dog <verb> the <noun>

the dog bit the <noun>

the dog bit the boy

274

Parsing

Parsing is the inverse of generation: the assignment
of structure to a linear string of words according to
a grammar; this is much like the “diagramming” of a
sentence taught in grammar school.

Parts of the parse tree can then be related to object
symbols in the computer’s memory.

275

Ambiguity

Unfortunately, there may be many ways to assign
structure to a sentence (e.g., what does a PP modify?):

276

Sources of Ambiguity

• Lexical Ambiguity:
Words often have multiple meanings (homographs)
and often multiple parts of speech.

bit: verb: past tense of bite
noun: a small amount

instrument for drilling
unit of computer memory
part of bridle in horse’s mouth

• Grammatical Ambiguity:
Different ways of parsing (assigning structure to) a

given sentence.

I saw the man on the hill with the

telescope.

Lexical ambiguity compounds grammatical ambiguity
when words can have multiple parts of speech. Words can
also be used as other parts of speech than they normally
have.

277

Foreign Languages

It should be kept in mind that much of the study
of computer language processing has been done using
English.

The techniques used for English do not necessarily work
as well for other languages. Some issues:

•Word order is used more in English than in many
other languages, which may use case forms instead.

gloria in excelsis Deo

• Agreement in number and gender are more important
in other languages.

la casa blanca
el caballo blanco

• Familiar, formal, honorific forms of language.

278

Formal Syntax

There is a great deal of mathematical theory concerning
the syntax of languages. This theory is based on the work
of Chomsky.

Formal syntax has proved to be better at describing
artificial languages such as programming languages than
at describing natural languages. Nevertheless, it is useful
to understand this theory.

A recursive language is one that can be recognized by a
program; that is, given a string, a program can tell within
finite time whether the string is or is not in the language.

A recursively enumerable language is one for which all
strings in the language can be enumerated by a program.
All languages described by phrase structure grammars are
R.E., but not all R.E. languages are recursive.

279

Notation

The following notations are used in describing grammars
and languages:

V ∗ Kleene closure: a string of 0 or
more elements from the set V

V + 1 or more elements from V

V ? 0 or 1 elements from V (i.e., optional)

a|b either a or b

< nt > a nonterminal symbol or phrase name

ε the empty string

280

Phrase Structure Grammar

A grammar describes the structure of the sentences of
a language in terms of components, or phrases. The
mathematical description of phrase structure grammars
is due to Chomsky.41

Formally, a Grammar is a four-tuple G = (T,N, S, P)
where:

• T is the set of terminal symbols or words of the
language.

• N is a set of nonterminal symbols or phrase names
that are used in specifying the grammar. We say V =
T ∪N is the vocabulary of the grammar.

• S is a distinguished element of N called the start
symbol.

• P is a set of productions, P ⊆ V ∗NV ∗ × V ∗. We
write productions in the form a → b where a is
a string of symbols from V containing at least one
nonterminal and b is any string of symbols from V.

41See, for example, Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling,
Prentice-Hall, 1972; Hopcroft, J. E. and Ullman, J. D., Formal Languages and their Relation to Automata,
Addison-Wesley, 1969.

281

Recognizing Automaton

X = A + B * C
�
��
L
LL

Finite
Control

Auxiliary
Memory

6

?

The Finite Control (a program with finite memory) reads
symbols from the input tape one at a time, storing things
in the Auxiliary Memory.

The recognizer answers Yes or No to the question “Is the
input string a member of the language?”

282

Chomsky Hierarchy of Languages

283

Regular Languages

Productions: A→ xB
A→ x
A,B ∈ N
x ∈ T ∗

• Only one nonterminal can appear in any derived
string, and it must appear at the right end.

• Equivalent to a deterministic finite automaton
(simple program).

• Parser never has to back up or do search.

• Linear parsing time.

• Used for simplest items (identifiers, numbers, word
forms).

• Any finite language is regular.

• Any language that can be recognized using finite
memory is regular.

284

Context Free Languages

Productions: A→ α
A ∈ N
α ∈ V ∗

• Since left-hand-side of each production is a single
nonterminal, every derivation is a tree.

• Many good parsers are known. Parsing requires
a recursive program, or equivalently, a stack for
temporary storage.

• Parsing time is O(n3) .

• Used for language elements that can contain
themselves, e.g.,

– Arithmetic expressions can contain sub-
expressions: A + B ∗ (C + D).

– A noun phrase can contain a prepositional phrase,
which contains a noun phrase:
a girl with a hat on her head.

285

Context Sensitive Languages

Productions: α→ β
α ∈ V ∗NV ∗
β ∈ V +

|α| ≤ |β|
The strings around the N on the left-hand side of the
production are the context, so a production works only
in a particular context and is therefore context sensitive.

• Context sensitivity seems applicable for some aspects
of natural language, e.g., subject-verb agreement.

John likes Mary.
∗ John like Mary.

• No effective parsing algorithm is known.

• Parsing is NP-complete, i.e., would take exponential
time.

• Context sensitive languages are less often used in
practice than context free languages.

286

What Kind of Language is English?

• English is Context Free.42

• English is not Context Free.43

• English is Regular:

– English consists of finite strings from a finite
vocabulary.

– English is recognized by people with finite memory.

– There is no evidence that peoples’ parsing time is
more then O(n).

A better question to ask is:

What is a good way to describe English for
computer processing?

42Gazdar, G., “NLs, CFLs, and CF-PSGs”, in Sparck Jones, K. and Wilks, Y., Eds., Automatic Natural
Language Processing, Ellis Horwood Ltd., West Sussex, England, 1983.

43Higginbotham, J., “English is Not a Context Free Language”, Linguistic Inquiry 15, 119-126, 1984.

287

Parsing

A parser is a program that converts a linear string of
input words into a structured representation that shows
how the phrases (substructures) are related and shows
how the input could have been derived according to the
grammar of the language.

Finding the correct parsing of a sentence is an essential
step towards extracting its meaning.

Natural languages are harder to parse than programming
languages; the parser will often make a mistake and have
to fail and back up: parsing is search. There may be
hundreds of ambiguous parses, most of which are wrong.

Parsers are generally classified as top-down or bottom-up,
though real parsers have characteristics of both.

There are several well-known context-free parsers:

• Cocke-Kasami-Younger (CKY or CYK) chart parser

• Earley algorithm

• Augmented transition network

288

Top-down Parser

A top-down parser begins with the Sentence symbol, <S>,
expands a production for <S>, and so on recursively until
words (terminal symbols) are reached. If the string of
words matches the input, a parsing has been found.44

This approach to parsing might seem hopelessly
inefficient. However, top-down filtering, that is, testing
whether the next word in the input string could begin the
phrase about to be tried, can prune many failing paths
early.

For languages with keywords, such as programming
languages or natural language applications, top-down
parsing can work well. It is easy to program.

44See the Language Generation slide earlier in this section.

289

Bottom-up Parsing

In bottom-up parsing, words from the input string are
reduced to phrases using grammar productions:

<NP>

/ \

<art> <noun>

| |

The man ate fish

This process continues until a group of phrases can be
reduced to <S>.

290

Chart Parser

A chart parser is a type of bottom-up parser that
produces all parses in a triangular array called the chart;
each chart cell contains a set of nonterminals. The bottom
level of the array contains all possible parts of speech
for each input word. Successive levels contain reductions
that span the items in levels below: cell ai,k contains
nonterminal N iff there is a parse of N beginning at word
i and spanning k words.

5 S
4
3 NP VP
2 NP NP
1 Art Adj, N N, V Art N
0 The old man the boats

1 2 3 4 5

The chart parser eliminates the redundant work that
would be required to reparse the same phrase for different
higher-level grammar rules.

The Cocke-Kasami-Younger (CKY) parser is a chart
parser that guarantees to parse any context-free language
in at most O(n3) time.

291

Augmented Transition Networks

An ATN 45 is like a finite state transition network, but is
augmented in three ways:

1. Arbitrary tests can be added to the arcs. A test
must be satisfied for the arc to be traversed. This
allows, for example, tests on agreement of a word and
its modifier.

2. Structure-building actions can be added to
the arcs. These actions may save information in
registers to be used later by the parser, or to build
the representation of the meaning of the sentence.
Transformations, e.g., active/passive, can also be
handled.

3. Phrase names, as well as part-of-speech names,
may appear on arcs. This allows a grammar to be
called as a subroutine.

The combination of these features gives the ATN the
power of a Turing Machine, i.e., it can do anything a
computer program can do.

45Woods, W. A., “Transition Network Grammars for Natural Language Analysis”, Communications of the
ACM, Oct. 1970

292

Augmented Transition Networks

A grammar can be written in network form. Branches are
labeled with parts of speech or phrase names. Actions,
such as constructing a database query, can be taken as
arcs are traversed.

ATN’s are more readable than lists of productions.

ATN interpreter and compiler packages exist; one can also
write an ATN-like program directly in Lisp.

293

Separability of Components

An idealized view of natural language processing has the
components cleanly separated and sequential:

Lexicon

/ \

/ \

Sentence --> Syntax --> Semantics

|

V

Pragmatics

|

V

Output

Unfortunately, such a clean separation doesn’t work well
in practice.

294

Problems with Separability

• Lexicon:

– New uses of words.

You can verb anything. – William Safire

– Metaphor: The computer is down.

