
CS 394P

Automatic Programming

Class Notes

Gordon S. Novak Jr.

Department of Computer Sciences
University of Texas at Austin

http://www.cs.utexas.edu/users/novak

Copyright c© Gordon S. Novak Jr.

1

Automatic Programming

Automatic Programming is the generation of programs
by computer based on a specification.

Historically, assemblers and compilers were called
automatic programming systems; “automatic” has meant
“more automatic than current practice”.

The goal is to make the specification better than
programming languages:

• Smaller

• Easier to write

• Easier to understand (closer to application concepts)

• Less error-prone

2

Need for Automatic Programming

Programming hasn’t changed in 30 years.
– J. C. Browne

A programmer costs $1/minute, produces 8-16 lines of
code per day: $30 - $60 per line of code.

Computer-driven programming: Express the program in
terms of what the computer can do directly.
x[i] = y[i] * b

Problem-driven programming: Express what we want:
Sort(s) = ∀s∃r : Permutation(s, r) ∧ Sorted(r)

Domain-driven programming: Express the problem in
terms of domain concepts, rather than computer or CS
concepts.

3

Strategies for AI

Power-based Strategy: Use the speed and power of
the computer to derive answers to problems by search,
starting from a small number of first principles.

Knowledge-based Strategy: Expertise in solving
problems is derived from large amounts of knowledge.
The computer must similarly embody knowledge to be
a good problem solver.

The knowledge-based strategy raises several questions:

•What is the knowledge that underlies expertise?

• How can the knowledge be expressed?

• How can the knowledge be used to solve a new
problem?

• How much must the user know and say in order to
make use of the computer’s knowledge?

4

Problems with Programming Languages

In traditional programming languages, the syntax of
program code reflects the implementation of data. This
causes several problems:

1. Design decisions about data become reflected in the
code. A single design decision is reiterated in many
places.

2. Code becomes ossified and hard to change.

3. Code becomes hard to reuse.

4. Reuse requires conformity to design decisions made in
writing the original software.

5

Goals of the Course

• Understanding of fundamental concepts:

– Program transformation

– Program generation

– Program analysis and optimization

– Partial evaluation

• Knowledge of useful techniques

• Experience in using several kinds of systems:

– Pattern matching and program transformation

– Partial evaluation

– Program analysis

– Object-oriented programming

– Glisp, GEV, VIP, APS, GPS

• Familiarity with current research literature

• Preparation for research in this area

6

Companies

There are now a number of companies based on
automated program generation:

• Kestrel Institute / Reasoning Systems:
Cordell Green, Douglas Smith. Generation
of programs from formal specifications (predicate
calculus, category theory). Success with combinatoric
search problems.

• SciComp (Austin): Elaine Kant. Generation of
code to simulate systems of differential equations.
Originally seismic analysis, now evaluation of
derivative securities.

• Semantic Designs (Austin): Ira Baxter. Use
of advanced program manipulation to improve
commercial software.

• Intentional Software Corp.: Charles Simonyi.
Goal is to produce advanced software tools for
programmers to use.

• NASA Ames: Automated Software Engi-
neering: Mike Lowry. Use of predicate calculus
representation of scientific subroutines to find ways to
use the subroutines to accomplish a goal in spacecraft
navigation and control.

7

People in Austin

Many of the world’s best researchers in automatic
programming are in Austin. They will be invited to
present guest lectures.

• UT: Gordon Novak, Don Batory, James C. Browne

• SciComp: Elaine Kant

• Semantic Designs: Ira Baxter

• SoftwareGenerators: Ted Biggerstaff

8

Overview

• Introduction

• Substitution and Pattern Matching

• Program Analysis and Optimization

• Partial Evaluation

• OOP and Aspect-oriented Programming

• Glisp, Views, and Graphical Programming

• Program Generation from Logic Specifications

• Active Researcher Lectures

• Research Literature

9

Abstract Syntax Tree

We will assume that the fundamental form of a program
is the abstract syntax tree (AST) – not source code.

Lisp code is already in AST form, and Lisp is ideal for
implementing program generation and transformation.
It is easy to generate code in ordinary programming
languages from Lisp.

10

Substitution and Pattern Matching

Both humans and automatic programming systems
construct new programs by reuse of knowledge, much of
it in the form of patterns:

• code patterns

• data structure patterns

• design patterns

Thus, the ability to make instances of a pattern is crucial.

Another important capability is transformation of
programs, e.g. for optimization. A transformation can
often be modeled as a pair of patterns: an input pattern,
containing variables, that is matched against the given
code, and an output pattern that represents the form of
the code after transformation:
(- (- ?x ?y)) → (- ?y ?x)

We will represent variables as symbols that begin with ?.

Transformation patterns are also called rewrite rules.

11

Binding Lists

A binding is a correspondence of a name and a value. In
Lisp, it is conventional to represent a binding as a cons:
(cons name value)

The binding will appear in dotted pair notation, i.e., it is
printed with a dot between name and value:
(?X . 3)

If the value is a list, the dot and parentheses will cancel:
(?X . (SIN THETA)) will print as (?X SIN THETA) .

A set of bindings is represented as a list, called an
association list, or alist for short. A new binding can
be added by:
(push (cons name value) binding-list)

A name can be looked up using assoc:
(assoc name binding-list)

(assoc ’?y ’((?x . 3) (?y . 4) (?z . 5)))

= (?Y . 4)

The value of the binding can be gotten using cdr:

(cdr (assoc ’?y ’((?x . 3) (?y . 4) (?z . 5))))

= 4

12

Substitution

Substitution makes a copy of a pattern, substituting new
values for variables in the pattern.

The function subst performs a single substitution:
(subst new var pattern)

(subst 3 ’?r ’(* pi (expt ?r 2)))

= (* PI (EXPT 3 2))

The function sublis performs multiple substitutions:
(sublis binding-list pattern)

(sublis ’((?h . 5) (?w . 4)) ’(* ?w ?h))

= (* 4 5)

If all variables have been substituted by constants, the
result can be evaluated:

(eval (subst 3 ’?r ’(* pi (expt ?r 2))))

= 28.274333882308138

13

Copying and Substitution Functions

(defun copy-tree (z)

(if (consp z)

(cons (copy-tree (first z))

(copy-tree (rest z)))

z))

; substitute x for y in z

(defun subst (x y z)

(if (consp z)

(cons (subst x y (first z))

(subst x y (rest z)))

(if (eql z y) x z)))

; substitute in z with bindings in alist

(defun sublis (alist z)

(let (pair)

(if (consp z)

(cons (sublis alist (first z))

(sublis alist (rest z)))

(if (setq pair (assoc z alist))

(cdr pair)

z))))

These are system functions in Common Lisp.1
1The system functions subst and sublis copy only as much structure as necessary.

14

Program Transformation

Many kinds of transformations of a program are possible:

• Optimization of various kinds

• Translation to a different language

• Changing recursion to iteration

• Making code more readable

• Making code look different

• Making code less readable (code obfuscation)

Transformation could be accomplished by a program or
by a set of rewrite rules.

15

Rewriting: Program vs. Pattern Matching

Rewriting of symbolic expressions can be accomplished
by an ad hoc program, or by using pattern matching and
rewrite rules. Each has advantages and disadvantages:

Program:

1. Adv.: Often is more efficient. Avoids restrictions
that may be present with patterns.

2. Dis.: The rewriting program becomes large. Hard to
find errors, omissions.

Pattern Matching:

1. Adv.: Declarative representation. Easier to
understand. Mistakes less likely.

2. Dis.: May be slower.

A good compromise may be to use a pattern matcher
in combination with programs for those cases that are
simple or are not easily handled by patterns.

16

Transformation Process

Transformation of expressions can be implemented in
several steps:

1. Test whether the input matches a pattern; keeping
bindings between pattern variables and parts of the
input.

2. Construct the output: create a version of the output
pattern with substitutions from the bindings.

3. Keep trying: one transformation may enable another,
so continue until the result does not change (reaches
a fixed point).

17

Pattern Matching

Given a pattern and an input, matching must:

1. Test whether the input matches the pattern.

2. Determine variable bindings: the input code that
corresponds to each pattern variable.

Pattern: (- ?x (- ?y))

Input: (- (sin theta) (- w))

The input matches the pattern; the bindings should be:

((?x . (sin theta))

(?y . w))

18

Rules for Pattern Matching

Pattern matching can be thought of as a special kind of
equality test:

1. Function names, constants and structure in the
pattern must be matched exactly by the input.

• (- ?x ?y) does not match (+ a b) .

• The pattern (+ (- ?x) ?y) does not match the
input (+ a b) .

2. A variable in the pattern will match anything in the
input, but it must do so consistently.

• The pattern (- ?x ?x)

matches (- (sin theta) (sin theta))

but not (- (sin theta) (cos theta)) .

We implement this by letting a variable match
anything the first time, but it can only match the
same thing thereafter.

19

Equality vs. Matching

; a version of ’equal’ analogous to ’match’

(defun equal (pat inp)

(if (atom pat)

(eql pat inp)

(and (consp inp)

(equal (first pat) (first inp))

(equal (rest pat) (rest inp)))))

20

Equality vs. Matching

match can be considered to be a special kind of equal:

(defun match (pat inp) (matchb pat inp ’((t . t))))

; returns bindings; nil --> match fails

(defun matchb (pat inp bindings)

(and bindings

(if (consp pat)

(and (consp inp)

(matchb (cdr pat)

(cdr inp)

(matchb (car pat)

(car inp) bindings)))

(if (varp pat)

(let ((binding (assoc pat bindings)))

(if binding

(and (equal inp (cdr binding))

bindings)

(cons (cons pat inp) bindings)))

(and (eql pat inp) bindings)))))

(defun varp (v) ; Test for vars, e.g. ?x

(and (symbolp v)

(char= #\? (char (symbol-name v) 0))))

21

Matching and Substitution

Matching and substitution can be combined to transform
an input based on a rewrite rule: a list of an input
pattern and an output pattern:

((- (+ ?x ?y) (+ ?z ?y)) (- ?x ?z))

(defun transf (rule input) ; simple version

(let (bindings)

(if (setq bindings

(match (first rule) input))

(sublis bindings (second rule)))))

(match ’(- (+ ?x ?y) (+ ?z ?y))

’(- (+ (age tom) (age mary))

(+ (age bill) (age mary))))

((?Z AGE BILL) (?Y AGE MARY) (?X AGE TOM) (T . T))

(transf ’((- (+ ?x ?y) (+ ?z ?y))

(- ?x ?z))

’(- (+ (age tom) (age mary))

(+ (age bill) (age mary))))

(- (AGE TOM) (AGE BILL))

22

Dot Matching

It is possible to use “dot notation” to match a variable to
the rest of a list:

((progn nil . ?s) (progn . ?s))

The variable ?s will match whatever is at the end of the
list: 0 or more statements.

(transf ’((progn nil . ?s) (progn . ?s))

’(progn nil (setq x 3) (setq y 7)))

(PROGN (SETQ X 3) (SETQ Y 7))

23

More Complex Rules

It is desirable to augment rewrite rules in two ways:

1. Add a predicate to perform tests on the input; only
perform the transformation if the test succeeds:
(and (numberp ?n) (> ?n 0))

2. Create new variables by running a program on
existing variables:

(transf ’((intersection

(subset (function (lambda (?x) ?p))

?s)

(subset (function (lambda (?y) ?q))

?s))

(subset (function (lambda (?x)

(and ?p ?qq)))

?s)

t

((?qq (subst ?x ?y ?q))))

’(intersection

(subset #’(lambda (w) (rich w)) people)

(subset #’(lambda (z) (famous z)) people)))

(SUBSET #’(LAMBDA (W) (AND (RICH W) (FAMOUS W)))

PEOPLE))

24

Transformation

(defun transf (rule input)

(let ((bindings (match (first rule) input))

(test (third rule)))

(if (and bindings

(or (null test)

(eval (sublisq bindings test))))

(progn

(dolist (var (fourth rule))

(push (cons (car var)

(eval (sublisq bindings

(cadr var))))

bindings))

(sublis bindings (second rule)))

’match-failure)))

; sublis, quoting value of bindings

(defun sublisq (bindings form)

(sublis

(mapcar #’(lambda (x)

(cons (car x) (kwote (cdr x))))

bindings)

form))

(defun kwote (x) (if (constantp x) x (list ’quote x)))

25

Building on Transformation

The pattern matcher in the file patm.lsp has additional
features that are needed for transformations:

• Constant folding and partial evaluation. When
certain functions have constant arguments, the
functions are evaluated as part of the transformation
process. Note: such evaluation must not cause an
error; functions that have side-effects (e.g. printing)
should not be evaluated.

• Recursion and repetition. Parts of a complex ex-
pression must be recursively transformed. Sometimes
one transformation will expose an opportunity for
constant folding or other transformations.

((+ ?n (+ ?m ?x)) (+ (+ ?n ?m) ?x))

where ?m and ?n are numbers, will cause the input (+
3 (+ 7 foo)) to be transformed to (+ (+ 3 7)

foo) and then, by constant folding, to (+ 10 foo) .

26

Pattern Matching

; Try to match input against optimization patterns.

(defun ptmatch (inp patwd)

(let (patterns pattern tmp (res ’match-failure))

(if (setq tmp (assoc inp *compile-time-constants*

:test #’equal))

(cadr tmp)

(if (and (consp inp)

(symbolp (car inp))

(setq patterns

(get (car inp) patwd)))

(progn

(while (and patterns

(eq res ’match-failure))

(setq res

(transf (pop patterns) inp)))

(if (eq res ’match-failure) inp res))

inp))))

27

TRANS

(defun trans (x patwd)

(let (xp tail tmp)

(if (consp x)

(if (and (not (member (first x)

’(print princ terpri format random)))

(rest x)

(symbolp (first x))

(fboundp (first x))

(every #’constantp (rest x)))

(kwote (eval x))

(progn ; translate args first

(setq tail (pttransl (rest x) patwd))

(if (symbolp (first x))

(setq xp (ptmatch

(if (eq tail (rest x))

x

(cons (first x) tail))

patwd))

(progn (setq tmp (trans (first x) patwd))

(setq xp (if (and (eq tail (rest x))

(eql tmp (first x)))

x

(cons tmp tail)))))

(if (eq x xp) x (trans xp patwd))))

(if (and (symbolp x)

(setq tmp (assoc x *compile-time-constants*)))

(cadr tmp)

x))))

28

CPR

; Print stuff out in C form

(defun cpr (item &optional tabs)

(let (newtabs)

(if (stringp item)

(princ item)

(if (characterp item)

(if (char= item #\Return)

(progn (terpri)

(if tabs (spaces tabs)))

(princ item))

(if (symbolp item)

(princ (string-downcase (symbol-name item)))

(if (consp item)

(if (symbolp (first item))

(progn (cpr (first item))

(princ "(")

(mapl

#’(lambda (z)

(if (not (eq z (rest item)))

(princ ", "))

(cpr (car z)))

(rest item))

(princ ")"))

(dolist (z item)

(if (and (characterp z) (char= z #\Tab))

(setq newtabs (+ (or tabs 0) 2))

(cpr z (or newtabs tabs)))))

(princ item)))))))

29

Correctness of Transformations

It is not always easy to be certain that transformed code
will give exactly the same results.

((> (* ?n ?x)

(* ?n ?y)) (> ?x ?y))

((not (not ?x)) ?x)

((eq (if ?p ?qu ?qv)

?qu) ?p)

((rplaca ?x ?y) (setf (car ?x) ?y))

These transformations are “usually” correct, but it is
possible to construct an example for each in which the
transformation changes the result. We must be careful to
use only correct transforms.

30

Top-Down Context

Sometimes context information can be sent top-down to
allow transformations to be made safely.

• Logical use of result

• Result is busy outside

((if (not (not ?p)) ?x) (if ?p ?x))

((progn (rplaca ?x ?y) (progn

?u . ?z) (setf (car ?x) ?y)

?u . ?z))

31

Side Effects

A side effect is an action of a program other than
returning a value:

• Changing a global variable: (incf *count*)

• Printing or other I/O

• Modifying structure: (setf (car arg) ’foo)

An otherwise correct transformation may not be correct
if the code to be transformed has side-effects.

((- (+ ?x ?y) (+ ?x ?z)) (- ?y ?z))

does not produce the same result if applied to the code:

(- (+ (progn (print ’foo) 3) y)

(+ (progn (print ’foo) 3) z))

32

Uses of Transformations

• Optimization. Low-level inefficiencies created by a
program generation system can be removed.

• Specialization. Generic operations or program
patterns can be specialized to the form needed for a
specific implementation of an abstract data structure.

• Language translation. Transformations can change
code into the syntax of the target language.

• Code expansion. Small amounts of input code can be
transformed into large amounts of output code. The
expansion can depend on specifications that are much
smaller than the final code.

• Partial evaluation. Things that are constant at
compile time can be evaluated and eliminated from
code.

33

Optimization by Transformation

; Test whether a pipe floats in water

; (gldefun t3 ((p pipe)) (floats p))

(defun t3 (P)

(> (* PI (EXPT (/ (CADDR (PROG1 P)) 2)

2))

(* (- (* PI (EXPT (/ (CADDR (PROG1 P)) 2)

2))

(* PI (EXPT (/ (CADR (PROG1 P)) 2)

2)))

(GET (FIFTH (PROG1 P)) ’DENSITY))))

Patterns:

((prog1 ?v) ?v)

((- (* ?n ?x) (* ?n ?y)) (* ?n (- ?x ?y)))

34

Specialization by Transformation

A generic operation can be specialized for a particular
abstract data structure. Example: sum of a set.

(redefpatterns ’loop

’(((sum ?set)

(make-loop ?set ?item (?total)

(setq ?total 0)

(incf ?total ?item) ?total)

t

((?item (gentemp "ITEM"))

(?total (gentemp "TOTAL"))))))

(redefpatterns ’list

’(((make-loop ?lst ?item ?vars

?init ?action ?result)

(let (?ptr ?item . ?vars)

?init

(setq ?ptr ?lst)

(while ?ptr

(setq ?item (first ?ptr))

(setq ?ptr (rest ?ptr))

?action)

?result)

t

((?ptr (gentemp "PTR"))))))

35

Loop Expansion

>(trans ’(defun za (l) (sum l)) ’loop)

(DEFUN ZA (L)

(MAKE-LOOP L ITEM61 (TOTAL62)

(SETQ TOTAL62 0)

(INCF TOTAL62 ITEM61)

TOTAL62))

>(trans * ’list)

(DEFUN ZA (L)

(LET (PTR63 ITEM61 TOTAL62)

(SETQ TOTAL62 0)

(SETQ PTR63 L)

(WHILE PTR63

(SETQ ITEM61 (FIRST PTR63))

(SETQ PTR63 (REST PTR63))

(INCF TOTAL62 ITEM61))

TOTAL62))

>(eval *)

>(za ’(1 2 3 4 5))

15

36

Advantages of Expansion

• A small amount of source code expands to a large
amount of output code.

