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Introduction
In this report I will describe the theory, design, and development of a software-based synthesizer driver meant 

to act the same manner as the Roland GK-2JH guitar synthesizer driver.  The GK-2JK is a hardware unit which mounts 
on the guitar body, below the strings.  It picks up the string vibrations, and converts them into messages which can be 
understood by a synthesizer. The synthesizer then, in turn, plays the messages using the user-selected instrument.  This 
empowers the guitar player to utilize the sounds of thousands of different instruments just by playing guitar.  The 
applications of this capability include music education, composition, and recording.  In general, the driver brings the 
musician and his computer closer together by enabling communication.  Any  device (software or hardware) which acts 
in this manner is considered a synthesizer driver.

The role of the driver is to transcribe polyphonic musical melodies. This problem can be divided into instanta-
neous pitch recognition, note onset/offset  detection, and the dispatch of messages which a synthesizer can understand.  
The detection of pitch in an audio signal is a problem which has long been studied because of its wide range of applica-
tions.  It is a difficult one however, because the pitch an audio signal is a subjective attribute which cannot be directly 
measured. Pitch is defined as the characteristic of a sound which places it at a specific location in the musical scale.  
The ability to detect it varies among different people.  Some are born with “perfect pitch”, which means that they can 
accurately classify the pitch of a sample sound without any reference.  Most people however, can only detect intervals, 
or the difference in pitch between different sounds.  Some suggest that pitch detection might be a learned ability, as 
different cultures often have different musical scales, each with different intervals.  In any case, it is difficult to detect 
any attribute which is, by definition, subjective.  The first approach I took to solving this problem was to determine the 
fundamental frequency of the audio sample, in blocks (windows), and use it to classify its pitch.  While this approach 
resulted in an effective real-time algorithm to detect the pitch of monophonic digital audio, it is ineffective in poly-
phonic applications.  
          In this paper I explore a method of transcribing Polyphonic guitar music using probabilistic modeling.  First, we 
define a state space model, based on (Cemgil, 2004), for generating audio signals not unlike those of stringed instru-
ments.  We then infer the most likely piano roll which would generate the audio waveform.  We do this by generating 
waveforms for every possible piano roll and comparing them to the source.   The closest waveform would give us the 
correct piano roll.  In practice, (because we can't realistically make all those calculations), we do this in real-time as a 
Viterbi MAP state trajectory estimation problem using Switching Kalman Filters (Murphy, 1998).  This means we 
propagate the most likely sequence of states which led to the current audio sample.
          The implementation of my research has been developed in Matlab.  The program is capable of learning parame-
ters from sampled audio data, and Viterbi estimation for polyphonic music.  I planned to implement the code as a VST 
plug-in, but didn't have time.  VST would allow the product to be used in conjunction with a variety of professional 
audio software.  
            The remainder of this document consists of several sections.  I have attempted to order the document in such a 
way that all necessary background theory is presented before its application.  However, I found it difficult to express 
all the background probability while staying on the important issues.   In the first section I describe those physical 
properties of sound waves which are relevant to music.  Second, I provide a primer in the music theory necessary  to 
understanding the implementation.  Third, I explain the MIDI standard and how it enables digital instruments to 
communicate. Finally, I outline the solution of a simplified problem, as well as the algorithms/models utilized in the 
final implementation. To close the document I propose  future enhancements the product. I include my bibliography at 
the end of the document.
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Physical Properties  of Sound Waves
In the section I discuss the physical nature of sound as relevant in the discussion of musical tones and/or 

melodies.  We define pitch as any the attribute of sound which defines it’s placement on the musical scale.  We define 
a tone as any sound which is associated with a pitch.  First I offer a concise explanation by Brian C.J. Moore:  “Sound 
originates from the motion or vibration of an object.  This motion is impressed upon the surrounding medium (usually 
air) as a pattern of changes in pressure.  What actually happens is that the atmospheric particles, or molecules, are 
squeezed closer together than normal (called condensation) and then pulled farther apart than normal (called rarefac-
tion).” (Moore, 1999)  We obtain a graphical representation of a sound be plotting the amplitude of pressure variation 
over time.  We call this plot a waveform.  I provide an example below.  Note because waveforms are a plot against 
time, they are said to exist in the time-domain.  

Figure 1

This waveform is known as a pure-tone.  Remember that a tone is defined 
as any sound which can be classified as having a pitch.  A gunshot is not a tone.  A 
pure tone is named for its very “clean” musical sound, very much similar to that of a 

tuning fork.  A pure tone’s waveform is simply a sine wave, whose frequency 
determines where the note lies on the musical scale.  For example, the commonly 

used A-440 tuning fork produces a wave very similar to a 440 Hz sine wave.  We will 
discuss this in greater detail in the next section.