• Syntax:

– Ambiguity: hundreds of syntactically possible
interpretations of ordinary sentences.

– Agreement:

Bill and John love Mary.

– Elision: omission of parts of a sentence.

He gave John fruit and Mary candy.

• Discourse:

– The meaning of a sentence depends on context.

295

Combining Syntax and Semantics

There are several advantages to combining syntactic and
semantic processing:

• Removal of Ambiguity: It is better to eliminate
an incorrect parsing before it is generated, rather
than generating all possible interpretations and then
removing bad ones.

– Computer time is saved.

– Eliminating one bad partial interpretation elimi-
nates many bad total interpretations.

• Reference: It is often advantageous to relate the
sentence being parsed to the model that is being
constructed during the parsing process. “John holds
the pole at one end [of the pole].”

• Psychological Plausibility: People can deal with
partial and even ungrammatical language.

All your base are belong to us.

This sentence no verb. – D. Hofstadter

296

How to Combine Syntax & Semantics

• Grammar and Parser: no place to include
program operations.

Note that in natural language processing we often
want the parsing that is chosen for ambiguous
sentences to depend on semantics.

• Program Alone: ad hoc, likely to be poorly
structured.

• Augmented Transition Network: best of both
worlds.

297

Natural Language as an AI Problem

Natural language understanding is a classical AI Problem:

•Minimal Input Data: the natural language
statement does not contain the message, but is a
minimal specification to allow an intelligent reader to
construct the message.

• Knowledge Based: the interpretation of the
message is based in large part on the knowledge that
the reader already has.

• Reference to Context: the message implicitly
refers to a context, including what has been said
previously.

• Local Ambiguity: many wrong interpretations are
superficially consistent with the input.

• Global Constraints: there are many different
kinds of constraints on interpretation of the input.

• Capturing the Infinite: a language understand-
ing system must capture, in finite form, rules sufficient
to understand a potentially infinite set of statements.

298

Semantics

Several tasks fall under the heading of semantics:46

• Selecting correct word sense meanings.

• Removing ambiguity: choosing interpretations that
“make sense” when many interpretations are
syntactically possible.

John saw my dog driving to work this

morning.

• Resolving pronoun references.

Bill wanted John’s bike.

He stole it.

• Resolving other references.

... a ladder ...

A man is 10 ft from the top.

A bridge is supported at each end.

46Semantics is the study of meaning. For our purposes, semantics means the process of determining the
meaning of an input sentence.

299

Semantics ...

• Producing a representation of the meaning of the
input language. This representation may be quite
different from the input.

John sold his rabbit to Bill.

Did Bill buy a pet?

• Filling in missing information.

I was late for work today.

My car wouldn’t start.

The battery was dead.

The battery is part of my car. The battery’s being
dead caused my car not to start. The car’s not
starting caused me to be late for work because I
usually use the car to drive to work and because if
a car will not start, it cannot be driven.

300

Ambiguity

There is much more potential ambiguity in natural
language sentences than one might think.

Lexical Ambiguity: A word can have multiple parts
of speech and multiple meanings for each part of speech.

You can verb anything. – William Safire.

The number of combinations of meanings is the product
of the number of meanings for each word.

Syntactic Ambiguity: Phrases might be
attached to different parts of the sentence. Especially
troublesome are prepositional phrase attachment and
conjunctions.

I saw the man on the hill with a

telescope.

Lowering the level of the lake allows

city officials to kill weeds and

residents to repair their docks.

301

Reducing Ambiguity

A classical AI technique is:

Use global consistency to constrain interpreta-
tion of locally ambiguous features.

Suppose we have a sentence such as:

John hit the ball with a bat.

How can we determine that ball is a spherical object
(not a dance), that hit means to strike (not to arrive
at), and that bat is a baseball bat (not a small flying
animal)?

John struck the spherical object with

a stick.

John arrived at the dance accompanied

by a small flying animal.

John arrived at the dance that

featured a small flying animal.

John struck the dance with a stick.

...

302

Case Theory

Fillmore47 proposed a theory of deep case structures, in
which elements of a sentence are related to the verb by
deep case48 relationships.

Unlike some languages, English does not modify most
words for different cases. Cases used in English are:

Formal Name: Description: Example: Example Use:
Nominative subject he He hit the ball.
Objective direct object him John hit him.
Dative indirect object him I gave him a book.
Genitive possessive his He lost his keys.

Although English does not make the cases obvious,
Fillmore argued that the cases are still present in English:

Mother baked for three hours.
The pie baked for three hours.

* Mother and the pie baked for three hours.

Why is the third sentence anomalous?49 Although both
“Mother” and “the pie” are syntactic subjects, Fillmore
argued that they are in different deep cases and thus
cannot be conjoined.

47Charles Fillmore, The case for case, 1968.
48case: an inflectional form of a noun, pronoun, or adjective indicating its grammatical relation to other

words; such a relation whether indicated by inflection or not. – Webster’s 9th New Collegiate Dictionary
49Linguists use the * marker to indicate a bad sentence.

303

Case Relations

Agent instigator of the event
Counter-agent resistance against action
Object/Theme/Patient entity that moves or changes
Result entity that comes into existence
Instrument physical cause of event
Source place from which something moves
Goal place to which something moves
Experiencer entity which receives effects
Locus place where event occurs
Modality tense etc. of verb

304

Case Relation Example

John broke the window with the hammer.
John broke the window.
The hammer broke the window.
The window broke.

These could all refer to (parts of) the same deep case
structure:

Break1:

Tok: Break

Modality: Tense past, Voice active, ...

Agent: John

Object: Window

Instrument: Hammer

Such a case structure can also be represented as a
semantic network:

305

Case Frames

A case frame is a lexical definition for a word sense that
tells how other phrases are related to it. A case frame
might include:

• Selection Restrictions: restrictions on the
possible slot fillers for the frame.

• Semantic Structure: how to build an output
structure to represent the meaning.

• Related Phrases: how certain phrases, e.g.
prepositional phrases, may fit into the meaning.

HIT-1 <subj> +animate

<obj> +concrete

[with <inst> +concrete,-animate]

--> STRIKE AGENT <subj>

THEME <obj>

INSTRUMENT <inst>

Similar patterns work well for prepositions:

<person> WITH <person>

<location> OF <object>

306

Disambiguation Using Case Frames

The selection restrictions of the case frame can be
matched against the semantic markers of different sense
meanings of words to choose combinations that make
sense.

John hit the ball with a bat.

The selection restrictions of HIT-1 require the marker
+concrete for the object; this is true of the “spherical
object” meaning of ball, but not of the “dance”
meaning. The correct sense of bat can be found in a
similar way.

307

Preference Semantics

Yorick Wilks has suggested the use of preferences rather
than absolute restrictions for the selection of sense
meanings. The preferences are numbers that express the
“goodness of fit” of representations.

Would you hit a woman with a child?

No, I’d hit her with a brick.50

The humor derives from the violation of a selection
restriction – the use of child as instrument of the
hitting. Preference semantics would indicate that such
an interpretation is not preferred, but is not impossible.

50“The eternal question and immortal answer of burlesque.” – e.e. cummings

308

Pronoun Reference

A pronoun often refers to the first preceding noun phrase
that agrees with it in number and gender – but not always.

Charniak: no simple-minded syntactic algorithm will
work for pronoun reference.

The city council denied the

demonstrators a permit because they

feared violence.

The city council denied the

demonstrators a permit because they

advocated violence.51

Deep semantics is required to resolve such cases.

51Winograd, T., Understanding Natural Language, Academic Press, 1972.

309

Deep Semantics Influences Parsing

The man at one end weighs 150 lb.
The man [who is] at one end [of the lever] ...

The man supports the lever at one end.
* ... the lever [that is] at one end [of the lever]

Both examples fit the pattern:

<object> AT <location>

However, in the second case, attaching at one end to the
noun phrase would be wrong. Additional semantics is
needed.

Rule: an object may not be modified by a location on
itself.

310

Reference

Reference is the problem of determining which objects
are referred to by phrases.

A pole supports a weight at one end.

Determiners:

• Indefinite: a

Make a new object.

• Definite: the, one, etc.

Find an existing object;

else, find something closely related

to an existing object;

else, make a new one.

In reading the above sentence, we create a new pole object
and a new weight object, but look for an existing end: one
end of the existing pole.

311

Referent Identification

Referent identification is the process of identifying the
object(s) in the internal model to which a phrase refers.

Paul and Henry carry a sack on a pole. If the
load is 0.5 m from Paul, what force does each boy
support?

load is not a synonym for sack; instead, it describes the
role played by the sack in this context.

Unification of Paul and Henry with each boy conveys
new information about the ages of Paul and Henry.

the left end ... the other end

the 100 lb boy

the heavy end

312

Scripts and Reference

Schank’s scripts52 can be seen as memory triggers that
bring into focus the objects that may be referenced in
later sentences:

John went to a restaurant.

The waiter ...

In order to understand the definite reference the waiter,
the reader must be prepared to see such a reference.
Conceptually, a script implements something like:
∀xRestaurant(x)→ ∃wWaiter(w) ∧ ∃zFood(z) ∧...
These newly created objects can then be related to the
things mentioned in later sentences.

52Schank, R. C. and Abelson, R. P., Scripts, Plans, Goals, and Understanding, Hillsdale, NJ: Lawrence
Erlbaum, 1977.

313

Internal Representation

Some way of internally representing the meaning of
natural language statements must be chosen.