• A linear (n + m) set of source modules allows a
combinatorial (n∗m) set of possible implementations.
Set = {list, array, tree}
Operation = {sum, average,max,min}
• A program can be specified by a small number of

choices rather than by specifying all the consequences
of those choices.

• A program can be specified in terms of domain
concepts rather than programming concepts.

37

Language Translation by Transformation

Two sets of transformations, followed by a relatively
simple printing program, can be used to perform source-
to-source transformation from one language to another.

Restructuring:

((setq ?x (+ ?x ?y)) (incf ?x ?y))

Output Syntax:

((aref ?x ?y) ("" ?x "[" ?y "]"))

((go ?x) ("goto " ?x))

((setq ?x ?y) ("" ?x " = " ?y))

((incf ?x) ("++" ?x))

((incf ?x ?y) ("" ?x " += " ?y))

((return ?x) ("return " ?x))

((while ?p . ?s) ("while (" ?p ") "

#\Tab #\Return

(progn . ?s)))

38

Example of Language Translation

The first stage is transformation through patterns to
produce a Lisp representation of the output syntax.

(trans ’(defun foo (x y)

(incf y)

(setq x (+ x y)))

’lisptoc)

("" FOO "(" ("" X ", " ("" Y)) ")"

#\Tab #\Return

("{" #\Tab #\Return

("" ("++" Y) ";" #\Return (""

("" X " += " Y)) ";")

#\Return "}"))

A simple program, cpr, can print the result.

foo(x, y)

{

++y;

x += y;

}

39

Knuth-Bendix Algorithm

The Knuth-Bendix algorithm2 describes how to derive a
complete set of rewrite rules R from an equational theory
E, such that:

If E implies that two terms s and t are equal,
then the reductions in R will rewrite both s and t
to the same irreducible form in a finite number of
steps.

Two properties are needed:

• Confluence: no matter what sequence of transforms
is chosen, the final result is the same.

• Termination: the process of applying transforms will
terminate.

The Knuth-Bendix algorithm is based on a well-founded
ordering of terms so that each rewriting step makes the
result “smaller”.

Unfortunately, rather simple systems do not have a
Knuth-Bendix solution.

2Knuth, D. E and Bendix, P. E., “Simple word problems in universal algebras”, in J. Leech (ed.),
Computational Problems in Abstract Algebra, Pergammon Press, 1970, pp. 263-297.

40

Pattern Optimization Examples

(defun t1 (C D)

(COND ((> (* PI (EXPT (CADDR (PROG1 C)) 2))

(* PI (EXPT (CADDR (PROG1 D)) 2)))

(PRINT ’BIGGER))))

(LAMBDA-BLOCK T1 (C D)

(IF (> (ABS (CADDR C)) (ABS (CADDR D)))

(PRINT ’BIGGER)))

41

Examples ...

(defun t2 (P Q)

(LET ((DX (- (- (+ (CADDR (CURRENTDATE)) 1900)

(+ (CADDR (GET (PROG1 P)

’BIRTHDATE))

1900))

(- (+ (CADDR (CURRENTDATE)) 1900)

(+ (CADDR (GET (PROG1 Q)

’BIRTHDATE))

1900))))

(DY (- (/ (GET (PROG1 P) ’SALARY) 1000.0)

(/ (GET (PROG1 Q) ’SALARY)

1000.0))))

(SQRT (+ (* DX DX) (* DY DY)))))

(LAMBDA-BLOCK T2 (P Q)

(LET ((DX (- (CADDR (GET Q ’BIRTHDATE))

(CADDR (GET P ’BIRTHDATE))))

(DY (/ (- (GET P ’SALARY)

(GET Q ’SALARY))

1000.0)))

(SQRT (+ (* DX DX) (* DY DY)))))

42

Examples ...

(defun t3 (P)

(> (* PI (EXPT (/ (CADDR (PROG1 P)) 2) 2))

(* (- (* PI (EXPT (/ (CADDR (PROG1 P)) 2) 2))

(* PI (EXPT (/ (CADR (PROG1 P)) 2) 2)))

(GET (FIFTH (PROG1 P)) ’DENSITY))))

(LAMBDA-BLOCK T3 (P)

(> (EXPT (CADDR P) 2)

(* (- (EXPT (CADDR P) 2) (EXPT (CADR P) 2))

(GET (FIFTH P) ’DENSITY))))

(defun t4 ()

(cond ((> 1 3) ’amazing)

((< (sqrt 7.2) 2) ’incredible)

((= (+ 2 2) 4) ’okay)

(t ’jeez)))

(LAMBDA-BLOCK T4 () ’OKAY)

43

Examples ...

(defun t5 (C)

(DOLIST

(S (INTERSECTION

(SUBSET #’(LAMBDA (GLVAR7289)

(EQ (GET (PROG1 GLVAR7289)

’SEX)

’FEMALE))

(GET (PROG1 C) ’STUDENTS))

(SUBSET #’(LAMBDA (GLVAR7290)

(>= (STUDENT-AVERAGE

(PROG1 GLVAR7290))

95))

(GET (PROG1 C) ’STUDENTS))))

(FORMAT T "~A ~A~%" (GET S ’NAME)

(STUDENT-AVERAGE S))))

(LAMBDA-BLOCK T5 (C)

(DOLIST (S (GET C ’STUDENTS))

(IF (AND (EQ (GET S ’SEX) ’FEMALE)

(>= (STUDENT-AVERAGE S) 95))

(FORMAT T "~A ~A~%" (GET S ’NAME)

(STUDENT-AVERAGE S)))))

44

.; Test whether a line on the screen is being selected by the mouse.

; (gldefun draw-line-selectedp (d\:draw-line pt\:vector off\:vector)

; (let ((ptp (pt - off)))

; (and (contains? (vregion d) ptp) ; is point in region near line

; ((distance (line d) ptp) < 5)))) ; and within distance of 5

(defun t6 (D PT OFF)

(LET ((PTP (LIST (- (CAR (PROG1 PT)) (CAR (PROG1 OFF)))

(- (CADR (PROG1 PT)) (CADR (PROG1 OFF))))))

(AND (AND (>= (CAR (PROG1 PTP))

(- (MIN (CAR (CADR (PROG1 D)))

(+ (CAR (CADR (PROG1 D)))

(CAR (CADDR (PROG1 D)))))

2))

(<= (CAR (PROG1 PTP))

(+ (- (MIN (CAR (CADR (PROG1 D)))

(+ (CAR (CADR (PROG1 D)))

(CAR (CADDR (PROG1 D)))))

2)

(+ (ABS (CAR (CADDR (PROG1 D)))) 4)))

(>= (CADR (PROG1 PTP))

(- (MIN (CADR (CADR (PROG1 D)))

(+ (CADR (CADR (PROG1 D)))

(CADR (CADDR (PROG1 D)))))

2))

(<= (CADR (PROG1 PTP))

(+ (- (MIN (CADR (CADR (PROG1 D)))

(+ (CADR (CADR (PROG1 D)))

(CADR (CADDR (PROG1 D)))))

2)

(+ (ABS (CADR (CADDR (PROG1 D)))) 4))))

45

.
(< (ABS (LET ((DX (-

(CAR

(LET

((GLVAR7282 (CADR (PROG1 D)))

(GLVAR7283 (CADDR (PROG1 D))))

(LIST

(+ (CAR GLVAR7282)

(CAR GLVAR7283))

(+ (CADR GLVAR7282)

(CADR GLVAR7283)))))

(CAR (CADR (PROG1 D)))))

(DY (-

(CADR

(LET

((GLVAR7284 (CADR (PROG1 D)))

(GLVAR7285 (CADDR (PROG1 D))))

(LIST

(+ (CAR GLVAR7284)

(CAR GLVAR7285))

(+ (CADR GLVAR7284)

(CADR GLVAR7285)))))

(CADR (CADR (PROG1 D))))))

(/ (- (* DX

(- (CADR (PROG1 PTP))

(CADR (CADR (PROG1 D)))))

(* DY

(- (CAR (PROG1 PTP))

(CAR (CADR (PROG1 D))))))

(SQRT (+ (EXPT DX 2) (EXPT DY 2))))))

5))))

46

.
(LAMBDA-BLOCK T6 (D PT OFF)

(LET ((PTP (LIST (- (CAR PT) (CAR OFF)) (- (CADR PT) (CADR OFF)))))

(AND (AND (>= (CAR PTP)

(+ -2 (+ (CAR (CADR D))

(MIN 0 (CAR (CADDR D))))))

(<= (CAR PTP)

(+ 2

(+ (+ (CAR (CADR D))

(MIN 0 (CAR (CADDR D))))

(ABS (CAR (CADDR D))))))

(>= (CADR PTP)

(+ -2 (+ (CADR (CADR D))

(MIN 0 (CADR (CADDR D))))))

(<= (CADR PTP)

(+ 2

(+ (+ (CADR (CADR D))

(MIN 0 (CADR (CADDR D))))

(ABS (CADR (CADDR D)))))))

(< (ABS (LET ((DX (- (LET ((GLVAR7282 (CADR D))

(GLVAR7283 (CADDR D)))

(+ (CAR GLVAR7282) (CAR GLVAR7283)))

(CAR (CADR D))))

(DY (- (LET ((GLVAR7284 (CADR D))

(GLVAR7285 (CADDR D)))

(+ (CADR GLVAR7284) (CADR GLVAR7285)))

(CADR (CADR D)))))

(/ (- (* DX (- (CADR PTP) (CADR (CADR D))))

(* DY (- (CAR PTP) (CAR (CADR D)))))

(SQRT (+ (EXPT DX 2) (EXPT DY 2))))))

5))))

47

.
>(cprfn ’rotate-x)

rotate-x(b, theta, x)

{

x[0][0] = b[0][0];

x[0][1] = b[0][1];

x[0][2] = b[0][2];

x[0][3] = b[0][3];

x[1][0] = ((cos(theta) * b[1][0])

- (sin(theta) * b[2][0]));

x[1][1] = ((cos(theta) * b[1][1])

- (sin(theta) * b[2][1]));

x[1][2] = ((cos(theta) * b[1][2])

- (sin(theta) * b[2][2]));

x[1][3] = ((cos(theta) * b[1][3])

- (sin(theta) * b[2][3]));

x[2][0] = ((sin(theta) * b[1][0])

+ (cos(theta) * b[2][0]));

x[2][1] = ((sin(theta) * b[1][1])

+ (cos(theta) * b[2][1]));

x[2][2] = ((sin(theta) * b[1][2])

+ (cos(theta) * b[2][2]));

x[2][3] = ((sin(theta) * b[1][3])

+ (cos(theta) * b[2][3]));

x[3][0] = b[3][0];

x[3][1] = b[3][1];

x[3][2] = b[3][2];

x[3][3] = b[3][3];

};

48

Optimization

Program optimization 3 can be defined as follows:

Given a program P, produce a program P’ that produces the

same output values as P for a given input, but has a lower

cost.

Typical costs are execution time and program space. Time is usually

more important; fortunately, the two usually go together.

Optimization is an economic activity:

• Cost: a larger and sometimes slower compiler.

• Benefit:

Amount saved by the code improvement

* number of occurrences in code

* number of repetitions in execution

* number of uses of the compiled code

It is not possible to optimize everything. The goal is to find leverage:

cases where there is a large expected payoff for a small cost.

3Aho, Sethi, and Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1988, Ch. 10;
Marvin Schaefer, A Mathematical Theory of Global Program Optimization, Prentice-Hall, 1973.

49

Correctness of Optimization

Optimization must not introduce compiler-generated errors! A

program that runs faster but produces incorrect results is not an

improvement.

There are often cases where an optimization will nearly always be

correct.

if (x * n == y * n) ...

might be optimized to:

if (x == y) ...

Is this correct?

In general, one must be able to prove that an optimized program

will always produce the same result.

50

Local and Global Optimization

Local optimization is that which can be done correctly based on

analysis of a small part of the program.

Examples:

• Constant folding: 2 ∗ 3.14→ 6.28

• Reduction in strength: x2 → x ∗ x

• Removing branches to branches:

L1: Goto L2

Global optimization requires information about the whole program

to be done correctly.

Example:

I * 8 ==> R1 = I * 8

... ...

I * 8 ==> R1

This is correct only if I is not redefined between the two points.

Doing optimization correctly requires program analysis: a special-

purpose proof that program P’ produces the same output values as

P.

51

Optimization and Automatic Programming

Optimization is relevant to Automatic Programming in several

respects:

1. Program analysis is often needed for automatic programming.

2. Program transformation is a commonly used technique in

automatic programming.

3. Automatic programming may generate code with poor

performance; sometimes optimization can fix it.

52

Some Optimization Techniques

Some good optimization techniques include:

1. Generation of good code for common special cases, such as I :=

0. These occur frequently enough to provide a good savings, and

testing for them is fairly easy.

2. Generation of good code for subscript expressions. These often

occur in loops.

3. Assigning variables to registers.

• Much of code is loads and stores.

• Easy case: assign a loop index variable to a register inside

the loop.

• General case: graph coloring.

4. Moving invariant code out of loops:

for i := 1 to 1000 do

x[i] := y[i] * sqrt(a);

The code sqrt(a) does not change within the loop, so it could

be moved above the loop and its value reused.

5. Reduction in strength: x * 8 → x << 3

53

Program Analysis

In order for a compiler to perform certain optimizations, such

as moving invariant code out of loops or reusing common

subexpressions, it is necessary to have global information about the

program. 4

Control flow analysis provides information about the potential

control flow:

• Can control pass from one point in the program to another?

• From where can control pass to a given point?

• Where are there loops in the program?

Data flow analysis provides information about the definition and use

of variables and expressions. It can also provide valuable detection

of certain types of programmer errors.

• Where is the value of a variable assigned?

• Where is a given assignment used?

• Does an expression have the same value at a later point that it

had at an earlier point?

4This treatment follows Marvin Schaefer, A Mathematical Theory of Global Program Optimization,
Prentice-Hall, 1973.

54

Basic Block

A basic block (or block for short) is a sequence of instructions such

that if any of them is executed, all of them are. That is, there are

no branches in except at the beginning and no branches out except

at the end.

begin

i := j;

if i > k

then begin k := k + 1; i := i - 1 end

else i := i + 1;

writeln(i)

end

55

Finding Basic Blocks

Basic blocks are easily found by a compiler while processing a

program.

A leader is the first statement of a basic block:

1. the first statement of a program

2. any statement that has a label or is the target of a branch

3. any statement following a branch

A basic block is a leader and successive statements up to the next

leader.

Note that branch statements themselves do not appear in basic

blocks, although the computation of the condition part of a

conditional branch will be included.

In a graph representation of a program, basic blocks are the nodes

of the graph, and branches are the arcs between nodes.

56

Relations and Graphs

The cartesian product of two sets A and B , denoted A×B , is the

set of all ordered pairs (a, b) where a ∈ A and b ∈ B .

A relation between two sets is a subset of their cartesian product.

A graph is a pair (S,Γ) where S is a set of nodes and Γ ⊆ S × S .

Properties of relations:

Property: Definition:

Reflexive ∀a (a, a) ∈ R
Symmetric ∀a, b (a, b) ∈ R→ (b, a) ∈ R
Transitive ∀a, b, c (a, b) ∈ R ∧ (b, c) ∈ R

→ (a, c) ∈ R
Antisymmetric ∀a, b (a, b) ∈ R ∧ (b, a) ∈ R→ a = b

A relation that is reflexive, symmetric, and transitive is an

equivalence relation, which corresponds to a partition of the set

(a set of disjoint subsets whose union is the set).

A relation that is reflexive, antisymmetric, and transitive is a partial

order. Example: ≤ .

57

Graph Notations

Let (S,Γ) be a graph and b ∈ S be a node. 5

Γb = {x ∈ S | (b, x) ∈ Γ}
are the nodes that are immediate successors of b .

Γ+b = {x ∈ S | (b, x) ∈ Γ+}
are the nodes that are successors of b .

Γ−1b = {x ∈ S | (x, b) ∈ Γ}
are the nodes that are immediate predecessors of b .

Let A ⊂ S be a subset of the set of nodes S.

ΓA = {y ∈ S | (x, y) ∈ Γ ∧ x ∈ A}
is the set of nodes that are immediate successors of nodes in A .

Γ−1A = {x ∈ S | (x, y) ∈ Γ ∧ y ∈ A}
is the set of nodes that are immediate predecessors of nodes in A .

We say (A,ΓA) is a subgraph of (S,Γ) , where

ΓAx = Γx ∩ A
is the set of transitions within the subgraph.

5Our notation generally follows that used in Marvin Schaefer, A Mathematical Theory of Global Program
Optimization, Prentice-Hall, 1973.

58

Bit Vector Representations

Subsets of a finite set can be efficiently represented as bit vectors,

in which a given bit position is a 1 if the corresponding item is an

element of the subset. Representing a 128-element set takes only 4

32-bit words of memory.

Operations on sets can be done by boolean instructions operating on

whole words.

Set operation: Bit vector operation:

∈ ∧ with vector for element

or test bit

∩ ∧
∪ ∨
set complement of A ¬A
set difference, A−B A ∧ ¬B

Operations on the bit vector representation are O(n/32), compared

to O(n ·m) with other methods.

Example use: assign a bit in a bit vector for each program variable

or subexpression.

59

Boolean Matrix Representation of Graph

A relation R or graph on a finite set can be expressed as a boolean

matrix M where:

M [i, j] = 1 iff (i, j) ∈ R .

Multiplication of boolean matrices is done in the same way as

ordinary matrix multiplication, but using ∧ for · and ∨ for + .

Property: Matrix:

Identity, R0 In (identity matrix)

Inverse, R−1 or Γ−1 MT

Reflexive I ⊆M

Symmetric M = MT

Transitive M 2 ⊆M

Antisymmetric M ∩MT ⊆ In
Paths of length n Mn

Transitive closure Γ+ ∪ni=1M
i

Reflexive transitive closure Γ∗ ∪ni=0M
i

Example: Let the set S be basic blocks of a program and Γ be

transfers of control between blocks.

