
CS 375: Compilers

Spring 2018: TTh 12:30 - 2:00 in GDC 1.304, Unique No.
51640.

Guns are prohibited in the instructor's office. I do not want any guns to be
brought to my class. I will not write recommendations for anyone who brings a
gun to campus.

Instructor: Gordon S. Novak Jr., GDC 3.824; Office Hours: TTh 3:30 - 5:00 PM.

TA:

Zhang, Lixun       zhanglx@utexas.edu
Office Hours: TBD

Proctor:

Ke Chen       ke.chen@utexas.edu
Office Hours: TBD

Prerequisites: CS 314 and CS 429. Recommended: CS 439 and CS 345.

Optional Text: Aho, Lam, Sethi, & Ullman, Compilers: Principles, Techniques,
and Tools

Course Notes: Strongly recommended. Available in GSB 3.136 . Available on-
line by Contents or Index or PDF. Also see the Vocabulary.

iClicker: Each student is required to buy/rent an iClicker (any version of
iClicker device; not iClicker GO app). This will be used for attendance and to
reinforce and practice with the class material. Two iClicker points are given just
for voting, and an additional point is given for a correct answer. Most iClicker
questions and answers are online at Clicker Questions, and it is okay to
review them in advance. The clicker scores will be converted to a grade by
making the highest student score at least 108 and linearly scaling other scores;
this gives some extra points to account for minor illness, forgotten or
malfunctioning clicker, etc. Bringing another student's clicker to class is
considered to be cheating.

Register your iClicker via Canvas.

Web Page: http://www.cs.utexas.edu/users/novak/cs375.html

Program Directory: /projects/cs375/ on CS Linux machines.



FTP Directory: ftp://ftp.cs.utexas.edu/pub/novak/cs375/

Course Description:

CS 375 covers the design of Compilers, which translate programming languages
that are easy for humans to use (Java, C++, etc.) into the difficult-to-understand
machine language that is executed by computer hardware. Because machine
language is the only language that can actually be executed, the compiler, along
with the operating system, is one of the central pieces of systems software that
makes computers usable.

This course will cover the full range of compiler topics. Each student will write
a real compiler for most of the Pascal programming language, producing
machine code that we will run on hardware. This compiler is an excellent
capstone project for a degree in Computer Science: it is a large project that
produces an industrial-scale software product. Algorithms, Data Structures,
Programming Languages, Architecture, and Theory are combined in a compiler,
so this course brings together the courses of the undergraduate CS curriculum
into a coherent whole.

By the end of the course, the student will have completed a significant rite of
passage and have the confidence of having written a major component of
systems software.

The course covers the major parts of a compiler, in the order in which they
operate in the compiler itself:

Lexical Analyzer: The Lexical Analyzer or Lexer reads characters from
the input file and groups the characters into words or tokens in internal
form: keywords, identifiers, numbers, operators.
Parser: The Parser receives a linear sequence of tokens from the Lexer
and combines them into structured sentences in the form of abstract
syntax trees or ASTs.
Semantics: Semantic (meaning) processing includes type checking and
generation of code to access data structures such as arrays, pointers and
records.
Optimization: The efficiency of the code produced by the compiler can be
dramatically improved by optimization. The optimizer makes use of
concepts from CS theory such as graph theory and set theory.
Code Generation: This is the final stage, in which actual machine code is
generated. Theory is used here too, e.g. graph coloring to map the
program onto machine resources such as registers.
Advanced Topics: The course will include the topics of object-oriented
programming, partial evaluation, translation between programming
languages, pattern matching, just-in-time compilation, Lisp, and parsing
English.



Readings in Aho, Lam, Sethi, and Ullman:

Introduction: Chapter 1.
Syntax:

Lexical Analysis: Ch. 3 through 3.4.
Regular Expressions: Ch. 3.3.3
lex: 3.5.

Grammars
Parsing: Ch. 4 through 4.3

Operator Precedence Parsing: not in book.
Recursive Descent Parsing: 4.4 through p. 220.
LR Parsing: 4.5, 4.6.3
yacc: 4.9.

Semantic Analysis
Syntax-directed Translation: Ch. 5.1, 5.3
Type Checking: Ch. 6.5

Error Handling
Symbol Tables: 2.7, 6.3, 6.5
Intermediate Code: Ch. 6 - 6.2, 6.4
Runtime Support: Ch. 7.
Code Generation: Ch. 8.
Optimization: Ch. 9

Grading Policies:

Grades are kept on Canvas. It is your responsibility to check your grades
often to make sure that your assignments have been received and graded.

Course grades are assigned on the scale A = 93-100, A- = 90-93, B+ = 87-90, B
= 83-87, B- = 80-83, etc. provided that the Final Exam grade is at least 65; if
the Final Exam grade is below 65, a lower course grade may be assigned at the
instructor's discretion. Grades are averaged using the following weights:
Midterm Exam 20% Thursday, March 8, in class
Final Exam 30% Friday, May 11, 2-5 PM
Clicker Participation 10%
Programming Assignments: (10% per day late penalty)
Lexical Analyzer 06%
Lexical Analyzer using lex 04%
Parser (total of 3 parts) 18%
Code Generator 12%

All students must complete all exams and programming assignments. This
course has a very heavy programming load, especially in Summer;
students should not take other classes or work while taking CS 375 in Summer.



Programming projects must be your own individual work. Students may
discuss concepts or help with specific problems in another student's code.
However, sharing code, working together on program design or flowcharts, or
reading someone else's code is not allowed. All code that is given in the class
directory may be used as part of your programs.