Natural language itself cannot be the internal represen-
tation:

John sold a boat to Bill.

What did Bill buy?

Did John receive money?

At minimum, a representation must be able to represent:

• Objects

• Properties of objects

• Relationships among objects.

Semantic networks and predicate calculus are two popular
representations.

314

How Not to do Representation

One pitfall is so common that it has a name: Pretend
It’s English. If English words or phrases are used in a
representation, it looks good when printed – but only to
a human.

(lintel must-be-supported-by post1)

point-mass(man)

Is must-be-supported-by related to support? Only
if it is specially programmed; no relation between the two
is built-in. Is man a man? No, it is just an arbitrary name
for a predicate calculus constant.

315

Tokens

In general, it is a poor idea to use words themselves as
the internal representation. If we represent John loves

Mary as LOVES(JOHN,MARY) there can be only one John
and one Mary.

LOVES(PERSON1,PERSON2)

NAME(PERSON1,JOHN)

ISA(PERSON1,PERSON)

SEX(PERSON1,MALE) . . .

PERSON LOVINGS

^ ^

|Isa |Isa

Name | Agent | Obj

JOHN <------ PERSON1 <--- LOVES1 ----> ...

Sex/

/

MALE

316

Time Sequence

Natural language often involves an implicit time sequence.

It was a dark and stormy night.

A shot rang out.

John opened the door and saw the body.

The language understander needs to infer:

• Time sequence: John heard the shot, then opened the
door, then saw the body.

•What is true at different times: it is still a dark and
stormy night, but the shot can no longer be heard.

• Causal sequence: John opened the door because he
heard the shot. (A backward inference: we know John
opened the door, so we presume he heard the shot.)

317

Rhetorical Relations

Rhetorical relations (Simmons, Alterman) are a kind
of higher-level grammar to describe larger units of
text. Expository text, such as might be found in an
encyclopedia, often has a high-level structure such as:

1. Give a related concept.

2. Give differentia of the concept being described.

3. Give an example.

318

Conclusions on Semantics

• Natural language statements contain only the bare
outline of the full message.

• Understanding natural language requires filling in a
lot of information.

• Some kind of frame-like representation is required to
guide the many assumptions necessary.

319

Simple Language Processing: ELIZA

Weizenbaum’s ELIZA program simulated a
psychotherapist; it achieved surprisingly good
performance simply by matching the “patient’s”
input to patterns:

Pattern: (I HAVE BEEN FEELING *)

Response: (WHY DO YOU THINK YOU

HAVE BEEN FEELING *)

The * matches anything; it is repeated in the
answer.

Patient: I have been feeling depressed

today.

Doctor: Why do you think you have been

feeling depressed today?

Problems:

• Huge number of patterns needed.

• Lack of real understanding:

Patient: I just feel like jumping

off the roof.

Doctor: Tell me more about the roof.

320

Spectrum of Language Descriptions

ELIZA and a general grammar represent two
extremes of the language processing spectrum:

• ELIZA:
Too restricted. A large application, PARRY – an
artificial paranoid – was attempted, but failed to get
good enough coverage even with 10,000 patterns.

• General English Grammar:
Too ambiguous. Hundreds of interpretations of
ordinary sentences.

There is a very useful middle ground: semantic
grammar.

321

Semantic Grammar

Semantic grammar is between ELIZA and a more
general English grammar. It uses a grammar in which
nonterminal symbols have meaning in the domain of
application.

<S> --> WHAT <CUST> ORDERED <PART>

<MODS>

<CUST> --> CUSTOMER | CUSTOMERS <LOC>

<LOC> --> IN <CITY>

<CITY> --> AUSTIN | SEATTLE | LA

<PART> --> WIDGETS | WIDGET BRACKETS

<MODS> --> IN <MONTH> | BEFORE <MONTH>

<MONTH> --> JANUARY | FEBRUARY | MARCH

WHAT CUSTOMERS IN AUSTIN ORDERED

WIDGET BRACKETS IN MARCH

Advantages:

• More coverage with fewer patterns.

• No ambiguity due to use of semantic phrases.

• Easy to program.

322

Semantic Grammar: Extended Pattern
Matching

In this approach, the pattern-matching that is allowed
is restricted to certain semantic categories. A grammar
is used to specify the allowable patterns; this allows
the restrictions to be specified easily, while allowing
more language coverage and easier extension with fewer
specified patterns.

Example:

<s> --> what is <ship-property> of <ship>?

<ship-property> --> the <ship-prop> | <ship-prop>

<ship-prop> --> speed | length | draft | beam

<ship> --> <ship-name> | the fastest <ship2>

| the biggest <ship2> | <ship2>

<ship-name> | Kennedy | Kitty Hawk | Constellation

<ship2> --> <countrys> <ship3> | <ship3>

<ship3> --> <shiptype> <loc> | <shiptype>

<shiptype> --> carrier | submarine | ...

<countrys> --> American | French | British

<loc> --> in the Mediterranean | in the Med | ...

”What is the length of the biggest French sub in the
Med?”

323

Example Semantics for a Semantic Grammar

Suppose we want to use the semantic grammar
given earlier to access a relational database containing
information about ships. For simplicity, let us assume a
single SHIP relation-as follows:

NAME TYP OWN LAT LONG SPD LNG
Kitty Hawk CV US 10o00′N 50o27′E 35 1200
Eclair SS France 20o00′N 05o30′E 15 50

Consider the query: What is the length of the fastest
French sub in the Med?

This query is parsed by the top-level production

<S> --> What is <ship-property> of <ship>?

which is conveniently structured in terms of:

1. The data values to be retrieved: <ship-property>

2. The data records (tuples) from which to retrieve the
data: <ship>.

In each case, the values are additive and can be
synthesized from the parse tree, as shown below.

324

Compositional Semantics

The semantics of each phrase is propagated up the tree
and combined with the semantics of the other descendant
nodes at each higher-level node of the tree.

325

ATN Written in Lisp

Using a few simple functions and conventions, it is easy to
write ATN-like programs directly in Lisp. Each grammar
rule becomes a Lisp function.

(DEFUN <phrase-name> ()

(LET (<local variables>)

(SAVEPTR) ; always the first action

(IF (AND (CAT <category>)

; to test parts of speech

(NEXT) ; move to next word

...)

(PROGN (SUCCESS) ; it worked

<semantics>)

(FAIL)))) ; parsing failed

Results may be either returned or stored in global
registers or database as a side effect.

326

Sentence Pointer Handling

; *sent* = remainder of sentence

; *word* = current word

; *savesent* = saved positions for backup

; initialize for a new sentence

(defun init-sent (sent) (setq *sent* sent)

(setword))

; set *word* for current position

(defun setword () (setq *word* (car *sent*)))

; move to next word

(defun next () (pop *sent*) (setword) t)

; save the current position

(defun saveptr () (push *sent* *savesent*))

; pop the stack on success

(defun success () (pop *savesent*) t)

; restore position on failure, return nil

(defun fail ()

(setq *sent* (pop *savesent*))

(setword) nil)

327

Word Category Testing

; Test if current word is in category

(defun cat (category) (get word category))

; Define a lexicon.

; Arg is list of (category (items))

; Each item is word or (word value)

(defun deflexicon (lst)

(dolist (l lst)

(let ((category (car l)))

(setf (part-of-speech category) t)

(dolist (word (cadr l))

(if (symbolp word)

(setf (get word category) t)

(setf (get (car word)

category)

(cadr word)))))))

The lexicon and category testing can do multiple tasks:

1. Test if a word has a specified part of speech.

2. Translate to internal form, e.g.,
March --> 3.

3. Check for multi-word items, e.g., United States.

328

Lexicon Example

; Now we define a lexicon and grammar

; for this application.

(deflexicon

’((part ((pliers pliers)(tires tire)

(tire tire)(blimps blimp)

(widgets widget)))

(supplier ((sears sears)(acme acme)))

(customer ((ut ut)(hp hp)(mcc mcc)))

(city ((austin austin)

(dallas dallas)

(el-paso el-paso)))

(month ((january 1)(jan 1)

(february 2)(feb 2)...))))

Note translations to internal form, e.g.,
tires --> tire, February --> 2 .

It is easy to include alternate forms such as
abbreviations, slang, and special terms.

329

Database Access

Database access requires two kinds of information:

1. Which records are to be selected. This takes the
form of a set of restrictions that selected records must
satisfy.

2. What information is to be retrieved from the selected
records.

The task of the NL access program is to translate the
user’s question in English into a formal call to an existing
database program.