While pure tones are important in defining pitch and useful in theoretical discussion, we do not encounter them 
in nature.  Instead, we see complex-tones.  Like pure-tones, all complex tones are assigned a unique pitch value.  But 
instead of consisting of a single sine wave at a given frequency, they contain several superimposed sine waves, all 
located at harmonics.  More accurately, a complex tone consists of a fundamental frequency and several overtones.  

We define the ith harmonic of a given frequency as the ith integral multiple of said frequency.  For example, 
the 0th, 1st, and 2nd harmonics of a 440Hz tone would exist at 440Hz, 880Hz, and 1320Hz, respectively.  We define 
the fundamental frequency of a complex tone to be the 0th harmonic.  We similarly define any tones which occur at 
subsequent harmonics as overtones of that fundamental frequency.  The next figure depicts sine waves of frequencies 
at 3rd, 4th, and 5th harmonics combined to form a complex tone.
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Figure 2

Complex tone, containing 3 overtones.

The sound generated from a plucked guitar string is an example of a complex tone.  The waveform is shown 
below.  Note how it resembles a damped sin wave, with the amplitude decreasing over time.

Figure 3

Sampled waveform of a plucked guitar string.  This is an example of a complex tone.
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Music Theory Primer
To begin our primer on music theory, we define a note as any named tone.  The ordered collection of all 

possible notes is known as the musical scale.  We define an interval as the spatial distance, on the musical scale, 
between successive notes.  Commonly occurring intervals are given names.  The smallest interval is the ½-step (or 
semitone), which is used to represent the distance between two adjacent notes on the scale.  The Whole-step is the 
equivalent of two ½-steps.  Some other commonly occurring intervals are the Fifth, Major Third and Minor Third.  We 
can now define a melody as a series of notes played at varying intervals.  

The musical scale is logically divided into groups of twelve notes known as octaves.  Every octave consists of 
twelve semitones which are labeled in the following manner:  C, C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#/Ab, A, A#/Bb, 
B.  We use this scheme because each of these labels represents a unique “sound”, only twelve of which exists.  This 
means that a C note sounds the “same” as a C note in any other octave.  Each octave in the musical scale is labeled by 
an index, starting at 0.  In turn, every note on the musical scale can be uniquely identified by a note label and octave 
index.  Examples are: C0, Db5, and G2.  Middle C is represented as C4.  So, if we know the pitch of a tone, we know 
where it belongs on the musical scale.  But since real instruments don’t make pure tones, we need a way to assign 
pitch.  “Since pitch is a subjective attribute, it cannot be measured directly.   Assigning a pitch value to a sound is 
generally understood to mean specifying the frequency of a pure tone having the same subjective pitch as a sound.”  
(Moore, 1999).  We define the relative frequency (ç) of any note ç as the frequency of said pure tone.  For example, 
(C4) = 261.4Hz.  Next we discuss how the musical scale maps to the human audible frequency range.

The human audible frequency range is approximately 20-20,000Hz.  However, we are not concerned with 
anything above 5Khz, as we are unable to discern the pitch of frequencies in the that range. (Moore, 1999)  The range 
of 0-5kHz is partitioned into eight octaves, each beginning at C, where (C0)=16.4Hz, (C1)=32.7Hz, (C8)=4186Hz.  It 
may be clear now why C4 is known as middle C.  You may notice that (C1) = 2(C0).  This leads us to the real defini-
tion of the octave as the interval between two tones when their frequencies are in a ratio 2:1 (Moore, 1997) We can 
deduce from this that the eight octaves are not the same size, instead they increase exponentially.  Every interval, in 
fact, is actually a relationship between two tones.  The following table depicts common intervals and their associated 
ratios:

Table 1

 Interval  Ratio 
½ step  1:1.05946 
Fifth  3:2 
Maj Third  5:4 
Min Third  6:5 

Description of common intervals
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MIDI Primer
The Musical Instrument Device Interface is widely used by musicians to communicate between digital musical 

instruments.  It is a standard which has been agreed upon by major manufacturers in the industry.  It connects not only 
musical instruments, but all devices such as recorders and lighting systems.  

The communication in a MIDI system is done by sending and receiving messages.  Examples of some mes-
sages related to melody composition are Note-On, Note-Off, Tempo Change, Key-Signature Change, and Time-Signa-
ture change.  The meanings behind these events are self-explanatory.  Each message contains variables specific to the 
message.  For example, a Note-On event would contain information about which note should be played, and the 
volume at which it should be played.  Each note is assigned a specific index.  These indices are standard and are listed 
in Appendix A.  The Key-Signature message would contain the new desired key signature. 

