
Aocl : A Pure-Java Constraint Language for MDE
Don Batory

University of Texas at Austin
batory@cs.utexas.edu

Najd Altoyan
University of Texas at Austin

naltoyan@cs.utexas.edu

ABSTRACT
OCL is a standard language in MDE to express metamodel constraints.
Since its inception, OCL has been criticized for being too compli-
cated, over-engineered, and difficult to learn. We have discovered
that underneath OCL’s design is a streamlined design based pm
relational algebra. Aocl can replace OCL; it can be used to write OCL-
like constraints and model transformations in Java. The theoretical
foundation for Aocl is allegories, a unification of category theory
and relational algebra. A simple MDE tool generates an Aocl Java
plug-in from an input class diagram.
ACM Reference Format:
Don Batory and Najd Altoyan. 2017. Aocl : A Pure-Java Constraint Language
for MDE. In Proceedings of conference. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3106195.3106201

1 INTRODUCTION
A central issue in Model Driven Engineering (MDE) is tooling: How
can MDE tools be easier to learn, use, and maintain? This is not
new: a visionary 2005 paper by Favre [23] raised similar concerns
by advocating a rethinking of MDE basics from the ground-up. The
Object Constraint Language (OCL) has not gone unscathed [2, 9, 10,
12, 13, 26, 52].

Unease about OCL’s complexity transcends MDE where a simple
constraint language for UML class diagrams is needed. For years, re-
searchers in Software Product Lines (SPLs) explored generalizations
of feature models to admit replicated features, feature attributes,
and numerical features [17, 21]. Doing so generalizes trees of fea-
tures (aka., feature models) where propositional logic was sufficient
to express constraints [1, 4], to class diagrams where first-order
logic and languages like OCL are required [17]. Of course, there has
been resistance in adopting OCL outright by SPL researchers for the
reasons in the first paragraph.

And then there is the intellectual challenge to find an alternative
to OCL that matches its power but is simple and elegant. Imagine the
damage COBOL would have inflicted on programming and Computer
Science if we all were required to use it into the 1980s. Any early
language is not, nor should be, an absolute endpoint.

Against this backdrop, today’s Object Oriented (OO) programming
languages have made great strides in the last 25 years; Java 8.0 is
vastly different than Java 1.0. We demonstrate in this paper that
contemporary OO languages now have the functionality to replace

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
conference, month-day-year, place
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5221-5/17/09. . . $15.00
https://doi.org/10.1145/3106195.3106201

specialized languages used in MDE, like OCL and ATL. Our work is
simply a next step in the evolution of MDE concepts and tooling.

Where might a replacement or simplification of OCL be found?
Researchers with a graduate understanding of classical databases
have long recognized the connections between MDE and relational
algebra [8, 32]. Independently, category theory is a mathematical
foundation for MDE; categorical concepts are finding their way into
today’s MDE tools and texts [7, 18, 20, 35]. But what would be the
result if these foundational lines of thought were unified?

In 1990, Freyd and Scedrov studied categories with power set
domains which they called allegories [25]. In 2013, Zieliński, Maślan-
ka, and Sobieski explained how allegories were closely connected
to database modeling and query processing [56]. Allegories were
noticed by mathematicians but not so by the database and MDE

communities.
This paper is not an immediate response to reading these pioneer-

ing works on allegories; it took years of rumination to understand
and integrate these ideas and realize their implications and utility.

To our delight, allegories offer a clean way to express MDE con-
straints from a relational algebra perspective. Our language, called
Aocl, is pure-Java and is implemented by a Java framework that
relies on Java streams, generics, and lambda expressions. Using
Aocl to write and evaluate model constraints requires an MDE tool to
generate the metamodel’s Aocl Java plug-in for this framework.

Aocl is a pragmatic response to the motivations of this paper. It
is an elegant, extensible (meaning new operations can be added
easily), pure-Java replacement for OCL. The Aocl tool and framework
is ∼9K Java LOC and can be prototyped in a couple months on any
MDE platform.

The contributions of this paper are:
• Closing the intellectual gap between OCL, allegories, and Aocl;
• Illustrating Aocl queries and constraints;
• Describing how the Aocl plug-in generator was built;
• Explaining the potential of Aocl in future MDE tooling; and
• Listing open problems for the MDE community to explore.

2 AOCL

2.1 Insights Behind Aocl
Fig. 1 is a UML class diagram. It says there are Employees, Departments,
and Divisions. Each Emp works in any number of Deps and each Dep

employs any number of Emps. Also each Dep belongs to a single Div.

Emp

-name : String
-age : Int

Dep

-name : String
-'city' : String

Div

-name : String

-worksIn

*

-employs

*

-inDiv

1

-hasDept

*

Job DD

Figure 1: The Emp-Dep-Div (EDD) Class Diagram.

Here is a query written in USE OCL [46]: Find employees in the
"tool" division:

1

https://doi.org/10.1145/3106195.3106201
https://doi.org/10.1145/3106195.3106201

conference, month-day-year, place Don Batory and Najd Altoyan

Div.allInstances ->select(name='tool '). hasDept.employs

Its meaning is straightforward:

• Div.allInstances produces the set of all Div objects;
• select(name='tool') eliminates Div objects whose name is
not "tool";

• hasDept produces the set of Dep objects that belong to "tool"

divisions; and
• employs produces the set of Emp objects that work in "tool"

divisions, which is the result of the query.

Written in this way, the connection between relational databases
and OCL emerges when a relational algebra analog to this query is
written in OO style/syntax:

Div.select(name.equals ("tool ")). hasDept (). employs () (0)

• Div is the table of all Div tuples;
• select(name.equals("tool")) eliminates Div tuples whose
name is not "tool";

• hasDept() produces the table of Dep tuples that are referenced
by qualified Div tuples. In database parlance, this operation
is a right-semijoin of qualified Dep tuples with the entire Div

table [44, 49]; and
• employs() is another right-semijoin that produces the table
of Emp tuples that work in qualified departments.

We could have written (0) using only relational algebra operations,
making explicit the semijoin argument — here an association name
— for each right-semijoin:

Div.select(name=`tool ')
.rightSemiJoin(hasDept). rightSemiJoin(employs)

This is ugly. However, by lifting association role names to their
corresponding semijoin operations yields the compact and elegant
expression (0).