Our example database program takes queries of the form:

(QUERYDB <database> <condition> <action>)

The condition and action are Lisp code: if the
condition is true, the action is executed and its
result is collected. Both the condition and action
can access fields of the current database record
using the call:

(GETDB (QUOTE <fieldname>))

330

Building Database Access

; *retrieve* = things to get from database

; *restrict* = restrictions on the query

; Main function: ASK

(defun ask (question)

(let (*retrieve* *restrict*)

(parse question)

(querydb ’orderdb

(cons ’and *restrict*)

(cons ’list (nreverse *retrieve*)))))

; Quote something

(defun kwote (x) (if (constantp x) x

(list ’quote x)))

; make a database access call

(defun dbaccess (field)

(list ’getdb (kwote field)))

; add a restriction to the query

(defun addrestrict (r) (push r *restrict*))

331

Parser

(defun parse (sent)

(let ()

(init-sent sent)

(if (eq *word* ’what) (next))

(cond ((eq *word* ’customers)

(next)

(addretrieve

(dbaccess ’customer))

(loc)

(if (eq *word* ’ordered)

(next))

(part) (supplier) (datespec))

((eq *word* ’who)

(next)

(addretrieve

(dbaccess ’customer))

(loc)

(if (eq *word* ’ordered)

(next))

(part) (supplier) (datespec)))

; (prin1 *retrieve*) (terpri) ; for trace

; (prin1 *restrict*) (terpri) ; for trace

(if *sent* (error ‘words left over’))))

332

Phrase Parsing

; parse a location

(defun loc ()

(let (locname)

(saveptr)

(if (and (eq *word* ’in) (next)

(setq locname (cat ’city))

(next))

(progn

(addrestrict

(list ’equal

(dbaccess ’customer-city)

(kwote locname)))

(success))

(fail))))

Example:

Input: ... in Austin ...

Output: (EQUAL

(GETDB (QUOTE CUSTOMER-CITY))

(QUOTE AUSTIN))

333

Grammar Compiler

A simple grammar compiler (gramcom.lsp) can compile
grammar rules into parsing programs:

(defgrammar

(S -> (what (CUST) (LOC)? ordered (PARTS)?

(SUPP)? (DATE)?)

(combine $2 $3 $5 $6 $7))

(S -> (who (LOC)? ordered (PARTS)? (SUPP)? (DATE)?)

(combine (retrieve ’customer) $2 $4 $5 $6))

(CUST -> (customer) (retrieve ’customer))

(CUST -> (customers) (retrieve ’customer))

(LOC -> (in (city)) (restrict ’customer-city $2))

(DATE -> (in (month))

(restrictb ’= ’date-month $2))

(DATE -> (before (month))

(restrictb ’< ’date-month $2))

(DATE -> (after (month))

(restrictb ’> ’date-month $2))

(PARTS -> ((part)) (restrict ’part $1))

(SUPP -> (from (supplier)) (restrict ’supplier $2))

)

334

An Example Query

(ask ’(what customers in austin

ordered widgets in april))

QUERYDB entry:

Arg 1: ORDERDB

Arg 2: (AND (EQUAL

(GETDB (QUOTE DATE-MONTH))

4)

(EQUAL (GETDB (QUOTE PART))

(QUOTE WIDGET))

(EQUAL

(GETDB

(QUOTE CUSTOMER-CITY))

(QUOTE AUSTIN)))

Arg 3: (LIST (GETDB (QUOTE CUSTOMER)))

QUERYDB return value = ((MCC) (MCC))

335

Example Queries

(ask ’(who ordered from sears))

((UT) (HP) (UT) (MCC))

(ask ’(who ordered blimps))

((UT))

(ask ’(what customers in austin

ordered before april))

((UT))

(ask ’(what customers in austin

ordered after march))

((MCC) (MCC) (UT) (HP) (MCC))

(ask ’(who ordered from acme

after april))

((HP))

(ask ’(who ordered tires from sears))

((HP) (UT))

(ask ’(who ordered tires))

((HP) (UT) (MCC) (UT))

(ask ’(what customers in austin

ordered widgets in april))

((MCC) (MCC))

336

Natural Language Interfaces

Interfaces for understanding language about limited
domains are easy:

• Database access.

• Particular technical areas.

• Consumer services (e.g., banking).

Benefits:

• Little or no training required.

• User acceptance.

• Flexible.

Specialized language is much easier to handle than
general English. The more jargon used, the better: jargon
is usually unambiguous.

337

Problems with NL Interfaces

• Slow Typing: A formal query language might be
faster for experienced users.

• Typing Errors: Most people are poor typists. A
spelling corrector and line editor are essential.

• Complex Queries: Users may not be able to
correctly state a query in English. “All that glitters
is not gold.”

• Responsive Answers:

Q: How many students failed CS 381K

in Summer 2005?

A: 0

Does this mean:

1. Nobody failed.

2. CS 381K was not offered in Summer 2005.

3. There is no such course as CS 381K.

• Gaps: Is it possible to state the desired
question?

338

Menu-based Natural Language

Texas Instruments (Harry Tennant, Craig
Thompson) has developed a menu-based natural
language access system.

Advantages:

• Fast: one mouse click selects several words.

• Spelling errors are impossible.

• Syntax errors are impossible.

• Semantic errors are impossible.

• The user sees all queries that are possible:
self-training, permits finding a way to do a
desired query.

339

Statistical NLP

Every time I fire a linguist, the performance of the
recognizer goes up. – Fred Jelinek

Traditional NLP involves writing grammars, parsers, and
semantic programs to understand language.

An alternative is to use statistical approaches, based
on statistics from massive amounts of text, without
attempting to understand the natural language. This
approach has been surprisingly successful in several area:

• Part-of-speech tagging

• Machine translation

• Speech understanding

The basic approach is Bayesian statistics: given
the preceding language, what is the most probable
interpretation of the current input?

340

Speech Understanding

Advantages:

• Fast compared to typing.

• No bulky equipment (keyboard).

• Hands not required (vehicle driver).

• Voice reply is easy to implement.

Problems:

• Ambiguity: “five” vs. “nine”.

• Pauses between words may be required.

• Noisy environments.

Hidden Markov models (HMM) are often used for speech
understanding.

341

Machine Translation Example

This is example is produced by Babelfish:
http://babelfish.altavista.com/

English: (quote from Paul Graham)

Back when I was writing books about Lisp,
I used to wish everyone understood it. But
when we started Viaweb I found that changed:
I wanted everyone to understand Lisp except our
competitors.

To German:

Ziehen Sie wenn ich war Schreiben Bücher
über LISP zurück, ich pflegte, jeder zu wünschen
verstand es. Aber, als wir Viaweb begannen,
fand ich, dass geändert: Ich wünschte jeder LISP
ausgenommen unsere Konkurrenten verstehen.

And back to English:

Pull if I were letter books concerning LISP
back, I tended, everyone to wish understood
it. But, when we began Viaweb, I found that
changed: I wished excluded our competitors to
each LISP understand.

342

Sentence Understanding in ISAAC

One end of a pole 10 ft long is supported by a man.

1. The initial noun phrase “one end” is parsed,
producing this structure:

tok1

tok end

lframe np

nbr (ns)

det2 one

2. An attempt is made to parse the prepositional phrase
as a modifier of the noun phrase.

3. The prepositional phrase parser causes the noun
phrase “a pole” to be parsed:

tok2

tok pole

lframe np

det indef

nbr (ns)

4. The sentence is examined for modifiers of the noun
phrase. The phrase “10 ft long” is found and causes
a modifier to be added to tok2:

mods ((length 10 ft))

343

5. The preposition semantics routine for of is called with
tok1 and tok2 as arguments. The discrimination net
in ofsem classifies this use of of as being of the form:
<location> of <object>.

6. ofsem calls idrfnt to identify the referent of “a
pole”. This causes tok2 to be assigned the semantic
frame physent and causes an object pole3 to be
created and added to the internal model. The modifier
(length 10 ft) is transferred to the new object at
this time.

tok2

tok pole

lframe np

det indef

nbr (ns)

mods ((length 10 ft))

sframe physent

rfnt (pole3)

344

7. ofsem next assigns the semantic frame locpart to
tok1 and fills the semobj (semantic object) slot of
this frame with the referent of the phrase that was the
object of the preposition. ofsem then returns True,
indicating that the modification was semantically
acceptable.

tok1

tok end

lframe np

nbr (ns)

det2 one

sframe locpart

semobj (pole3)

Note that since the meaning of tok2 has been
determined and used, tok2 is no longer part of the
parse structure.

345

8. The verb phrase parser is called (with tok1 as an
argument) to parse the verb phrase. Since the verb
phrase is passive, tok1 is attached to it as the obj

case argument.

tok4

tok support

lframe np

mainvb supported

aux (is)

trans t

pasv t

obj tok1

9. vpmod is called to parse modifiers of the verb phrase.
It attempts to parse the prepositional phrase, which
causes the noun phrase “a man” to be parsed.

tok5

tok person

lframe np

word man

mods ((restrict (sex male))

(restrict (age adult)))

nbr (ns)

sframe physent

rfnt (person6)

346

10. The preposition semantics routine for by is called with
the verb phrase and noun phrase tokens as arguments.
bysem calls idrfnt to identify the referent of tok5;
this causes tok5 to be assigned the semantic frame
physent and causes a new object person6 to be
created and added to the physical model.

bysem then makes tok5 the filler for the subj case
argument of the verb phrase token tok4.

11. Since the whole sentence has now been parsed, the
verb semantics for the verb support are now called.
The structure seen by supportsem is as follows:

tok1 tok4 tok5

tok end tok support sframe physent

sframe locpart subj tok5 rfnt (person6)

semobj (pole3) obj tok1

This is of the form <physent> support <locpart>.

347

12. supportsem calls locnp to identify the location
referent of the phrase tok1. This causes a location
object loc7 to be added to the internal model.

tok1

tok end

sframe locpart

semobj (pole3)

rfnt (loc7)

13. idatt is called to identify an attachment between
pole3 at location loc7 and person6 (location
unknown). This causes the creation of an attachment
relation in the internal model. In addition, the
support relation between person6 and pole3 is
recorded.

