
Integrated Computer-Aided Engineering 16 (2009) 181–191 181
DOI 10.3233/ICA-2009-0312
IOS Press

Computer aided software design via inference
and constraint propagation

Gordon S. Novak Jr.∗
Department of Computer Sciences, University of Texas at Austin, Austin, USA

Abstract. Engineered systems, including computer programs, are mainly composed of versions of known components. We
describe systems that produce computer software by composition and specialization of generic software components. The work
of the human designer is reduced because components can infer or default many specifications, propagating them to connected
components. Specialized programs can be constructed rapidly and easily using a graphical programming interface. We describe
systems that can capture and understand data from the web, allowing a user to write programs easily to analyze the data. Web
pages that perform calculations or data lookup can be treated as remote procedure calls, allowing calculations, proprietary data
and real-time data to be used. Examples are presented to illustrate construction of programs for analysis of web data. These
capabilities provide connectivity between web data, codified knowledge, and generic programs, providing a pathway to fulfillment
of the promise of integration of the vast amount of information on the web.

1. Introduction

Engineered systems, including computer programs,
are mainly composed of versions of known compo-
nents. Components that are connected mutually con-
strain each other. Engineering design involves selec-
tion and parameterization of components such that the
goals of the system are satisfied, constraints of com-
ponents are met, and cost is minimized. Detailed de-
sign is difficult due to a large number of components,
parameters, and constraints.

We describe systems that produce computer software
by composition and specialization of generic software
components. Computer software is unique because the
manufacturing cost of software is near zero. We have
compiler technology that can produce specialized ver-
sions of generic software components. Generics are
parameterized using views that describe how the con-
crete data of an application relate to the abstract types
in terms of which the generics are written. A single
generic can be specialized to produce program code
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for a variety of data types in a variety of programming
languages.

Since production of software code from parameter-
ized generics is mechanized, the process of program-
ming can be raised a level to selection of components
and specification of parameters, rather than writing of
code. A potential difficulty is that if a generic is to
be flexible enough to meet all the needs of designers,
it must have many parameters, and specification of so
many parameters will remain a burden. Our approach
reduces the input required from the human designer.
Components are able to infer or default many of their
parameters; parameters that become defined in one
component are propagated to connected components,
often leading to further inference and propagation. We
have developed a graphical programming system that
allows rapid and easy construction of specialized pro-
grams from generic components.

Our work is based on reuse and specialization of
generic procedures through views. A view is a set of
mappings that translate between a concrete type and
the features expected by an abstract type. A generic
procedure defined in terms of abstract types can then
be specialized through views, so that the specialized
procedure operates on data of the concrete types. This
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ability allows knowledge, in the form of generic proce-
dures, to operate on data in arbitrary formats.

The web provides large amounts of data and special-
ized procedures, but it is not easy to integrate data and
procedures from separate sources to perform a desired
analysis. We describe several systems that make it easy
to acquire data from the web, understand it, connect it
with a knowledge base, and write programs to perform
a desired analysis using the data.

XML and HTML are widely used for structuring data
in tree or table form, and a great deal of formatted data
is available on the web. However, the tags and table
headers of these formats do not adequately describe the
data. We have written a data grokker that both parses
data into a program-usable form and also develops data
type descriptions that link the data to knowledge asso-
ciated with common data types; this makes the knowl-
edge usable in generating programs that operate on the
data.

There are numerous web pages that provide real-
time data (e.g. stock prices), proprietary database ac-
cess, or calculations (e.g. converting latitude/longitude
coordinates to UTM). We have developed an interface
that makes it easy to treat such a web page as a remote
procedure call, passing data to the web page as input
and then parsing the result out of the web page that is
returned. When such web pages are linked to known
data types in the knowledge base, the web pages can be
used as part of analysis programs.