Note: A bit of database sugaring was used in this example. Job
is a many-to-many association between Emp and Dep (Fig. 2a).
Classical relational database design, called normalization, re-
places association Job with an association class Job and two
one-to-many associations JobEmp and JobDep (Fig. 2b) [22, 44].
In the parlance of MDE, the normalization mapping of Fig. 2a→b

is a model-to-model transformation.

-name : String
-age : Int

Emp

-name : String
-'city' : String

Dep

Job

-toEmp1

-wi

*

-toDep1

-em

*

=
JobEmp JobDep

(a) (b)

-name : String
-age : Int

Emp

-name : String
-'city' : String

Dep

-worksIn*-employs *

Job

Figure 2: Database Normalization of the Job Association.

Note: Association traversals in the unnormalized diagram
(Fig. 2a) are implemented by cascading right-semijoins in Fig. 2b.
Written as composed methods in Java:

worksin() = wi().toDep()

employs() = em().toEmp()

ie., worksin() is a traversal (read: right-semijoin) from Emp to
Dep in Fig. 2a. In Fig. 2b, worksin() is a right-semijoin from Emp

to Job via association wi() and then from Job to Dep via toDep().
Of course, these details can be hidden from end-users.

In a nutshell, the core of OCL is relational algebra written in
OO syntax with customized names for right-semijoins.We call
this language Aocl.

Foundations and Concessions. Our presentation is admittedly
backwards in that the theory that inspired Aocl, and which existed
long before Aocl itself, should be presented next. As few practi-
tioners in MDE appreciate category theory and far fewer allegories,
the usual theory-then-implementation order is a obstacle for con-
temporary readability. For this reason, the important sections on
relational algebra, category theory and the need for allegories are
explained in Appendix A, which we hope in the future all will be
able to read and appreciate.

2.2 Running Example
We add a recursive association, Anc, to our EDD diagram (see Fig. 3).
Now each Emp has a lineage: descendants (children) and ancestors
(parents). Traversing the ANC association computes, for example,
Emps that are grandparents, by expression Emp.parOf().parOf(), and
Emps that are grandchildren, by Emp.chldOf().chldOf().

-name : String
-age : Int

Emp

-name : String
-'city' : String

Dept

-name : String

Div

-parOf

*

-chldOf*

-worksIn

*

-employs

*

-inDiv

1

-hasDept

*

Job DD

Anc

Figure 3: EDD with a Recursive, Lineage Association ANC.

ClassDiagram toRelational SchemaMapping. It is well-known
that UML class diagrams can be translated into normalized relational
schemas [8, 22, 44]. The blue statements in Fig. 4 are EDD schema
declarations in MDElite [8], the MDE platform used in this paper. There
is a table for Emp, Dep, and Div, along with an association table Job

that encodes n:m relationships among Emp and Dep tuples, and an
association table Anc that encodes n:m ancestry information among
Emps. The first column of every table is a manufactured identifier
id required by MDElite.

Example. The Emp table of Fig. 4 has 3 columns id, name, and
age. Column age is of type int; the others default to String. Table
Dep has 4 columns: id, name, "city", and inDiv. The first three
columns are of type String, where city values are quoted because
they may have blanks (eg., "New York"). Column inDiv has legal
identifiers of Div tuples as its values.

Object Model to Database Mapping. An EDD model (object di-
agram) is needed to evaluate queries and constraints. Any EDD

model can be translated into a database of tuples for the computed
EDD schema [8], such as Fig. 4. Tuples are written as Prolog facts:
Emp(p1,don,64) is a Emp tuple where id=p1, name=don, and age=64.
The Anc(c1,p1,p3) tuple has id=c1, parOf=p1, and chldOf=p3, mean-
ing don is the parent of hanna.

Although this example does not have class inheritance hierarch-
ies, Aocl supports subclasses/subtables as expected.

2

Aocl : A Pure-Java Constraint Language for MDE conference, month-day-year, place

table(Emp,[id,name,age:int]).
Emp(p1,don,64).
Emp(p2,karen,57).
Emp(p3,hanna,23).
Emp(p4,alex,18).
Emp(p5,steve,53).
Emp(p6,priscila,28).
Emp(p7,hanna,73).
Emp(p8,kelly,58).
Emp(p9,phyllis,56).

table(Dept,[id,name,"city",inDiv:Div]).
Dept(d1,mens,"Austin",v1).
Dept(d2,womens,"Austin",v1).
Dept(d3,appliances,"Toronto",v2).
Dept(d4,hardware,"Toronto",v2).
Dept(d5,book,"Hamilton",v2).

table(Div,[id,name]).
Div(v1,clothing).
Div(v2,goods).

table(Anc,[id,parOf:Emp,chldOf:Emp]).
Anc(c1,p1,p3).
Anc(c2,p2,p3).
Anc(c3,p1,p4).
Anc(c4,p2,p4).
Anc(c5,p5,p1).

table(Job,[id,employs:Emp,worksIn:Dept]).
Job(w1,p1,d1).
Job(w2,p2,d2).
Job(w3,p3,d2).
Job(w4,p4,d4).
Job(w5,p5,d3).
Job(w6,p6,d2).
Job(w7,p7,d2).
Job(w8,p1,d3).
Job(w9,p8,d5).
Job(w10,p9,d5).

EDD

Figure 4: An EDD Database Instance.

Constraints and Queries on EDD. Here are four constraints to
enforce on EDD:
(C1) Every Emp has a unique name.
(C2) Every Dep in Toronto employs workers 19 and older.
(C3) No Div can employ more than 20 Emps.
(C4) No more than two generations of workers from the same

family can be employed.
And here are seven non-trivial and progressively more compli-

cated queries that could be used in other constraints or in writing
model-to-model transformations:
(Q1) Find employees whose name begins with "d" or "p".
(Q2) Find the divisions that have departments in Austin.
(Q3) List employees that work in multiple departments.
(Q4) Find divisions in which don works.
(Q5) Print the division colleagues of priscila.
(Q6) List the ID of each Emp (whose parent is also an Emp) with the

ID of division(s) in which he/she works.
(Q7) Find the max number of employees in any department.