In practice a synthesizer driver would create and dispatch a series of MIDI messages to a synthesizer.  The 
synthesizer would then playback the desired notes using pre-recorded instrument audio samples.

Bayesian  Inference
Bayesian  inference  problems  involve  making  estimates  of  the  current  state  of  a  state-space  system  model,

given  uncertain  or  incomplete  data.   This  consists  of  defining  a  system model  and  then  performing  inference  algo-
rithms on the model.

à State-Space Models

A state-space system model consists of a set of equations which synthesize the output of some physical system.  
Though not always the case, in this paper I limit discussion to systems which operate/evolve as a function of time 
(a.k.a. Dynamical Systems ).

The system is defined, among other things, by the set of possible 'situations', or states, that it can be in at any 
particular time.  The state variable, st, represents the current state of the system at each time t, {t: 0§t§T}.  This can be 
represented as a single variable, or a vector; with continuous or discrete values.  The length of a state vector, » st », is 
labeled as N (N=1 in single variable case).  The sequence state variables, s0:T , are responsible for generating the output 
of the system.  The actual information stored in the state variable depends on the system being described.  In addition 
to the state variable, all we need to define a system is a state transition function, ,

(1)st = Hst-1L,
» st » = N

which describes how the state of the system changes over time.  As time progresses through each time-step, the state 
variable will change to reflect the current time-slice.  In practice, the definition of   can depend on a vector of some 
other constant parameters, q.

(2)st = Hst-1, qL,
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 Notice that this is a recursive definition.  We can then run a simulation of our system over T time-slices, (i.e. 
calculate the progression of states, s0:T ), by specifying the base case, s0, and parameter vector q.  

ü System Observations

In  cases where  the observed output  of  a  physical  system is  digitally sampled, the output  does  not  correspond
exactly to the set of state vectors.   Instead,  it is a function of  the current state.  In this case we add another 'layer' of
variables, y1:T , to represent the observations.  The length of an observation vector, » yt », is given as M (M=1 in single
variable case). Where the value of each observation is given by the observation function, .

(3)
yt = Hst, qL
» yt » = M

In this case we don't need an initial value, as the definition is not recursive.  In summary:

(4)

s0 = p,
st = H, qL,
yt = Hst, qL

» st » = N
» yt » = M

ü Linear Dynamical Systems, (LDS's)

If we only consider models with linear transition functions we are dealing with Linear Dynamical Systems 
(LDS's).  This linearity enables us to define the transition and observation functions using square transformation 
matrices A and C, respectively.  The new equations are:

(5)
st = A st-1

yt = C st,    where

where A is a NäN matrix and  C is a MäM matrix.  An example of a such a system is a damped sinusoidal with a 
constant angular frequency w.  The definition of the state-space model follows.

à Damped Oscillator Example

The generation of a digitally sampled damped sinusoidal of frequency w can be stated as a linear dynamical 
system given by (Cemgil, 2004).  We assume that our observations of the system are digital samples taken at a constant 
rate Fs.  
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ü Observations  -  y1:T

At each time slice the observation represents a single audio sample.  The value of yt represents the 
amplitude of the wave at time t.  It has only a single component, so M=1.

ü State Vector  -  s1:T

 The waves can be generated by a two-dimensional oscillator vector, st, which rotates around the origin with an 
angular frequency w.  The length of vector st corresponds to the initial amplitude of the sinusoidal and decreases over 
time at rate constant r.  This is called the damping coefficient.   Because the variables w and r stay constant for a given 
model, they are parameters,

(6)q = {w, r}
System parameters

The observations are generated by projecting the 2-dimensional state vectors onto a 1-dimensional plane (over 
time).  This is depicted in the figure below (Cemgil, 2004).

Figure 4

A damped oscillator in state space form. Left: At each time step, the state vector
st  rotates by w and its length becomes shorter.  Right: The actual waveform is a one dimen-
sional projection from the two dimensional state vector.

ü Transition Matrix

The transition matrix, A, is responsible for rotating the state vector around the origin by w and decreasing it's 
length by r (i.e. projecting  st-1 fl

A
 st.).  This is defined with Given's rotation matrix, B(w), which rotates a two dimen-

sional vector by w radians:

(7)
B HωL ≡ J Cos@ωD −Sin@ωD

Sin@ωD Cos@ωD N

Given' s rotation matrix.

(8)

A ≡ ρ Bω

A ≡ J ρCos@ωD −ρSin@ωD
ρSin@ωD ρCos@ωD N

State transition matrix
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ü Adding Harmonics

For  a  system modelling  H harmonics,  or  overtones,  we  expand  the  state  vector  and  transition  matrices.   The
length of the state vector will now be 2H.  It stores an (x,y) vector for each oscillator in the system; they are appended
together.  