We will describe each of these systems and illustrate
the process with working examples. We begin with
an example of graphical program development to il-
lustrate how programs can be constructed quickly and
easily. Next, we describe the process by which the min-
imal specifications provided by the user via the graph-
ical interface are expanded into a complete and con-
sistent program specification and then converted into
executable code. All of the programs described in this
paper have been implemented as shown.

The approach of parameter inference and propaga-
tion that we describe seems applicable to other kinds
of engineering design as well. Our system uses a set
of procedures to perform several kinds of inferences.
It would also be possible to include small expert sys-
tems to make choices of components and parameters.
For example, in the software domain, an association
list is preferred for small lookup tables (simple code),
while an AVL-tree might be preferred for large data
sets (better performance). Given information about ex-
pected data set sizes, a small expert system could make
the appropriate choice automatically. Engineering de-

sign tradeoffs, including negative constraints, could be
incorporated as needed for different engineering do-
mains.

2. Graphical programming

We begin with an example to illustrate graphical pro-
gramming; later sections describe the technical details
that are required to implement the simplified interface
presented here.

Today there are billions of web pages, and powerful
search engines make it relatively easy to find data rel-
evant to a user’s needs; however, the data may not be
in the units or form needed. In order to make use of
data obtained from the web, users need to write cus-
tom programs to analyze and combine such data. Since
traditional programming requires a precise fit between
data and program, there is almost no chance that a pre-
written program will work with web data. We have
implemented a graphical user interface that allows easy
and rapid interactive construction of a custom program
by specialization of reusable components.

The interface is mixed-initiative; sometimes it
prompts the user for inputs, and sometimes the user
clicks on a diagram button to select a filler for an inter-
face. Some parameters automatically receive default
values; the user can override defaults by clicking on
a box and selecting the parameter and its value from
menus. An example of the program diagram for an
analysis of web data (a list of data from a music CD
catalog) is shown in Fig. 1.

In this example, the user wishes to analyze a catalog
of music CD’s, producing data about CD’s from each
different country. The user clicks a command button to
create a program, then selects from a menu a program
in the class iterate-accumulate; such a program
will iterate over a collection of items and accumulate
something about each item. The user selects the start-
ing type as catalog, which was produced by the sys-
tem when it read the data from the web. A catalog
contains a set of cds, so this is selected as the col-
lection over which to iterate; the system can infer that
the type of an item is cd. Next, the user clicks on the
Acc button of the iter-acc box, to specify the ac-
cumulation to be performed; the system responds with
a menu of possible accumulators. To analyze CD’s
separately by country, the user selects find-update
as the accumulator. find-update looks up an item
in a database, then performs some update to the infor-
mation associated with the item. find-update asks
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Fig. 1. Program specification diagram.

the user for the key to be used in matching the item,
presenting a menu of title, artist, country,
company, and year; these choices are derived from
the data type of cd, which was inferred from the web
data. The user selects country as the key value.
find-update also has an Acc button that accepts
accumulators. The user selects counting the number
of CD’s for each country, making a list of the names
of artists, and summing the price of the CD’s; each of
these is shown as a separate box in the diagram. Fi-
nally, the user clicks on the Storage button of the
find-update box and selects alist (association
list, a simple kind of database) as the storage.

Although this process is lengthy when described in
words, it takes the user less than a minute to understand
the data from the web, enter the diagram and produce
the program, and run the program to get the answer;
it is fast because it does not require any textual pro-
gramming. The system produces a program, named
gpfn12, that can be applied to the data from the web
to produce the desired analysis:

>(gpfn12 *xmldata*)

(("Norway" 1 ("Jorn Hoel") 7.90)
("EU" 5

("Simply Red" "Kim Larsen"
"Savage Rose" "Andrea Bocelli"
"Eros Ramazzotti")

46.60)
... )

The result is a list of lists; each sublist contains the
name of the country, the number of CD’s from that
country, a list of the artist names, and the total price of
the CD’s.

