
Interface from GCL to X Windows

Gordon S. Novak Jr.
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

Software copyright c© by Gordon S. Novak Jr. and The University of Texas at Austin.
Distribution and use are allowed under the Gnu Public License. Also see the copyright
section at the end of this document for the copyright on X Consortium software.

1 Introduction

This document describes a relatively easy-to-use interface between XGCL (X version of Gnu
Common Lisp) and X windows. The interface consists of several parts:

1. Hiep Huu Nguyen has written (and adapted from X Consortium software) an interface
between GCL and Xlib, the X library in C. Xlib functions can be called directly if
desired, but most users will find the dwindow functions easier to use. There is little
documentation of these functions, but the Xlib documentation can be consulted, and
the dwindow functions can be examined as examples.

2. The dwindow functions described in this document, which call the Xlib functions and
provide an easier interface for Lisp programs.

3. It is possible to make an interactive graphical interface within a web page; this is
described in a section below.

The source file for the interface (written in GLISP) is dwindow.lsp; this file is compiled into
a file in plain Lisp, dwtrans.lsp. dwtrans.lsp is compiled as part of XGCL.

The functions in this package use the convention that the coordinate (0 0) is the lower-left
corner of a window, with positive y being upward. This is different from the convention used
by X, which assumes that (0 0) is the upper left corner and that positive y is downward.

In the descriptions below, some function arguments are shown with a type, e.g. arg:type,
to indicate the expected type of the argument. The type vector is a list (x y) of integers.
The argument w that is used with many functions is of type window (window is a Lisp data
structure used by the dwindow functions).

Both the Xlib and dwindow functions are in the package xlib:. In order to use these
functions, the Lisp command (use-package ’xlib) should be used to import the dwindow

symbols.

1

2 Examples and Utilities

2.1 dwtest

The file dwtest.lsp contains example functions that illustrate the use of the dwindow

package. The function call (wtesta) creates a small window for testing. (wtestb) through
(wtestk) perform drawing and mouse interaction tests using the window. These functions
may be consulted as examples of the use of commonly used dwindow functions.

2.2 pcalc

The file pcalc.lsp implements a pocket calculator as a picmenu; its entry is (pcalc).

2.3 draw

The file drawtrans.lsp contains an interactive drawing program; its entry is (draw ’foo)

where foo is the name of the drawing. The file ice-cream.lsp can be loaded, followed by
(draw ’ice-cream) to examine an example drawing. draw can produce a Lisp program
or a set of LATEX commands to recreate the drawing; use origin to zero before making a
program. (draw-out file names) will write definitions of drawings in the list names to the
file file.

2.4 editors

The file editorstrans.lsp contains some interactive editing programs; it is a translation
of the file editors.lsp . One useful editor is the color editor; after entering (wtesta) (in
file dwtest.lsp), enter (edit-color myw) to edit a color. The result is an rgb list as used
in window-set-color.

A simple line editor and an Emacs-like text editor are described in sections 6.2 and 6.3 below.

3 Menus

The function menu provides an easy interface to make a pop-up menu, get a selection from
it, and destroy it:

(menu items &optional title)

Example: (menu ’(red white blue))

2

This simple call is all that is needed in most cases. More sophisticated menu features are
described below.

The items in a menu is a list; each item may be a symbol, a cons of a symbol or string and
the corresponding value, or a cons of a function name and the corresponding value. In the
latter case, the function is expected to draw the corresponding menu item.

If a function name is specified as the first element of a menu item, the drawing function
should have arguments (fn w x y), where w is the window and x and y are the lower-left
corner of the drawing area. The property list of the function name should have the property
display-size, which should be a list (width height) in pixels of the displayed symbol.

Menus can be associated with a particular window; if no window is specified, the menu is
associated with the window where the mouse cursor is located when the menu is initialized
(which might not be a Lisp user’s window). If a menu is associated with a user window, it
may be permanent (left displayed after a selection is made) and may be flat (drawn directly
on the containing window, rather than having its own window).