This completes processing of the sentence. The token
structures produced during the parsing process will not
be used any further.

348

One end of a pole 10 ft long is supported by a man.

The internal model produced in response to this sentence
is as follows:

pole3 person6

tok pole tok person

entity physent word man

locs (loc7) entity physent

attach (attach8) restrict ((sex male)

supportby (person6) (age adult))

length (10 ft) attach (attach8)

support (pole3)

loc7 attach8

entity location frame attach

frame location typeatt pinjoint

object pole3 locs ((pole3 loc7)

locname end (person6 nil))

select (one)

349

Preposition Semantics

Sense-meaning determination for of:

quantifier of objects each of the objects
measure of value a length of 10 ft
object of value attribute a pole of uniform cross-section
location of object one end of the lever
attribute of object the weight of the lever
group of objects pair of legs
part of object hinges of a door

Execution of semantics:

1. Functional sframe form

2. Special semantic routines

350

Expert Systems53

Expert systems attempt to capture the knowledge of a
human expert and make it available through a computer
system.54

Expert systems are expected to achieve significant actual
performance in a specialized area that normally requires
a human expert for successful performance, e.g, medicine,
geology, investment counseling.

Expert systems have been some of the most successful
applications of A.I. Since these programs must perform
in the real world, they encounter important issues for A.I.:

• Lack of sufficient input information

• Probabilistic reasoning

53These slides jointly authored with Bruce Porter.
54Duda, R. O. and Shortliffe, E. H., “Expert Systems Research”, Science, vol. 220, no. 4594,15 April

1983, pp. 261-268.

351

Power-Based Strategy

Some have hoped that powerful theorem-proving methods
on fast computers would allow useful reasoning from a set
of axioms. Several problems have kept this power-based
strategy from succeeding.

• Combinatoric explosion: blind search using even a
small axiom set takes excessive time.

• Knowledge representation: few real-world relation-
ships are universally true.

• Lack of inputs: many problems lack some inputs, but
require fast action anyway.

Knowledge-Based Strategy

“In the Knowledge Lies the Power”

The knowledge-based strategy is to include within the
program a great deal of knowledge to cover particular
cases.

The surprising finding:

A thousand rules can provide significant
performance within a limited domain.

352

Expert Reasoning

Expert reasoning typically has special characteristics:

• Use of specialized representations appropriate to
the domain and specialized problem-solving methods
based on those representations.

• Translation of observables into specialized terminol-
ogy and representations (e.g., “person has turned
blue” into “patient is cyanotic”).

• Use of empirical rules of thumb (e.g., “to blow out a
tree stump, use one stick of dynamite per 4 inches of
stump diameter”55).

• Use of empirical correlations (e.g., certain bacteria
have been observed to be likely to cause infection in
burn patients).

• Use of “incidental” facts to discriminate cases (e.g.,
“a snake that swims with its head out of the water is
a water moccasin”). Such discrimination depends on
the sparseness of the domain (only certain snakes are
possible).

55Parker, T., Rules of Thumb, Boston, MA: Houghton Mifflin Publishers, 1983.

353

Expert Knowledge

Expert knowledge is highly idiosyncratic:

• Build stair steps 7 inches high and 10 inches wide.

• Two times height plus width should equal 25 inches.

•Width times height should equal 72 inches.56

• Different rules may be generated for the same
phenomena.

• The rules may have no fundamental validity and
may give bad answers outside a limited domain of
applicability.

• The rules generally work within the limits of
applicability, but the expert often doesn’t know what
the limits are.

56Parker, T., Rules of Thumb, Boston, MA: Houghton Mifflin Publishers, 1983.

354

Choosing a Domain

A domain chosen for an expert system (especially a first
one) should have the following characteristics:

• Task takes from a few minutes to a few hours for
human experts.

• Specialized task (avoid commonsense reasoning).

• Expertise in the area exists and can be identified.

• An expert who is willing to commit significant
amounts of time over a long period is available.

• Opportunity for large payoff.

Problem Characteristics

• Complexity: significant expertise required.

• Lack of algorithmic solution to the problem.

• Data may be unavailable or uncertain.

• “Judgment” may be used in reaching conclusion.

• Many different kinds of knowledge sources involved
in performing task.

355

Rule-Based Systems

One of the most popular methods for representing
knowledge is in the form of Production Rules. These
are in the form of:

if conditions then conclusion

Example: MYCIN57

Rule 27

If 1) the gram stain of the organism is gram

negative, and

2) the morphology of the organism is rod, and

3) the aerobicity of the organism is

anaerobic,

Then: There is suggestive evidence (. 6) that

the identity of the organism is

Bacteroides.

57Shortliffe, Edward H., Computer Based Medical Consultations: MYCIN, American Elsevier, 1976.
Buchanan, Bruce G. and Shortliffe, Edward H., Rule-Based Expert Systems, Addison-Wesley, 1984.

356

Advantages of Rules

• Knowledge comes in meaningful chunks.

• New knowledge can be added incrementally.

• Rules can make conclusions based on different kinds
of data, depending on what is available.

• Rule conclusions provide “islands” that give multi-
plicative power.

• Rules can be used to provide explanations, control
problem-solving process, check new rules for errors.

357

EMYCIN

EMYCIN was the first widely used expert system tool.

• Good for learning expert systems

• Limited in applicability to “finite classification”
problems:

– Diagnosis

– Identification

• Good explanation capability

• Certainty factors

Several derivative versions exist.

358

Rule-Based Expert Systems58

MYCIN diagnoses infectious blood diseases using a
backward-chained (exhaustive) control strategy.

The algorithm, ignoring certainty factors, is basically
backchaining:

Given:

1. list of diseases, Goal-list

2. initial symptoms, DB

3. Rules

For each g ∈ Goal-list do
If prove(g, DB, Rules) then Print (“Diagnosis:”, g)

Function prove (goal, DB, Rules)
If goal ∈ DB then return True
elseif ∃r ∈ Rules such that rRHS contains goal
then return provelist(LHS, DB, Rules)59

else Ask user about goal and return answer

58Shortliffe, E. Computer-based medical consultations: MYCIN. New York: Elsevier, 1976.
59provelist calls prove with each condition of LHS

359

Production Systems (OPS-5 family)

Production systems can be traced back to the
pandemonium model of Selfridge, in which many demons
observe a body of data; each responds when it sees the
particular pattern in the data that it is looking for. The
model is inherently highly parallel; it is intended to model
the way the brain achieves intelligent and rapid responses
to new information using relatively slow components.

A production system has two memories:

1. A production memory, or long-term memory,
containing the production rules.

2. A working memory, or short-term memory,
containing data about the current problem.

360

Recognize-Act Cycle

The production system operates on a forward chaining
recognize-act cycle:

Recognize:
All productions are matched against all data to find the
set of all productions that are satisfied by some subset
of the data. (The same production might be satisfied by
multiple sets of data.) The set of satisfied productions
with data bindings is sometimes called the conflict set.

Act:
The satisfied productions (or, in implementations on a
serial machine, one of them) are fired, which means
their actions are executed. The actions generally make
changes in the working memory. Production systems thus
normally operate in a forward-chaining fashion.

361

Production System (OPS-5)

Recognize - Act Cycle:

1. Match: Evaluate LHS of all productions to see which
are satisfied.

2. Conflict Resolution: Select one production. (If
none, halt.)

3. Act: Perform RHS actions of selected production.

362

OPS-5 Data

OPS-5 has two separate memories:

1. Production memory (long-term memory)

2. Working memory (short-term memory for data of the
current problem)

Data is stored in pre-declared record form, including the
type of the data element.

(MATERIAL ^NAME H2SO4

^COLOR COLORLESS

^CLASS ACID)

The names preceded by ^ are attribute names; internally,
these are translated to numeric offsets within the record.

363

OPS-5 Rules

The following is a made-up rule in the style of rules used
in R1/XCON:

(P

Rule803

(GOAL ^STATUS ACTIVE

^NAME ASSIGN-POWER-SUPPLY

^CABINET <CAB>)

(AMPS ^CABINET <CAB> ^VALUE {<A> > 5})

(SPACE ^CABINET <CAB> ^VALUE {<S> > 7})

--->

(ASSERT POWER-SUPPLY ^CABINET <CAB>

^TYPE PS101)

(REMOVE 1)

(MODIFY 3 ^VALUE (COMPUTE <S> - 7))

(MAKE GOAL ^STATUS ACTIVE ^NAME POWER-CORD)

)

Note how much of this rule involves control. This is
typical of OPS-5 rules.

364

Conflict Resolution

If OPS-5 were actually to compute the conflict set (all
rules that can be satisfied by all data in all combinations),
the computational load would be enormous. Instead,
OPS-5 computes the “derivative” of the conflict set, i.e.,
those rules newly enabled as a result of the changes made
by the last rule, using the RETE algorithm60

Conflict Resolution Algorithm:

1. A rule instantiation can only fire once (prevents
loops).

2. Rules whose left-hand side involves the data most
recently added to working memory are favored (gives
search a “depth-first” bias).

3. Rules with a more specific left-hand side (i.e., more
clauses on the left-hand side) are favored.

60C. Forgy, “Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match Problem”,
Artificial Intelligence, vol. 19, no. 1 (sept. 1982), pp. 17-38. D. Miranker has an alternative algorithm
called TREAT.

365

Evaluation of OPS-5

OPS-5 and variants are widely used expert system tools.