An important feature of the user interface is that it
uses context to help the user make most choices by
menu selection. The system knows the types of data
at each point and uses these types to derive menus
of sensible options from which the user can choose.
These menus include knowledge associated with the
types by inheritance, e.g. if the data contains a zip code,
properties associated with the zip code can be included
in the program.

The style of program design used here involves se-
lection and connection of boxes, followed by further
specification of their properties. This fits with the no-
tion of progressive deepening that Herbert A. Simon
and colleagues observed in human designers [10].

Graphical programmingallows a user to create a cus-
tom analysis of web data based on the user’s under-
standing of the data, but does not require the user to
know the details of textual programming.

3. Program specialization through views

Programming languages generally associate fixed or
tightly parameterized types with the arguments of a pro-
cedure; unfortunately, the rigidity of these types pre-
vents easy reuse of the procedure, causing a lack of
connectivity between data, programs, and knowledge.
Although some languages allow the use of a functor,
such as a Comparator in Java [26], a human pro-
grammer must understand the data and the interface and
construct the functor, and there is a runtime penalty of
interpretive overhead. This makes reuse difficult, slow,
and costly [13]. A better mechanism is needed to con-
nect the types of the new data with the types expected
by reusable procedures.
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A view [16,17] is a data type that is used to connect a
concrete (application) type to generic procedures. The
view has the concrete type as its stored data; it defines
methods that make the concrete type look like the ab-
stract type assumed by the generic procedures. Com-
piling a generic with respect to the view type produces a
specialized version of the generic that operates directly
on the application data. Views are somewhat similar
to functors in Java, but partial evaluation during com-
pilation causes the translations specified by the views
to become hard-coded and efficient, as compared to
creation of interpreted functor objects in Java. Views
allow reuse of generic procedures with arbitrary data
that may be obtained from the web. Since a view is
purely gedanken and does not add anything to the data,
the same data can have multiple views. The specialized
versions of generic procedures are mechanically trans-
lated into the desired programming language; currently,
Lisp, C, C++, Java, and Pascal are available.

Although views are somewhat complex, we have
developed automated systems to help construct views
for data structures [17] and mathematical representa-
tions [16]. Views are essential for making programs
reusable with web data in arbitrary formats. Automa-
tion of the view creation process makes the use of views
transparent to the user.

4. System architecture

The architecture of our system is shown in Fig. 2.
The user interacts with the graphical programming sys-
tem to produce a declarative representation of the pro-
gram design as a network of component instances, each
of which represents a kind of component described by
a component specification. There can be multiple in-
stances of the same kind of component in a network.
The component instances can be mechanically trans-
lated into a set of views. Generic components are con-
verted, by compilation through views and partial eval-
uation, into a program in the desired programming lan-
guage. From the perspective of this paper, the net-
work of component instances is the finished specifica-
tion of the program, since everything else is produced
mechanically by compilation processes.

Components are connected via interfaces, each of
which contains multiple parameters. In some cases,
an interface may be filled by multiple components, as
shown in Fig. 1 where several accumulators are con-
nected to the find-update box. The network of

component instances is reflected in the boxes and con-
nections shown by the graphical user interface.

A component specification describes the types, func-
tions, and constants needed by an instance, how they
are related, and how some of them may be inferred.

A component instance is usually created when the
user selects it from a menu. It will receive parame-
ter values by user input, or by propagation from oth-
er components to which it is connected. When a pa-
rameter value becomes defined, the component spec-
ification is examined to see whether other parameters
can be derived by inference; if so, these values may be
propagated to other components via connections.

5. Generic programs

Although languages such as C++, Java, and Haskell
allow some degree of type parameterization of proce-
dures, and therefore some degree of genericity, we find
that they do not allow enough for easily reusable gener-
ics. While it is possible, with sufficient effort, to write
any program in any language, effective reuse requires
that it be easier to obtain a program by reuse than to
write it from scratch [11]. This section describes fea-
tures needed for effective reusability.