The  oscillator  at  harmonic  h  rotates  at  an  angular  frequency  h  w  and  is  damped  with  a  coefficient  rh.   The
frequencies  of  overtones  are  discussed  in  an  earlier  section.   The  decreasing  damping  factor,  (decreasing  because
r < 1, and ph = Hph-1L2,   along  the  harmonics  is  consistent  with  real-life  data  from  sampled  instruments.   The  new
transition matrix is defined as:

(9)A ≡

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

ρCos@ωD −ρSin@ωD 0 0 ∫ ∫ 0 0
ρSin@ωD ρCos@ωD 0 0 ∫ ∫ 0 0

0 0 ρ2 Cos@2 ωD −ρ2 Sin@2 ωD ∫ ∫ 0 0
0 0 ρ2 Sin@2 ωD ρ2 Cos@2 ωD ∫ ∫ 0 0
ª ª ª ª ∏ ∏ 0 0
ª ª ª ª ∏ ∏ 0 0
0 0 0 0 0 0 ρH Cos@H ωD −ρH Sin@H ωD
0 0 0 0 0 0 ρH Sin@H ωD ρH Cos@H ωD

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

ü Observation Matrix

The observations are simply projections of the state vector.  We define the observation matrix as 1ä2H dimen-
sional projection matrix:

(10)C = [0    1  ....  0    1]
Observation matrix

ü Deterministic Model

Here are our state/observation equations so far:

Figure 5

st = A st-1

yt = C st

ü Adding some 'randomness'

The above definitions, given s0 and q, are enough to describe a fully deterministic model. This means that we 
can tell with certainty what values of s0:T , y0:T will be: we can simply plug in the initial variables and calculate each 
time-slice.  While a good start, this is not a realistic model of a sound wave.  We need to model both noise in the state 
transitions, to account for minute frequency/damping variations, as well as observation noise.  The latter models the 
noise introduced by digitizing the wave with recording hardware.  This will create a more realistic, i.e. 'noisy', sound 
wave.  We do this adding  noise terms to both the state and observation vectors:

(11)st = A st-1 +

(12)yt = C st +
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ü Modelling process noise

The process noise is defined as white gaussian.  A noise is white when it is uncorrellated through time; its 
value at any time t is not dependant to any other time period.  It's labeled as gaussian because it is drawn from a normal 
(gaussian) distribution.  It particular, a zero-mean gaussian with diagonal covariance matrix Q:

(13)~ J@0 0D, JQ11 0
0 Q22

NN

where (m,S) represents a multivariate gaussian distribution with mean m and covariance matrix S.  
x ~ (m,S) means that the value of x is drawn from the distribution.  We can see how the diagonal terms of Q add 
noise the state vector.  We can simplify (10) to get:

(14)
st = A st-1 + H0, QL

st ~ HA st-1, QL

ü Modelling observation noise

The definition of the observation noise is identical to the process noise except for the dimensionality.  We 
define a observation noise covariance matrix R and write:

(15)
yt = C st + H0, RL

yt ~ HC st, RL

ü Modelling state transitions with conditional probability distributions

The noise terms now render the system model indeterministic.  This means that we are no longer predict, will 
full certainty, the values of future state variables.  Both the transition and observation functions are continuous vari-
ables represented as conditional probability distributions.  

Table 2

θ = 8ω, ρ, H<

s0 = π

st ∼ pHst » st−1L ≡ HA st−1, QL
yt ∼ pHyt » stL ≡ HC st, RL

Where q represents the given parameter constants, as in (6).   p is also given as the 
initial state.

The term pHyt » stL is known as the likelihood of the observation.  It will be explained in later sections.
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ü Hidden / Observed variables

It is important to label the variables in our model as hidden or observed.  The observation terms, y1:T , are 
obviously observed.  The state vectors are hidden terms.   They are considered hidden because we can't directly 
measure them in any way.  We can only derive them past state variables.  This is a big problem when we don't have the 
initial state vector, s0, from which to calculate s1..., then s2;  all we have are noisy state observations, y1:T .  How can 
we find the values of these hidden state variables?

à Estimating values of hidden variables, a.k.a. filtering

The answer is to infer the values of the hidden variables, s0:T , conditioned on noisy observations.  This is the 
most common problem in Bayesian statistics and is known as filtering.  Think of filtering out the noise and returning 
the pure source of the observations.  

Because the values of the hidden variables are unobserved and indeterministic, we can only make estimates, 
s̀1:T .  The hat symbol, ^, indicates an estimated or predicted value. 