We consider queries in the next section and constraints afterwords.

2.3 Aocl Queries
An Aocl program imports its allegory package and starts by reading
a database, here the EDD model of Fig. 4:

import Allegory.EDD.*;
...
Database edd = new Database ("EDD.edd.pl");

We can immediately write Aocl expressions for each query in Sec-
tion 2.2. Outputs of (Q1)–(Q7) are posted in Fig. 5.

(Q1) finds employees whose name begins with "d" or "p". Here
is Java (Aocl) code to compute the solution to (Q1):

edd.Emp.select(e->e.name.startsWith ("d") ||
e.name.startsWith ("p"))

.print ();

The expression edd.Emp yields the Emp table database EDD. The select
takes a Java Predicate as input, which selects Emp tuples whose
name starts with "d" or "p". print() displays the select-produced
table. Its USE OCL counterpart:

Emp.allInstances ->select(name.at(1)='d' or
name.at(1)='p')

(Q2) finds divisions that have departments in Austin:

edd.Dept
.select(d->d.city.equals (" Austin "))
.inDiv()
.print ();

Departments that are not in "Austin" are removed by select().
Departments that remain are mapped by inDiv() to their divisions,
and are then printed. Its USE OCL counterpart:

Dept.allInstances.select(city=`Austin ').inDiv ->asSet

(Q3) lists employees that work in multiple departments:

edd.Emp.select(e->e.worksin (). count ()>1). print ();

The select() finds employees that work in more than 1 department.
Its USE OCL counterpart:

Emp.allInstances.select(worksIn ->size >1)

(Q4) finds divisions in which don works:

edd.Emp.select(e->e.name.equals ("don"))
.worksIn (). inDiv (). print ();

The first line produces a table of Emp tuples with name="don". The
table of Dep tuples in which don works is produced by worksIn(),
and the table of divisions in which don works is produced by
inDiv(), which is printed. Its USE OCL counterpart is:

Emp.allInstances ->select(name=`don '). worksIn.inDiv

(Q5) prints the division colleagues of priscila:

edd.Emp.select(t->t.name.equals (" priscila "))
.worksIn (). inDiv()
.hasDept (). employs ()
.print ();

The first line produces an Emp table of priscila tuples. worksIn().inDiv()
converts this Emp table into a table of divisions in which priscila
works. hasDept().employs() computes the table of Emps that work
in those divisions. Its USE OCL counterpart is:

Emp.allInstances ->select(name=`priscila ')
.worksIn.inDiv.hasDept.employs

(Q6) lists the ID of each employee (whose parent is an employee)
with the ID of division(s) in which he/she works:

DTable Q6 = new DTable ("Q6","EmpId","DivId ");
edd.Emp.select(e->e.parOf (). exists ())

.forEach(em->em.worksIn (). inDiv()
.forEach(d->Q6.add(em.id,d.id)));

Q6.print ();

The first line creates a temporary table Q6 with column names
"EmpId" and "DivId". The second line selects eligible Emps. The
forEach lines compute Q6 tuples (ordered pairs). The last line prints
table Q6. Its USE OCL counterpart is:1

Emp.allInstances ->select(parOf ->notEmpty)->
iterate(e:Emp;
ed:Set(Tuple(first:Emp ,second:Set(Div)))= Set{}
| ed->including(Tuple{

first=e,
second=e.worksIn.inDiv ->asSet }))

1If an Emp works in multiple Divs, more tuples would be output.

3

https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html

conference, month-day-year, place Don Batory and Najd Altoyan

(Q7) finds the max number of employees in any Dep:

OptionalInt m; // a possibly null integer
m = edd.Dept.stream ()

.mapToInt(d->d.employs (). count ())

.max ();
if(m.isPresent ())

out.println ("Ans: "+m.getAsInt ());

This query uses existing Java stream operations. edd.Dept.stream()
produces a stream of Dept tuples. The mapToInt replaces each Dep

tuple with its Int number of employees. max returns the maximum
of these numbers (but in the case that there are no Dep tuples, there
could be no answer – so an OptionalInt is returned). The next
line prints the value if there is one. Its USE OCL counterpart is:

Dept.allInstances.collect(employs ->size)->max

Observations. Fig. 5 is the output of Aocl and USE OCL. Their solu-
tions are identical, albeit different syntax. In general, Aocl and OCL

expressions are similar. This is to be expected as both are stream
processing languages.

Before we proceed, note that the methods invoked in the above
examples on EDD tuples and tables belong to the generated EDD Java
package. The same holds for the EDD constraints we consider next.

solutions

Aocl Solutions USE OCL Solutions
(Q1) Find all employees whose name begins with ‘d’ or ‘p’

table(Emp,[id,name,age:int]).
Emp(p1,don,64).
Emp(p6,priscila,28).
Emp(p9,phyllis,56).

Set{p1,p6,p9} : Set(Emp)

(Q2) Find the divisions that have departments in Austin

table(Div,[id,name]).
Div(v1,clothing). Set{v1} : Set(Div)

(Q3) List employees that work in multiple departments

table(Emp,[id,name,age:int]).
Emp(p1,don,64). Set{p1} : Set(Emp)

(Q4) Find all divisions in which don works

table(Div,[id,name]).
Div(v1,clothing).
Div(v2,goods).

Bag{v1,v2} : Bag(Div)

(Q5) Print the division colleagues of priscila

table(Emp,[id,name,age:int]).
Emp(p1,don,64).
Emp(p2,karen,57).
Emp(p3,hanna,23).
Emp(p6,priscila,28).
Emp(p7,hanna,73).

Bag{p1,p2,p3,p6,p7} : Bag(Emp)

(Q6) List the ID of each employee (whose parent is an employee) and the ID of division(s) in which he/she works

table(Q6,[EmpId,DivId]).
Q6(p1,v1).
Q6(p1,v2).
Q6(p3,v1).
Q6(p4,v2).

Set{ Tuple{first=p1,second=Set{v1,v2}},
Tuple{first=p3,second=Set{v1}},
Tuple{first=p4,second=Set{v2}} } : Set(

Tuple(first:Emp, second:Set(Div)))

(Q7) Find the max number of employees in any department

Ans: 4 4 : Integer

Figure 5: Aocl and USE OCL Solutions to Queries (Q1)–(Q7).