Any assumption made by a generic becomes a re-
quirement for its reuse; if a generic makes multiple as-
sumptions, there will have to be a combinatoric num-
ber of generics with different sets of assumption choic-
es [4]. Thus, it is better for a generic to make few
assumptions, but this leads to a larger number of pa-
rameters. For example, a sorting program that uses the
< operator can only sort objects that can be compared
by < and can only sort them in one way; but a sort-
ing program that allows the comparison function to be
specified has an additional parameter.

Our approach is to try to minimize the assumptions
made by generics, so that a single generic will be wide-
ly reusable. The interface between a generic and its da-
ta will always be mediated by views. This leads to two
potential problems: inefficiency and a large specifica-
tion. The inefficiency that would be caused by runtime
interpretation is eliminated by partial evaluation that
expands interface functions in-line during compilation
and optimizes the resulting code. The burden of a large
specification is removed from the user by inference and
propagation of parameters.

A further need is an ability for generics to create
data structures that incorporate data from other gener-
ics. Other languages provide an ability to specify a
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type parameter, e.g. to allow a container type that con-
tains application data. We find that applications require
an ability to construct data structures that combine da-
ta from multiple generics and to propagate data struc-
tures between generics. While other languages gener-
ally require that type parameters be specified manually
by humans, our system derives the necessary types by
inference and propagates them between components.

The overall structure of a program is based on a pro-
gram framework, such as iterate-accumulate
or heuristic-search. The framework usually
has interfaces for attaching related components such
as accumulators or database components. A set of
commonly useful accumulators has been implement-
ed, including sum, product, count, average,
max, min, argmax, argmin, statistics, and
histogram. Data accumulators such aslistof and
queue allow individual values to be accumulated. The
database components includealist (association list),
avl-tree, array, and histo. Accumulators can

Fig. 3. Graphical Predicate Specification: size > 3.

be chained, so that it is possible to create an array of
queues of values.

Generic programs often have places where mappings
can be inserted, e.g. from an item to the value to be
accumulated. In addition to selecting a field or com-
puted value of the item, it is also possible to insert bits
of arbitrary code in several ways: a separately written
function can be named, a fragment of source code can
be included, or a function can be created graphically as
shown in Fig. 3.

In the following section, we describe the inference
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and propagation processes that perform much of the
work of specification.

6. Inference and propagation

The ease of use of the graphical programming inter-
face is based on the system’s ability to infer and propa-
gate data types and other parameters as the program is
constructed. A program such as the example described
in Fig. 1 is composed of reusable generic components
such as iterate-accumulate, find-update
and alist. The way in which these components are
combined, and the data types on which they operate,
are unknown until the program structure is created by
the user. It is not easy to combine generic components
in a variety of ways and make them work together on
arbitrary data. We believe that understanding and man-
aging the interactions between components is one of
the main tasks performed by human programmers. In
analyzing a hand-written program [18], we found that
although the program was composed of identifiable and
well-understood abstract components, the code of the
program scrambled together fragments of code corre-
sponding to the different components. The software
components interact strongly and parameterize each
other. The fact that information from a simple design
decision becomes spread throughout program code was
noted by Balzer [2].

In order for reusable components to work together
with arbitrary data, the components must have many
parameters. For example, the average component,
which averages data values over a set of items, has an
interface function that maps from the item type to the
value to be averaged and a predicate to test whether an
item should be included in computing the average. In
addition, the averaging component has some interme-
diate data used to sum data for the average and to count
the number of instances; this data, in turn, must be
stored by the data structure of the database component
selected as a parameter to find-update. The type
of the sum data will be the same as the type of data be-
ing averaged, which may include units of measurement
as well as numeric type.

Our approach is to write very general components
with many parameters. Most of these parameters can be
defaulted, and optimization by means of partial evalua-
tion will remove unused code. It is easier to customize
general code by defaulting and eliminating unused code
than to synthesize and integrate new code.