Because we are making estimates of the hidden variables (a.k.a.  state estimate, or belief state), we also associ-
ate a degree of belief with our estimate.  This is the essence of Bayesian probability: we use probabilities to represent 
the certainty in an estimate.  More specifically, the belief state at time t is a probability density (i.e. normalized distribu-
tion) over all possible states at time t given the observations, i.e. pHs1:T » y1:T L.  This is known as the posterior distribu-
tion, or filtering density.  It can be calculated using an the prior state estimate, the likelihood of the evidence given the 
estimate, and Bases' Theorem:

(16)pHs1:T » y1:T L ª
pHy1:T »s1:T L pHs1:T LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpHy1:T L

Same equation with labeled terms is: 

(17)Posterior  ª   
likelihood ä priorÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅevidence

The prior probability is propagated from the initial state estimate, p ª pHs0),

(18)pHs1:T L ª p pHs1 » s2L pHs2 » s3L pHs3 » s4L ... pHsT-1 » sT L

The likelihood term is defined in the generative model.  
The normalization factor, or evidence, is the sum of likelihoods for all states st:

(19)pHy1:T L ª Ÿs1:T
pHy1:T » s1:T L pHs1:T L

In general,  ⁄ is used to marginalize over discrete variables,  Ÿ   is used to marginalize continuous
variables. 

The belief state, at»t, is represented by the first two moments of the posterior state distribution:
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(20)
at»t ª pHst » y1:tL

ª H x̀t, PtL ª HE@stD, E@stD E@stD 'L

ü Message Propagation

From the recursive definitions above we see that posterior distribution is initially estimated and then propagated 
across time-slices.  This is done in a cycle of prediction and correction equations. 

Figure 6

The ongoing discrete Kalman filter cycle. The time update projects the current state 
estimate ahead in time. The measurement update adjusts the projected estimate by 

an actual measurement at that time.  Figure taken from (Welch, 2001)

Conditioned on the prior distribution from t-1 (or p in case of t=1), a prediction of the next audio sample (a.k.a. a 
priori estimate) can be calculated from the current belief state using the generative model in the predict step:

(21)
s̀t»t-1 = A s̀t-1

ỳt»t-1 = C s̀t»t-1

The projection of the state vector across time slices, st-1 Ø
A

st, corresponds to marginalization over st-2.  This is 
because the state vector at time t only depends st-1,  (i.e. st is conditionally independent of  st-2, given st-1).  Updating 
the estimate covariance, (see Kalman Equation figure below), gives the new a priori state estimate,

(22)
dt»t-1 ª pHst » st-1, y1:t-1L,

In the correct step, we use the observation estimate, ỳt»t-1, along with observed sample, yt, to calculate the conditional 
likelihood of the observation.  

ü What exactly is Likelihood?

The likelihood of a particular audio sample reflects the difference between the predicted audio sample, yt
` , and 

observed sample, yt.  This difference is known as the residual, or the innovation:

(23)e = yt - yt
` ,

The likelihood is calculated as:
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(24)ª He; 0, VtL

As the residual  increases,  the likelihood of  the configuration r1:t  decreases at  a rate  inversely  proportional  to
the state estimate covariance, Pt.

Figure 7

We can update our a priori estimate to an  a posteriori estimate through conditioning on yt.  This corresponds to the 
correction Kalman Filter equations. The correction of the state vector depends on the state estimate covariance.

If the model is properly defined, our estimate covariance will decrease over time (i.e. we can be more confident 
in our estimate) as our state estimate converges on the source of the noisy samples.  If it doesn't, we'll witness observa-
tion data with very low likelihoods.  At this point we'll want to reconsider our parameter estimates.  The full Kalman 
Filter equations are shown next:
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Figure 8

ü Dynamic Bayesian Network, (DBN's)

To show how the prediction and correction steps correspond to marginalization and conditioning, it is helpful 
to depict the modal graphically as a Dynamic Bayesian Network   A Bayes' net is a directed graph used to represent 
conditional probability distributions of nodes given their parent nodes.  A dynamic Bayesian network (DBN) is a way 
to extend Bayes nets to model probability distributions over semi-infinite collections of random variables, Z1, Z2, ... 
(Murphy, 2004).  We can partition the variables into Zt = (St, Yt) to represent the hidden and output variables of a 
state-space model (Murphy, 2004).  

A DBN is defined to be a pair, HB1, BØ), where B1 is a BN which defines the prior pHZ1), and BØ is a two-slice 
temporal Bayes net (2TBN) which defines pHZt » Zt-1) by means of a DAG (directed acyclic graph) as follows (Mur-
phy, 2004):

(25)pHZt » Zt-1L = ¤i=1
N  pHZt

i » PaHZt
iLL

We must define the conditional probability distribution (CPD) of each node given its parents.  For our model this 
includes pHs0L, pHst » st-1L and pHyt » stL; all are define above.  The next figure depicts the DBN for our model:
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Figure 9

The top layer of nodes, s1:T , represent the state vector of the oscillator generating the 
note.  The bottom layer, y1:T , represents the observed audio samples.