2.4 Aocl Constraints
A special Java class and table operation are used in Aocl to log
constraint violations. ErrorReport is a Java class whose stateful
objects log errors. Table method error(er,..) takes an ErrorReport

object (er) and logs a customized error for each tuple of error()’s
input table. Outputs for constraints (C1)-(C4) are posted in Fig. 6.

Aocl constraint programs begin with the reading of a database
and the creation of an ErrorReport object:

import Allegory.EDD .*;
...
Database edd = new Database ("EDD.edd.pl");
ErrorReport er = new ErrorReport ();

Constraints can now be written. Here are two ways to write
(C1) that asserts all employees have unique names:

edd.Emp.name()
.duplicates ()
.error(er ," multiple employees have name=%s",

e->e.value);
or

STRINGTable dups = edd.Emp.name (). duplicates ();
edd.Emp

.select(e->dups.contains(e.name))

.error(er ,"Emp(%s..) has non -unique name=%s"
r->r.id, r->r.name));

The first solution projects the name column of the Emp table into a
single-column STRINGTable that preserves duplicates. duplicates()
retains one copy of each duplicated tuple in a table and eliminates
non-duplicates. An error is logged for each tuple in STRINGTable.

The second solution computes a STRINGTable dups of duplicated
names and uses dups to select Emp tuples that have a replicated name.
The ids of these tuples and their replicated names are logged, giving
a more detailed error report (see Fig. 6). Its USE OCL counterpart:

context Emp inv UniqueName:
Emp.allInstances ->

forAll(e1,e2 | e1.name=e2.name implies e1=e2)

(C2) says every Dep in Toronto hires workers 19 and older:

edd.Dept
.select(d->d.city.equals (" Toronto "))
.forEach(d->d.employs (). select(ee->ee.age <19)

.error(er ,"%s illegally hired %s",
e->d.name ,e->e.name));

For each Dep in Toronto, a table of under-aged employees is com-
puted and each violation is logged. Its USE OCL counterpart:

context Dept inv EmpAge:
self.select(city=`Toronto ')

.employs ->forAll(e|e.age >=19)

(C3) says no division can employ more than 20 workers:

edd.Div
.select(d->d.hasDept (). employs (). count ()>20)
.error(er ,"%s has >20 workers",d->d.name);

Its USE OCL counterpart:

context Div inv EmpCount:
self.hasDept.employs ->size ()<=20

(C4) says no more than two generations of workers from the
same family can be employed:

String fmt = "%s has >2 generations " +
"of family members employed ";

db.Emp.select(e->e.chldOf (). chldOf (). exists ())
.error(er, fmt , e->e.name);

Its USE OCL counterpart:

4

https://docs.oracle.com/javase/8/docs/api/java/util/OptionalInt.html

Aocl : A Pure-Java Constraint Language for MDE conference, month-day-year, place

context Emp inv twoGen:
self.chldOf.chldOf ->size() = 0

A constraint program ends by printing accumulated errors:

er.printEH ();

(C1), (C2) and (C4) log errors; (C3) does not.

Observations. Fig. 6 shows the output of Aocl and USE OCL. The
solutions are identical, although Aocl’s are more detailed. The con-
straints themselves are comparable in structure with Aocl expres-
sions a bit longer due to customized error logging.

CSolutions

Aocl Solutions USE OCL Solutions
(C1) All Emps must have unique names
Solution 1:
multiple employees have name=hanna

Solution 2:
Emp(p3..) has non-unique name=hanna
Emp(p7..) has non-unique name=hanna

false

(C2) All Depts in Toronto cannot employ Emps younger than 19
hardware illegally hired alex false

(C3) No Div can employ more than 20 Emps
true

(C4) No more than two generations of workers can be employed
steve has >2 generations of family members employed false

Figure 6: Error Log of Constraints (C1)–(C4).

2.5 Model-to-Model Transformations
OCL cannot update the model that it examines. By precluding up-
dates, Aocl could be the same. By allowing updates, Aocl could be
used to write model-to-model transformations and be more versa-
tile.

As an illustration, in a few minutes, we coded and executed ATL’s
“Families-to-Persons" example [24]. The Java source for this

program is in Fig. 7. We generated Aocl packages for the Families

and Persons metamodels, and the rest was easy. We do not foresee
problems scaling Aocl to large M2M transformations.

3 MDELITE IMPLEMENTATION OF META4

MDElite is a set of Java tools to explore the synergy of MDE and
RA [6, 8]. It supports model-to-text (M2T), model-to-model (M2M), and
(document-to-database parsing) text-to-model (T2M) transformations
and has been bootstrapped. In MDElite, a metamodel is a database
schema and a model is a database.

Meta4 is an MDElite tool that generates Aocl Java packages. In this
section, we explore Meta4’s implementation.

3.1 Meta4 Front-End
Meta4 uses the graphical UML editor called Violet to draw umlCDs [48].
Each Violet umlCD is transformed into a CDSpec file where classes,
associations, and inheritance relationships are declared textually.
The CDSpec of the EDD umlCD is:

classDiagram EDD.

table(Emp ,[id,name ,age:int]).
table(Dept ,[id,name ,"city "]).
table(Div ,[id,name]).

Figure 7: Aocl Families-to-Persons M2M Transformation.

assoc Emp employs NM -- Dept worksIn NM.
assoc Emp parOf NM -- Emp chldOf NM.
assoc Div inDiv BLACK_DIAMOND -- Dept hasDept NM.

// no inheritance decls in this example

Meta4 gives its users the option to draw a graphical umlCD using
Violet (and have it translated to a CDSpec) or to write the CDSpec

directly to produce an allegory package.

3.2 Meta4 Back-End
Here is where the heavy-lifting occurs. Meta4 generates:

• An MDElite schema for the input CDSpec. This schema was
shown in blue in Fig. 4. The tuples in Fig. 4 were not gener-
ated; they were added later by hand.

• A Database.java file whose constructor reads a database
text file (such as EDD of Fig. 4) and populates an in-memory
database of its tables.

• A τ.java file is produced for each tuple type τ. It defines
each field of a tuple and the required set of operations on
τ-tuples, like employs() for Dep tuples.
Example. (C2) uses the expression:

forEach(d->d.employs ()...