There is a serious problem in constructing programs
from components: the components have many parame-
ters, and these parameters must be mutually consistent
so that the components can inter-operate. If the user
had to specify all the parameters, it would be as difficult
as ordinary programming. The key insights are that
many of the parameters can be inferred, and that the
structure of the program can be exploited to propagate
parameters between components and simplify the user
interface.

Components infer parameters based both on other
parameter values and on information in their compo-
nent specifications. For example, iterate-accum-
ulate iterates over a collection of items; once the type
of the input is known, type filtering is used to restrict
the possibilities for the collection to parts of the input
whose type is some kind of a collection, such as an ar-
ray or linked list. If there is only one possibility, it can
be chosen automatically; otherwise, the user is asked
to choose from a menu. Because of type filtering, only
sensible choices are presented in the menu.

Once the system knows the collection type, it can
infer the item type. Parameter values that become
known in one component are propagated to other com-
ponents that are connected to it, leading to further infer-
ence and propagation. Thus, the item type inferred by
iterate-accumulate is sent to find-update
as the type of its input. Some parameters are defaulted,
e.g. most accumulator components have a test (to
decide whether to include an item in the accumulation)
that defaults to true. A default can be over-ridden by
specifying the parameter explicitly. Known parameter
values are used to help the user specify other parame-
ters, e.g. a known source type, together with require-
ments on the result (e.g., only types that support both
+ and / can be averaged), can be used to construct a
filtered menu of possible values for the parameter. Se-
lection of a value to be averaged implies the type of the
accumulator used in the average.

An important kind of inference is construction of
data structures within the program. In our example,
find-update is connected to an arbitrary set of ac-
cumulators, each of which has its own kind of data,
and to some kind of database, which imposes its own
structure on its data. Propagation allows these sepa-
rate sources of data type information to be combined.
Each accumulator sends the types of the data it needs
to find-update. find-update combines these
into a record; it passes the type of the ensemble of
accumulator data to the database program, alist, as
well as passing back to the accumulator an access func-
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tion to tell it how to access its data within the record.
alist adds to the data provided by find-update
the data that alist needs, creating a composite data
type that is passed back to find-update as the type
of the database as a whole. find-update passes
the database type to iterate-accumulate, which
must hold the data for the program. Although there is
much activity of this sort behind the scenes, the user
does not need to be concerned with it. Automatic con-
struction of data structures is only triggered when all
the inputs are available, so it will always work; as new
components are added, it may be triggered again and
re-derive the data structures.

Most of the inferences performed by components are
rather simple. However, it would be possible to have
a small expert system to perform some kinds of infer-
ence and component selection based on facts about the
interfaces, e.g. to select an appropriate implementation
for the database based on the expected size of the data
set.

Propagation occurs when a new value is determined
for a parameter that is connected to another compo-
nent; the new value will be sent to the other component,
which will cause its inference procedures to be invoked.
Inference is performed when a new parameter value
becomes defined; each item in the component specifi-
cation that depends on the new value is examined, pos-
sibly inferring another new value. This process prop-
agates new information and changes through the net-
work; it is analogous to the constraint propagation in
Waltz filtering [25] and MOLGEN [23] and performs
the progressive deepening noted by Simon [10].

A key requirement for integration of web data with
reusable programs is usability: the user should not have
to do detailed programming in order to create a custom
analysis of web data. Because our system understands
web data and creates and propagates data types, the
user sees only menu selections that make sense and can
easily and rapidly create the desired programs.

7. Data understanding

Large amounts of data are available on the web in
tree-structured XML or in HTML tables. However,
before this data can be used, it must be parsed, under-
stood, and reduced to a form in which the meaning of
the data is usable. We have developed software that can
parse and create data types for well-structured XML
data obtained from the web, making the data usable
with the program generation tools described previously.

We believe that similar techniques could be extended
to HTML tables.