An important point to note is that pHstL is conditionally independent of pHst-2L given st-1.  This allows the recursive 
marginalization needed by tractable filtering.  

ü Initial state estimate  -  p

The initial state estimate, p ª pHs0L is drawn from a zero-mean gaussian with covariance matrix S.  

(26)p ~ H0, SL
The diagonal sum of S, Tr(S), is proportional to the initial amplitude of sound wave.  The covariance structure defines
how the 'energy' is distributed along the harmonics (Cemgil, 2004).  It is initially estimated with a strong 1st and 2nd
harmonics.  The later overtones have increasingly less energy.  This pattern can be shown by a Fourier transform of the
audio signal.
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Top:  Audio signal of electric bass.  Originally at 22 kHz, downsampled by factor 
D=20.   Middle: Frequency Spectrum (DFT) of audio signal  

Bottom:  Diagonal entries of S for H=7 correspond to overtone amplitudes

à Switching Kalman Filter Model for monophonic melodies

In this section the model is expanded to model a piano roll representation.  The piano roll, or score, is a 
sequence indicators which label each time-slice with a state of sound, or mute.  We define values sound=1 and mute=2 
for simplicity.  

ü Transition Matrices

We need to define transition matrices, 8Asound, Amute<, for each state of the oscillator.  They are the  same as 
before except for the damping coefficient:

(27)
Asound ≡ ρsound B HωL
Amute ≡ ρmute B HωL

rsound is slightly less than 1.  rmute is much smaller than rsound.

ü Defining the switch variables  -  r1:T

The variables are referred to as switch variables because, at each time-step, they select which of two transition 
functions is used to project the next state.  The two transition functions represent the sound and mute states:
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(28)r1:T ª 8 rt : rt œ 8sound fl mute<, 0 § t § T<
For every 2-slice period, there are four possible combinations of rt-1:t.  The distribution of the configurations defines 
the prior on piano rolls.  They can be organized as:

(29)pHr1L ª uH8sound, mute<L ª @.5, .5D

(30)

p Hi, jL ª p Hrt = i » rt-1 = jL
ª 9 pHrt = 1 » rt-1 = 1L pHrt = 1 » rt-1 = 2L

pHrt = 2 » rt-1 = 1L pHrt = 2 » rt-1 = 2L=

ª
i
k
jjj1 - 10-7 10-7

10-7 1 - 10-7
y
{
zzz

The initial prior is a uniform distribution.  The conditional distribution is a multinomial where it is much more likely 
for the switch variable to remain the same over time slices.  We also define the function, isonsett.  It is true if there has 
been a note onset at the current time slice.  A note onset is represented by the mute to sound transition.  The updated 
model is as follows:

Table 3

q = 8w, rsound, rmute, H<
isonsett ª @rt = sound fl rt-1 = muteD

r1 ª uH8sound, mute<L ª 8.5, .5<
rt ª pHi, jL
s0 ~ H0, SL
st ~ HArt st-1, QL
yt ~ HC st, RL

Below is the DBN:

18 CS379 Honors Thesis - Mark Kedzierski



The top layer of nodes, s1:T , represent the state vector of the oscillator generating the 
note.  The bottom layer, y1:T , represents the observed audio samples.

ü Model sample generation in Matlab

The following figure depicts samples taken from the model using Matlab.
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Figure 12

à Inference for the Switching Kalman Filter model

ü Viterbi Estimation

Given an audio waveform, our goal is to infer the most likely sequence of piano roll indicators, r1:T
* , which 

could give rise to the observed audio samples.  This is, in general, a Viterbi estimation problem.  The value we are 
seeking is defined as the Maximum A Posteriori trajectory:

(31) r1:T
* ª argmax

r1:T

 pHr1:T » y1:T L

It represents the most likely sequence of hidden variables to cause an observed output.  This is different from 
the posterior distribution because it is just a point estimate.  Calculation is the same as for filtering, except for replacing 
the summation over rt-2 with the maximization (MAP).  It is important to note that, in Viterbi estimation, we propagate 
a  filtering potential, d1:T , as opposed to a filtering density, a1:T .  The term potential used to indicate that this value is 
not normalized.  Because we only care about the best piano roll, (i.e. configuration rt:T  with highest likelihood), we can 
save calculations by using a point estimate.