Advantage:

1. The tool does not greatly restrict what one can do.

Disadvantages:

1. Low-level code: the “assembly language” of expert
system tools.

2. Kinky code: Although OPS-5 supposedly offers
flexible control, rules tend to restrict this control by
assertion of “control variables”.

Free OPS-like program in C: CLIPS
http://www.ghg.net/clips/CLIPS.html

(defrule reactor_pressure_demon

"Reactors blow if pressure too high"

(object (is-a reactor)

(name ?n)

(pressure ?p&:(>= ?p 610)))

=>

(send ?n blown))

366

Reasoning Under Uncertainty

Human expertise is based on effective application of
learned biases. These biases must be tempered with
an understanding of strengths and weaknesses (range of
applicability) of each bias.

In expert systems, a model of inexact reasoning is needed
to capture the judgmental, “art of good guessing” quality
of science.

In this section we discuss several approaches to reasoning
under uncertainty.

• Bayesian model of conditional probability

• EMYCIN’s method, an approximation of Bayesian

• Bayesian nets, a more compact representation used
for multiple variables.

367

Bayes’ Theorem

Many of the methods used for dealing with uncertainty
in expert systems are based on Bayes’ Theorem.

Notation:

P (A) Probability of event A
P (AB) Probability of events A and B occurring together
P (A|B) Conditional probability of event A

given that event B has occurred

If A and B are independent, then P (A|B) = P (A).

Expert systems usually deal with events that are not
independent, e.g. a disease and its symptoms are not
independent.

Bayes’ Theorem

P (AB) = P (A|B) ∗ P (B) = P (B|A) ∗ P (A)

therefore P (A|B) = P (B|A) ∗ P (A) / P (B)

368

Uses of Bayes’ Theorem

In doing an expert task, such as medical diagnosis,
the goal is to determine identifications (diseases) given
observations (symptoms). Bayes’ Theorem provides such
a relationship.

P (A|B) = P (B|A) ∗ P (A) / P (B)

Suppose: A = Patient has measles, B = has a rash
Then: P (measles/rash) =

P (rash/measles) ∗ P (measles)/P (rash)

The desired diagnostic relationship on the left can be
calculated based on the known statistical quantities on
the right.

369

Joint Probability Distribution

Given a set of random variablesX1...Xn, an atomic event
is an assignment of a particular value to each Xi.

The joint probability distribution is a table that assigns
a probability to each atomic event. Any question of
conditional probability can be answered from the joint.61

Toothache ¬ Toothache
Cavity 0.04 0.06
¬ Cavity 0.01 0.89

Problems:

• The size of the table is combinatoric: the product of
the number of possibilities for each random variable.

• The time to answer a question from the table will also
be combinatoric.

• Lack of evidence: we may not have statistics for
some table entries, even though those entries are not
impossible.

61Example from Russell & Norvig.

370

Chain Rule

We can compute probabilities using a chain rule as
follows:

P (A ∧B ∧ C) = P (A|B ∧ C) ∗ P (B|C) ∗ P (C)

If some conditions C1 ∧ ...∧Cn are independent of other
conditions U , we will have:

P (A|C1 ∧ ... ∧ Cn ∧ U) = P (A|C1 ∧ ... ∧ Cn)

This allows a conditional probability to be computed
more easily from smaller tables using the chain rule.

371

Bayesian Networks

Bayesian networks, also called belief networks or
Bayesian belief networks, express relationships among
variables by directed acyclic graphs with probability
tables stored at the nodes.62

62Example from Russell & Norvig.

372

Computing with Bayesian Networks

If a Bayesian network is well structured as a poly-tree (at
most one path between any two nodes), then probabilities
can be computed relatively efficiently.

One kind of algorithm, due to Judea Pearl, uses a
message-passing style in which nodes of the network
compute probabilities and send them to nodes they are
connected to.

Several software packages exist for computing with belief
networks.

373

A Heretical View

My own view is that CF combination algorithms are not
a major issue.

Question: How accurate does the computation in the
middle need to be, given that the input data are only
accurate to (say) ±10%?

It’s hard to argue that extreme accuracy in the
computation is required.

Remember:

• Use CF’s as a last resort, when a good guess is the
best you can do.

• Never trust a CF to have more than one digit of
accuracy.

374

EMYCIN’s Certainty Factors

EMYCIN’s methods of doing Certainty Factor calcula-
tions represent a good set of engineering choices. They
have been criticized, but represent a useful technique
worthy of study.

Several kinds of CF’s are involved:

• Data CF

• CF from antecedent of a rule

• CF due to rule as a whole

• Combination of CF’s from multiple rules.

There is a further question of what a CF is supposed to
mean.

375

Certainty Factor Meaning

Traditional probability values are on a scale of 0-1.
Shortliffe argues this does not support “ruling out”
reasoning of the kind done in medicine.

EMYCIN CF’s are on a scale of -1 to +1. A CF
combines both a “positive probability” and a “negative
probability”.

MB 0 - 1 Measure of Belief
MD 0 - 1 Measure of Disbelief
CF = MB - MD -1 to 1 Certainty Factor

-1 Definitely False
0 No information, or cancellation
+1 Definitely True

When a data parameter is True/False, “False” is
represented as “True” with a CF of -1.

376

EMYCIN Data CF’s

Each piece of data has a CF associated with it; even
if the parameter is single-valued, there may be multiple
possibilities:

COLOR = ((RED .6) (BLUE .3))

Data is referenced using predicates that differ on:

• the CF values that cause the predicate to be “true”

• the CF value returned by the predicate.

The two most commonly used predicates are:

• SAME: “True” if data CF > .2; returns data CF .

• KNOWN: “True” if data CF > .2; returns 1.0

377

EMYCIN Antecedent CF

The antecedent (“if part”) of a rule is usually a
conjunction of conditions, using the EMYCIN $AND

function:

($AND (SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH COCCUS))

$AND operates as follows:

1. If any clause is false (nil) or has CF ≤ .2 , $AND
returns false (nil). Thus, .2 is used as a cutoff
threshold. Any data believed less strongly than .2
is considered to be false.

2. If every clause has CF > .2, $AND returns the
minimum of the clause CF values.

There is also a function $OR that returns the maximum
of its argument CF values.

378

Rule Certainty Factors

Premise:

($AND (SAME CNTXT SITE BLOOD)

(SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH ROD)

(SAME CNTXT BURNED))

Action:

(CONCLUDE CNTXT

IDENTITY PSEUDOMONAS-AERUGINOSA

TALLY 400)

The result of the rule as a whole is calculated as follows:

1. $AND sets the global variable TALLY to the minimum
CF of its components.

2. The Rule CF is TALLY times the CF specified in the
CONCLUDE line, divided by 1000.

This forms the input to the CF Combination algorithm.

379

Certainty Factor Combination

When two sets of evidence imply the same conclusion,
there is a need to compute the total certainty factor based
on the certainties of the sets of evidence.

A CF combination method should be:

• Commutative: A ·B = B · A
• Associative: A · (B · C) = (A ·B) · C

This will make the resulting CF independent of the order
in which pieces of evidence are considered.

380

Certainty Factor Combination

If a datum’s previous certainty factor is CFp and a
new rule computes a certainty factor CFn, the combined
certainty factor is given by:

cfcombine(CFp, CFn) =

CFp + CFn ∗ (1− CFp) CFp > 0, CFn > 0

(CFp + CFn) signs differ
/(1−min(|CFp|, |CFn|))

−cfcombine(−CFp,−CFn) CFp < 0, CFn < 0

This algorithm has a desirable feature: it is associative
and commutative; therefore the result is independent of
the order in which rules are considered.

A CF of + 1 or -1 is dominant and sets the combined CF
to that value.

381

Summary of CF Computations

• CF > .2 threshold

• $AND takes minimum CF in premise

• conclude CF = CFpremise ∗ CFrule
• CF combination algorithm

Examples:

If: A (.6)

and B (.3)

and C (.4)

Then: conclude D tally 700

The resulting rule value for D is the minimum premise CF
(.3) times the rule CF (.7), or 0.21 .

Suppose that two separate rules reach the same
conclusion with CF’s of 0.5 and 0.6 ; the resulting CF
is .5 + .6 ∗ (1− .5) = .8. This could also be computed as
.6 + .5 ∗ (1− .6) = .8.

382

Contradictions:

EMYCIN’s CF calculations allow contradictory rules to
cancel one another. While in logic a contradiction is
intolerable, use of rules and exceptions, expressed as
contradicting rules, seems to be the way humans often
think.

Example: FUO program for diagnosing fever of unknown
origin. Patient is a 17 year old female with persistent
high fever, headache, lethargy, cardiac symptoms....

Results: Lung cancer (.81), Endocarditis (.7)

Endocarditis was the correct diagnosis. The physician
expert remarked that lung cancer was consistent with the
symptoms, but that patients that young never get lung
cancer.

One way to handle this in EMYCIN is to add a rule that
“rules out” certain cancers in young patients; the CF can
be made a function of the patient’s age.

383

Duplicate Rules

Duplicated rules in EMYCIN are harmful because each
of the rules will fire; this will cause the CF’s of the rules
to be combined, giving a larger CF than was intended.

In a large expert system, it is easy for duplicate rules
to be created by different rule-writers (or even the same
one).

In logic, duplicated rules have no effect.