The meaning of data is most often implicit. Some
clues to the meaning can be found in XML tags and in
the data values themselves, but important facts about
data (such as type or units of measurement) are typi-
cally left unspecified. In order for web data to be used
in an analysis, these facts must be determined, and our
system attempts to infer some of them. Certain data
values are recognizable as naming members of finite
sets, e.g. month names or state abbreviations; finding
such data values implies the type of the data. Our
system recognizes special data formats such as phone
numbers, URL’s, and dates (in several commonly used
formats). Even purely numeric data formats may be
recognizable, such as currency values or zip codes, es-
pecially when the data form is confirmed by an appro-
priate tag name (e.g., “price” suggests a currency val-
ue). Data that cannot be parsed as a recognized data
type are left as is and described as string; there is no
attempt to parse natural language.

As data values are parsed from a web page, the sys-
tem converts them into forms that are usable for analy-
sis. Numbers are converted into machine binary so that
they can be used in calculations. State names or abbre-
viations are converted so that they link to knowledge
stored for each state (e.g. population, land area).

Dates occur in a number of different formats; each
is converted into a common structured form so that
operations on dates (e.g. comparisons, calculations of
time between dates) can be done, even on dates with
different syntaxes on the web.

As data are being parsed from an XML file, a struc-
tured description of the data is built. The data itself
is translated into Lisp data structures that can be used
in computations, and the data type description is con-
structed in the form used by the GLisp compiler [14].
Since XML data is structured, parsing a single XML
file often results in multiple data types. Repetitions of
similar data are often found; these are converted into
a listof structure for which iterators exist. Once
the data has been parsed into Lisp form, it would be
easy to re-format and output the data for use by a pro-
gram in another programming language. Since the data
has been understood and related to factual knowledge
and procedures, this re-formating could include con-
versions such as converting units of measurement [15]
or coordinate systems.

A simple function call containing the URL of web
data is all that is needed to both parse the data into
internal form and create the data structure descriptions,
e.g.:
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(groknroll
"www.w3schools.com/xml/cd_catalog.
xml")

This call reads and understands XML data from the
web representing a catalog of music CD’s, as used in
our examples. There also is a command button on our
programming interface that accepts a URL and then
retrieves and understands the data.

The data understanding software described here is
sufficient to parse well-structured XML data and allow
programs to be generated over the data using the pro-
gram generation tools described earlier. Even though
the computer may not have a full understanding of the
data, the XML tags that become field names in the data
types are likely to be descriptive enough that the menus
shown to a human user during program construction
will be meaningful.

While HTML files can be complicated, it is often the
case that a web page contains a large table surrounded
by many other things. It should fairly easy to extract
the data from the table in a manner similar to that used
for XML data, while ignoring the rest of the HTML
data.

Not all XML data is well-structured; the techniques
described here would be less useful on poorly structured
data.

8. Web pages as remote procedure calls

Many web pages provide real-time data (e.g., Yahoo
Finance will provide price and other data for a stock up-
on request), access to a proprietary data base,or special-
ized calculations such as converting latitude/longitude
coordinates to UTM. Such data often are only avail-
able dynamically via the web: stock prices change with
time, and companies may provide a few responses from
a proprietary database but not give access to the whole
database.

We have developed an interface that makes it easy to
treat a web page as a remote procedure call. The curl
utility program [6] retrieves a web page given a http
or ftp URL; arguments may be passed to the web
page as part of the request. Our program constructs
an appropriate curl command, retrieving as a file the
web page that is returned. We have a set of parsing
programs that can use a specified grammar to parse the
web page and to extract the desired information. Once
a web page has been encapsulated as an RPC, it can be
used with the other tools described earlier, e.g. to apply
it iteratively over a set of data derived from the web.