60

Dominators

Let e denote the first block of a program. A node d dominates a

node n iff every simple path from e to n passes through d .

For a given node n, its immediate dominator is the dominator

closest to it. A tree structure is formed by immediate dominators,

with e being the root of the tree.

A loop header h dominates all the nodes in the loop. A back edge is

an edge n→ h where h dominates n.

61

Intervals

An interval is a subgraph that basically corresponds to a program

loop.

An interval I with initial node h is the maximal subgraph (I,ΓI) of

(S,Γ) such that:

1. h ∈ I

2. x ∈ I → x ∈ Γ∗h

3. I − {h} is cycle-free

4. if x ∈ I − {h} , then Γ−1x ⊂ I .

To construct an interval starting with node h:

1. initially, set I := {h}

2. repeat I := I ∪ {x ∈ ΓI | Γ−1x ⊆ I}
until there are no more additions.

Members of ΓI − I must be the heads of other intervals.

62

Intervals and Derived Graphs

Theorem: There is a unique partition of a program flow graph into

intervals.

After a program graph has been partitioned into intervals, a derived

graph (I,ΓI) can be formed as follows:

• Nodes of the derived graph are the intervals of the original graph.

• Transitions of the derived graph are transitions between nodes

of intervals of the original graph.

ΓI = {(Ii, Ij) | ∃x ∈ Ii ∃y ∈ Ij (x, y) ∈ Γ}
where i 6= j . Note that a transition can only be to the head

node of an interval.

The process of making derived graphs is continued until a single node

is reached. Some graphs are irreducible; these are rare in practice

and can be handled by making an artificial duplicate of a node.

63

Definition and Reference of Variables

We assume that each variable is assigned a unique bit number so

that it can be used in bit vectors. Likewise, each compiler variable

or subexpression α← a ◦ b is assigned a bit number.

A variable is defined each time it is assigned a value. A variable is

referenced (used) whenever its value is read.

The statement x := a * b first references a and b and then defines

x.

The statement x := x + 1 references x and then defines x.

A computation a ◦ b is redundant if its value is available in some

variable α.

A subexpression is computed whenever it appears in an expression.

A subexpression is killed if any of its components is defined or killed.

The statement x[i*3] := a * b computes a * b and i * 3 and

kills x[anything] .

64

Data Flow Analysis for a Block

Computed and killed vectors for a basic block can be found as follows:

• initially, comp := ∅ and kill := ∅ .

• for each statement v := a ◦ b where α← a ◦ b

1. comp := comp ∪ {α}
2. kill := kill ∪ killv
3. comp := (comp− killv) ∪ {v}

where killv is the set of all expressions involving v directly or

indirectly and (comp− killv) is set difference.

Example: I := I + 1

This statement first computes the expression I + 1, but then it kills

it because it redefines I.

65

Availability of Expressions

The expression α← a◦ b is available at a point p if the value of the

variable α is the same as the value of a ◦ b computed at the point p.

The expression α is available on entry to block b iff α is available

on exit from all immediate predecessors of b.

availentry(b) = ∩x∈Γ−1b availexit(x)

The expression α is available on exit from block b iff α is available

at the last point of b.

availexit(b) = (availentry(b)− kill(b)) ∪ comp(b)

In general, a system of simultaneous boolean equations may have

multiple consistent solutions. It is necessary to compute the maximal

solution of the set of boolean equations for intervals at all levels of

the derived graph.

66

Data Flow Analysis for an Interval

If the expressions that are available on entry to the head of the

interval are known, the values for all blocks in the interval can be

computed.

For each block b whose predecessors have had their values computed,

availentry(b) =
∏

x∈Γ−1b

availexit(x)

availexit(b) = availentry(b) · kill(b) + comp(b)

No expressions are available on entry to the first block of a program.

67

Dual Assumptions

The redundancy equations can be solved based on dual assumptions:

• Maximal assumption (superscript M): all subexpressions are

available on entry to the head of an interval.

• Mimimal assumption (superscript m): no subexpressions are

available on entry to the head of an interval.

Let variables x denote available on entry and variables y denote

available on exit.

For an interval head h, set xMh = 1 and xmh = 0 (except xMe = 0 for

the program entry block).

For other blocks in the interval, compute:

xMb =
∏

i∈Γ−1b

yMi

xmb =
∏

i∈Γ−1b

ymi

yMb = xMb · kb + cb

ymb = xmb · kb + cb

68

Solving Equations for Derived Graph

For the head node of an interval of the derived graph, compute:

XM
b =

∏
i∈Γ−1b

Y M
b

Then, for each node c in the interval, update its output vector:

Y M
c = XM

b · Y M
c + XM

b · Y m
c

As this process is continued through levels of the derived graph,

eventually it terminates because the top level is a single node whose

inputs XM
e = 0 are known because it is the entry block.

The algorithm can be viewed as updating the minimal and maximal

available vectors until they become the same. By using the derived

graphs, the updating is done efficiently.

69

Busy Variables

A dual notion to available is busy.

A variable is busy or live if it will be used before being defined again;

otherwise, it is dead.

A variable is busy on entrance to a block b if it is used in block b

before being defined, or if it is not defined or killed in block b and is

busy on exit from b .

A variable is busy on exit from a block b if it is busy on entry to any

successor of b .

We can define a bit vector referenced, meaning that an expression

is referenced in a block before being computed or killed, and solve

equations for busy on entrance and busy on exit in a manner

analogous to that for the available equations.

70

Variable Uses and Register Assignment

A def-use chain is the connection between a definition of a variable

and the subsequent use of that variable. When an expression is

computed and is busy, the compiler can save its value. When an

expression is needed and is available, the compiler can substitute

the compiler variable representing its previously computed value.

Register allocation can be performed by graph coloring. A graph is

formed in which nodes are def-use chains and (undirected) links are

placed between nodes that share parts of the program flow graph.

A graph is colored by assigning “colors” to nodes such that no two

nodes that are linked have the same color. Colors correspond to

registers.

71

Register Allocation by Graph Coloring

An undirected graph is colored by assigning a “color” to each node,

such that no two nodes that are connected have the same color.

Graph coloring is applied to register assignment in the following way:

• Nodes of this graph correspond to variables or subexpressions.

• Nodes are connected by arcs if the variables are busy at the same

time.

• Colors correspond to registers.

A heuristic algorithm is applied to find approximately the minimum

number of colors needed to color the graph. If this is more than

the number of available registers, spill code is added to reduce the

number of colors needed.

By keeping as many variables as possible in registers, the code can

be significantly improved.

72

Overview of Global Optimization

A globally optimizing compiler will perform the following operations:

1. Perform interval analysis and compute the derived graphs.

2. Order nodes using an ordering algorithm to find dominators.

3. Find basic available and busy information for blocks.

4. Solve boolean equations to get available and busy information

for each block.

5. Replace common subexpressions by corresponding compiler

variables.

6. Assign registers using graph coloring.

The information provided by data flow analysis provides a special-

purpose proof that the optimized program is correct (produces the

same answers).

73

Global Optimization and Automatic Programming

The first phase of global optimization is to gather information about

the program. This information can be useful for an automatic

programming system.

1. Control flow: what transitions from one part of the program to

another are possible?

2. Data flow: Where was the data used by a given part of the

program defined? Will a given piece of data be used again after

a specified point?

An automatic programming system can be careless about certain

kinds of efficiency issues if it is known that optimizing compilers can

fix the problems later.

74

Loop Transformations

Sometimes loops can be transformed to different forms that are faster.

for i := 1 to 1000 do

for j := 1 to 1000 do

x[i,j] := y[i,j];

This might be transformed to a single, linear loop:

for i := 1 to 1000000 do x[i] := y[i];

Then it might be generated as a block-move instruction.

Code motion is moving code to a more favorable location, e.g.,

moving invariant code out of loops:

for i := 1 to 1000 do

x[i] := y[i] * sqrt(a);

The code sqrt(a) does not change within the loop, so it could be

moved above the loop and its value reused.

75

Strip Mining

Getting effective performance from a multi-processor machine (i.e.,

getting speedup close to n from n processors) is a difficult problem.

For some matrix computations, analysis of loops and array indexes

may allow “strips” of the array to be sent to different processors, so

that each processor can work on its strip in parallel.

This technique is effective for a significant minority (perhaps 25%)

of important matrix computations.

76

Induction Variable Transformation

Some compilers transform the induction variable to allow simplified

subscripting expressions:

(:= I 1)

(LABEL 1)

(IF (<= I 1000)

(PROGN ... (AREF X (+ -8 (* 8 I)))

(:= I (+ I 1))

(GOTO L1)))

might be transformed to:

(:= I’ 0)

(LABEL 1)

(IF (<= I’ 7992)

(PROGN ... (AREF X I’)

(:= I’ (+ I’ 8))

(GOTO L1)))

Note that the loop index has no meaning outside the loop and may

not have storage assigned to it. Some machines can automatically

increment an index register after it is used (called postincrement).

77

Finite Differencing

Finite differencing6 is a general technique for optimizing expensive

computations f (i) that occur in a loop:

• Maintain local variables that hold previous values of the

expensive computation f (i) and perhaps some auxiliary values.

• Incrementally compute a new value f (i + δ) using:

– the previous value f (i)

– a difference from f (i).

Example: f (i) = i2

i 0 1 2 3 4 5

i2 0 1 4 9 16 25

first difference: 1 3 5 7 9

second difference: 2 2 2 2

6Paige, R. and Koenig, S., “Finite Differencing of Computable Expressions”, ACM Transactions on
Programming Languages and Systems, vol. 4, no. 3 (July 1982), pp. 402-454

78

Example: Computing Squares

Assume that multiplication is an expensive operation. Consider the

problem of computing squares of succesive integers.

for i := 0 to 99 do

x[i] := i*i;

versus

next := 0;

delta := 1;

for i := 0 to 99 do

begin

x[i] := next;

next := next + delta;

delta := delta + 2

end;

The second version has more code, but does no multiplication.

This form of computation has a long history; it was the basis of

Babbage’s Difference Engine.

79

General Case

Given an expression f (x1, ..., xn), create a variable E to hold its

value.

• Initialize: Create code

E = f (x10, ..., xn0)

to establish E for the initial values of its arguments.

• Derivative: Replace each statement dxi that modifies some

variable xi of E by the statements:

∂−E〈dxi〉

dxi

∂+E〈dxi〉

• Redundant Code Elimination: replace each occurrence of

f (x1, ..., xn) by E.

• Dead Code Elimination: remove any code that is now

unused.

80

Finite Differencing for Set Operations

Finite differencing can be especially useful in optimizing set

operations. Consider the following expression that is used in solving

the “k queens” problem:

i 6∈ range(part sol) ∧ i ∈ {1..k}

This can be transformed to:

i ∈ setdiff ({1..k}, part sol)

A variable unoccupied rows can be introduced for this expression.

Its initial value is the set {1..k}.

An update to part sol (by recursive call),

part sol = append(part sol, i)

leads to a corresponding change to unoccupied rows

unoccupied rows = unoccupied rows− {i}

This incremental update may be much cheaper than doing the

original range computation or set difference every time.

81

Memoization

Memoization (or memorization) is the technique of saving

previously calculated values of an expensive function f (x). If a new

request to compute f (x) uses a value x that was used previously, the

value of f (x) can be retrieved from a table faster than it could be

recomputed.

Compare:

• caching

• common subexpression elimination

Advanced CPU’s may implement some memoization in hardware: if

the CPU can determine that a computation has already been done

and exists in a register, it can reuse the result.

82

Code Expansion

An essential topic for automatic programming is code expansion:

converting a compact description of a computation into an expanded

description of the details.

This has advantages and disadvantages:

• Expansion increases code size. In the worst case, code size could

become infinite.

• Expansion often makes some things constant; optimization can

then improve speed and reduce code size.

There are several common kinds of code expansion:

• Macro expansion and pattern-based expansion.

• Loop unrolling

• In-line function expansion

83

Macros

A macro is a function from code to code, usually turning a short

piece of code into a longer code sequence.

Lisp macros produce Lisp code as output; this code is executed or

compiled.

(defun neq (x y) (not (eq x y)))

(defmacro neq (x y) (list ’not (list ’eq x y)))

(defmacro neq (x y) ‘(not (eq ,x ,y)))

In C, #define name pattern specifies a textual substitution. If

pattern contains an operation, it should be parenthesized:

#define sum (x + y)

84

Loop Unrolling

Loop unrolling is the compile-time expansion of a loop into

repetitions of the code, with the loop index replaced by its value

in each instance.

for i := 1 to 3 do x[i] := y[i];

is expanded into:

x[1] := y[1];

x[2] := y[2];

x[3] := y[3];

The second form may generate less code, and it runs faster. This is a

useful optimization when the size of the loop is known to be a small

constant at compile time.

Modulo unrolling unrolls a loop modulo some chosen constant. This

can significantly reduce the loop overhead without expanding code

size too much.

85

Loop Unrolling in Lisp

; unroll loop code: (dotimes (var n) code)

(defun unroll (docode)

(let ((var (car (cadr docode)))

(n (cadr (cadr docode)))

(code (caddr docode))

result)

(if (and (integerp n)

(< n 20))

(cons ’progn

(dotimes (i n (nreverse result))

(push (subst i var code)

result)))

docode)))

>(unroll ’(dotimes (i 3)

(setf (aref x i) (aref y i))))

(PROGN

(SETF (AREF X 0) (AREF Y 0))

(SETF (AREF X 1) (AREF Y 1))

(SETF (AREF X 2) (AREF Y 2)))

86

Function Inlining

Inlining is the expansion of the code of a function at the point of call.

If the code says sqrt(x), sqrt can be invoked as a closed function

in the usual way, or it can be expanded as an open or inline function

by expanding the definition of sqrt at each point of call.

Inline expansion saves the overhead of subroutine call and parameter

transmission; it may allow additional optimization because the

compiler can now see that certain things are constant.

If code is in the form of abstract syntax trees, inlining is easy:

• Make sure the variables of the function are distinct from those

of the caller.

• Generate assignment statements for the arguments.

• Copy the code of the function.

87

Partial Evaluation

Partial evaluation is the technique of evaluating as much of a

program as possible at compile time, leaving only data-dependent

computations to runtime.

• Constant folding: π · 2→ 6.28

• Operations involving special constants: x · 1→ x

• Simplification of if statements when the test is constant allows

removal of interpretation.

• Method dispatch in OOP when type is known.

(draw x) → (draw-circle x)

• Strong typing: eliminates type testing at runtime if types are

known.

• Inline expansion: eliminates function call overhead, allows

further optimization.

88

Interpretation

An interpreter is a program that reads instructions one at a time,

decodes what they mean, then executes them.

Many parts of programs are actually interpreters:

pow(x, 3)

printf("i = %5d\n", i)

Rule of thumb: Each level of interpretation of a program costs

an order of magnitude in performance.

Eliminating interpretation (increasing the degree of binding between

a program and the particular application) is an important

optimization.

Goal: Combine elegant, high-level expression of a program with

efficient execution.

89

Partial Evaluation7

Partial evaluation specializes a function with respect to arguments

that have known values. Given a program P (x, y) where the values

of variables x are constant, a specializing function mix transforms

P (x, y)→ Px(y) such that P (x, y) = Px(y) for all inputs y. Px(y)

may be shorter and faster than P (x, y). We call x static data and

y dynamic data. .

Partial evaluation involves:

• precomputing constant expressions involving x,

• propagating constant values,

• unfolding or specializing recursive calls,

• reducing symbolic expressions such as x ∗ 1, x ∗ 0, x + 0,

(if true S1 S2).

Partial evaluation improves execution time by a (possibly large)

constant factor, by increasing the binding between a program and

its execution environment.

7Neil D. Jones, Carsten K. Gomard, and Peter Sestoft, Partial Evaluation and Automatic Program
Generation, Prentice-Hall, 1993.

90

Example

Suppose we have the following definition of a function powerb(x,n)

that computes xn :

(defun powerb (x n)

(if (= n 0)

1

(if (evenp n)

(square (powerb x (/ n 2)))

(* x (powerb x (- n 1))))))

If this is used with a constant argument n, as is often the case, the

function can be partially evaluated into more efficient code:

(gldefun t3 ((x real)) (powerb x 5))

(glcp ’t3)

result type: REAL

(LAMBDA (X) (* X (SQUARE (SQUARE X))))

The recursive function calls and interpretation (if statements) have

been completely removed; only computation remains. Note that the

constant argument 5 is gone and has been converted into control.

91

Simple Partial Evaluator

(defun mix (code env)

(let (args test fn)

(if (constantp code) ; a constant

code ; evaluates to itself

(if (symbolp code) ; a variable

(if (assoc code env) ; bound to a constant

(cdr (assoc code env)) ; evals to that constant

code) ; else to itself

(if (consp code)

(progn

(setq fn (car code))

(if (eq fn ’if) ; if is handled

(progn ; specially

(setq test (mix (cadr code) env))

(if (eq test t) ; if true

(mix (caddr code) env) ; then part

(if (eq test nil) ; if false

(mix (cadddr code) env) ; else

(cons ’if

(cons test

(mapcar #’(lambda (x)

(mix x env))

(cddr code)))))))

92

Simple Partial Evaluator...

(progn ; (fn args)

(setq args (mapcar #’(lambda (x)

(mix x env)) ; mix the args

(cdr code)))

(if (and (every #’constantp args) ; if all constant args

(not (member fn ’(print ; and no

prin1 princ error ; compile-time

format)))) ; side-effects

(kwote (eval (cons fn args))) ; eval it now

(if (and (some #’constantp args); if some constant

(fndef fn)) ; & symbolic fn

(fnmix fn args) ; unfold the fn

(fnopt (cons fn args))))))) ; optimize result

(cons ’bad-code code))))))

93

Examples

>(load "/projects/cs394p/mix.lsp")

>(mix ’x ’((x . 4)))

4

>(mix ’(if (> x 2) ’more ’less) ’((x . 4)))

’MORE

(defun power (x n)

(if (= n 0)

1

(if (evenp n)

(square (power x (/ n 2)))

(* x (power x (- n 1))))))

>(fnmix ’power ’(x 3))

(* X (SQUARE X))

>(specialize ’power ’(x 3) ’cube)

>(fndef ’cube)

(LAMBDA (X) (* X (SQUARE X)))

> (cube 4)

64

>(fnmix ’power ’(x 22))

(SQUARE (* X (SQUARE (* X (SQUARE (SQUARE X))))))

94

Examples

; append two lists

(defun append1 (l m)

(if (null l)

m

(cons (car l) (append1 (cdr l) m))))

>(fnmix ’append1 ’(’(1 2 3) m))

(CONS 1 (CONS 2 (CONS 3 M)))

95

Binding-Time Analysis

Binding-time analysis determines whether each variable
is static (S) or dynamic (D).