A menu can be created by menu-create :

(menu-create items &optional title w:window x y perm flat font)

title, if specified, is displayed over the menu. w is an existing window; if specified, the menu
is put within this window at the x y offsets specified (adjusted if necessary to keep the menu
inside the window). If no w is specified, or if x is nil, the menu is put where the cursor is
the first time the menu is displayed. perm is non-nil if the menu is to be permanent, i.e.,
is to be left displayed after a selection has been made. flat is non-nil if the menu is to be
drawn directly on the containing window. font is a symbol or string that names the font to
be used; the default is a 9x15 typewriter font.

The menu is returned as the value of menu-create. Such a menu can be saved; selections
can be made from a menu m as follows:

(menu-select m &optional inside) or (menu-select! m)

menu-select will return nil if the mouse is clicked outside the menu, or is moved outside
after it has been inside (or if inside is not nil), provided that the menu is contained within
a user-created window. menu-select! requires that a choice be made.

In order to avoid wasting storage, unused menus should be destroyed: (menu-destroy m).
The simple menu function destroys its menu after it is used.

(menu-size m)

(menu-moveto-xy m x y)

(menu-reposition m)

menu-reposition will reposition a flat menu within its parent window by allowing the
user to position a ghost box using the mouse. menu-size returns the size of the menu as
a vector, (x y). menu-moveto-xy adjusts the offsets to move a flat menu to the specified

3

position within its parent window. These functions and menu-destroy work for picmenus
and barmenus as well.

(menu-item-position m name &optional location)

menu-item-position returns a vector (x y) that gives the coordinates of the menu item
whose name is name. location may be center, left, right, top, or bottom; the default is
the lower-left corner of the menu item. center specifies the center of the box containing the
menu item; the other location values are at the center of the specified edge of the box.

3.1 Picmenus

A picmenu (picture menu) is analogous to a menu, but involves a user-defined picture
containing sensitive spots or “buttons”. The test function (wteste) shows an example
of a picmenu. A picmenu is created by:

(picmenu-create buttons width height drawfn

&optional title dotflg w:window x y perm flat font boxflg)

If a picmenu is to be used more than once, the common parts can be made into a picmenu-spec
and reused:

(picmenu-create-spec buttons width height drawfn

&optional dotflg font)

(picmenu-create-from-spec spec:picmenu-spec

&optional title w:window x y perm flat boxflg)

width and height are the size of the area occupied by the picture. (drawfn w x y) should
draw the picture at the offset x y. Note that the draw utility can be used to make the
drawing function, including picmenu buttons. dotflg is non-nil if it is desired that small
boxes be automatically added to the sensitive points when the picture is drawn. boxflg

is non-nil if a box is to be drawn around the picmenu when the picture is drawn (this is
only needed for flat picmenus). If perm is non-nil, the drawing program is not called when a
selection is to be made, so that an external program must draw the picmenu; this avoids the
need to redraw a complex picture. The remaining arguments are as described for menus.

Each of the buttons in a picmenu is a list:

(buttonname offset size highlightfn unhighlightfn)

buttonname is the name of the button; it is the value returned when that button is selected.
offset is a vector (x y) that gives the offset of the center of the button from the lower-left
corner of the picture. The remainder of the button list may be omitted. size is an optional
list (width height) that gives the size of the sensitive area of the button; the default size is
(12 12). (highlightfn w x y) and (unhighlightfn w x y) (where (x y) is the center

4

of the button in the coordinates of w) are optional functions to highlight the button area
when the cursor is moved into it and unhighlight the button when the cursor is moved out;
the default is to display a box of the specified size.

(picmenu-select m &optional inside)

If the picmenu is not flat, its window should be destroyed following the selection using
menu-destroy.

(picmenu-item-position m name &optional location)

(picmenu-delete-named-button m name:symbol)

This deletes a button from a displayed picmenu. The set of deleted buttons is reset to nil

when the picmenu is drawn.

3.2 Barmenus

A barmenu displays a bar graph whose size can be adjusted using the mouse.

(barmenu-create maxval initval barwidth

&optional title horizontal subtrackfn subtrackparms

parentw x y perm flat color)

A value is selected by: (barmenu-select m:barmenu &optional inside)

If the barmenu is not flat, its window should be destroyed following the selection using
menu-destroy.