(32)pHr1:T » y1:T L ∂ Ÿst
pHy1:t » st, r1:tL pHs1:t » r1:tL pHr1:tL

filtering potential
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ü Message Propagation

 Inference is more difficult in the switching state-space model because we have to keep track of every possible 
enumeration of r1:T  and return the sequence with the highest likelihood.  The  representing of the filtering potential is a 
Mixture of Gaussians (MoG) with a single component for each enumeration of r1:T , (we use H=1 to simplify the 
examples):

(33)dt»t ª pHy1:t, st, rt, rt-1L ª 9 dtH1, 1L dtH1, 2L
dtH2, 1L dtH2, 2L  =

where each,

(34)
 dt»tHi, jL ª pHy1:t, st, rt = i, rt-1 = jL

ª pHy1:t, st, rt = i, rt-1 = jL
is also a MoG.

At each time step we make separate estimates for every configuration of piano roll indicators 8rt, rt-1<.  This 
corresponds to the prediction step.  It can also be considered an expand step.  As shown by the left side of the next 
figure.

Figure 13

Show Expand and Merge steps of message propagation on a Switching Kalman Filter

The correction/marginalization over rt-2  is done in the merge  step.  In the case of filtering, this is done with summa-
tion.  In case of Viterbi, we use maximization.

ü Prediction

Upon receiving dt-1»t-1 from the previous time slice,

(35)dt-1»t-1   ª 9 dt-1»t-1H1, 1L dt-1»t-1H1, 2L
dt-1»t-1H2, 1L dt-1»t-1H2, 2L  = ª pHy1:t-1, st-1, rt-1, rt-2L

we with to calculate the a priori estimate, dt»t-1, as follows.
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First we marginalize over rt-2.  This is done by union over each row of dt-1»t-1.  These terms represent

(36)xt-1
i ª pHy1:t-1, st-1, rt-1 = iL  ª  ⁄rt-2

pHy1:t-1, st-1, rt-1 = i, rt-2L
This marginalization corresponds to the 'merge' box in the above figure.

For components d(1,1), d(1,2), and d(2,2) we next apply the transition model, pHst » y1:t-1, st-1, rt-1, rt-2L, using 
the Kalman Filter Time Update equations.  We label each predicted potential as yi, j.

(37)
yi, j ª Ÿst-1 pHst » y1:t-1, st-1, rt-1L xt-1

j ,
rt = i

Multiplying each potential by the prior, pHrt » rt-1L, gives:

(38)pHy1:t-1, st, rt, rt-1L  ª pHy1:t-1, st, rt-1LpHrt » rt-1L

The component, dtH1, 2L, is different because it represents a note onset. It's important to note that the piano roll 
configuration before the onset, r1:onset , doesn't effect the likelihood of future indicators after it.  This enables us to we 
can replace messages from xt-1

mute with the maximum (scalar) likelihood estimate among them.  We introduce this scalar 
value, Zt-1

mute, as a prior for the next onset and tag the message with  r1:t-1
* .  This replacement renders the algorithm 

tractable. The a priori potential is be given as:

(39)dt»t-1 ª 9 pH1, 1L y1,1 pH1, 2L Zt-1
mute xt-1

j

pH2, 1L y2,1 pH2, 2L y2,2
 =

ü Correction

Finally, the a Posteriori state estimate, dt» t, is calculated using the Kalman Filter Correction equations on each 
component of the a priori estimate:

(40)dt» t ª   pHy1:t, st, rt, rt-1L    ª pHyt » stLpHy1:t-1, st, rt, rt-1L
.  The next section shows the algorithm running in Matlab.

ü Forward Message Representation

To propagate the MAP trajectory, we define our forward-filtering message, dt, to store other variables in 
addition to the state estimate.

--Potential---

s̀t ª  ik
jjmx

my

y
{
zz , state estimate

Pt  ª 2x2 estimate cov.
Pt»t-1 ª 2-slice state covariance matrix
pt ª pHr1:tL ª prior 
probability
Kt ª Kalman Filter Gain
Vt ª innovation covariance
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yt - yt
` ª residual

ª pHy1:t » r1:tL = Hyt; yt
` , VtL ªlikelihood

pHr1:t » y1:tL  ª posterior 
potential

∂ Ÿst
pHy1:t » st, r1:tL pHs1:t » r1:tL pHr1:tL

à Extending the Model for multiple notes  -  j1:T  

We can simply expand the model to work for several notes at different frequencies.  The frequencies are given, 
and are set to common MIDI values.  We modify piano roll indicators r1:T  to be r1:T ,1:M , where M is the number of 
notes in our model.  Inference is the same except for indexing (Cemgil, 2004).  The new DBN is as follows:

Figure 14

Graphical Model. The rectangle box denotes “plates”, M replications of the nodes  inside. 
Each plate, j = 1, . . . ,M represents the sound generator (note) variables through time.  