• Static inputs are S and dynamic inputs are D.

• Local variables are initialized to S.

• Dynamic is contagious: if there is a statement
v = f (...D...)
then v becomes D.

• Repeat until no more changes occur.

Binding-time analysis can be online (done while
specialization proceeds) or offline (done as a separate
preprocessing phase). Offline processing can annotate
the code by changing function names to reflect whether
they are static or dynamic, e.g. if becomes ifs or ifd.

96

Futamura Projections8

Partial evaluation is a powerful unifying technique that
describes many operations in computer science.

The notation [[P]]L denotes running a program P in
language L. Suppose that int is an interpreter for a
language S and source is a program written in S. Then:

•

output = [[source]]s[input]
= [[int]][source, input]
= [[[[mix]][int, source]]][input]
= [[target]][input]

Therefore, target = [[mix]][int, source].

•
target = [[mix]][int, source]

= [[[[mix]][mix, int]]][source]
= [[compiler]][source]

Thus compiler = [[mix]][mix, int] = [[cogen]][int]

• Finally, cogen = [[mix]][mix, mix] = [[cogen]][mix]
is a compiler generator, i.e., a program that
transforms interpreters into compilers.

8Y. Futamura, “Partial Evaluation of Computation Process – An Approach to a Compiler-Compiler”,
Systems, Computers, Controls, 2(5):45-50, 1971. http://www.futamura.info.waseda.ac.jp/~futamura/

97

Generating Extension

A generating extension of a program P is a program
that generates specializations of P for different values of
its static input.

For example, the following is a generating extension of
the power program:

(defun f-gen (n) (list ’defun ’h ’(x) (g n)))

(defun g (n)

(if (= n 0)

1

(if (= n 1)

’x

(if (evenp n)

(list ’square (g (/ n 2)))

(list ’* ’x (g (- n 1)))))))

>(f-gen 3)

(DEFUN H (X) (* X (SQUARE X)))

>(f-gen 5)

(DEFUN H (X) (* X (SQUARE (SQUARE X))))

98

Parameterized Programs

A highly parameterized program is easier to write and
maintain than many specialized versions for different
applications, but may be inefficient.

Example: Draw a line: (x1, y1) to (x2, y2).
Options include:

•Width of line (usually 1)

• Color

• Style (solid, dashed, etc.)

• Ends (square, beveled)

If all of these options are expressed as parameters, it
makes code longer, makes calling sequences longer, and
requires interpretation at runtime. Partial evaluation can
produce efficient specialized versions automatically.

(draw-line x y (+ x 100) y 1 ’black ’solid)

99

Representation Independence

In order to use a library program, it is usually necessary to
understand the parameters it requires and to write code
to compute these from the application data.

Example: Draw an object. It is desirable to be able to
say simply (draw item place) .

(stsz (list (start vector) (size vector)))

(mkv ’line-segment ’stsz)

(glinstfnpattern ’draw ’((s stsz) (myw window)))

(gldefun t21 ((s stsz) (myw window))

(DRAW-LINE-XY MYW (P1X (LINE-SEGMENT S))

(P1Y (LINE-SEGMENT S))

(P2X (LINE-SEGMENT S))

(P2Y (LINE-SEGMENT S))))

(LAMBDA (S MYW)

(LET ((QQWHEIGHT (CADDDR MYW)))

(XDRAWLINE *WINDOW-DISPLAY* (CADR MYW)

(CADDR MYW) (CAAR S)

(- QQWHEIGHT (CADAR S))

(+ (CAADR S) (CAAR S))

(- QQWHEIGHT (+ (CADADR S) (CADAR S))))

NIL))

100

Improvements of Partial Evaluation

There are several areas where partial evaluation
technology could be improved:

• To be successfully partially evaluated, a program must
be written in the right way. There should be good
binding time separation: avoid mixing static and
dynamic data (which makes the result dynamic).

(lambda (x y z) (lambda (x y z)

(+ (+ x y) z)) (+ x (+ y z)))

• The user may have to give advice on when to unfold
recursive calls. Otherwise, it is possible to generate
large or infinite programs.

One way to avoid this is to require that recursively
unfolding a function call must make a constant
argument smaller according to a well-founded
ordering. Branches of dynamic if statements should
not be unfolded.

101

Improvements ...

• Repeating arguments can cause exponential compu-
tation duplication: 9

(defun f (n)

(if (= n 0)

1

(g (f (- n 1)))))

(defun g (m) (+ m m))

• The user should not have to understand the logic of
the output program, nor understand how the partial
evaluator works.

• Speedup of partial evaluation should be predictable.

• Partial evaluation should deal with typed languages
and with symbolic facts, not just constants. For
example, following z = abs(x) we know z ≥ 0.

9Jones et al., p. 119.

102

Partial Evaluation: Matrix

In computer vision, the rotation of a point by θ around
the x axis is accomplished by multiplying by the matrix:10

1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

Many of the coefficients in this matrix are the special
values 0, 1, or -1. In order to perform this operation
with a standard matrix multiply subroutine, it would be
necessary to:

• Create a matrix containing the 16 values.

• Call the subroutine to multiply by this matrix.

Many of the cycles consumed in the matrix multiply
would be wasted because they would be trivial
computations (e.g., multiplying by 1 or adding 0).

10D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, 1982, p. 477.

103

Code Expansion with Partial Evaluation

By unrolling the loops of matrix multiply, substituting
the values from the coefficient matrix, and performing
partial evaluation on the result, a specialized version of
the matrix multiply is obtained:

>(fnopt ’mxmult ’rotate-x ’(b theta x))

(LAMBDA-BLOCK ROTATE-X (B THETA X)

(PROGN (SETF (AREF X 0 0) (AREF B 0 0))

(SETF (AREF X 0 1) (AREF B 0 1))

(SETF (AREF X 0 2) (AREF B 0 2))

(SETF (AREF X 0 3) (AREF B 0 3))

(SETF (AREF X 1 0)

(- (* (COS THETA) (AREF B 1 0))

(* (SIN THETA) (AREF B 2 0))))

(SETF (AREF X 1 1)

(- (* (COS THETA) (AREF B 1 1))

(* (SIN THETA) (AREF B 2 1))))

. . .))

This version saves many operations:

Version: Load Store Add/Sub Mul Total
General 128 16 48 64 256
Specialized 24 16 8 16 64

104

Partial Evaluation: Interpreter

This program is an interpreter for arithmetic expressions
using a simulated stack machine.

(defun topinterp (exp) ; interpret, pop result

(progn (interp exp)

(pop *stack*)))

(defun interp (exp)

(if (consp exp) ; if op

(if (eq (car exp) ’+)

(progn (interp (cadr exp)) ; lhs

(interp (caddr exp)) ; rhs

(plus)) ; add

(if ...)) ; other ops

(pushopnd exp))) ; operand

(defun pushopnd (arg) (push arg *stack*))

(defun plus ()

(let ((rhs (pop *stack*)))

(pushopnd (+ (pop *stack*) rhs))))

>(topinterp ’(+ (* 3 4) 5))

17

105

Specialization

The interpreter can be specialized for a given input
expression, which has the effect of compiling that
expression.

>(topinterp ’(+ (* 3 4) 5))

17

>(specialize ’topinterp

’(’(+ (* a b) c))

’expr1 ’(a b c))

>(pp expr1)

(LAMBDA-BLOCK EXPR1 (A B C)

(PROGN

(PUSH A *STACK*)

(PUSH B *STACK*)

(TIMES)

(PUSH C *STACK*)

(PLUS)

(POP *STACK*)))

>(expr1 3 4 5)

17

106

Partial Evaluation in OOP

Partial evaluation can achieve significant savings in
object-oriented programming:

•When the type of an object is known at compile
time, look up the function that implements a message.
Replace the message send by a function call.

• Expand small message functions in-line:

– Avoid function call overhead.

– Allow optimization across messages.

107

Partial Evaluation in Automatic
Programming

Partial evaluation can be especially valuable for
automatic programming:

• Programming tools produce declarative program
specifications

• Generic programs can be written as interpreters

• Partial evaluation produces a specialized program by
performing the interpretation at compile time.

108

Object-oriented Programming

Object-oriented programming (OOP) has several topics
of interest for Automatic Programming:

• Association of procedures with types.

• Organization of types in a hierarchy.

• Inheritance of procedures from higher types in the
hierarchy.

• Generic procedures that can work for different types
of data.

We will cover:

• Principles and terminology of OOP

• A simple CLOS-like OOP system implemented in Lisp

• Implementation of generic procedures

• Advantages and disadvantages of OOP

109

Type Checking

The type of data presented to a function must correspond
to the operations to be performed on the data. This can
be accomplished in several ways:

Programmer Type Checking: It is the program-
mer’s responsibility to insure that a call to a function is
made with the proper data types. (e.g., Fortran.)

Static Type Checking: The compiler must be able
to know at compile time what the type of each data item
is. (e.g., Pascal, Ada.)

Dynamic Type Checking: The type of each piece
of runtime data can be determined. The application
program tests the type of the data before performing
operations on it. (e.g., Lisp.)

110

Static Type Checking

The compiler must be able to know at compile time what
the type of each data item is.

procedure myqinsert

(element:myelement queue:myqueue)

...

Advantages:

• Type errors detected at compile time.

• No runtime type checking required.

Disadvantage:

• Rigidity: If there are queues of different kinds of
elements, the queue handling routines will have to be
duplicated for each element type.

111

Dynamic Type Checking

The type of each piece of runtime data can be determined.
The application program tests the type of the data before
performing operations on it.

(defun copy-tree (x)

(if (atom x) x

(cons (copy-tree (car x))

(copy-tree (cdr x)))))

Advantages:

• Flexibility: The same code can work with many kinds
of data.

Disadvantages:

• Speed: Need to test types repeatedly at runtime.
Hardware support can help this problem.

• Verifiability: Harder to verify that a program will
work for all combinations of data types.

112

Generic Functions

A generic or polymorphic function is one that performs
a given operation for a variety of argument data types.

Example: + in Lisp:

(defun + (x y)

(if (and (integerp x) (integerp y))

(iplus x y)

(if (and (floatp x) (floatp y))

(fplus x y)

...)))

The + function in Lisp will also perform type coercion as
needed. The CLOS implementation of object-oriented
programming in Lisp combines the ideas of messages and
generic functions. In effect, the programmer is allowed to
overload functions – even system functions such as + –
to specialize them for user data types.

113

Object-oriented Programming

Object-oriented programming (OOP) originated in the
SIMULA language for discrete event simulation. The
desire was to simulate large numbers of similar objects
in an efficient manner. A class/instance representation
achieves this goal.

• Class: represents the behaviors that are shared by
all of its instances.

• Instance: represents the data for a particular
individual.

Classes are arranged in a hierarchy, with inheritance of
behaviors from higher classes.

114

Access to Objects

All access to objects is accomplished by sending messages
to them.

• Retrieving data values: (send obj x)

• Setting data values: (send obj x: 3)

• Requesting actions: (send obj print)

115

Internal Implementation is Hidden

Messages define a standard interface to objects. Objects
may have different internal implementations as long as
the message interface is maintained.

Example: Vector (send v x)

• Vector type 1: x is stored.