5

https://www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html

conference, month-day-year, place Don Batory and Najd Altoyan

d is a tuple of type Dep. The expression d.employs() com-
putes the right semijoin of table {d} with table edd.Emp.

• A τTable.java file is produced for each τ.java file. It main-
tains a list of all τ-tuples and has the required set of opera-
tions on τTables, like right semijoins.
Example. (C3) uses the expression:

d.hasDept (). employs ()...

The input to employs() is a Dep table and the output is an Emp

table. The method employs() performs a right semijoin on
its input Dep table with the edd.Emp table.

• A Lang.java file that contains a set of static class definitions,
including ErrorReport, and ρ.java and ρTable.java for each
primitive datatype ρ of Aocl, where ρ ∈{INT, STRING, FLOAT,
DOUBLE, BOOL}.

3.3 A Tour of Dep.java

Fundamentally, Dep.java is no different than other τ.java files and
is, for that matter, only marginally different from DepTable.java

and other τTable.java files. It begins with the expected header:

public class Dept extends ... {
public String id;
public String name;
public String city;
public Div inDiv;

which defines a Dep tuple and each of its columns. The Dep construc-
tor initializes primitive fields while a helper method assigns a Java
object to its inDiv field.2

Dep.java has a tuple toString() method:

static String fmt ="Dept(%s,%s,`%s',%s).\n";

public String toString () {
return String.format(fmt ,id,name ,city ,inDiv.id);

}

And a method for each semijoin operation. Here is inDiv():

public DivTable inDiv() {
return new DivTable(db).add(this.inDiv);

}

Each Dep tuple points to the Div tuple to which it is associated. If d
is a tuple of Dep, {d} is the Dep table that contains this tuple. The
expression inDiv({d}) = {d.inDiv} yields a Div table that contains
the lone tuple d.inDiv. (d.inDiv is the tuple pointed at by tuple d

by field inDiv.) The Java expression new DivTable(db) creates an
empty Div table and add(this.inDiv) adds the requisite tuple.

The right semijoin method employs() is more complicated as it
is a semijoin over an association class:

public EmpTable employs () {
EmpTable result = new EmpTable(db);
for(job j : db.Job.tuples ()) {

if(j.worksIn ==this &&
!result.contains(j.employs)) {

result.add(j.employs);
}

2A database is populated with tuples in two passes. Primitive data values for each
tuple are loaded on the first pass. Tuple pointers, such as fields created by association
roles, are assigned in the second phase, after a Java object per tuple has been created.

}
return result;

}

An empty Emp table is assigned to result. We need to know which
Job tuples point to this Dep tuple. Consider Job tuple j. If j points
to this (ie., j.worksIn==this), then j.employs is an employee of
this Dep. The remaining code ensures that the resulting Emp table
contains no duplicate Emp tuples.

As said earlier, the generated code for other τ.java and τTable-

.java files for τ ∈{Job, Dept, Anc, Div} are marginally different.

3.4 The Aocl Challenge
The M2T generation of Aocl code is straightforward. The challenge in
crafting τ.java and τTable.java files is to reduce redundancy. We
presented in the last sections the τ-unique code segments of τ.java
files (and τTable.java files). These files have a lot in common.

Consider the non-optimized files Div.java and Emp.java of Fig. 8.
Their bodies are almost syntactically identical:

public abstract class Div {
String id;
protected Database db;

public void setDB(Database db) {
this.db = db;

}

public void print(PrintStream out) {
out.print(this.toString());

}
...

}

public abstract class Emp {
String id;
protected Database db;

public void setDB(Database db) {
this.db = db;

}

public void print(PrintStream out) {
out.print(this.toString());

}
...

}(a) (b)

commonTuple

Figure 8: Original Div.java and Emp.java.

The standard way to eliminate such redundancy is to pull-up
members that are shared by τ.java classes into a single class, here
called TuPle, that becomes the superclass of τ.java classes like Div

and Emp. This works except that every allegory package has its
own Database class. This means that TuPle must be a Java generic,
with Database as a parameter. Emp and Div become subclasses of
TuPle<Allegory.EDD.Database>, as do all other τ.java files in an alle-
gory package, Fig. 9.

public abstract class TuPle<Database> {
String id;
protected Database db;

public void setDB(Database db) { this.db = db; }

public void prints(String x) { System.out.print(x); }
...

}

TuPle

Figure 9: TuPle superclass of Div.java and Emp.java.

Now examine the DivTable.java and EmpTable.java files in Fig. 10
which is digitally enlargeable.

We spot a Database reference, so we know the generic-parameter-
trick above to handle it. There are, however, syntactic differences:
Two terms are highlighted in red: τ the name of the tuple class
and τTable the name of its table class. Unfortunately, it is not a
simple matter of adding two more generic parameters to have
<Database,T,TBL>, where T is the tuple class and TBL is the table
class. Why? Because the table class is itself parameterized by T.
This makes creating a useable Java multi-parameter generic class
challenging, as it pushes the capabilities of Java Generics.

6

Aocl : A Pure-Java Constraint Language for MDE conference, month-day-year, place

public class DivTable {
Database db;

protected LinkedList<Div> tuples
= new LinkedList<>();

public abstract LinkedList<Div> tuples();

public Stream<Div> stream() {
return tuples().stream();

}

public DivTable unique() {
DivTable unique = new DivTable();
for (Div t : tuples()) {

if (!unique.contains(t))
unique.add(t);

}
}

public DivTable select(Predicate<Div> p) {
DivTable filtered = new DivTable();
tuples().stream().filter(p)

.forEach(t -> filtered.add(t));
return filtered;

} ...
}

public class EmpTable {
Database db;

protected LinkedList<Emp> tuples
= new LinkedList<>();

public abstract LinkedList<Emp> tuples();

public Stream<Emp> stream() {
return tuples().stream();

}

public EmpTable unique() {
EmpTable unique = new EmpTable();
for (Emp t : tuples()) {

if (!unique.contains(t))
unique.add(t);

}
}

public EmpTable select(Predicate<Emp> p) {
EmpTable filtered = new EmpTable();
tuples().stream().filter(p)

.forEach(t -> filtered.add(t));
return filtered;

} ...
}(a) (b)

commonTable
Figure 10: Original DivTable.java and EmpTable.java .