The user must first click the mouse in the bar area; then the size of the displayed bar is
adjusted as the user moves the mouse pointer. In addition, the subtrackfn is called with
arguments of the size of the bar followed by the subtrackparms; this can be used, for
example, to display a numeric value in addition to the bar size.

3.3 Menu Sets and Menu Conns

A menu-set is a set of multiple menus, picmenus, or barmenus that are simultaneously active
within the same window. Menu-sets can be used to implement graphical user interfaces. A
menu-conns is a menu-set that includes connections between menus; this can be used to
implement interfaces that allow the user to construct a network from components.

The source file for menu-sets is the GLISP file menu-set.lsp; this file is translated as part
of the file drawtrans.lsp in plain Lisp. Examples of the use of menu sets are given at the
top of the file menu-set.lsp. In the following descriptions, ms is a menu-set and mc is a
menu-conns.

(menu-set-create w) creates a menu set to be displayed in the window w.

(menu-set-name symbol) makes a gensym name that begins with symbol.

5

(menu-set-add-menu ms name:symbol sym title items

&optional offset:vector)

This function adds a menu to a menu-set. sym is arbitrary information that is saved with
the menu.

(menu-set-add-picmenu ms name sym title spec:picmenu-spec

&optional offset:vector nobox)

(menu-set-add-component ms name &optional offset:vector)

This adds a component that has a picmenu-spec defined on the property list of name.

(menu-set-add-barmenu ms name sym barmenu title

&optional offset:vector)

(menu-set-draw ms) draws all the menus.

(menu-set-select ms &optional redraw enabled)

menu-set-select gets a selection from a menu-set. If redraw is non-nil, the menu-set is
drawn. enabled may be a list of names of menus that are enabled for selection. The result
is (selection menu-name), or ((x y) BACKGROUND button) for a click outside any menu.

(menu-conns-create ms) creates a menu-conns from a menu-set.

(menu-conns-add-conn mc)

This function allows the user to select two ports from menus of the menu-conns. It then draws
a line between the ports and adds the connection to the connections of the menu-conns.

(menu-conns-move mc)

This function allows the user to select a menu and move it. The menu-set and connections
are redrawn afterwards.

(menu-conns-find-conn mc pt:vector)

This finds the connection selected by the point pt, if any. This is useful to allow the user to
delete a connection:

(menu-conns-delete-conn mc conn)

(menu-conns-find-conns mc menuname port)

This returns all the connections from the specified port (selection) of the menu whose name
is menuname.

4 Windows

(window-create width height &optional title parentw x y font)

window-create makes a new window of the specified width and height. title, if spec-

6

ified, becomes the displayed title of the window. If parentw is specified, it should be the
window-parent property of an existing window, which becomes the parent window of the new
window. x and y are the offset of the new window from the parent window. font is the font
to be used for printing in the window; the default is given by *window-default-font-name*,
initially courier-bold-12.

(window-open w) causes a window to be displayed on the screen.

(window-close w) removes the window from the display; it can be re-opened.

(window-destroy w)

(window-moveto-xy w x y)

(window-geometry w) queries X for the window geometry. The result is a list,
(x y width height border-width) .

(window-size w) returns a list (width height) .
Note that the width and height are cached within the structure so that no call to X
is needed to examine them. However, if the window is resized, it is necessary to call
(window-reset-geometry w) to reset the local parameters to their correct values.

The following functions provide access to the parts of the window data structure; most
applications will not need to use them.

(window-gcontext w)

(window-parent w)

(window-drawable-height w)

(window-drawable-width w)

(window-label w)

(window-font w)

(window-screen-height)

5 Drawing Functions

(window-clear w) clears the window to the background color.

(window-force-output &optional w)

Communication between the running program and X windows is done through a stream;
actual drawing on the display is done asynchronously. window-force-output causes the
current drawing commands, if any, to be sent to X. Without this, commands may be left in
the stream buffer and may appear not to have been executed. The argument w is not used.

In all of the drawing functions, the linewidth argument is optional and defaults to 1.

(window-draw-line w from:vector to:vector linewidth)

(window-draw-line-xy w x1 y1 x2 y2 &optional linewidth op)

7

op may be xor or erase.