x
x

y

``````̀

• Vector type 2: r and theta are stored. x is computed
as r * cos(theta)

x e
e
ee

r

theta

���

The two kinds of vectors appear the same to the outside
world.

116



Encapsulation with OOP

Object-oriented programming provides encapsulation:
an external interface to an object in terms of messages
is defined, but the internal implementation of the object
is hidden.

Modularity: Objects are often a good way to think
about the application domain.

Modifiability: The internal implementation of an
object can be changed without modifying any other
programs, as long as the external interface is maintained.

Expandability: New kinds of objects can be added
to an existing system, as long as they present the same
interface as existing objects.

117



Object-oriented Programming Terminology

• Object: typically refers to an instance (although
classes may be objects too).

• Class: a description of a set of similar objects, the
instances. This description typically includes:

– Instance variables: the names of variables that
are assumed to be defined for every subclass or
instance of the class.

– Methods: definitions of messages to which
members of the class can respond.

• Instance: an individual member of a class. Typically
an instance must be a member of exactly one class.
An instance is a data structure that:

– can be identified as being an object

– denotes the class to which the object belongs

– contains values of the instance variables

• Superclass: a class to which a given class belongs.
Sometimes a class may have more than one superclass.

118



Terminology ...

• Message: an indirect procedure call. A message is
sent to an instance object. The message contains
a selector and optional arguments. The selector is
looked up in the class of the object (or one of its
superclasses) to find the method that implements the
message. That method is called with the object to
which the message was sent as its first argument.

• Selector: the name of a message. A generic procedure
name.

• Method: the procedure that implements a message.
Often the name of a method is the class name
hyphenated with the selector, e.g. square-draw.

119



Message Sending

Sending a message to an object involves the following
steps:

1. Find the method corresponding to the message
selector.

2. Assemble the arguments:

• Object to which the message was sent (the self

argument)

• Other arguments included in the message

3. Call the method function with the arguments.

4. Return the result returned by the method function.

120



Method Lookup

A typical method lookup procedure is:

• Look for the selector in the class of the object to which
the message was sent.

• If it is not found, look in superclasses of the class.

Often, the first method found in such a depth-first search
is the one used. This provides both shadowing and
inheritance.

Variations include:

• Using types of all argument classes to determine the
method (CLOS)

• Method Combination (Flavors)

• SendSuper (Loops)

121



Invoking Evaluation Explicitly

In addition to the usual ability to call a named function,
Lisp makes it possible to compute the name of a function
and explicitly cause that function to be called. There
are several ways to do this. All do essentially the same
thing; they differ in the form in which the arguments are
presented.

(eval x) causes the expression x to be evaluated twice:
once to find the value to be evaluated, and then to do
the evaluation. That is, x is a computation that produces
Lisp code as its output, and eval causes that Lisp code
to be executed (evaluated).

(eval (subst 5 ’x ’(* x x)))

= (eval ’(* 5 5))

= 25

The ability to compute new pieces of program at runtime
and execute them is a unique and powerful feature of
Lisp; it makes Lisp an ideal substrate for implementing
embedded languages such as Expert System tools.

122



APPLY and FUNCALL

apply and funcall are alternative ways to call a
function whose name is computed; their arguments are
supplied in different ways, so that explicit construction of
Lisp code is not required, as it is for eval.

(apply fn list-of-args) applies the function fn to the
arguments in the list list-of-args. Both arguments of
apply are first evaluated.

(setq myfun #’+)

(apply myfun ’(2 3)) = 5

(funcall fn arg1 ... argn ) calls the function fn
with the arguments arg1 ... argn. All arguments of
funcall are evaluated.

(funcall (get (get object ’shape)

’drawing-program)

(get object ’position)

(get object ’size))

123



When to Use EVAL, APPLY, FUNCALL

The three forms eval, apply, and funcall allow
efficient calling of functions, depending on the form of
existing data.

Use eval when the existing data is already Lisp code:

(eval (subst 10.0 ’r

’(* 3.1415926 (expt r 2))))

Use apply when the existing data is already a list of
arguments:

(setq nums ’(3 7 21 14))

(apply #’+ nums)

Use funcall when the existing data is in the form of
individual arguments:

(setq x 7)

(setq y 3)

(funcall #’+ x y)

124



FUNCALL Can Save CONSes

funcall can often save conses compared to the other
forms:

(funcall #’+ x y) 0 conses

(eval (list ’+ x y)) 3 conses

(apply #’+ (list x y)) 2 conses

Since cons is a fairly expensive operation, it is worth
learning how to use the appropriate form.

125



LAMBDA Expressions

A lambda-expression can be used to create an
“anonymous” function (literally, one without a name);
in general, a lambda-expression can be used where a
function name is expected. The format of a lambda-
expression is:

(lambda (args) code)

A lambda-expression is “quoted” using the special form
function, which can be abbreviated as #’.

(apply (function (lambda (x y) (+ x y)))

’(2 3))

(apply #’(lambda (x y) (+ x y))

’(2 3))

function or #’ is analogous to quote or ’, but is
used instead of quote for lambda-expressions or function
names.

126



Property List Representation

LISP provides for every symbol a property list that
associates named properties with the symbol:

binding

PRESIDENT ---------> BUSH

| |

| DUTIES (CINC ...) | WIFE -----> LAURA

| | |

| ... | AGE 58 |

This mechanism has several advantages:

1. New properties can be added at any time; there is no
need to pre-declare properties.

2. Only those properties needed for each individual
object need to be stored.

3. A property can have a single value or a list of values
associated with it.

Property lists are a natural mechanism to use in
implementing semantic networks.

127



Property Lists

Each symbol has a property list on which semi-permanent
properties of the symbol can be stored. Each property has
a property name or indicator, and a value. Property
list values are retrieved and set by two functions:

(get symbol propname)
retrieves the value of the specified property for the
specified symbol. If no such property exists, the value
returned is NIL.

(setf (get symbol propname) value)
sets the value of the specified property for the specified
symbol, displacing any previous value.

Each symbol has a single property list, which appears the
same to all parts of a Lisp program and is unaffected by
binding.

128



CLOS Example: ship

(defclass ship ()

((latitude :type real)

(longitude :type real)

(x-velocity :type real)

(y-velocity :type real)) )

(defmethod speed ((s ship))

(with-slots (s)

(sqrt (+ (expt x-velocity 2)

(expt y-velocity 2))) ))

(defmethod speedup ((s ship))

(with-slots (s)

(setf x-velocity (* x-velocity 2))

(setf y-velocity (* y-velocity 2))

s ))

A “virtual slot” speed is defined whose value is
computed. The method speedup is defined similarly.

129



A Simple OOP System

A simple object-oriented programming system, called
oops, has been constructed in Lisp; syntactically, it is
similar to CLOS11. The oops system is intended to make
clear what is going on “beneath the surface” in object-
oriented systems and to allow experimentation with OOP.

Several things are needed for an OOP system:

• a way to define classes and store class definitions,

• a way to create new instances,

• a way to retrieve and store data in instance variables,

• a way to send messages,

• a way to define methods for a class of objects.

11Common Lisp Object System

130



Defining a Class

A class is defined using the following call:

(defclass class (supers)

(slot-specs)

class-options)

An example of a call to defclass is:

(defclass xyvector (vector)

((x :initarg :x :initform 0)

(y :initarg :y :initform 0))

(:documentation "A simple x-y vector"))

defclass is a macro; it calls the function
defclass-expr with its arguments un-evaluated.

131



Class Implementation

A class is implemented using the property list of the
symbol that is the class name. The following items are
stored:

• an indicator that it is a class,

• a list of superclasses,

• a list of slot (instance variable) specifications,

• a list of options,

• an association list that maps message selectors to the
corresponding function names (this list is maintained
by defmethod).

132



Instance Implementation

An instance is implemented using the property list of
a symbol that is generated from the name of the class.
The function gensym generates new symbols; a function
(make-atom class) calls gensym to make a new symbol
for an instance.

Two kinds of information need to be stored for instances:

• The class of the instance. This is stored on the
property list under the property name class. We
assume that class is a reserved word and cannot be
the name of a user slot.

• The slot values. These are stored on the property list,
using the name of the slot as the property name.

133



Creating an Instance

An instance object is created using the call:
(make-instance class inits)

where class is the class of the instance and inits is a
sequence of :initarg names and corresponding values.

Example:

(make-instance ’xyvector :x 3 :y 4)

The macro make-instance calls make-instance-expr
with the first argument evaluated but the remaining
arguments un-evaluated.

134



Creation of an Instance

make-instance-expr uses make-atom to make a new
symbol and puts in a pointer to the class.

Next, it is necessary to fill in slots and their values. There
are some complications here:

1. An instance can inherit slots not only from its direct
superclass, but from higher superclasses as well.

2. Initialization of the slot may be specified in the call to
make-instance using the :initarg names defined
for each slot (rather than the name of the slot). If an
:initarg value is specified, it is evaluated.

3. If no :initarg is specified, there may be an
:initform given in the slot specification. The
:initform must be evaluated, e.g.:

(creation-time

:initform (get-universal-time))

135



Getting and Storing Data

Data is retrieved from an object using the call:
(slot-value object slotname)

where object is an instance object and slotname is the
name of the slot whose value is desired.

Data is stored into a slot using setf:
(setf (slot-value object slotname) value)

Since an instance is implemented as a symbol, with slot
values stored on its property list, slot-value simply
becomes a call to get, and set-slot-value becomes a
call to setf around a call to get. A call to defsetf is
provided so that setf can be used with slot-value.

It is good style to use slot-value only within methods
for the class and to define messages for the external
interface:

(defmethod x ((v xyvector))

(slot-value v ’x))

136



Defining Methods

Methods are defined using the call:
(defmethod selector (args) code)

where selector is the name of the message, (args) is a

list of the arguments of the method, and code is the Lisp
code that implements the method.

A method is actually a special form of function definition.
It looks almost like a function definition, except that
(args) has a special form. Each argument may be either
a variable name, or a list (variable class) to declare the
class (type) of the variable.

An example method definition is:

(defmethod area ((self circle))

(* pi (expt (sendm self ’radius) 2)) )

This becomes:

(defun circle-area (self)

(* pi (expt (sendm self ’radius) 2)) )

137



Implementing Method Definition

To define a method, it is necessary to do several things.

A name is made for the function that implements the
method; conventionally, the class name and the selector
are hyphenated. The class can be found from the type
of the first argument. For example, the method area for
class circle will become the function circle-area.

The method code is made into a function definition, then
executed using eval.

Finally, an association between the selector and the
function name is added to the class.

138



Associating Selector and Method

Each class has an association list of message selectors and
corresponding functions. For example, a circle class
might have the method list:

((radius circle-radius)

(area circle-area))

where the first item is the selector name and the second
item is the corresponding function name.

defmethod updates this list when a new method is
defined.

139



Sending Messages

A message is sent to an object using the call:
(sendm object selector args)

where object is the object to which the message is sent,
selector is the name of the message (usually quoted), and
args are the arguments of the message, if any.

For example, if c is a circle object and we want its area,
we could use the call:

(sendm c ’area)

The CLOS system uses a syntax (area c) that is nicer
but may obscure the fact that an expensive operation is
occurring.

140



Implementing Message Sending

The first argument of sendm must be an object whose
class can be determined; otherwise, it is an error.

Once the class of the object has been found, it is necessary
to find the method that corresponds to the selector of
the message.12 This requires a search of the class of
the object, and perhaps its superclasses, until the desired
method is found.

Once the method has been found, the method function
is called, using as arguments both the object to which
the message was sent and any args supplied with the
message.

12In CLOS, the method can depend on the types of all the arguments, not just the first argument.

141



Extending the Class System

It is nice to extend object-oriented programming to apply
to ordinary Lisp objects.

An easy way to do this is by making the function
class-of return the Lisp type-of data that are not
instance objects.

Once basic Lisp data have classes, it is possible to overload
operators and include basic data in the object system:

(defmethod + ((self string) ss)

(concatenate ’string self ss))

142



oops System

(defmacro defclass

(class supers slot-specs &rest class-options)

‘(defclass-expr (quote ,class) (quote ,supers)

(quote ,slot-specs) (quote ,class-options)) )

(defun defclass-expr

(class supers slot-specs class-options)

(setf (get class ’classp) t)

(setf (get class ’supers) supers)

(setf (get class ’slots) slot-specs)

(setf (get class ’options) class-options)

class)

(defun classp (class)

(and (symbolp class) (get class ’classp)))

(defun class-of (object)

(or (and (symbolp object) (get object ’class))

(type-of object)))

143



Making Instances

(defun make-instance (class &rest initargs)

(if (classp class)

(let ((instance (make-atom class)))

(addslots instance class initargs)

(setf (get instance ’class) class)

instance) ))

(defun addslots (instance class initargs)

(let (initarg)

(dolist (super (get class ’supers))

(addslots instance super initargs))

(dolist (slot (get class ’slots))

(setf (get instance (car slot))

(or (and (setq initarg

(getf (cdr slot)

’:initarg))

(getf initargs initarg))

(eval (getf (cdr slot)

’:initform)))) ) ))

144



Slot Values

; Get the stored value of a slot

(defun slot-value (object slot-name)

(get object slot-name))

; Set the stored value of a slot

(defun set-slot-value (object slot-name value)

(setf (get object slot-name) value) )

; Tell Lisp how to store a slot value,

; e.g. (setf (slot-value obj slot) val)

(defsetf slot-value set-slot-value)

; get the names of all slots defined for a class

(defun slot-names (class)

(let (names)

(setq names (mapcar #’car

(get class ’slots)))

(dolist (super (get class ’supers))

(setq names (union names

(slot-names super))) )

names))

145



Defining Methods

(defmacro defmethod (selector args &rest rest)

‘(defmethod-expr (quote ,selector)

(quote ,args) (quote ,rest)))

(defun defmethod-expr (selector args rest)

(let (class fnname)

(unless (and (consp (car args))

(setq class (cadar args))

(symbolp class))

(error "Bad form - no class name ~S" args))

(setq fnname (intern

(concatenate ’string (symbol-name class)

"-" (symbol-name selector))))

(pushnew (list selector fnname)

(get class ’methods))

(eval (cons ’defun (cons fnname

(cons (mapcar #’(lambda (x)

(if (consp x) (car x) x))

args)

rest)))) ))

146



Sending Messages

; Define a temporary cons cell for use by sendm

(defvar *sendmcons* (cons nil nil))

; Send a message to an object

(defun sendm (object selector &rest args)

(let (method class)

(unless (setq class (class-of object))

(error "Object ~S has no Class." object))

(if (setq method (findmethod selector class))

(progn (rplaca *sendmcons* object)

(rplacd *sendmcons* args)

(apply method *sendmcons*))

(error "No method ~A for object ~S"

selector object)) ))

; Find a method for a given selector and class

(defun findmethod (selector class)

(if (classp class)

(or (cadr (assoc selector

(get class ’methods)))

(some #’(lambda (super)

(findmethod selector super))

(get class ’supers))) ) ) )

147



Smalltalk

148



ThingLab

ThingLab13 is an interactive graphical simulation system
based on Smalltalk.

• Objects have ports that can be connected graphically.

• If an object is modified interactively, it propagates
changes to its ports, and thus to objects to which it
is connected.

• Features of objects can be “anchored” to prevent them
from changing.

• An object may do search by attempting to change
different port values to make itself consistent.

• Problems are solved by value propagation or by
relaxation.

13Borning, A., “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation
Laboratory”, ACM Trans. on Programming Languages and Systems, vol. 3, no. 4 (Oct. 1981), pp. 353-387.

149



ThingLab Examples

150



OOP and Automatic Programming

It is claimed that object-oriented programming satisfies a
major goal of Automatic Programming: reuse of generic
procedures. If a procedure can be reused, it is “free”.

The question to address is the effectiveness in practice of
reuse by OOP.

151



Good Features of OOP

• Encapsulation: implementations of objects can be
modified without modifying clients. Data types and
related procedures are grouped.

• Polymorphism: some generic methods can be reused
effectively.

• Inheritance: methods can be inherited within a
hierarchy.

152



Unfortunate Features of OOP

• OOP tends to require that everything be objects.
Hard to use with existing systems.

• Reusing generic procedures is not easy:

– Programmer must know method name and
arguments.

– Arguments must respond appropriately to all
messages that may be sent to them by the method
or its submethods.

– Methods may produce unexpected and unwanted
side-effects.

• Slow in execution.

– Method lookup overhead

– Opacity of objects prevents optimization across
messages.

– A layered object structure compounds the
problem.

Some OOP systems “succeed” but have to be
discarded and rewritten for efficiency.

• System structure becomes baroque and hard to
change. (Just the opposite of what is advertised.)

153



Improving OOP Efficiency

• Use table lookup (array: class, method) to make
method lookup fast (C++).

• Cache selector and method at lowest class level to
avoid search (Self).

• Compile specialized methods “just in time” when first
used:

– sends can be converted to function calls since the
class is known

– small methods can be compiled in-line

– partial evaluation may improve efficiency

154



Why OOP Is Not Enough

• OOP requires the programmer to know too many
details about object and method names and
implementations.

• OOP requires application data to conform to
conventions of the generic procedures:

– OOP requires an object to be a member of a class
rather than be viewable as a member.

– Some OOP systems automatically include slots of
supers in all their descendants. This inhibits use
of different representations.

– An object cannot be a member of a class in more
than one way.

– No single definition of an object is likely to
encompass all possible uses (or if it did, it would
be too big for typical uses).

– Uses of an object with different superclasses are
likely to conflict.

• OOP is often slow in execution.

155



Top Ten Lies About OOP 14

10. Objects are good for everything.

9. Object-oriented software is simpler.

(No: everything is a server, and servers are harder to write.)

8. Subclassing is a good way to extend software or libraries.

7. Object-oriented toolkits produce interchangeable components.

(No: you get components the size of a nuclear aircraft carrier, with