Fig. 11 is our solution. TaBle is parameterized by classes Database,
T, and TBL where T must extend TuPle<Database> and TBL must ex-
tend TaBle<Database,T,TBL>, which is decidedly non-obvious.

public abstract class TaBle<Database,

T extends TuPle<Database>,

TBL extends TaBle<Database,T,TBL>> {

protected Database db;

protected LinkedList<T> tuples = new LinkedList<>();

public abstract LinkedList<T> tuples();

public Stream<T> stream() { return tuples().stream(); }

public TBL unique() {

TBL unique = New();

for (T t : tuples()) {

if (!unique.contains(t))

unique.add(t);

}

}

public abstract TBL New();

...

}

TaBle

Figure 11: Generic TaBle superclass of τTable.java files.

Java adds nits of its own. For example, locate the black pointers
(

blackArrow

) in Fig. 10. One cannot invoke "new TBL()" in a Java generic.
Instead, an indirection is used: an abstract New method is defined in
TaBle; its concrete method is defined in each τTable.java file:

τ Table New() { return new τ Table (); }

The black pointers in Fig. 11 show this indirection. This is a case
where having both generics and M2T capabilities were critical, as
both complement each other.

3.5 Table Class Hierarchies
Suppose class Dog is a subclass of Pet. It is well-documented in Java
that List<Dog> is not a subclass of List<Pet> [30].

Yet, it makes perfect sense (to us anyways) that Table<Dog> is a
subclass or subtable of Table<Pet>. Every Dog tuple of Table<Dog>
is a tuple of Table<Pet>. All associations of Pet become semijoin
methods in Table<Pet>. These same associations are inherited by
Dog, and therefore should be semijoin methods of table Table<Dog>.

Every τ.java and τTable.java begin as:
public class τ extends TuPle <Database > {..}
public class τ Table extends TaBle <Database ,τ ,τ Table > {..}

which means we are forbidden to write:
public class DogTable extends PetTable {..}

as it would require multiple inheritance. The solution is to emulate
table inheritance by delegation [16].

3.6 Aocl Statistics
Given a umlCD with t tables and k association declarations that
encode n:m associations and require association tables, Meta4 pro-
duces 2·(t+k)+3 files. For each τ, there is a τ.java file and a τTable-
.java file. The remaining files are Lang.java, Database.java, and
an MDElite schema file. Empirically we found each table file is ap-
proximately 100 Java LOC and each tuple file is 170 Java LOC. The
remaining files total 1330 Java LOC. The Meta4 framework that these
files plug-in is 2800 Java LOC.

The codebase of Meta4 consists of a set of M2T tools and parsers,
totaling 6100 Java LOC. MDElite, the MDE platform on which Meta4
was built, is 18K Java LOC.

4 EVALUATION
We said in Section 1 that this is an idea paper. We assert any MDE

application that we have written with MDElite, or with Eclipse MDE

for that matter, we could have used Aocl. We explained how our
prototype worked and believe it could be replicated a couple months
on any MDE platform.What is important at this stage are assessments
of the potential of Aocl in MDE tooling.

We pose the following research questions for this evaluation.
The number of each question is the following sub-section where it
is addressed:

4.1 What is wrong with OCL?
4.2 Why use a general-purpose programming language, as op-

posed to specialized languages for MDE?
4.3 OCL is operation extensible; so too is Aocl. What is the differ-

ence?
4.4 A discipline of education is judged by the quality of its teach-

ing material. What does Aocl offer?
4.5 What are reasons for not adopting Aocl?

4.1 What is wrong with OCL?
Cabot and Gogolla have a thorough on-line tutorial about OCL [12]
and say it best:

• There is no serious use of UML without OCL!!!, and
• You may not like it but right now there is nothing better
than OCL!!

Such statements have been encouraging to us ⌣. The point here is
that such sentiments are not isolated [23, 29, 40, 47].

OCL does indeed have many good points. At its core is a stream-
based language — which is exactly the same reason that makes Aocl

powerful. Although the syntax of OCL and Aocl are slightly different,
their core language constructs align.

If you agree, Aocl may be for you.

4.2 The Value of General-Purpose Languages
MDE has opened the market and software engineering technologies
to domain-specific languages, with a focus on metamodels and
models (be they graphical or not). But does MDE really need to

7

conference, month-day-year, place Don Batory and Najd Altoyan

use a special-purpose programming and constraint languages like
OCL, ATL, and QVT that require their own compiler and IDE-like
infrastructure, when a standard and richer infrastructure that Java
11 provides might suffice?

Maintaining a specialized language, its compiler, debugger, refac-
toring tools, document tools, etc. is a long-term and costly burden
that few research efforts can afford. Modern programming lan-
guages have come a long way in the last 20 years. Java 11 (2018)
is vastly different than Java 1 (1996). The combination of generics
(Java 5), lambda expressions and streams (Java 8), with compiler,
debugging, documentation, and refactoring support offers a modern
programming environment that makes Aocl even more appealing.

Even if OCL and its infrastructure were perfect today, it must be
maintained and extended tomorrow. Extending tools that are Java
packages, like Meta4, is much easier and much less costly. Stated dif-
ferently, replacing specialized programming languages with custom
packages in modern languages can be appealing to entice more peo-
ple to the MDE community. It certainly would reduce the long-term
burden of MDE tool support and tool education.

If you agree, Aocl may be for you.

4.3 The Value of Extensibility
OCL is now operation extensible; it requires a heavy-weight solution
to be back-compatible with earlier heavy-weight OCL platforms [53].

The need for extensibility reflects a common experience of the
MDE community where models arise whose constraints are not ex-
pressible in OCL. Example: a model with matrices may require them
to be non-singular (invertible). No MDE user wants to recode singu-
larity checks or other standard domain operations. For Java, there
is a host of matrix packages that could be imported as-is. So it is
for other domains. Adding such operations to OCL or Aocl is ideal.