(Cemgil, 2004)

à Matlab Implementation

Below in a labeled screenshot of my Matlab implementation of Viterbi estimation.
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Figure 15

Below are screenshots from the first three time slices of Viterbi calculation:

Figure 16
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Polyphonic  Chord Transcription
In this section we use the Viterbi estimation techniques learned in the last section use them to transcribe 

polyphonic chords.  The difference in this case, is that we infer the variables r1:M , rather than r1:M ,1:T .  We assume that 
the configuration stays constant for t=0:T.  This means that we have to work in windows if we wish to detect changes 
in chords over time. 

The algorithm, given in (Cemgil, 2004), is a simple greedy search.  We start with at an initial estimate of the 
chord configuration (zero's or drawn from prior), and prior pHr1:M L.  A more informative prior can be very helpful in 
finding the correct configuration, r1:M .  We then calculate the likelihood of our estimate, a, and all configurations 
differing from our by a single note.  If a is the most likely, we stop (at the local maximum).  Otherwise we continue 
until convergence.  

Using a uniform prior, pHr1:M ).  We are (usually) able to find the correct chord configuration by taking the best 
of three trials using different initial estimates.  This productivity can be improved by making more specifications in the 
prior, as explained in the next section.  This is done by specifying some properties of the composition which generated 
the waveform.   Next I show my Matlab implementation:

Figure 17

The Matlab GUI for polyphonic chord

transcription. The various controls and values are labeled.
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Extending  the Prior Distribution
The uniform prior over piano rolls/chord configurations leaves room for improvement.  We can improve 

performance by specifying more information about the creation of the audio waveform.  Because were are considering 
the use of this implementation mainly as a musical composition tool we can assume that the performer of the audio 
samples is available to supply the new parameters, which represent the details of the underlying composition.

à Tonality in the prior

The parameters concerning the composition include the diatonic scale, F, the tempo, D, and the time-signature, 
X.  The diatonic scale labels each note, jt, as a member or non-member.  Non-members are relatively very unlikely, 
especially as the note duration increases.  This is true because the use of these notes is usually limited to passing 
(transition) tones; they are rarely held ringing for a long duration.  They are also more common on offbeats rather than 
onbeats (see D term).  Members are additionally weighted by their index in the scale.  For example, the I, IV, and V 
notes usually appear more commonly than others.  In general, the probability of a note at time t is given by,  

(41)p( jt | jt-1,F, X, D )
The tempo term, D, labels each time-slice as onbeats or offbeats, given a specified quantization factor.  In 

general, note onsets are much more common when they occur on or near a beat onset. The time-signature, X, expands 
on this by considering exactly where a given note appears in the composition.

à Physical instrument properties

We can also use physical properties of the guitar used to create the audio samples.  This is possible because 
there are only a limited number of distinct fretboard fingerings for a given note/chord.  For example, most notes appear 
at only 1-3 locations on the guitar fretboard, and each string can only generate a single simultaneous note.

For monophonic melodies, we define a fretboard-distance heuristic which weights the likelihood of a particular 
note by it's distance, in frets, from the previous note; the closer notes being more common.  We also define notes 
appearing on adjacent strings as more likely.

For chords we use a similar heuristic by adding a weight to each configuration, proportional to the number of 
distinct hand fingerings.  
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Instrument  Parameter  Learning
To  achieve  reliable  performance  in  real  applications,  our  estimates  of  system  model  parameters,  q,  can  be

learned for a particular instrument/recording setup.  This is done by applying the standard EM (Expectation Maximiza-
tion) algorithm to training data for each of M notes sampled from each string of the guitar.  

The EM algorithm iteratively maximizes the likelihood of a particular training set by calculating the derivative
of the likelihood term, for each parameter, and adjusting appropriately.   The likelihood of the training data is guaran-
teed to increase at every iteration until convergence.  For a more complete description see (Murphy, 1998), (Digalakis,
1993), (Ghahramani, Z, 1996), and (Cemgil, 2004).

We create the training data as follows.  For each string, we sample the instrument playing each note at a regular
interval and set tempo.  For example, we could use a tempo of 100 bpm and play 12 ascending notes landing on beats.
This would mean playing the first 12 frets on the guitar in ascending order.  We then use an algorithm to split up each
string waveform into sections, y1:T

1:J , each containing a single note.  
Each  section  is  created  such  that  the  transition  model  remains  constant.   (i.e.  note  onset  occurs  at  t=1  with  j

remaining constant,  r1:T , j=1).    This  permits us  to  treat  each section as  a  non-switching  linear  dynamical system and
calculate  the  likelihood  using  standard  Kalman  Filter  equations.   My  Matlab  implementation,  with  important  values
labels,  is shown below.

Figure 18

The Matlab GUI for EM parameter

learning. The various controls and values are labeled.
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