internal interfaces that are too complex to duplicate.)

6. Using object-oriented programming languages helps build object-

oriented systems.

5. Object-oriented software is easier to evolve.

(No: jigsaw-puzzle modularity is a serious problem.)

4. Classes are good for modularity.

(No: most worthwhile modules have more than one class.)

3. Reuse happens.

(No: you have to work too hard to make it possible. He distinguished

between *use*, exploiting existing code, and *reuse*, building new

code by extending existing code.)

2. Object-oriented software has fewer bugs.

(No: it has different bugs.)

1. C++ is an object-oriented programming language.

14From a keynote talk at the June 1993 Usenix conference by Mike Powell of Sun Labs, who is working
on an object-oriented operating system in C++ (as recorded by Henry Spencer in the July 1993 issue of
”;login:” magazine, whose remarks are in parentheses.)

156



Aspect-Oriented Programming

Aspect-Oriented Programming15 is intended to facilitate
coding of cross-cutting aspects, i.e. those aspects that
cut across a typical decomposition of an application in
terms of object classes.

15Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, John Irwin, “Aspect-Oriented Programming”, in ECOOP ’97, vol. 1241 of LNCS, Springer-Verlag,
June 1997.

157



Aspect Weaving

In Aspect-Oriented Programming, an aspect weaver
combines program fragments from separate aspects of a
design at join points.

158



Glisp

The Glisp (Generic Lisp) language is based on Lisp and
is compiled into Lisp. Its features include:

• Lisp-like language with types

• Recursive in-line expansion of OOP-like code.

• Specialization of generic procedures through views

• Partial evaluation

• Graphical programming tools

• Translation into programming language of choice

159



Data Structure Descriptions

A structure description is:

• A basic type:

INTEGER REAL NUMBER STRING

SYMBOL BOOLEAN ANYTHING

• A named structure description:

(<name> <sd>)

• A composite structure description:

(CONS <sd1> <sd2>)

(LIST <sd1> ... <sdn>)

(SYMBOL (PROPLIST (<name1> <sd1>) ...))

(ATOMOBJECT (<name1> <sd1>) ...)

(LISTOBJECT (<name1> <sd1>) ...)

(CRECORD <name> (<name1> <sd1>) ...)

• A group structure description:

(LISTOF <sd>)

(ARRAYOF <sd>)

160



Reference to Substructures

A substructure or property is referenced by its name, in
a form similar to that of a Lisp function call.

(glispobjects

(circle (list (center vector)

(radius real))

prop ((diameter (radius * 2))

(area (pi * radius ^ 2)) ) )

)

(gldefun t1 ((c circle)) (radius c))

(glcp ’t1)

result type: REAL

(LAMBDA (C) (CADR C))

(gldefun t2 ((c circle)) (area c))

(glcp ’t2)

result type: REAL

(LAMBDA (C) (* 3.14159265 (EXPT (CADR C) 2)))

161



glispobjects

Data structures and messages are defined by the form:

(glispobjects

(<name> <structure>

prop ( <messages> )

adj ( <messages> )

isa ( <messages> )

msg ( <messages> )

supers ( <super-classes> )

views ( (<view-name> <view-type>) ...)

)

... )

The class name and structure are necessary. The other
items are optional, in any order.

Conventionally, props are properties of the object itself,
i.e. have only the object itself as argument and do not
have side-effects. adj and isa are boolean predicates on
the object itself. msg are general messages, i.e. may have
additional arguments and side-effects.

162



Message List

A message list has the following format:

(<selector> <response> <options>)

The <selector> is a symbol that is the name of a
message. <response> is the way in which the message
is interpreted:

( <expression> ) (radius * 2)

( <code> ) ((sqrt area))

(glambda (<args>) (glambda (self)

<code>) (radius self))

<function-name> mymsgfn

<options> may include:

RESULT <type>

MESSAGE T

OPEN T

SPECIALIZE T

ARGTYPES (<type1> ... <typen>)

163



Language Features

• An expression may appear on the left-hand side of an
assignment:

( x ^ 2 = 2.0 )

(gldefun t3 ((c circle))

((area c) = 100))

(glcp ’t3)

result type: INTEGER

(LAMBDA (C)

(SETF (CADR C) 5.6418958354775626)

100)

• Creation of objects uses the A construct:

(a circle with

center = (a vector with x = 10 y = 10)

radius = 4.5)

164



For Loop

The Glisp compiler can compile loops over sets of data,
including lists, trees, and any type for which iterator
macros are defined.

A for loop can include when predicate and verbs do,
collect, sum, average, stats.

(gldefun t11 ((grades (listof integer)))

(for x in grades average x))

>(glcp ’t11)

result type: INTEGER

(LAMBDA (GRADES)

(LET (SUM VAL (N 0))

(DOLIST (X GRADES)

(SETQ VAL X)

(IF (ZEROP N) (SETQ SUM VAL) (INCF SUM VAL))

(INCF N))

(IF (PLUSP N) (/ SUM N) 0)))

>(t11 ’(90 95 87 100))

93

165



Inheritance

Methods can be inherited from superclasses.

(dcircle (listobject (start vector)

(diameter real))

prop ((radius (diameter / 2)))

supers (circle))

(gldefun t5 ((d dcircle)) (area d))

result type: REAL

(LAMBDA (D)

(* 0.78539816339744828

(EXPT (CADDR D) 2)))

(gldefun t6 ((d dcircle)) ((area d) = 100))

(LAMBDA (D)

(SETF (CADDR D) 11.283791670955125)

100)

An inherited method is compiled in the context of the
inheriting object type; for example, when the area is
inherited by a dcircle, it is complied in the context of
a dcircle.

166



Operator Overloading

Operators can be overloaded by defining them as
messages.

(vector (list (x integer)

(y integer))

msg ((+ vectorplus open t

argtypes (vector))))

(gldefun vectorplus ((v1 vector) (v2 vector))

(a (typeof v1) with x = (x v1) + (x v2)

y = (y v1) + (y v2)))

The use of typeof lets the code use a type derived from
an argument.

(gldefun t7 ((u vector) (v vector)) u + v)

result type: VECTOR

(LAMBDA (U V) (LIST (+ (CAR U) (CAR V))

(+ (CADR U) (CADR V))))

167



Recursive Expansion

In adding a vector of vectors, the function
vectorplus is expanded three times:

(vofv (list (x vector)

(y vector))

supers (vector))

(gldefun t8 ((u vofv) (v vofv)) u + v)

result type: VOFV

(LAMBDA (U V)

(LIST

(LET ((GLVAR35435 (CAR U))

(GLVAR35436 (CAR V)))

(LIST (+ (CAR GLVAR35435)

(CAR GLVAR35436))

(+ (CADR GLVAR35435)

(CADR GLVAR35436))))

(LET ((GLVAR35437 (CADR U))

(GLVAR35438 (CADR V)))

(LIST (+ (CAR GLVAR35437)

(CAR GLVAR35438))

(+ (CADR GLVAR35437)

(CADR GLVAR35438))))))

168



Writing Generic Procedures

If a procedure is to be generic, i.e. reusable for a variety of
data representations, it must make minimal assumptions
about its data:

Any assumption in a generic procedure becomes
a requirement when the procedure is reused.

• The language syntax must not reflect the form of data.

• The generic procedure must not make assumptions
about whether data is stored or computed.

• The generic procedure must not make assumptions
about numeric type (e.g. real or integer) or units
of measurement.

• There must be structure-independent ways to write
and create data, as well as to read it.

169



Generics and Views

• Views describe how user data types implement
features of abstract types.

• Generic algorithms are compiled with respect to
views.

• The result is specialized versions of the generics that
operate directly on application data.

170



Views

A view is a wrapper type that makes a concrete type
appear to be an abstract type.

For example, we might want to view a planet as being
a circle.

There may be multiple views of a concrete type, including
multiple views as the same abstract type.

• A view is purely gedanken; it does not change the
concrete data. Views allow a concrete type to be
thought of as another type without being that type.

• A view type has the concrete type as its stored form.

• A view type defines properties that express what the
abstract type expects in terms of what the concrete
type has.

• Other data of the concrete type are hidden.

• The abstract type is a superclass of the view type.

• Procedures of the abstract type can be inherited and
specialized through the view.

171



Computation as Simulation

A useful view is to think of all computation as
simulation. cf.: Isomorphism of semigroups 16

Given two semigroups G1 = [S, ◦] and
G2 = [T, ∗], an invertible function
ϕ : S → T is said to be an isomorphism
between G1 and G2 if, for every a and b in S,

ϕ(a ◦ b) = ϕ(a) ∗ ϕ(b)

from which: a ◦ b = ϕ−1(ϕ(a) ∗ ϕ(b))

16Preparata, F. P. and Yeh, R. T., Introduction to Discrete Structures, Addison-Wesley, 1973, p. 129.

172



Views as Isomorphisms

173



Requirements of Views

• An abstract type is defined as an abstract record
containing a set of basis variables.

• Generic procedures are written in terms of the basis
variables.

• A view type emulates the abstract record using the
concrete record as storage:

– storage property: after a value is stored into a
basis variable, a read of the basis variable returns
the same value.

– independence property: storing into one basis
variable does not change the values of others.

• A store into a basis variable may require updating
several concrete fields.

• Slight inaccuracy in emulation may be allowed (e.g.,
floating point round-off error in representing (x, y)
using (r, θ)).

174



Specifying a View

A view type has the format:

(glispobjects

(<name> (<gensym> <concrete>)

prop ( (<abstract-prop> <concrete-prop>)

... )

supers (<abstract>) )

)

where the parts are:

<name> name of the view type
<gensym> unique name, e.g. a gensym

<concrete> the concrete type
<abstract-prop> property name needed by abstract type
<concrete-prop> definition of property in terms of concrete

type, referred to using <gensym>

<abstract> the abstract type

175



Example: Textual View

(glispobjects

(pizza (list (topping string) (size symbol))

views ((circle pizza-as-circle)) )

(pizza-as-circle (z753 pizza)

prop ((radius

((if ((size z753) == ’large)

9

6)) ) )

supers (circle) )

)

(gldefun t12 ((p pizza)) (area (circle p)))

>(glcp ’t12)

result type: REAL

(LAMBDA (P)

(IF (EQ (CADR P) ’LARGE)

254.46900494077323

113.09733552923255))

Note that the view name, circle, is used as a type-
change operator to change to the view type.

176



A Textual View

(gldefun t9 ((pc planet-orbit-as-circle))

(area pc))

(LAMBDA (PC)

(* PI (EXPT (GET PC ’ORBIT-RADIUS) 2)))

177



Pipe Example

(pipe (listobject (inside-diameter real)

(outside-diameter real)

(length real)

(material material)

(nxt (^ pipe)))

views ((inside-circle circle

(radius (inside-diameter / 2)))

(outside-circle circle

(radius (outside-diameter / 2))) )

prop ((cross-section

( (area (outside-circle self))

- (area (inside-circle self)))))

adj ((floats

( (area (outside-circle self))

> (cross-section self)

* (density (material self))))) )

(gldefun t10 ((p pipe)) (floats p))

result type: BOOLEAN

(LAMBDA (P)

(> (EXPT (CADDR P) 2)

(* (- (EXPT (CADDR P) 2) (EXPT (CADR P) 2))

(GET (FIFTH P) ’DENSITY))))

178



Notes on Pipe Example

The pipe example has several interesting features:

• The pipe is viewed as a circle in two different ways.

• No additional data or runtime computation is needed
for the views.

• The expression of properties of the pipe is clear and
natural.

• In-line expansion of properties through views makes
the generated code efficient.

179



Making Views

• Views may be complex: an example line-segment

view is 67 lines of code.

• Views may be error-prone if written by hand: storage
and independence properties must be maintained.

• Difficulty of coding view types detracts from benefit
of reuse.

• Automated assistance for making views is needed.

Views can be created in several ways:

• Textual specification, by hand.

• Graphical specification: click on corresponding parts
of menus or diagrams.

• VIEWAS: (semi-) automatic generation of a view, e.g.,
as a linked-list.

• MKV: (semi-) automatic generation of a mathematical
view, based on diagram connections.

180



Data Structure Views: VIEWAS

The VIEWAS system makes a view of a concrete type
as a data structure type, such as a linked-list or
avl-tree.

• VIEWAS makes correspondences between abstract
and concrete records

– Pointers

– Values, e.g. field to sort on

– Choices, e.g. sort-direction

– Groups of fields, e.g. contents is everything except
the link pointer.

• Type filtering and propagation of choices reduce input
from user; simple views can be made automatically.

181



Example: Sorted Linked List

(part (name string)

(size integer)

(next (^ part)))

• The link pointer is inferred to be the next field: the
only possibility allowed by type filtering.

• The sort-value is selected as name by the user.

• The sort-direction is selected as ascending.

The user only needs to make two choices from menus;
then any procedure defined for sorted-linked-list

can be specialized for the user’s data.

Standard data structure templates can easily be
instantiated with a given contents.

182



Views by Graphical Correspondences

Views can be specified by graphical correspondences
between user data and a diagram of an abstract object.

Example: View a Christmas tree as a cone.

>(mkv ’cone ’xmas-tree)

(gldefun tg ((x xmas-tree))

(side-area (cone x)))

(LAMBDA (X)

(* 3.1415926535897931

(* (FIFTH X)

(SQRT (+ (EXPT (FIFTH X) 2)

(EXPT (CADDR X) 2))))))

183



Mathematical Views: MKV

• User makes correspondences between a diagram of
the abstract type and a menu of fields and computed
properties of the concrete type.

• Buttons on the diagram correspond to variables of the
abstract type

• Equations associated with abstract type are solved by
symbolic algebra

• A button is removed from diagram when solved; this
prevents inconsistent specification.

• Symbolic algebra is used to make a view that
maintains storage and independence properties.

• An instance of concrete type can be created from a
set of basis variables.

• Data translation is possible through views as a
common abstract type:

184



Line Segment

A line segment could be represented in many ways:

• two end points

• one end point, length, theta

• one end point, slope, delta-x

The figure presents variable buttons to allow nearly any
representation to be specified easily.

185



Example of Line Segment View

(mkv ’line-segment ’ls1)

(gldefun tb ((l ls1) (p consv))

(leftof-distance (line-segment l) p))

result type: REAL

(LAMBDA (L P)

(- (* (COS (CADDDR L))

(- (CDR P) (CADR L)))

(* (SIN (CADDDR L))

(- (CAR P)

(- (FIFTH L)

(* (CADDR L) (COS (CADDDR L))))))))

186



Line Segment Data Conversion

(mkv ’line-segment ’ls2)

(gleqns-transfer-by-view ’ls2 ’ls1)

(LAMBDA (VAR-LS1)

(LET ((VAR-LS1-VIEW VAR-LS1))

(LIST ’LS2

(- (FIFTH VAR-LS1-VIEW)

(* (CADDR VAR-LS1-VIEW)

(COS (CADDDR VAR-LS1-VIEW))))

(FIFTH VAR-LS1-VIEW)

(- 1.570796 (CADDDR VAR-LS1-VIEW))

(+ (CADR VAR-LS1-VIEW)

(* (CADDR VAR-LS1-VIEW)

(SIN (CADDDR VAR-LS1-VIEW)))))))

187



Advantages of Graphical Correspondences

• Diagrams are self-documenting.

• Diagrams represent concepts that the user already
knows.

• The interface is fast and easy to use.

• Reusing procedures through views is less error-prone
than doing algebra by hand.

• Application data does not have to conform to a
library program. The library program is converted
automatically.

• User data could be used with a remote program over
a network if the user and author of the program each
make a view of their data as a common abstract type:

This allows compatibility without conformity.

188



MKV: Incremental Equation Solving

Equations are solved incrementally as each variable
becomes defined by correspondence to application data.

• A set of simple, redundant equations is used.

• A simple equation solver is used.

• Buttons for variables that can be solved are removed
from the diagram, preventing redundant specification.

• Variables are solved as soon as possible, which tends
to give efficient code.

189



Basis Variables and Equations

(setf (get ’line-segment ’basis-vars)

’(p1x p1y p2x p2y))

(setf (get ’line-segment ’equations)

’((= p1 (tuple (x p1x) (y p1y)))

(= p1x (x p1))

(= p1y (y p1))

(= p2 (tuple (x p2x) (y p2y)))

(= p2x (x p2))

(= p2y (y p2))

(= deltax (- p2x p1x))

(= deltay (- p2y p1y))

(= slope (/ deltay (float deltax)))

(= slope (tan theta))

(= slope (/ 1.0 (tan phi)))

(= length (sqrt (+ (expt deltax 2)

(expt deltay 2))))

(= theta (atan deltay deltax))

(= phi (- (/ pi 2.0) theta))

(= phi (atan deltax deltay))

(= deltay (* length (sin theta)))

(= deltax (* length (cos theta)))

(= deltay (* length (cos phi)))

(= deltax (* length (sin phi))) ) )

190



Equation Solving

When a variable is defined, equations are examined:

• If an equation contains exactly one unsolved variable,
it is solved for that variable.

• If an equation contains no unsolved variables, the
equation is deleted.

• If a component of a tuple is solved, the tuple

equation is deleted.

• If an equation contains a deleted tuple variable, the
equation is deleted.

These steps are repeated until no further variables are
solved. A list of solved and deleted variables is returned.

191



Basis Variable and Equations

1. Enter var-defined, var = P1Y

2c. deleting tuple (= P1 (TUPLE (X P1X) (Y P1Y)))

2d. deleting eqn (= P1X (X P1))

2d. deleting eqn (= P1Y (Y P1))

4. exit, vars (P1 P1Y)

1. Enter var-defined, var = LENGTH

4. exit, vars (LENGTH)

1. Enter var-defined, var = THETA

2a. solved eqn (= SLOPE (TAN THETA))

2a. solved eqn (= PHI (- (/ PI 2.0) THETA))

2a. solved eqn (= DELTAY (* LENGTH (SIN THETA)))

2a. solved eqn (= DELTAX (* LENGTH (COS THETA)))

3. repeating step 2.

2a. solved eqn (= DELTAY (- P2Y P1Y))

giving (= P2Y (+ DELTAY P1Y))

2b. deleting eqn (= SLOPE (/ DELTAY (FLOAT DELTAX)))

2b. deleting eqn (= SLOPE (/ 1.0 (TAN PHI)))

2b. deleting eqn (= LENGTH (SQRT (+ (EXPT DELTAX 2)

(EXPT DELTAY 2))))

2b. deleting eqn (= THETA (ATAN DELTAY DELTAX))

2b. deleting eqn (= PHI (ATAN DELTAX DELTAY))

2b. deleting eqn (= DELTAY (* LENGTH (COS PHI)))

2b. deleting eqn (= DELTAX (* LENGTH (SIN PHI)))

3. repeating step 2.

2c. deleting tuple (= P2 (TUPLE (X P2X) (Y P2Y)))

2d. deleting eqn (= P2X (X P2))

2d. deleting eqn (= P2Y (Y P2))

4. exit, vars (P2 P2Y DELTAX DELTAY PHI SLOPE THETA)

1. Enter var-defined, var = P2X

2a. solved eqn (= DELTAX (- P2X P1X))

giving (= P1X (- P2X DELTAX))

3. repeating step 2.

4. exit, vars (P1X P2X)

192



Variable Dependency Graph

A set of solved equations defines an acyclic variable
dependency graph:

193



Reuse through View

(gldefun line-segment-leftof-distance

((ls line-segment) (p vector))

(let ( (dx (deltax ls)) (dy (deltay ls)))

( ( dx * ( (y p) - (p1y ls) )

- dy * ( (x p) - (p1x ls) ) )

/ (sqrt dx ^ 2 + dy ^ 2) ) ))

(gldefun t3 ((l ls1) (p consv))

(leftof-distance (line-segment l) p))

(LAMBDA (L P)

(LET ((DX (* (THIRD L) (COS (FOURTH L))))

(DY (* (THIRD L) (SIN (FOURTH L)))))

(/ (- (* DX (- (CDR P) (SECOND L)))

(* DY (- (FIRST P)

(- (FIFTH L)

(* (THIRD L) (COS (FOURTH L)))))))

(SQRT (+ (EXPT DX 2) (EXPT DY 2))))))

float lsdist (l, p)

CLS1 l; CVECTOR p;

{ float dx, dy;

dx = l->size * cos(l->angle);

dy = l->size * sin(l->angle);

return (dx * (p->y - l->low)

- dy * (p->x - (l->right

- l->size * cos(l->angle))))

/ sqrt(square(dx) + square(dy)); }

194



Storing Basis Variables

A procedure is needed to “store” each basis variable into
the concrete data structure. The “stored” variable must
not affect the value of any other basis variable.

• Transfer variables are variables of the abstract type
that directly correspond to concrete data fields.

• Create a set of basis equations by running the
var-defined procedure for each basis variable.

• The set xfers is computed: the subset of transfer
variables that depend on the basis variable to be
stored.

• The set dep is computed: the subset of the basis
variables that some member of xfers depends on.

• Create a procedure that computes dep (minus
the variable to be stored) from the concrete data
structure, then computes each member of xfers and
stores it.

195



Data Translation through Views

Given two application types, each of which can be viewed
as the same abstract type, a procedure to translate
between them can be created.

• Compute each transfer variable of the goal type from
the source type.

• Use the GLISP A function to create the new data.

(transfer-by-view ’ls2 ’ls1)

(GLAMBDA ((VAR-LS1 LS1))

(LET ((VAR-LS1-VIEW (LINE-SEGMENT VAR-LS1)))

(A LS2 LEFT (P1X VAR-LS1-VIEW)

RIGHT (P2X VAR-LS1-VIEW)

ANGLE (PHI VAR-LS1-VIEW)

UP (P2Y VAR-LS1-VIEW))))

(LAMBDA (VAR-LS1)

(LET ((VAR-LS1-VIEW VAR-LS1))

(LIST ’LS2

(- (FIFTH VAR-LS1-VIEW)

(* (THIRD VAR-LS1-VIEW) (COS (FOURTH VAR-LS1-VIEW))))

(FIFTH VAR-LS1-VIEW)

(- 1.5707963267948966 (FOURTH VAR-LS1-VIEW))

(+ (* (THIRD VAR-LS1-VIEW) (SIN (FOURTH VAR-LS1-VIEW)))

(SECOND VAR-LS1-VIEW)))))

196



VIP: Programming by Graphical Connections

Related techniques make it possible to write scientific
programs and solve physics problems.

• The initial diagram consists of boxes that represent
input data and an output box.

• Physical laws and geometric models may be selected
by menu and added to the picture.