In order to use a web page as a remote procedure
call, one should first use the page manually, noting the
arguments passed in the URL and saving the returned
web page as a file. Next, a grammar is written to extract
the desired information from the file; this grammar is
designed to skip over most of the web page down to the
desired information, often by looking for keyword pat-
terns. A function is then written to pass the arguments
and retrieve the data; such a function is remarkably
small and easy to write. For example, the following
function retrieves a stock price using Yahoo Finance:

(defun stockprice (symbol)
(webrpc "http://finance.yahoo.com/

q"
(list "s" symbol)
’(car (seq (skipto "Last Trade:")

(skipto "<b>")
(num))) ) )

This function passes the ticker symbol of a stock to
the web page as the “s” argument. The result is returned
as a .html file; the grammar specifies that the parser
should skip to the text ‘‘Last Trade:’’, then skip
to ‘‘<b>’’, then parse a number; that number is
returned as the answer. Given this small function, stock
prices become as easily accessible as square roots:

>(stockprice ’ibm)

113.94

Some computer expertise is required to analyze a
web page, write a grammar to extract the desired infor-
mation, and write the function as shown above. Some-
one with the appropriate expertise can write a function
for a web page in a few minutes. Once written, the
function can made available as knowledge associated
with a data type and can be used by any user.

9. Associating knowledge with data

Web data often involve standard data types such as
state names, dates, telephone numbers, zip codes, etc.
These known data types, in turn, potentially have a great
deal of procedural and factual knowledge associated
with them, especially when linked to web pages as
described above. The type system of our language
allows knowledge to be associated with these types;
this can include constant values, values looked up in
tables, and procedures. Procedures can include such
things as how to compare two dates, as well as retrieval
of web data:
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>(zipcode 94025)

("Menlo Park" CA 94025 37.452
-122.184)

In this example, knowledge that an integer represents
a zip code allows retrieval of the associated city, state,
and location coordinates from a web site. By linking
the zip code to this related data, additional knowledge
becomes available, e.g. there is a function to compute
distance between latitude/longitude positions, and this
is used to transparently define distance between zip
codes. This linking of knowledge about data types al-
lows very flexible linking of information, e.g. a tele-
phone number can be looked up to find a zip code,
making all of the knowledge associated with zip codes
also available for phone numbers.

We have written programs [16] to facilitate the cre-
ation of views that connect structured data to known
types that have knowledge associated with them. For
example, a businessmight have definitions of prop-
erties such as debt/equity ratio, defined in terms of oth-
er parameters. By putting the definition of a business
as described in web data into correspondence with the
known types, this knowledge can be reused. It is pos-
sible that web data uses different but equivalent data
to that used in the known types (e.g. radius of a circle
used in the known type, diameter used on the web);
our system allows such differences in terminology to
be translated.

10. Future work

Our current system can infer types for some basic
data; it would be useful to extend this inference to
match web data against an ontology [5] to allow more
accurate classification and understanding of data. Web
data often describe well-known kinds of objects such as
people, addresses, companies, products, etc. If web data
could be matched against an ontology that describes
these classes, a richer understanding of the data could
be obtained. For example, synonyms in XML tags
could be recognized, e.g. either “price” or “cost” might
be used to describe the price of a product. The units of
data are often implicit and might be inferred, e.g. if the
height of a person is 180, the units could be inferred to
be centimeters rather than feet.

Ontologies to match against could be chosen as those
that share the most terms with the data. Of course, it
will not always be possible to match terms correctly;
however, a partial match could be presented to a human

user for editing and selection of additional matching
terms.

We plan to expand the range of programs that can
be created graphically using our system, including an
expanded library as well as geometric and physics anal-
ysis, and creation of intermediate data structures that
are then used by additional programs. Expert systems
to choose data structures and algorithms, based on fea-
tures such as expected data set size, could simplify the
task of specifying programs.

Engineering design in many disciplines is based on
idea of connected components, each of which is an in-
stance of a standard class of components. The tech-
niques presented here seem to be applicable for other
kinds of engineering in addition to software.