At the time of this writing, Aocl did not have database groupBy

operation. Adding such a capability would, we thought, be a good
test of extensibility. The following generic groupBy function was
designed, added to TaBle, and tested within a half hour. It takes a
table paramater TBL and partitions its tuples according to a grouper

function into subtables. An action is then applied to each subtable:

public void groupBy(Function <T,String > grouper ,
Consumer <TBL > action) {

// 1: partition `this ' tbl by grouper value
HashMap <String , TBL > gb = new HashMap <>();
for (T t : tuples ()) {

String key = grouper.apply(t);
TBL tl = gb.get(key);
if (tl == null) {

tl = New(); // create empty
gb.put(key , tl); // subtable for key

}
tl.add(t);

}

// 2: foreach grouped table ...
for (TBL pt : gb.values ()) {

action.accept(pt);
}

}

A use of groupBy partitions the Dep table into subtables by city and
counting the number of departments in each city:

db.Dept.groupBy(t->t.city , tbl ->displayAgg(tbl));

//... helper function ...
static void displayAgg(DeptTable t) {

Dept d = t.getFirst (); // get 1st tuple of t
out.format ("%10s has %d Dept(s)\n",

d.city , t.size ());
}

//... result output ...
Hamilton has 1 Depts(s)

Austin has 2 Depts(s)
Toronto has 2 Depts(s)

As it was added to the Meta4 framework TaBle class, all Aocl tables
now have the groupBy operation.

Extensibility can be more invasive. Additional operations might
need to be added to τ.java and τTable.java files in Meta4’s M2T

transformations. These tasks are straightforward in MDElite, as they
should be for all MDE platforms.

If you agree, Aocl may be for you.

4.4 What is the Educational and Scientific
Value of Aocl?

“Eating your own dog-food” means using your own products
internally. Bootstrapping MDE tools is a classic example. Aocl is yet
another as it illustrates how theoretical foundations that underlie
MDE, namely CT and RA, can be integrated to address one of its long-
time concerns – tooling. It is a novel case-study of how MDE theory
might improve MDE practice. And it underscores the belief of many
(not all) in MDE about the importance of theory in MDE development.

New research possibilities arise. It is now 40 years since the
first practical relational query optimizer was built [41]. There is
no reason why the algebra underlying Aocl could not be optimized
using similar technology. Already there is research on how blocks
of pure-Java code that process tuples could be abstracted into SQL
statements to achieve greater execution performance [15]. There is
every reason to believe such work could be replicated for Aocl.

If you agree, Aocl may be for you.

4.5 What are reasons for not adopting Aocl?
OCL expressions need to be analyzed or translated to other lan-
guages (eg., CSP) [12, 28]. Wouldn’t a specialized Java compiler be
needed to do this? And if so, wouldn’t a large infrastructure be
needed, returning us back to square one?

Maybe not. A standard trick is to use an existing Java compiler
to parse and typecheck a program. At which point, custom tools
can redirect compiler execution to walk Java Abstract Syntax Trees
(ASTs) to find and extract information about Aocl expressions to
be subsequently manipulated (see [33] as an example). Again, by
leveraging existing Java infrastructure, such tasks won’t be easy,
but not terrible.

If you agree, Aocl may be for you.

5 RELATEDWORK
Embedding database queries in Java and other languages is com-
mon today [36]. Cheny, Lindley, and Wadler proposed quoting
mechanisms for Java to enclose SQL-like queries [14]. Cook and
Wiedermann took a broader view, recognizing that quoted blocks
of SQL or a subset of Java can provide elegant language support for
service oriented architectures and database processing [15]. Aocl is

8

https://www.investopedia.com/terms/e/eatyourowndogfood.asp

Aocl : A Pure-Java Constraint Language for MDE conference, month-day-year, place

an even closer integration where Java packages express database
(or RA) computations.

There are general tools, such as Xtend and Xbase, that integrate
DSLs (such as OCL constructs) with Java and other languages [54]. Of
course, these tools are necessarily heavier-weight than Aocl as the
"Aocl" DSL is simply a package requiring no language engineering
at all.

Another approach implements OCL as a Java package (interpreter)
[19]. OCL queries are submitted as Java Strings to this package (much
like SQL strings are submitted to SQL packages for execution). The
results are returned as Java objects for subsequent processing. Aocl

effectively removes this middleware approach to express OCL-like
queries natively, invoking methods of an Aocl-generated package
for direct execution.

Several projects have translated OCL into Java [31, 43]. These
particular projects were completed before Java 8 (2014) was released,
where streams and lambda functions first appeared. The translations
to Java, as one can imagine without Java 8, are verbose and not as
elegant as their OCL and Aocl counterparts.

Yue and Ali performed a user study to compare OCL and Java
when writing constraints [55]. Java 7 was used, meaning that the
Java code was (as above) more verbose than that of OCL. Never-
the-less, the authors found that participants working with OCL and
Java performed equally well, with an edge to OCL when constraints
became complicated. Aocl should reduce this advantage. A goal
of [55] was to “find a way to ... offset the investment in terms of
training and tool support ... for OCL”. Aocl does not eliminate this cost,
but reduces it to learning a Java package, which is less intimidating.

Rumpe proposed ≪Java≫OCL to (a) adjust OCL syntax closer to
that of Java to make it more familiar to Java developers [40]. He ex-
amined the OCLmeta operations (eg., OclAny, OclType, OclExpression,
oclAsType) that we believe are more elegantly handled in Java. His
underlying motivation (in our opinion) was similar to that of Yue
and Ali [55]: to offset the investment in OCL training.

And finally, Vaziri and Jackson [47] argue that a language like
Alloy would be more appropriate than OCL to express constraints,
as OCL is “too implementation oriented”. We believe Aocl is a step
in the right direction. It is unclear how we can completely avoid
using general purpose programming languages for MDE software
development (see Section 4.3).

6 CONCLUSIONS
We answered a controversial but inevitable question of ‘When
can general-purpose programming languages replace the special-
ized languages in MDE?’ It is controversial because of enormous
investments that have supported Object Management Group (OMG)
standards, such as OCL. We are uninterested in the politics of this
question — although politics may be the ultimate decider. We fore-
see long-term benefits in a rethinking of early technical decisions
in MDE and potential long-term penalties by not doing so. (This is
a 14-year-old refrain of Favre [23]). Never-the-less, replacements
for many of the first-generation MDE tools will eventually be con-
sidered. We presented Aocl – a lightweight, elegant, and pure-Java
alternative to OCL – for consideration.