(window-draw-arrow-xy w x1 y1 x2 y2 &optional linewidth size)

(window-draw-arrow2-xy w x1 y1 x2 y2 &optional linewidth size)

(window-draw-arrowhead-xy w x1 y1 x2 y2 &optional linewidth size)

These draw a line with an arrowhead at the second point, a line with an arrowhead at both
points, or an arrowhead alone at the second point, respectively. size is the arrowhead size;
the default is (+ 20 (* linewidth 5)).

(window-draw-box-xy w x y width height linewidth)

(window-xor-box-xy w x y width height linewidth)

(window-draw-box w offset:vector size:vector linewidth)

(window-draw-box-corners w x1 y1 x2 y2 linewidth)

where (x1 y1) and (x2 y2) are opposite corners.
(window-draw-rcbox-xy w x y width height radius linewidth)

draws a box with rounded corners.

(window-draw-arc-xy w x y radiusx radiusy anglea angleb linewidth)

anglea is the angle, in degrees, at which the arc is started. angleb is the angle, in degrees,
that specifies the amount of arc to be drawn, counterclockwise from the starting position.

(window-draw-circle-xy w x y radius linewidth)

(window-draw-circle w center:vector radius linewidth)

(window-draw-ellipse-xy w x y radiusx radiusy linewidth)

(window-draw-dot-xy w x y)

(window-erase-area-xy w left bottom width height)

(window-erase-area w offset:vector size:vector)

(window-copy-area-xy w fromx fromy tox toy width height)

(window-invert-area w offset:vector size:vector)

(window-invert-area-xy w left bottom width height)

(window-printat-xy w s x y)

(window-printat w s at:vector)

(window-prettyprintat-xy w s x y)

(window-prettyprintat w s at:vector)

The argument s is printed at the specified position. s is stringified if necessary. Currently,
the pretty-print versions are the same as the plain versions.

(window-draw-border w) draws a border just inside a window.

8

6 Fonts, Operations, Colors

(window-set-font w font)

The font symbols that are currently defined are courier-bold-12, 8x10, and 9x15 . The
global variable *window-fonts* contains correspondences between font symbols and font
strings. A font string may also be specified instead of a font symbol.

(window-string-width w s)

(window-string-extents w s)

These give the width and the vertical size (ascent descent) in pixels of the specified string
s using the font of the specified window. s is stringified if necessary.

Operations on a window other than direct drawing are performed by setting a condition for
the window, performing the operation, and then unsetting the condition with window-unset.
window-reset will reset a window to its “standard” setting; it is useful primarily for cases
in which a program bug causes window settings to be in an undesired state.

(window-set-xor w)

(window-set-erase w)

(window-set-copy w)

(window-set-invert w)

(window-unset w)

(window-reset w)

(window-set-line-width w width)

(window-set-line-attr w width &optional line-style cap-style join-style)

(window-std-line-attr w)

(window-foreground w)

(window-set-foreground w fg-color)

(window-background w)

(window-set-background w bg-color)

6.1 Color

The color of the foreground (things that are drawn, such as lines or characters) is set by:

(window-set-color w rgb &optional background)

rgb is a list (red green blue) of 16-bit unsigned integers in the range 0 to 65535. background
is non-nil to set the background color rather than the foreground color.

Colors are a scarce resource; there is only a finite number of available colors, such as 256
colors. If you only use a small, fixed set of colors, the finite set of colors will not be a

9

problem. However, if you create a lot of colors that are used only briefly, it will be necessary
to release them after they are no longer needed. window-set-color will leave the global
variable *window-xcolor* set to an integer value that denotes an X color; this value should
be saved and used as the argument to window-free-color to release the color after it is no
longer needed.

(window-free-color w &optional xcolor)

window-free-color frees either the last color used, as given by *window-xcolor*, or the
specified color.

6.2 Character Input

Characters can be input within a window by the call:

(window-input-string w str x y &optional size)

window-input-string will print the initial string str, if non-nil, at the specified position
in the window; str, if not modified by the user, will also be the initial part of the result. A
caret is displayed showing the location of the next input character. Characters are echoed
as they are typed; backspacing erases characters, including those from the initial string str.
An area of width size (default 100) is erased to the right of the initial caret.