11. Related work

KIDS [20] transforms problem statements in first-
order logic into efficient programs for combinatorial
problems. The user selects transformations and sup-
plies a formal domain theory for the application; [21]
describes design theories that represent abstract design
concepts such as divide-and-conquer. These systems
are interesting and powerful, in some cases requiring
mathematical sophistication of the user. Smith [22] de-
scribes combination of components in terms of catego-
ry theory, with specialization of components described
as functors and combination of components as colimit
of categories consisting of types and functions. There
is some similarity in the exchange of information be-
tween components in our system and in their colim-
its. However, while Kestrel’s computation of colimits
is basically a unification process done all at once, our
system performs the information exchange incremen-
tally and uses the partial information to help the user
specify the remaining parameters.

Krueger [11] surveys software reuse, with criteria for
effective reuse. Mili [13] extensively surveys software
reuse, emphasizing technical challenges.

The LabVIEWTM system [9] allows graphical pro-
gramming by connecting components; the connections
represent data flow of streams of numeric values. Our
connections are bi-directional and represent design-
time information such as types.

ML [19] and Haskell [24] include polymorphic func-
tions and functors (functions that map structures of
types and functions to structures). While generics can
be expressed in these languages, the complexity of the
textual type specifications makes the functions harder
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to reuse. Eiffel [12], the Standard Template Library of
C++ [8], and Java provide container classes.

Batory [3] describes the AHEAD tool suite, which
performs step-wise refinement on hierarchical struc-
tures of program and other files, somewhat analo-
gous to aspect-oriented programming. Refinements
are implemented by inclusion of code sections and
expressed by equations in terms of functional com-
position. “Columns”, representing different kinds of
features, are composed separately. The use of layers
whose interfaces are carefully specified allows the de-
veloper to ensure that the layers will interface correctly.
We have focused on adapting interfaces so that generics
can be reused for independently designed data.

Czarnecki and Eisenecker [7] overview methods of
generative programming, including implementation of
generics as templates in C++. Their technique creates
a C++ template for each statement of a programming
language, e.g. if statement. This technique relies on
a standard compiler, but the highly nested structure of
templates is not easy to understand and debug.

Akers, Kant et al. [1] describe SciNapse, which gen-
erates programs to simulate partial differential equa-
tions, e.g. for analysis of derivative securities. Sci-
Napse transforms a small specification into a much
larger program; it propagates parameters between com-
ponents.

12. Discussion

Traditional technologies, including subroutines, tem-
plates, and OOP, inhibit software reuse because they
require a precise match between types used in the ap-
plication and in the reused software. The tendency in
programming languages has been toward increasingly
complex specifications for software modules, with in-
creasingly strict type checking to ensure that modules
and their uses match correctly; the complex specifica-
tions are written by humans. The compiler becomes a
harsh master that criticizes but does not help. In addi-
tion, the user has to know too many details about library
software in order to reuse it, adding a high learning cost
to the cost of reuse. The system described here helps
overcome these problems by adapting generics to the
application (rather than requiring that the application
conform to the library) and by using knowledge about
both the generics and the application types to help the
user make choices by menu (rather than requiring the
user to remember exact names, procedure arguments,
etc.). The programs that result are strongly typed and

get compiled with strict type checking; but instead of
humans writing the complex types, the computer gen-
erates correct types automatically.

The techniques that we describe are somewhat in-
dependent of the GLisp language. Similar techniques
could be used to generate functors for components im-
plemented in a language such as Java. However, our
compiler generates optimized application code similar
to code written by human programmers; Java libraries
using many interface functors would incur significant
overhead due to runtime interpretation.

The techniques described in this paper allow users to
rapidly and easily capture data and procedural knowl-
edge from the web and to reuse a library of generic
procedures to generate custom analyses of web data.
This provides a pathway to fulfillment of the promise
of integration of the vast amount of information on the
web.
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