• Connections may be made between diagram buttons
and data.

• A program is generated from the diagram by symbolic
data flow:

– Initially, input data and constants are defined.

– When a data item becomes defined, its value is
propagated into boxes to which it is connected.

– When a value is propagated into a box, equations
associated with the box are examined to see
whether they can be solved for other variables.

– Code is generated as a side-effect of the data flow.

• Units of measurement are converted automatically.

197



Calculation of the Mass of the Sun

result type: (UNITS REAL KILOGRAM)

(LAMBDA () 1.9660057055546021E30)

198



Aircraft Position from Radar Data

(vip

’((TIME-DIFF (UNITS INTEGER (* 100 NANOSECOND)))

(AIRCRAFT-ALTITUDE (UNITS INTEGER (* 10 FOOT)))

(RADAR-ALTITUDE (UNITS INTEGER (* 10 FOOT)))

(RADAR-ANGLE (UNITS INTEGER (/ (* 2 PI RADIANS)

4096)))

(RADAR-UTM UTM-VECTOR))

199



Aircraft Position Program

(LAMBDA (TIME-DIFF: (UNITS INTEGER (* 100 NANOSECOND))

AIRCRAFT-ALTITUDE: (UNITS INTEGER (* 10 FOOT))

RADAR-ALTITUDE: (UNITS INTEGER (* 10 FOOT))

RADAR-ANGLE: (UNITS INTEGER (/ (* 2 PI RADIANS)

4096))

RADAR-UTM:UTM-CVECTOR)

(LET (OUT7 OUTPUT D3 OUT8 X5 Y3 X6 RELPOS:UTM-CVECTOR)

(OUT7 = (- AIRCRAFT-ALTITUDE RADAR-ALTITUDE))

(D3 = (* ’(Q 2.997925E8 (/ M S)) TIME-DIFF))

(OUT8 = (/ D3 2))

(X5 = (SQRT (- (EXPT OUT8 2) (EXPT OUT7 2))))

(Y3 = (* X5 (SIN RADAR-ANGLE)))

(X6 = (* X5 (COS RADAR-ANGLE)))

(RELPOS = (A UTM-CVECTOR NORTH Y3 EAST X6))

(OUTPUT = (+ RELPOS RADAR-UTM))

OUTPUT))

200



Aircraft Position Program in C

CUTM *tqc (time_diff, aircraft_altitude, radar_altitude,

radar_angle, radar_utm)

long time_diff, aircraft_altitude, radar_altitude,

radar_angle;

CUTM *radar_utm;

{

long out7;

CUTM *output;

float d3, out8, x5, y3, x6;

CUTM *relpos, *glvar4796;

out7 = aircraft_altitude - radar_altitude;

d3 = 2.997925E8 * time_diff;

out8 = d3 / 2;

x5 = sqrt(square(out8) - 9.2903039999999988E14

* lsquare(out7));

y3 = x5 * sin(0.0015339807878856412 * radar_angle);

x6 = x5 * cos(0.0015339807878856412 * radar_angle);

relpos = (CUTM*) malloc(sizeof(CUTM));

relpos->north = 1.0000000000000001E-7 * y3;

relpos->east = 1.0000000000000001E-7 * x6;

glvar4796 = (CUTM*) malloc(sizeof(CUTM));

glvar4796->east = relpos->east + radar_utm->east;

glvar4796->north = relpos->north + radar_utm->north;

output = glvar4796;

return output;

}

201



Language Translation

Specialized procedures can be delivered in several
languages: Lisp, C, C++, Java, Pascal.

• Lisp is equivalent to abstract syntax trees used by
compilers

• Data structures in other languages can be specified to
GLISP

• Simulated data structures in Lisp can be used for
rapid prototyping

• Program transformation:

– Transform Lisp features, e.g. returning a value
from if statement

– Patterns transform Lisp idioms to target idioms

• Syntactic transformation: names, types, patterns

• Printing program produces formatted, readable code.

202



Automatic Programming Server

The Automatic Programming Server operates over the
Web and writes specialized procedures for the user.

• User describes concrete data types

• User makes views showing how concrete types
correspond to abstract types known to the system

• User selects desired procedures

• Procedures are specialized, translated to target
language, and delivered as a source code file.

• Data conversion programs can also be generated.

• Example: avl-tree: 200 lines of generated code in
less than a minute of user time.

203



Automatic Programming Server

• User defines a part data structure:

(part (name string)

(size integer)

(next (^ part)))

• User makes a view as a sorted linked list

• User chooses desired procedures

204



APS: Example

205



GPS: Component Programming

A natural extension to the Automatic Programming
Server, which makes individual specialized components,
is to make whole programs by connecting components.

Graphical Programming System (GPS) allows composi-
tion of programs involving iteration, accumulators, and
data structures. The goal is to produce programs similar
to those written by humans.

Producing a program from generic components requires
many view types with complex property definitions. A
key feature of GPS is propagation and inference of types
and properties to reduce the amount of user input and
assist the user in making choices.

206



A Simple Program

Given as input a list of sublists, each of which
has the format (key n), sum the n for each key.

(alsum ’((a 3) (b 2) (c 1) (a 5) (c 7)))

= ((C 8) (B 2) (A 8))

(defun alsum (lst)
(let ((alist nil) entry)
(dolist (item (identity lst))

(setq entry
(or (assoc (car item) alist)

(progn (push (list (car item) 0 ) alist)

(assoc (car item) alist))))
(incf (cadr entry) (cadr item) ) )

alist))

Different fonts are used for code associated with different
abstract components. Clearly, code of the components is
thoroughly mixed in this program.

207



Program Components

This small program combines several generic components:

• Iterate-Accumulate: Iterate through a sequence of
items, accumulating some aspect of the items.

• Find-Update: Find an item in an indexing structure
using its key value, then update the record with
information from the item.

• dolist: an iterator for linked lists in Lisp.

• alist: association list, a kind of database structure.

• Sum: a kind of accumulator.

In addition, there are several interfaces of glue code: how
to get the sequence from the input, how to get the key
from the item, what aspect of the item to accumulate.

208



Substitution Test

A substitution test is useful to determine what the
generic components of a program are:

Can the program be modified by a substituting a
different component for an existing one, without
changing the other components?

In this example, we could produce different but related
programs by substitution of components:

• If the input were an array rather than a linked list, a
different iterator would be used.

• A different database structure could be used, e.g. an
AVL tree rather than an Alist.

• The product of the integers could be accumulated
rather than their sum.

• By changing the glue code, we could change the key
and accumulated value, e.g. to accumulate symbols
associated with each numeric value.

209



Generic Software Components

We claim that to be effectively reusable, software
components must be generic. Otherwise:

• Each decision that is hard-coded into a component
becomes a requirement on the use of that component.

• There will be a combinatoric number of components
based on combinations of decisions.

• It will be hard to find the right component among the
many available.

• Learning the requirements of a component becomes a
burden on the user.

• Conforming to the requirements reduces the benefit
of reuse.

• Changes will require changes of components.

Instead, there should be only one generic version of
each component, which should serve for all uses in all
languages.

210



Generic Component: Views

A simple generic component such as sum involves several
types, mappings, and a constant:

• Tacc, accumulator type. sum is defined for any type
that defines a + operator, including integer, real,
boolean, string, and any application type that
defines +.

• Constant C0 : Tacc, initial value of the accumulator.
C0 defaults to the zero value of the type Tacc; it is
possible to specify a sum with a non-zero initial value
(e.g. a taxi meter).

• Trec, accumulator record type. A component such as
sum never “owns” its storage; instead, the storage is
owned by some outside component and passed to sum

as a parameter.

• A mapping Macc : Trec → Tacc that specifies how to
obtain the data for this instance of sum from data
of type Trec. This mapping must allow both reading
and writing of the accumulator value. There could be
multiple instances of sum data in a Trec, e.g., it might
be desired to sum both cost and shipping weight at
the same time.

211



Generic Component: Views ...

• View type Vrec, which wraps Trec and defines Macc,
C0, and the name of Vitem. Vrec lists myadder as a
superclass so that it inherits generics that do the work
of sum.

• Titem, type of the item from with the summand is
derived.

• A mapping Mitem : Titem → Tacc that specifies how
to obtain the data to be summed from each item of
type Titem.

• A predicate Pitem : Titem → {T, F} that determines
whether an item should be summed. Pitem defaults to
T .

• View type Vitem, which wraps Titem and defines Mitem

and Pitem.

Clearly, it is necessary to produce most of this
automatically, or the component will be too hard to reuse.

212



Program Representation

A program is represented as a network of component
instances. A component specification describes a class
of instances.

Components are connected via interfaces, each with
multiple parameters, often bi-directional.

A component specification contains:

• Descriptions of interfaces of the component

• Descriptions of types used within the component

• Descriptions of properties, such as the summand of
sum

• Specifications for making views from the completed
component instance.

213



Component Specification

(defcspec

’(sum abbrev add

interfaces ((accout accumulator offers

((item item in)

(acc sumd out)

(outt conttype out))))

types ((item anything t)

(conttype (hasop +) nil)

(sumd (sum conttype) myadder))

props

((test (prop item boolean)

() true)

(summand (prop item conttype))

(initial-value (constant conttype) ()

(zero (a conttype)))

(dataview (viewtype item))

(accum (choice sumd sum)) )

otspecs ((item (test summand))

(sumd (initial-value dataview

accum))) ))

214



Inference and Propagation

Inference of types and properties occurs within
component instances, guided by component specs. Most
properties are inferred automatically; in some cases, the
user is asked via menu.

When a type or value that is part of an interface is
inferred, it is propagated across the interface to the other
component, where it may cause additional inferences. cf.
constraint propagation in Waltz filtering and MOLGEN.

215



Type Propagation Example

Assume that the sum is the last component added; the
following steps occur:

•When the summand is selected, the type integer

becomes the accumulator type for the sum.

• The sum sends its accumulator type to find-update.

• find-update sends its accumulator type to alist.

• alist infers its element type (a combination of key
and accumulator) and its data structure type (a list
of elements) and sends its data structure type back to
find-update.

• find-update sends the data structure type to
iter-acc as its accumulator type.

• iter-acc will declare a variable to hold the alist.

216



Modifying Properties

Properties such as the test or summand can be specified
in several ways:

• by specifying the name of a function to compute the
property

• by entering a bit of Glisp code, e.g.

(> (size self) 3)

using self to refer to the item being tested

• by entering a graphical specification of a function
using VIP

217



Partial Evaluation

• Evaluation of cast and funcall when the type
and “function” arguments are constant, as described
above.

• Evaluation of operations on constants.

• Simplification of if statements when the test value is
known.

• Unrolling of for loops when the loop is over a constant
list. This is used for accumulators which have the
arity *; it has the effect of turning a loop over
the declarative set of accumulators into a sequence
of straight-line code that updates each accumulator
individually.

218



Updating a sum

(glambda (self item)

(if (test (cast item (dataview self)))

((accum self) _+

(summand (cast item (dataview self))))))

219



Generic Iterate-Accumulate

(for x in (seq arg)

(for ac in (accfields arg)

(update (funcall ac acc) x)))

220



C Example

float gpfn2 (struct assemblyc *arg)

{

float acc;

acc = 0.0;

{

struct partc *ptr2; struct partc *x;

struct partc *ptrnext;

ptr2 = NULL;

ptr2 = arg->ptr;

while ( ptr2 != NULL )

{

ptrnext = ptr2->next;

x = ptr2;

if (x->size > 2)

acc += x->weight;

ptr2 = ptrnext;

}

}

return acc;

} /* gpfn2 */

221



Software Reuse

Approaches to automatic programming:

• Power-based: derive program from a small
specification. Typically, this approach uses a small
number of axioms and deep inference.

• Knowledge-based: reuse knowledge that is stored
in the form of programs, equations, facts, rules,
etc. Typically, this approach uses a large amount of
knowledge and shallow inference.

The power-based approach hasn’t gotten very far. That
leaves reuse.

222



Krueger’s Survey of Software Reuse 17

Krueger emphasizes cognitive distance: the difference
between the problem and the expression of the problem
in the programming formalism. Cognitive distance is a
rough estimate of the intellectual effort required to use an
approach.

Emphasis on cognitive distance recognizes an important
fact:

Programming is an activity performed by humans.

Cognitive distance is reduced in two ways:

1. Abstractions in the reuse technique make it easier to
go from a concept of the system to representation in
the reuse technique.

2. Automation reduces the effort to get from the
abstract representation to executable code.

17Krueger, Charles W., “Software Reuse”, ACM Computing Surveys, vol. 24, no. 2 (June 1992), pp.
131-184.

223



Software Reuse

• Proposed in print in 1968 by McIlroy: Mass Produced
Software Components, NATO Software Engineering
Conference.

• It is still not standard practice in software
construction.

• There is renewed interest in how reuse can be made
effective.

The term reuse applies to software construction.
Repeated execution or making distribution copies of the
same software do not count as reuse.

224



Evaluation of Reuse Approaches

An approach to reuse can be characterized along several
dimensions:

1. Abstraction: Abstraction is essential: without it,
the artifact to be reused would have to match the new
problem exactly.

2. Selection: How does the user locate the desired
artifact?

3. Specialization: If an artifact is abstract, it must
be specialized for the application. Specialization
can be done by parameterization, transformation, or
constraints.

4. Integration: How can reusable artifacts be
integrated into a complete system? An integration
framework such as a module interconnection
language may be provided.

225



Abstraction

“Successful application of a reuse technique to
a software engineering technology is inexorably
tied to raising the level of abstraction for that
technology.”

Every software abstraction has two levels:

1. Specification

2. Realization

If there are multiple levels, the realization of one level
may be the specification of the next lower level.

An abstraction has several parts:

1. hidden part: details of the realization that are not
visible in the specification

2. variable part: the part of the specification that can
be varied

3. fixed part: the part of the specification that is fixed

226



Minimizing Cognitive Distance

For a software reuse technique to be effective,
it must reduce the cognitive distance between the
initial concept of a system and its final executable
implementation.

• Use fixed and variable abstractions that are both
succinct and expressive.

• Maximize the hidden part of abstractions.

• Automate the translation from specification to
realization.

227



High-level Languages

• Perhaps the most successful reuse technology

• Factor of 5 speedup in programming [Brooks 75].

• Abstraction: instruction patterns (e.g., loops,
if-then-else, array references).

• Selection: memorize the programming language.

• Specialization: fill in the slots in the instruction
pattern.

• Integration: link editor

• Cognitive distance: often large. System design must
precede coding; low level of abstraction.

228



Design and Code Scavenging

Scavenging: copy as much as possible from existing design
or code, modify it for current application.

• CS education is design scavenging! Programmer
knows a library of reusable designs.

• Reuse works better if code is designed for reuse; but
it is hard to get people to do this.

• Abstraction: designs or source code fragments
represent informal concepts.

• Selection: informal. Programmer must remember or
find reusable code.

• Specialization: manually edit code. This may
introduce errors; cannot “reuse” validation.

• Integration: modify code and/or context of use.

• Cognitive distance: may be large unless reusing one’s
own code.

For a software reuse technique to be effective,
it must be easier to reuse the artifacts than it is
to develop the software from scratch.

229



Source Code Components

Off-the-shelf components used as building blocks for
larger software.

• Examples: sort verb in COBOL, library functions
such as sqrt, Lisp system functions, IMSL library.

• Booch components (based on abstract data types) are
used somewhat.

• Inheritance in object-oriented programming can be
considered to be in this category.

• Abstraction: must provide specifications (aside from
code) of what the components do.

• Selection: Manuals not so good for selection; need
good indexes and automation.

• Specialization: Edit code or parameterize, e.g. by
specifying a “contents” type. Problem: how much
parameterization is possible?

• Integration: Name conflicts may be a problem. Unix
pipes are another form of integration.

• Cognitive distance: small if user already understands
the concept (e.g., matrix inversion).

230



Software Schemas

• Similar to reuse of code, but more abstract.

• A wider range of things can be parameterized: code,
data types, etc.

• Abstraction: abstracts code, data structures.

• Selection: there may be machine help in finding
possibly applicable modules. Must then prove
preconditions.

• Specialization: substituting language constructs into
parameterized parts of schema, or choosing options.

• Integration: done in implementation language, or by
composing schemas.

• Cognitive distance: abstraction allows description of
what rather than how. However, formal description
of even simple abstractions is difficult.

231



Application Generators

• Similar to compilers

• Input specifications are high-level, special-purpose
abstractions from a narrow application domain.

• Code expansion ratio can be high.

• Examples: database generators, report generators,
compiler generators.

• Abstraction: reuse the system architecture, major
subsystems, data structures and algorithms.

• Selection: Choose an application generator for
application domain.

• Specialization: generated from the input specification.

• Integration: none if single system is generated. In
terms of domain abstractions (e.g., tokens passed
between LEX and YACC) otherwise.

• Cognitive distance: Low when fit to application
domain is good.

232



Very-high-level Languages

• Also called executable specification languages.

• May sacrifice speed for generality (“slow is beauti-
ful”).

• “Very high level” components include sets, tuples,
maps, history.

• Abstraction: sets or constraints

• Selection: select appropriate VHLL, language
constructs.

• Specialization: replace high-level constructs with
implementations. If human-guided, can provide good
performance.

• Integration: functional (side-effect-free) languages
simplify integration.

• Cognitive distance: low if the problem fits the
abstractions provided.

233



Transformational Systems

• Software described in a high-level description
language.

• Transformations enhance efficiency and move toward
executable implementation, without changing seman-
tics.

• Separation of “what” from “how”.

• Abstraction: prototypes, development histories,
transformations

• Selection: expert system rules may help selection.

• Specialization: done by transformation

• Integration: analogous to functional composition.

234



Software Architectures

• Large-grain software frameworks for global structure
of software system.

• Examples: database, compiler (e.g. Draco),
blackboard architecture, user interface architecture.

• Abstraction: from application domains

• Selection: similar to software libraries

• Specialization: source-to-source transformations,
component refinements

• Integration: integrates components into a single
framework.

• Cognitive distance: small when used appropriately.

235



Krueger’s Truisms of Software Reuse

1. For a software reuse technique to be effective, it
must reduce the cognitive distance between the
initial concept of a system and its final executable
implementation.

2. For a software reuse technique to be effective, it must
be easier to reuse the artifacts than it is to develop
the software from scratch.

3. To select an artifact for reuse, you must know what it
does.

4. To reuse a software artifact effectively, you must be
able to “find it” faster than you could “build it.”

236



Refine

Refine is a “wide-spectrum” language: it includes
sets, mappings, relations, predicates, enumerations, state
transformation sequences, and both declarative and
procedural statements.