6.3 Emacs-like Editing

window-edit allows editing of text using an Emacs-subset editor. Only a few simple Emacs
commands are implemented.

(window-edit w x y width height &optional strings boxflg scroll endp)

x y width height specify the offset and size of the editing area; it is a good idea to draw
a box around this area first. strings is an initial list of strings; the return value is a list
of strings. scroll is number of lines to scroll down before displaying text, or T to have one
line only and terminate on return. endp is T to begin editing at the end of the first line.
Example:

(window-draw-box-xy myw 48 48 204 204)

(window-edit myw 50 50 200 200 ’("Now is the time" "for all" "good"))

10

7 Mouse Interaction

(window-get-point w)

(window-get-crosshairs w)

(window-get-cross w)

These functions get a point position by mouse click; they return (x y) .

The following function gets a point position by mouse click. It returns (button (x y))

where button is 1 for the left button, 2 for middle, 3 for right.

(window-get-click w)

The following function gets a point position by mouse click within a specified region. It
returns (button (x y)) or NIL if the mouse leaves the region. If boxflg is t, a box will be
drawn outside the region while the mouse is being tracked.

(window-track-mouse-in-region w x y sizex sizey &optional boxflg)

The following functions get a point position indicated by drawing a line from a specified
origin position to the cursor position; they return (x y) at the cursor position when a
mouse button is clicked. The latex version restricts the slope of the line to be a slope that
LATEX can draw; if flg is non-nil, the slope is restricted to be a LATEX vector slope.

(window-get-line-position w orgx orgy)

(window-get-latex-position w orgx orgy flg)

The following function gets a position by moving a “ghost” icon, defined by the icon drawing
function fn. This allows exact positioning of an object by the user.

(window-get-icon-position w fn args &optional (dx 0) (dy 0))

The function fn has arguments (fn w x y . args) , where x and y are the offset within
the window w at which the icon is to be drawn, and args is a list of arbitrary arguments,
e.g., the size of the icon, that are passed through to the drawing function. The icon is drawn
in xor mode, so it must be drawn using only “plain” drawing functions, without resetting
window attributes. The returned value is (x y) at the cursor position when a button is
clicked. dx and dy, if specified, are offsets of x and y from the cursor position.

The following function gets a position by moving a “ghost” box icon.

(window-get-box-position w width height &optional (dx 0) (dy 0))

By default, the lower-left corner of the box is placed at the cursor position; dx and dy may
be used to offset the box from the cursor, e.g., to move the box by a different corner. The
returned value is (x y) at the cursor position when a button is clicked.

The following function gets coordinates of a box of arbitrary size and position.

11

(window-get-region w)

The user first clicks for one corner of the box, moves the mouse and clicks again for the
opposite corner, then moves the box into the desired position. The returned value is
((x y) (width height)), where (x y) is the lower-left corner of the box.

The following function gets the size of a box by mouse selection, echoing the size in pixels
below the box. offsety should be at least 30 to leave room to display the size of the box.

(window-get-box-size w offsetx offsety)

The following function adjusts one side of a box.

(window-adjust-box-side w x y width height side)

side specifies the side of the box to be adjusted: left, right, top, or bottom. The result
is ((x y) (width height)) for the resulting box.

(window-get-circle w &optional center:vector)

(window-get-ellipse w &optional center:vector)

These functions interactively get a circle or ellipse. For an ellipse, a circle is gotten first
for the horizontal size; then the vertical size of the ellipse is adjusted. window-get-circle

returns ((x y) radius). window-get-ellipse returns ((x y) (xradius yradius)).

window-track-mouse is the basic function for following the mouse and performing some
action as it moves. This function is used in the implementation of menus and the mouse-
interaction functions described in this section.

(window-track-mouse w fn &optional outflg)

Each time the mouse position changes or a mouse button is pressed, the function fn is called
with arguments (x y code) where x and y are the cursor position, code is a button code
(0 if no button, 1 for the left button, 2 for the middle button, or 3 for the right button).
window-track-mouse continues to track the mouse until fn returns a value other than nil,
at which time window-track-mouse returns that value. Usually, it is a good idea for fn to
return a value other than nil upon a mouse click. If the argument outflg is non-nil, the
function fn will be called for button clicks outside the window w; note, however, that such
clicks will not be seen if the containing window intercepts them, so that this feature will
work only if the window w is inside another Lisp user window.