384

Rule Subsumption

A common programmer error is to leave out one or more
clauses in the antecedent of a rule. This causes the rule
to be over-broad in its application and may cause it to
subsume other rules.

Example: SACON structural analysis consultant63

If: 1) The analysis error (in percent) that is

tolerable is less than 5, and

2) The non-dimensional stress of the

substructure is greater than .5, and

3) The number of cycles the loading is to be

applied is greater than 10000

Then: It is definite (1.0) that fatigue is a

phenomenon ...

A rule like this one, but without antecedent clause (3),
was included. The bad rule subsumed this rule and two
others (stress > .7, cycles > 1000; stress > .9, cycles >
100) with the same conclusion.

63Bennett, J. S. and Engelmore, R. S., “SACON: a Knowledge-based Consultant for Structural Analysis”,
Proc. IJCAI-79, pp. 47-49, Morgan Kaufmann Publishers.

385

Increasing Certainty

EMYCIN systems sometimes include rules of the form:
A ∧B → A

Such a rule is logically redundant, but may serve to
increase the CF of the conclusion based on additional
evidence.

If; 1) The identity of the snake is

rattlesnake, and

2) It bites someone, and

3) He dies

Then: There is strongly suggestive

evidence (.8) that the identity of

the snake is rattlesnake.

386

EMYCIN CF vs. Probability Theory

EMYCIN certainty factor calculations differ in significant
ways from standard probability theory. These differences
have attracted criticism, but often have good practical
motivations.

CF Threshold: EMYCIN generally considers anything
with CF < .2 to be false.

Q: “Can’t this prevent several pieces of weak support
from adding up to a significant level of support?”

A: Yes, it is possible, but doesn’t seem to be a problem
in practice.

The benefit of the CF threshold is that it keeps the system
from asking a lot of dumb questions:

If: A (.01)

and B (.02)

and C (.001)

and D (as yet unknown) ...

In such a case, we don’t want the system to ask questions
about D, which is a most unlikely prospect. Asking dumb
questions will quickly discourage potential users of the
system.

387

Sensitivity Analysis

In general, sensitivity analysis attempts to determine
the sensitivity of the output of a computation to small
changes in the input.

An expert system should be relatively insensitive to small
changes in the input or CF’s; high sensitivity indicates
bad design.

The sensitivity of MYCIN to small changes in CF values
has been empirically tested; MYCIN was found to be
relatively insensitive to CF values.

In part, this is due to the fact that MYCIN “plays it
safe:” it treats for all organisms found with CF > .2.

388

Expert Systems vs. Decision Trees

There is a rule used by Expert Systems experts:

If: There is a known algorithm to solve

a problem,

Then: Use it.

So, if a decision tree will work for your problem, by all
means use one.

The trouble is that decision trees work only for a relatively
small class of problems, where:

1. All needed data can be obtained with certainty.

2. Data are discrete (Boolean or one of a fixed set of
choices).

3. The structure of the problem is known and is fixed.

4. The problem can be “factored” well, preferably many
times.

5. There is a single conclusion for each set of data.

389

Machine Learning 64

Learning Techniques:

1. Learning from Examples

2. Learning from Advice

3. Learning from Analogy

64Cohen, P. R., Feigenbaum, E. A., Handbook of Artificial Intelligence, Volume 3. Morgan Kaufmann
Publishers, 1982, p. 327.

390

Rule Induction

Motivation: acquire expert knowledge from examples of
expert’s problem solving.

Assumption is that it is easier for expert to demonstrate
his expertise than to ”tell all he knows“.

Input to the induction algorithm is classified examples
(which corresponds to I/O of human expert):

< f11, f12, ..., f1n > classification1
< f21, f22, ..., f2m > classification2

Output from the induction algorithm is a decision tree
with features labeling interior nodes and classifications
labeling leaves.

391

Sample Decision Tree:

Classifications = {chair, stool, table}
Features = {number of legs, armrests, height}
Domains:
number of legs = {3, 4}
armrests = {yes, no}
height = {tall, short}

New objects can be classified using the decision tree.

392

Example of Rule Induction65

Classifications = { +, -}
Features = {height, hair, eyes}
Domains:

height = {tall, short}
hair = {dark, red, blond}
eyes = {blue, brown}

Training set:
short, blond, blue: +
short, dark, blue: -
tall, dark, brown: -
tall, blond, brown: -
tall, dark, blue: -
short,blond, brown: -
tall, red, blue: +
tall, blond, blue: +

65Quinlan, “Learning Efficient Classification Procedures”, Machine Learning, Morgan Kaufmann Publ.,
1983.

393

Final Decision Tree with Classifications

394

Algorithm for Rule Induction

Instances: a set of training instances
Features: feature vector (f1, f2, ..., fn) input from teacher
Domains: set of domains for Features {d1, d2, ..., dm}
Classes: set of classes {c1, c2, ..., ck}

(simply {+,−} for single concept learning.)

Function formrule (Instances, Features, Domains,
Classes)
For some class ∈ Classes
If all members of Instances fall into class
then return class
else f ← select-feature (Features, Instances)
d ← domain from set Domains corresponding to f
return a tree of the form:

395

Alternatives for select-feature

1. Random selection: guaranteed to give a decision
tree which is consistent with the training set. No
guarantee of optimality.

2. Information theoretic selection: select the feature
which maximally partitions the set of instances.
Heuristic for finding decision tree with minimum
expected classification time.

3. Minimal cost selection: allow for the fact that some
features are costly to evaluate. For example, body
temperature is easier to determine than lung-capacity.
Put least costly features high in the tree.

396

Limitations of Rule Induction

1. ”Flat“ classification rules produced with no justifica-
tion facility

2. Lots of training examples are necessary

3. Training must be noise-free

4. Each training example must be described using all the
features

5. Classifications and features are static sets

6. Rules produced do not distinguish between correlation
and causality

397

Digital Low-Pass Filter

A simple mechanism that can be used to “learn”
parameter values over time is the digital low-pass filter.
A simple digital low-pass filter is defined by:

outi+1 = α∗ini+(1−α)∗outi, where α << 1.

This filter will remove most short-term “noise” in the
input, while passing through the long-term trend.

A filter like this was used to adjust weights assigned
to heuristic feature detectors in Samuel’s checker-player
program.

An advantage of such a mechanism is that multiple
parameter values can be “learned” simultaneously,
despite the fact that the system’s performance changes
as the parameter values change.

398

Getting Knowledge From Expert

1. Watch (and videotape) the expert doing examples.
Encourage expert to talk aloud about actions,
strategy and reasoning behind conclusions. Ask
questions to keep expert talking.

2. Focus on a test case and build a system to handle that
case as soon as possible.

3. Review initial system with expert; fix as needed.

4. Add rules related to existing rules to expand coverage.

5. Try additional test cases; fix as errors are found.

6. Rewrite and restructure the whole system when
needed.

7. The order in which the expert asks questions is an
important clue to the strategy being used. Ordering
is also an important component of expert knowledge
in some domains, especially design.

399

Interaction with Expert

Test cases often reveal missing pieces of knowledge.

Example: Fever of Unknown Origin

Patient is 17-year-old female; persistent fever, headache,
lethargy, cardiac symptoms, ...

Diagnoses: Lung cancer (.81), Endocarditis (7).

Correct diagnosis was endocarditis. Physician expert
said the diagnosis of lung cancer was consistent with the
symptoms; however, lung cancer would never be expected
in a patient this young.

Result: new rules added to rule out certain cancers in
young patients. Patient age can be used to determine
certainty factor of ruling out lung cancer.

400

Conceptual Islands

An important thing to look for in gathering knowledge
about a domain from an expert is “conceptual islands:”
intermediate conclusions that have special meaning in the
domain. Often these islands have specialized terminology
associated with them.

Example: Compromised Host in MYCIN

A compromised host is a patient who has been weakened
and therefore cannot fight off infections as well as a
normal person.

401

Advantages of Conceptual Islands

Conceptual Islands reduce the number of rules required
and aid robustness.

402

Expansion with Conceptual Islands

Islands give multiplicative power. New rules that reach a
conceptual island become effective with all the rest of the
system’s knowledge.

403

Orthogonal Knowledge Sources

Often the best way to get discriminating power is to find
another knowledge source that is “orthogonal to” the
existing ones (i.e., discriminating on a basis unrelated to
the existing set of data.

Example: Nuclear magnetic resonance data used in
conjunction with mass spec data in DENDRAL.

404

Neuron

• cell body: 5 - 100 microns diameter

• dendrites: branching structures that receive inputs
from other neurons

• axon: long process (up to 1 meter) extending from
the cell body; carries an output pulse

• myelin sheath: insulates the axon

• axon terminal: interface to the next neuron’s
dendrite

• synapse: connection between neurons

• afferent neurons carry signals toward the brain;
efferent neurons carry signals away from the brain.

405

Neuron Firing

•When sufficiently stimulated, neuron fires a discrete
pulse.

• Electric pulse travels down the axon (90 m/sec).

• Synaptic bulb releases neurotransmitter molecules.

• Neurotransmitters diffuse across the synaptic cleft.

• Neurotransmitters bind to receptors on dendrite and
stimulate or inhibit the target neuron.

• Scavenger chemicals clean up the neurotransmitters.

• Neuron must recharge before it can fire again.

• Strength of signal is determined by rate of firing (max
1 KHz).

406

Function of Brain Regions66

66Illustrations in this section are from Scientific American, Sept. 1979 and Sept. 1992, and from Science.