A high-level program in Refine is refined into executable
code by applying transformation rules.

Optimization: e.g., move a predicate outside a
quantifier. For example, if p does not depend on x,

∀x[p ∧ q ⇒ r] → p⇒ ∀x[q ⇒ r]

Cf. moving invariant computations out of loops.

Refinement: move code closer to executable form, e.g.,
convert a bounded quantifier into a loop, or implement a
set by means of a data structure.

237



Form of Rules

Rules can be specified in abbreviated form as
P → Q, or more formally:

∀x1...xn[P (s)⇒ Q(succ(s))]

Example:
class(a) = set ∧ element(a) = x
→ class(a) = mapping ∧ domain(a) = x ∧
range(a) = boolean

or a : ‘set of x′ → a : ‘mapping from x to boolean′

Possible implementations of a set:

Operations ∈ ∩ ∪ ∀ ∃ will be different for each
possible implementation.

238



Refinements: Logic to Code

• Conjuncts with no unknown variables become tests.

• Conjuncts with one unknown variable become
computations to find the values(s) of the variable.

• Implications become if statements.

• Substitutions become variable bindings.

• Bounded quantifiers become enumerations.

239



KIDS

“KIDS [Kestrel Interactive Development System] is
basically a program transformation system – one applies a
sequence of consistency-preserving transformations to an
initial specification and achieves a correct and hopefully
efficient program.”18

Program development in KIDS follows these steps:

• Develop a domain theory:

– types

– functions

– distributive and monotonicity laws

• Create a specification of the program.

• Apply a design tactic: divide and conquer, global
search (binary search, backtrack, branch-and-bound),
local search (hill-climbing).

• Apply optimization: simplification, partial evalua-
tion, finite differencing.

• Apply data type refinements.

• Compile to executable form.

18Smith, Douglas R., “KIDS: A Semiautomatic Program Development System”, IEEE Trans. on Software
Engineering, vol. 16, no. 9, Sept. 1990, pp. 1024-1043.

240



REFINE: Sets

• Type declaration: S : set(Nat)

• Literal sets: {1, 2, 4} {2..5}
• Set former: {f (x) | P (x)}
• Comparison predicates: = 6= ∈ 6∈ ⊆
• Reduction: reduce(op, S)

• Element addition, deletion: S + x S − x

241



REFINE: Sequences

• Type declaration: A : seq(integer)

• Empty sequence: [ ]

• empty(A) : A = [ ]

• Element: A(i)

• Comparison predicates: = 6= ∈ 6∈
• domain(A) = 1..length(A)

• range(A) = {A(i) | i ∈ domain(A)}
• length(A)

• first(A): A(1)

• rest(A)

• append(A, x): insert x at the end of A.

• concat(A,B): concatenate sequences A and B.

242



KIDS Specifications

A specification is a quadruple: F = < D,R, I, O >

D Input type: domain
R Output type: range
I : D → boolean Input condition: assumptions
O : D ×R→ boolean Output condition: feasible solutions

We seek a constructive proof of the theorem:

∀x∈D I(x) ⇒ ∃z∈R O(x, z)

In a program-like form, a specification can be written:
function F (x : D) : set(R)

where I(x)
returns {z | O(x, z)}
= Body

Body is code that can be executed to compute F . A spec
is consistent if:

∀x∈D I(x) ⇒ F (x) = {z | O(x, z)}

243



Directed Inference

Directed inference transforms a source formula into a
target formula.

Conditional patterns are used to perform inference of
several kinds:

C ⇒ (s→ t)

where C is a condition, s is source, t is target, and → is
one of the directions:

⇒ forward inference
⇐ backward inference
= simplification
≥ deriving a lower bound
≤ deriving an upper bound

Directed inference uses logic to help construct a program,
not just to prove it correct.

The programmer selects an expression and the kind
of operation to be performed. Problem: replaying a
derivation if the spec is changed.

244



Mappings

A mapping f : M → S can be classified as:

injective 1-1 f (a) = f (b) ⇔ a = b
surjective onto Range(f ) = S
bijective 1-1 and onto

injective(M : seq(integer), S : set(integer)) : boolean
= range(M) ⊆ S
∧ ∀(i, j)(i ∈ domain(M) ∧ j ∈ domain(M)
∧ i 6= j → M(i) 6= M(j))

bijective(M : seq(integer), S : set(integer)) : boolean
= injective(M,S) ∧ range(M) = S

245



Example: k Queens

The goal is to put k queens on a k × k chess board so
that no two queens can attack each other.

A solution is represented as a sequence assign where
assign(i) is the row of the queen in the i column:
[3, 1, 4, 2]

no two queens per up diagonal(S : seq(integer)) : boolean
= ∀i,j(i ∈ domain(S) ∧ j ∈ domain(S) ∧ i 6= j
⇒ (S(i)− i 6= S(j)− j))

no two queens per down diagonal(S : seq(integer)) : boolean
= ∀i,j(i ∈ domain(S) ∧ j ∈ domain(S) ∧ i 6= j
⇒ (S(i) + i 6= S(j) + j))

Comment: These formulations are programming:

• there could be bugs in the domain theory, just as there
could be bugs in the corresponding programs.

• skill is needed to formulate the problem in a way that
can be turned into an efficient program.

246



Distributive Laws

∀S(injective([ ], S) = true)

∀W,a,S(injective(append(W,a), S)
= (injective(W,S) ∧ a ∈ S ∧ a 6∈ range(W )))

∀W1,W2,S(injective(concat(W1,W2), S)
= (injective(W1, S) ∧ injective(W2, S)
∧range(W1) ∩ range(W2) = {}))

247



Example: k Queens

function Queens(k : integer) : set(seq(integer))
where 1 <= k
returns
{assign | bijective(assign, {1..k})
∧ no two queens per up diagonal(assign)
∧ no two queens per down diagonal(assign)
}

248



Global Search

Global search can be considered to be a tree search:

• Nodes of the tree are intensional descriptions of sets
of solutions. Symbols with a hat, e.g. r̂, refer to such
intensional descriptions.

• Branches correspond to splitting sets into subsets.

• Filters prune set descriptions that contain no
solutions.

249



Global Search Theory

Global search theory is based on operations:

• Split: split a set of candidate solutions

• Extract: extract solutions from a set

• Filter: eliminate sets with no solutions.

Good performance depends on a good filter.

Ideal filter:

∃(z : R)(Satisfies(z, r̂) ∧O(x, z))

Necessary filter: Φ

∃(z : R)(Satisfies(z, r̂) ∧O(x, z))⇒ Φ(x, r̂)

Any necessary filter Φ will do (even True). Skill is needed
to make a good necessary filter Φ. A stronger Φ can prune
more branches, but may be more expensive to compute.

250



Global Search Theory

A global search theory can be converted to a program as
follows, where Φ is a necessary filter

251



Queens as Global Search

The Queens problem can be mapped to the global search
theory as follows:

252



Initial Queens Program

253



Simplification

Simplification allows elimination of conditions such as:
if injective([ ], {1..k}) ∧ ...

254



Context-Dependent Simplification

Part of the specification can be simplified based on
context, e.g. output conditions that unify with input
conditions.

255



Partial Evaluation

Partial evaluation and unfolding (inlining) function
definitions results in:

256



Finite Differencing

Finite differencing replaces expensive operations with
incremental computations.

i 6∈ range(part sol) ∧ i ∈ {1..k} becomes
i ∈ setdiff ({1..k}, range(part sol))

Finite differencing replaces the setdiff operation with a
new variable, unoccupied rows.

257



Algorithm after Finite Differencing

258



Case Analysis

Case analysis recognizes that the two cases of this
algorithm are disjoint and replaces them with an if
statement.

259



Data Type Refinement

Data type refinement replaces sets with data structures.
Selecting the right data structures has a large effect on
efficiency.

260



Results

Optimizations performed using KIDS improved perfor-
mance dramatically: from 3600 seconds to less than one
second.

The user made 16 high-level design decisions, taking 15
minutes for derivation.

KIDS has been used to derive programs for job
scheduling, enumerating cyclic difference sets, graph
coloring, bin packing, binary search, vertex covers of
a graph, linear programming, maximum segment sum,
sorting.

261



Goguen: Theory

theory POSET is

types ELT

functions <=: ELT ELT -> BOOLEAN

vars E1 E2 E3 : ELT

axioms (E1 <= E1)

(E1 <= E3 if E1 <= E2 AND E2 <= E3)

(E1 = E2 if E1 <= E2 AND E2 <= E1)

end POSET

262



‘View’ as used by Goguen

A view of an entity A as a theory T consists
of a mapping from the types of T to the types
of A and a mapping from the operations of T
to the operations of A that preserves arity (the
list of argument types), value type (if any), and
operation attributes such as assoc, comm, and
id: (if any) such that the translation of every
axiom in T is satisfied by A.

view NATD :: POSET => NATURAL is

types (ELT => NATURAL)

ops (<= => DIVIDES)

end NATD

263



Deductive Composition of Astronomical
Software from Subroutine Libraries 19 20

Amphion: Compose programs from a subroutine
library, based on a graphical specification, using
deduction.

SPICE: subroutine library for solar-system geometry.

• Various systems of time: ephemeris time, spacecraft
clock time, etc.

• Various frames of reference

• Light does not travel instantaneously over astronom-
ical distances

Example task: observe the position of a moon of a nearby
planet to determine position of the spacecraft.

19M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, I. Underwood: ”Deductive Composition of
Astronomical Software from Subroutine Libraries”, Proc. 12th Int. Conf on Automated Deduction
(CADE’94), Nancy (France), June 994, LNAI 814, Springer Verlag, pp. 341-355.

20Steve Roach and Jeffrey Van Baalen, “Experience Report on Automated Procedure Construction for
Deductive Synthesis”, Proc. Automated Software Engineering Conf., Sept. 2002, pp. 69-78.

264



Difficulty of Programming

• Subroutines may not be well documented

• User must understand documentation

• Many subroutines: takes time to become familiar with
the collection

• User may rewrite subroutine rather than reusing it

• User might make mistakes, e.g. wrong type of units
of argument

Constructive proof: given a theorem ∀x∃y P (x, y),
prove it by constructing a y that satisfies the theorem.

During program synthesis, witnesses are constructed
for existential terms. The witnesses correspond to
subroutines in the SPICE library (concrete terms).

specification→ theorem→ proof → program

265



Domain Theory

A domain theory provides a logical language for the
application domain:

• Time: time is abstract, but has several concrete
representations (ephemeris time, UTC, spacecraft
clock time)

• Points, rays, planes

• Photon travel

• Events (space-time points)

• Celestial bodies, e.g. Saturn

• Axioms that relate abstract and concrete terms.

∀tc (= (absctt UTC tc)
(absctt Ephemeris (UTC2Ephemeris tc)))

∀tc (= (absctt Ephemeris tc)
(absctt UTC (Ephemeris2UTC tc)))

absctt abstracts from a time system and time coordinate
to an abstract time. These axioms specify what the
conversion functions such as Ephemeris2UTC do.

Representation conversions are combinatorially explosive
because they can loop.

266



Events

An event is a combination of a point in space and a time.

lightlike? is a relation that says that a ray of light leaving
one event will arrive at the other event.

Given the location and time of the origin (event1),
the function recd computes the time at the destination
(event2) such that (lightlike? event1 event2). The
function sent computes the time of sending in event1
to match the time at event2.

∀ onid dnid ets
(lightlike?

(obj&time2event (absid onid)
(absctt Ephemeris ets))

(obj&time2event (absid dnid)
(absctt Ephemeris (recd onid dnid ets))

267



SNARK Theorem Prover

The SNARK theorem prover has the following features:

• Resolution

• Paramodulation for handling equality

• Mathematical induction (results in recursive pro-
grams)

• Manna and Waldinger’s deductive tableaux frame-
work

• Proofs can be restricted to be constructive.

268



Axioms

Two kinds of axioms are potentially combinatorically
explosive:

• Representation conversion, e.g. convert between
UTC-Calendar time (string “YYYY MMM DD
HH:SS”) and Ephemeris time (a double float)

• lightlike? axioms

Both allow many possible conversion paths, and perhaps
infinite loops.

269



Astronomical Domain

About 200 axioms are used to describe the domain of
astronomy.

• lightlike?(e1, e2) holds if a photon could leave the
event (position and time) e1 and arrive at event e2.

• ephemeris-object-and-time-to-event yields an event
corresponding to the position of a given astronomical
object (planet or spacecraft) at a given time.

• a-sent(o, d, ta) computes the time a photon must
leave object o to arrive at destination d at time ta.

• Axiom lightlike?-of-a-sent:

(all (o d ta)

(lightlike?

(ephemeris-object-and-time-to-event

o (a-sent o d ta))

(ephemeris-object-and-time-to-event d ta)))

– o = origin

– d = destination

– ta = time of arrival

270



Problem Difficulty

The program out-performs human experts and signifi-
cantly out-performs non-experts:

• Expert who knows subroutine library: 30 minutes

• Non-expert: several days

• Program: 3 minutes

Time to construct specification:

• Expert: a few minutes

• Non-expert: 30 minutes

271



Where is the shadow of Io on Jupiter?

Dotted lines indicate photon motion connections, i.e.
lightlike?.

272



Shadow of Io Theorem

(all (time-voyager-2-c)

(find (shadow-point-c)

(exists

(time-sun sun-spacetime-loc time-io io-spacetime-loc

time-jupiter jupiter-spacetime-loc time-voyager-2

voyager-2-spacetime-loc shadow-point jupiter-ellipsoid

ray-sun-to-io)

(and

(= ray-sun-to-io

(two-points-to-ray

(event-to-position sun-spacetime-loc)

(event-to-position io-spacetime-loc)))

(= jupiter-ellipsoid

(body-and-time-to-ellipsoid jupiter time-jupiter))

(= shadow-point

(intersect-ray-ellipsoid ray-sun-to-io jupiter-ellipsoid))

(lightlike? jupiter-spacetime-loc voyager-2-spacetime-loc)

(lightlike? io-spacetime-loc jupiter-spacetime-loc)

(lightlike? sun-spacetime-loc io-spacetime-loc)

(= voyager-2-spacetime-loc

(ephemeris-object-and-time-to-event voyager-2 time-voyager-2))

(= jupiter-spacetime-loc

(ephemeris-object-and-time-to-event jupiter time-jupiter))

(= io-spacetime-loc

(ephemeris-object-and-time-to-event io time-io))

(= sun-spacetime-loc

(ephemeris-object-and-time-to-event sun time-sun))

(= shadow-point (abs (coords-to-point j2000) shadow-point-c))

(= time-voyager-2

(abs ephemeris-time-to-time time-voyager-2-c))))))

273



Shadow of Io Program

SUBROUTINE SHADOW ( TIMEVO, SHADOW )

DOUBLE PRECISION TIMEVO ...

INTEGER JUPITE

PARAMETER (JUPITE = 599) ...

DOUBLE PRECISION RADJUP ( 3 ) ...

CALL BODVAR ( JUPITE, ’RADII’, DMYO, RADJUP )

TJUPIT = SENT ( JUPITE, VOYGR2, TIMEVO )

CALL FINDPV ( JUPITE, TJUPIT, PJUPIT, DMY20 )

CALL BODMAT ( JUPITE, TJUPIT, MJUPIT )

TIO = SENT ( IO, JUPITE, TJUPIT )

CALL FINDPV ( IO, TIO, PIO, DMY30 )

TSUN = SENT ( SUN, 10, TIO )

CALL FINDPV ( SUN, TSUN, PSUN, DMY40 )

CALL VSUB ( PIO, PSUN, DPSPI )

CALL VSUB ( PSUN, PJUPIT, DPJPS )

CALL MXV ( MJUPIT, DPSPI, XDPSPI )

CALL MXV ( MJUPIT, DPJPS, XDPJPS )

CALL SURFPT ( XDPJPS, XDPSPI, RADJUP ( 1 ),

RADJUP, RADJUP ( 3 ), P, DMY90 )

CALL VSUB ( P, PJUPIT, DPJUPP )

CALL MTXV ( MJUPIT, DPJUPP, SHADOW )

END

274



Theorem Proving

SNARK uses term rewriting based on a recursive path
ordering:

• Replace abstract, non-computable terms with con-
crete, computable ones.

(all (onid dnid eta)

(= (a-sent (abs naif-id-to-body onid)

(abs naif-id-to-body dnid)

(abs ephemeris-time-to-time eta))

(abs ephemeris-time-to-time

(sent onid dnid eta))))

SNARK uses an agenda for ordering formulas to be
proved. Agenda-ordering strategy: give priority to
lightlike?(c, v) involving a constant c and variable v.

Performance of the prover was a continuing problem and
required hand-tuning to keep proofs from taking too long.

275



Result of Ordering

Ordering in the theorem prover produces the strategy:

• First find space-time location of all bodies

• Replace abstract function symbols with concrete ones
(library subroutines).

276



Set-of-Support

Mathematical proof usually involves deep proofs with few
axioms.

The astronomical domain involves shallow proofs with
many axioms. Set-of-support focuses on goals rather
than axioms.

Problem: combination of restrictions loses completeness.

• Set-of-support

• Recursive path ordering

• Constructiveness

They added redundant axioms as a stopgap measure.

277



Performance

Overall system performance is a win:

• Easy to use, even by novices.

• Easier to revise a stored specification than to make a
new one.

• Easy to expand axiom set for new subroutines.

Most programs produced are 2-3 pages of Fortran,
consisting mainly of declarations and subroutine calls.
There are no if statements or loops.

278



Applications of Amphion

• Amphion/NAIF: solar system geometry

• Amphion/CFD: computational fluid dynamics

• Amphion/TOT: space shuttle navigation

279



Software Synthesis in Mechanical CAD 21

Synthesis: What to do → How to do it

Geometric Constraint Satisfaction:

• Given: a set of geometric bodies or geoms

• Given: constraints among the bodies

• Find: configuration of the bodies (position, orienta-
tion, dimension) that satisfies all the constraints.

Solutions to this problem are needed in:

• Constraint-based sketching and design

• Geometric modeling for CAD (computer-aided
design)

• Kinematics analysis of robots and other mechanisms

• Describing mechanical assemblies

21Sanjay Bhansali and Tim J. Hoar, “Automated Software Synthesis: An Application in Mechanical CAD”,
IEEE Trans. Software Engineering, vol. 24, no. 10 (Oct. 1998), pp. 848-862.

280



Degrees of Freedom

The approach is to incrementally solve the problem using
operators that change a degree of freedom:

• preserve existing constraints

• achieve a new constraint

Solvers are specialist programs that modify a geom to
achieve a constraint.

A solver to solve multiple constraints simultaneously
would be quite complex; many solvers are needed.

281



Entities and Constraints

Entities:

• Line: through-point, direction

• Line-segment: end1, end2, length, direction

• Point: x, y, z

• Circle: center, axis, radius

Constraints: e.g. Line-segment:

• InvariantPoint(ls, pls, pg)
• InvariantDirection(ls, v)

• InvariantLength(ls, d)

• 1dConstrainedPoint(ls, pls, locus1)

• 2dConstrainedPoint(ls, pls, locus2)

• FixedDistanceFromPoint(ls, p, d)

282



Example

Existing constraints:

• LS touches line L

• LS is tangent to circle C

Goal constraints:

• LS is oriented in direction D

283



Approach

• Generate logic to solve constraints, ignoring excep-
tional cases. This produces plan fragments.

• Elaborate plan fragments to handle over-constrained
or under-constrained situations.

• Generate mathematical support routines.

State: S = 〈E, C〉 : entities, constraints

Operator: opi : Si → Si+1

The goal is to find a sequence of operators that satisfies
all constraints.

284



Skeletal Plan Fragment Generation

Search is used to find a sequence of operators to achieve
the set of constraints.

Intersect two sets of operators:

• Operators that preserve an existing constraint:
Preserve(1dConstrainedpoint(ls, p, loc)) =

{scale(ls, p, d), rotate(ls, p, θ),
translate(ls, vector(p, arbitraryP t(loc)))}

• Operators that achieve an unsatisfied constraint

Choose one operator from the intersection, repeat (i.e.
search). Heuristic: largest subsets are tried first.

This process is repeated until all constraints have been
solved, or no further progress is possible.

285



Constraint Matching

Intersection of sets of operations is done by unification.

In addition to standard unification, an attempt is made
to unify two terms using operation-matching rules; there
are 18 rules, e.g.:

• Unify overlapping numerical intervals:
[L1, U1] ∪ [L2, U2] = [max(L1, L2),min(U1, U2)]

• Intersection of two loci, e.g. unification of a point
along one line and a point along another line is a point
at the intersection of the lines.

286



Example

• Existing: InvariantLength(LS, D), 1dConstrained-
Point(LS.END1, L)

• Goal: FixedDistanceFromPoint(LS,P,R)

Search produces two plans:

• Rotate the line segment until it is tangent to the circle

• Translate the line segment until it touches the circle

287



Example ...

288



Plan Fragment Elaboration

Skeletal plans ignore exceptions. Skeletal plan fragments
are elaborated to:

• Eliminate plans that may not produce a solution

• Use principle of least motion to find the lowest-cost
solution.

Terms that appear in operations are mapped to (hand-
written) functions.

If statements are introduced for possibly over-constrained
terms; loops are introduced to select the best solution
for under-constrained terms.

289



Results

About 80% of generated programs were correct. Still, the
project was a success:

• Task complexity: these solvers are complex; doing
them by hand is costly, error-prone.

• Combinatorial effects: a small number of basic
concepts are combined in many ways.

• Similarity of specifications: specs can be written
succinctly at a high level of abstraction.

• Hybrid reuse strategy: support modules written
manually.

• Requirement of consistency: human-written routines
might have more variability.

• Incremental approach: early successes were extended.

290