8 Miscellaneous Functions

(stringify x) makes its argument into a string.

(window-destroy-selected-window) waits 3 seconds, then destroys the window
containing the mouse cursor. This function should be used with care; it can destroy a non-
user window, causing processes associated with the window to be destroyed. It is useful

12

primarily in debugging, to get rid of a window that is left on the screen due to an error.

9 Examples

Several interactive programs using this software for their graphical interface can be found at
http://www.cs.utexas.edu/users/novak/ under the heading Software Demos.

10 Web Interface

This software allows a Lisp program to be used interactively within a web page. There are
two approaches, either using an X server on the computer of the person viewing the web
page, or using WeirdX, a Java program that emulates an X server. Details can be found at:
http://www.cs.utexas.edu/users/novak/dwindow.html

11 Files

dec.copyright Copyright and license for DEC/MIT files
draw.lsp GLISP source code for interactive drawing utility
drawtrans.lsp draw.lsp translated into plain Lisp
draw-gates.lsp Code to draw nand gates etc.
dwdoc.tex LATEX source for this document
dwexports.lsp exported symbols
dwimportsb.lsp imported symbols
dwindow.lsp GLISP source code for dwindow functions
dwtest.lsp Examples of use of dwindow functions
dwtrans.lsp dwindow.lsp translated into plain Lisp
editors.lsp Editors for colors etc.
editorstrans.lsp translation of editors.lsp
gnu.license GNU General Public License
ice-cream.lsp Drawing of an ice cream cone made with draw

lispserver.lsp Example web demo: a Lisp server
lispservertrans.lsp translation of lispserver.lsp
menu-set.lsp GLISP source code for menu-set functions
menu-settrans.lsp translation of menu-set.lsp
pcalc.lsp Pocket calculator implemented as a picmenu

13

12 Data Types

(window (listobject (parent drawable)

(gcontext anything)

(drawable-height integer)

(drawable-width integer)

(label string)

(font anything))

(menu (listobject (menu-window window)

(flat boolean)

(parent-window drawable)

(parent-offset-x integer)

(parent-offset-y integer)

(picture-width integer)

(picture-height integer)

(title string)

(permanent boolean)

(menu-font symbol)

(item-width integer)

(item-height integer)

(items (listof symbol)))

(picmenu (listobject (menu-window window)

(flat boolean)

(parent-window drawable)

(parent-offset-x integer)

(parent-offset-y integer)

(picture-width integer)

(picture-height integer)

(title string)

(permanent boolean)

(spec (transparent picmenu-spec))

(boxflg boolean)

(deleted-buttons (listof symbol)))

(picmenu-spec (listobject (drawing-width integer)

(drawing-height integer)

(buttons (listof picmenu-button))

(dotflg boolean)

(drawfn anything)

(menu-font symbol)))

14

(picmenu-button (list (buttonname symbol)

(offset vector)

(size vector)

(highlightfn anything)

(unhighlightfn anything))

(barmenu (listobject (menu-window window)

(flat boolean)

(parent-window drawable)

(parent-offset-x integer)

(parent-offset-y integer)

(picture-width integer)

(picture-height integer)

(title string)

(permanent boolean)

(color rgb)

(value integer)

(maxval integer)

(barwidth integer)

(horizontal boolean)

(subtrackfn anything)

(subtrackparms (listof anything)))

15

13 Copyright

The following copyright notice applies to the portions of the software that were adapted from
X Consortium software:

;;**

;;Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts,

;;and the Massachusetts Institute of Technology, Cambridge, Massachusetts.

;; All Rights Reserved

;;Permission to use, copy, modify, and distribute this software and its

;;documentation for any purpose and without fee is hereby granted,

;;provided that the above copyright notice appear in all copies and that

;;both that copyright notice and this permission notice appear in

;;supporting documentation, and that the names of Digital or MIT not be

;;used in advertising or publicity pertaining to distribution of the

;;software without specific, written prior permission.

;;DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

;;ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL

;;DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR

;;ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

;;WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,

;;ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

;;SOFTWARE.

;;***

16