407

Somatotopy: Sensory and Motor

Somatotopy is the principle that adjacent areas of body
or retina are mapped to adjacent areas of brain.

408

Early Experimental Work

Camillo Golgi: developed Golgi stain that makes
individual neurons visible.

Santiago Ramón y Cajal performed first detailed study of
brain and nervous system; established that neurons are
separate cells.

409

Function from Brain Injury

A. R. Luri�ia studied brain-injured Russian soldiers during
World War II, correlating their psychological deficits with
the location of injury.

Injury to Broca’s area and Wernicke’s area cause distinct
aphasias (speech disorders).

410

Positron Emission Tomography

Positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) provide real-time
pictures of brain activity.

• Radio-labeled glucose is injected into arteries that feed
the brain.

• Blood flow is modulated by brain activity.

• Pictures of radiation concentration show which brain
areas are active

411

Micro-electrodes

Micro-electrodes inserted into the brain of an experimen-
tal animal make it possible to observe the firing of a single
neuron.

Experiments can then be done to show what will make
the neuron fire.

David Hubel and Torsten Wiesel used this technique to
study the visual cortex of the cat.

412

Hubel and Wiesel: Visual Cortex

• Retinal ganglion: center-surround difference detection

• Line detection: about 6◦ resolution

• Moving line detection

• (presumably) Moving object detection

413

Visual Processing Areas

414

Vision

• Many processing units, highly interconnected

• Retinal cells are denser towards center

415

Mental Rotation

The very existence of mental images has been
controversial.

Shepard and Metzler67 showed that response time in
matching rotated 3-D images is proportional to angle of
rotation.

Georgopoulos et al.68 demonstrated a mental rotation in
a monkey.

67Shepard, R. N., and Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171,
701-703.

68Georgopoulos, A. P., et al., “Mental Rotation of the Neuronal Population Vector”, Science, vol. 243,
no. 4888 (13 Jan. 1989), pp. 234-236.

416

Somatotopic Processing

Brain processing of information seems to be based on:

• Somatotopic mapping

• Parallel processing

• Massive interconnection

• Successive layers of processing

417

Machine Vision

Vision can be thought of as “inverse optics” or “inverse
graphics:” recovery of the 3-D structure and properties
of a scene from a 2-D image.

• Locations of objects in 3-D

• Identification of objects

• Motion

In a sense, this is a mathematically impossible problem
because information is lost in making the 2-D image from
3-D reality.

418

Digitization

Digitization refers to the input of a picture in digital form,
typically as an array of intensity values. For color, there
will be three intensity values per pixel.

• Lots of data: 3 megabytes for 1024 x 1024 color
picture.

• Introduces “noise” because digitized values are
inexact.

• Introduces edge artifacts at boundaries between
digitized values.

419

Low-Pass Filtering

Low-pass filtering is a “smoothing” operation. It
reduces noise, blurs edges, and introduces delay
in the time domain. Low-pass operations include
averaging, summation, integration, and convolution with
a Gaussian. Averaging n samples reduces noise by

√
n.

An easy low-pass filter in one dimension:

Outi = α · Ini + (1− α) ·Outi−1 where α� 1

420

High-Pass Filtering

“Contrast, the relative difference between light and dark,
is the coinage of the visual system.” – Lawrence Cormack

High-pass filtering or edge detection is a “sharpening”
operation.

• Sharpens edges

• Increases noise

High-pass operations include differentiation, subtraction,
convolution with the second derivative of a Gaussian.

421

Convolution

The convolution of two picture functions g and f ,
denoted g ∗ f , is defined as:

g ∗ f (x, y) =
∫ ∫ ∞
−∞ g(u, v) · f (x− u, y − v)du dv

For example, the image recorded by a camera is the
convolution of the original image with the point spread
function of the camera optics.

If the function decays rapidly to zero outside a local area,
convolution can be approximated by applying a grid-like
operator to the image:

1 1 1
0 0 0
-1 -1 -1

Such an operator can rapidly be applied to a whole image
by special hardware, either operating on a stored image
or on a raster scan.

422

Feature Detection

Hubel and Wiesel showed that the cells in the retinal
ganglion compute a center-surround difference function.

Marr proposed that the right function to use is the second
derivative of a 2-D Gaussian, or sombrero function.

This function detects places where the image intensity
changes.

423

Hough Transform

Edges (boundaries between areas of different intensity)
are important for image understanding. Edges are
often approximately straight. However, they may be
discontinuous, and there may be noise.

The Hough transform finds edges despite these problems.

• For each image feature (edge) point that is above a
threshold, map that point to each (r, θ) pair that
represents a line through that point, and add 1 to
the counter for (r, θ).

• The (r, θ) counters are histograms: high values
indicate where lines are.

• Identify the exact locations and endpoints of strong
lines from the image.

424

Generalized Hough Transform

The principle of the Hough transform can be generalized
to find line patterns other than straight lines, e.g., circles.

• Map the image points into points in parameter space

• Threshold the histograms in parameter space

• Identify desired curves in original image.

This approach requires much more storage and
computation as the number of parameters increases.

425

Segmentation

Segmentation is the process of breaking the image into
regions that are more or less homogeneous or represent
regions of objects.

• For polygonal scenes, the lines found by the Hough
transform can be used as input to Waltz filtering.

• Regions can sometimes be found by identifying
particular colors and grouping pixels of those colors
into polygons.

426

Shape from Shading

For some objects, variation in shading is an important
clue to surface orientation.

427

Lambert’s Cosine Law

Johann Heinrich Lambert (1728-1777) stated the law:

Flux per unit solid angle leaving a surface in
any direction is proportional to the cosine of the
angle between that direction and the normal to
the surface.

A surface that obeys Lambert’s law is called lambertian;
“flat” paint produces such a surface. The albedo of the
surface is the fraction of incoming light that is reflected.
Illumination is spread across the surface proportional
to the cosine of the angle with the surface normal. A
reflective surface is specular (mirror-like).

The cosine law can be solved to determine the surface
normals from observed intensity, thus recovering object
shape from shading. Assumptions must be added to
constrain the problem enough to make it mathematically
solvable.

Non-planar objects may be represented as generalized
cylinders.

428

Object Identification

Object identification is difficult and still unsolved.

• Template matching

• Picture grammar

• Graph matching

• Invariant properties: number of holes, moment of
inertia, ratio of boundary to area, aspect ratio.

429

Motion

Understanding moving objects is very important.

• Subtracting two pictures at adjacent time points gives
motion edges.

• A “velocity image” or array of velocity vectors can be
computed.

• Lines with the same velocity can be grouped as an
object.

430

Other Sensory Modes

Other sensors besides TV images can be used.

• Laser stripes: illuminating an object with a plane of
laser light and photographing it from two angles gives
3-D shape.

• Sonar detectors can be used.

431

Adding Semantics to Vision

Knowing what is expected can help identify what is seen,
e.g., in an aerial photograph:

• Roads and rivers are expected to be continuous.

• There should be a bridge at the intersection of a river
and a road.

• Houses are near a street, parallel with street, have a
driveway to street.

432

Practical Vision

Machine vision is used in industry for several tasks:

• Orientation of chassis for robot assembly.

• Reading results of test programs from screen of
computer.

• Inspection of printed circuit boards.

433

Theory and Practice

We should not assume that practical results will
flow out of successful theories rather than vice-
versa. In the past, it has at least as often been the
case that successful theories have been constructed
on the basis of engineering observations.

– Y. Aloimonos and A. Rosenfeld

434

Driving a Car

Ernst D. Dickmanns, “Vehicles capable of dynamic vision:
a new breed of technical beings?”, Artificial Intelligence,
vol. 103, pp. 49-76, 1998.

This system performs autonomous road vehicle guidance
in public traffic on freeways at speeds beyond 130 km/h.

• Integrates AI methods with system dynamics and
control engineering

• Integration of multiple sensors (vision, gyro,
accelerometers)

• Several levels of representation:

– Low-level: perception and motor controls

– High-level: symbolic representations of plans,
goals, environment

• Feedback from higher levels of perception to lower
levels to guide perception, gain efficiency.

435

Driving: Architecture

436

Driving: Detailed Architecture

437

Control of Spacecraft

Nicola Muscettola, P. Pandurang Nayak, Barney Pell,
and Brian C. Williams, “Remote Agent: to boldly
go where no AI system has gone before,” Artificial
Intelligence, vol. 103, pp. 49-76, 1998.

This system autonomously controls the Deep Space One
spacecraft.

• Constraint-based temporal planning and scheduling

• robust multi-threaded execution

• model-based mode identification and reconfiguration

• predicate calculus representation

• self-diagnosis using state transition models with
probabilities

• multiple levels of representation

438

Remote Agent: Architecture

439

Engine / Valve Configurations

440

Understanding Machines from Movies

Tzachi Dar, Leo Joskowicz, and Ehud Rivlin, “Under-
standing mechanical motion: From images to behaviors,”
Artificial Intelligence, vol. 112, pp. 147-179, 1999.

This system produces descriptions of planar fixed axes
mechanical motion from image sequences.

• Most machines are combinations of machine elements
that can be catalogued.

• Machine vision gives observed motion in images

• Observed motions suggest basic components

• Simultaneous motions suggest relationships

• Component relations are parsed into a description of
the machine

441

Understanding Machines: Example

442