We explained the theory and inspiration behind Aocl, showed
typical Aocl queries and constraints are syntactically similar (with

comparable complexity) to OCL, presented enough implementation
detail for others to reproduce Aocl on their own MDE platforms,
and argued in favor of using today’s general-purpose languages to
replace today’s MDE languages.

Modern programming languages are constantly improving. Our
experience with Java generics, lambda expressions and streams
have convinced us that Java can effectively compete with some of
yesterday’s special-purpose languages. The trade-off replaces an
ecosystem of intertwined special-purpose programming languages
with their massive infrastructure (all of which must be maintained)
with small Java libraries. We argued that maintaining these libraries
will be more cost effective in the long-run and the maintenance of
infrastructure becomes the rightful burden of a small set of language
and IDE developers that have the resources for such efforts.

MDE users will also benefit: the cost of entry using well-known
modern languages will be lower than it is for out-dated specialized
legacy languages.

Acknowledgments. Batory and Altoyan are supported by NSF
grant CCF1212683. Altoyan is also supported by King Abdulaziz
City for Science and Technology (KACST), Riyadh, Saudi Arabia. We
are also indebted to Maider Azanza and Arantza Irastorza (Uni-
versity of Basque Country, Spain) for their helpful comments and
insights on OCL.

REFERENCES
[1] S. Apel, D. Batory, C. Kaestner, and G. Saake. Feature-oriented software product

lines: concepts and implementation. Springer, 2013.
[2] C. Avila, A. Sarcar, Y. Cheon, and C. Yeep. Runtime constraint checking ap-

proaches for ocl, a critical comparison. In SEKE, 2010.
[3] K. Baclawski, D. Simovici, and W. White. A categorical approach to database

semantics. Mathematical Structures in Computer Science, 4(2), 1994.
[4] D. Batory. Feature Models, Grammars, and Propositional Formulas. In SPLC,

Sept. 2005.
[5] D. Batory. Using Modern Mathematics as an FOSD Modeling Langauge. In GPCE,

Oct. 2008.
[6] D. Batory. Automated Software Design: Volume 1. submitted – available on request,

2019.
[7] D. Batory, M. Azanza, and J. Saraiva. The Objects and Arrows of Computational

Design. In MODELS, Oct. 2008.
[8] D. Batory, E. Latimer, and M. Azanza. Teaching Model Driven Engineering from

a Relational Database Perspective. In MODELS, 2013.
[9] H. Bauerdick, M. Gogolla, and F. Gutsche. Detecting ocl traps in the uml 2.0

superstructure: An experience report. In UML, 2004.
[10] A. D. Brucker, T. Clark, C. Dania, G. Georg, M. Gogolla, F. Jouault, E. Teniente,

and B. Wolff. Panel discussion: Proposals for improving ocl. In Proceedings of the
MODELS 2014 OCL Workshop (OCL 2014), 2014.

[11] P. Buneman, A. Jung, and A. Ohori. Using powerdomains to generalize relational
databases. Theoretical Computer Science, 1991.

[12] J. Cabot and M. Gogolla. Object constraint language: A definitive guide. https:
//www.slideshare.net/jcabot/ocl-tutorial.

[13] J. Cadavid, B. Baudry, and B. Combemale. Empirical evaluation of the conjunct
use of mof and ocl. In Proceedings of EESSMOD workshop at MODELS’11, 10 2011.

[14] P. P. Chen. The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems, 1976.

[15] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-integrated
query. In ICFP, 2013.

[16] W. R. Cook and B. Wiedermann. Remote batch invocation for SQL databases. In
DBPL, 2011.

[17] B. I. Corporation. Using the tie mechanism. https://www.albany.edu/
dept/csi/csi518/fall03/inprise/vbroker/doc/books/vbj/vbj45/programmers-
guide/tie.html.

[18] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg. Feature models are views on
ontologies. In SPLC, 2006.

[19] Z. Diskin and T. S. E. Maibaum. Category theory and model-driven engineering:
From formal semantics to design patterns and beyond. In ACCAT, 2012.

[20] Eclipse-Kepler-Documentation. Evaluating constraints and queries.
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.ocl.doc%
2Fhelp%2FPivotEvaluatingConstraints.html&cp=38_6_5, 2013.

9

https://www.slideshare.net/jcabot/ocl-tutorial
https://www.slideshare.net/jcabot/ocl-tutorial
https://www.albany.edu/dept/csi/csi518/fall03/inprise/vbroker/doc/books/vbj/vbj45/programmers-guide/tie.html
https://www.albany.edu/dept/csi/csi518/fall03/inprise/vbroker/doc/books/vbj/vbj45/programmers-guide/tie.html
https://www.albany.edu/dept/csi/csi518/fall03/inprise/vbroker/doc/books/vbj/vbj45/programmers-guide/tie.html
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FPivotEvaluatingConstraints.html&cp=38_6_5
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FPivotEvaluatingConstraints.html&cp=38_6_5

conference, month-day-year, place Don Batory and Najd Altoyan

[21] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed
attributed graphs and graph transformation based on adhesive hlr categories.
Fundam. Inf., Jan. 2006.

[22] H. Eichelberger and K. Schmid. Mapping the design-space of textual variability
modeling languages: A refined analysis. Int. J. Softw. Tools Technol. Transf., Oct.
2015.

[23] R. A. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-
Wesley, 1999.

[24] J.-M. Favre. Towards a Basic Theory to Model Model Driven Engineering. In
Workshop on Software Model Engineering, WISME 2004, 2004.

[25] Families to persons. https://www.eclipse.org/atl/documentation/old/
ATLUseCase_Families2Persons.pdf, 2007.

[26] P. J. Freyd and A. Scedrov. Categories, Allegories. Elsevier Science Publishers,
1990.

[27] J. Fuentes, V. Quintana, J. Llorens, G. Genova, and R. Prieto-Diaz. Errors in the
uml metamodel? ACM SIGSOFT Software Engineering Notes, 28:3, 11 2003.

[28] R. C. Gonçalves, D. Batory, J. L. Sobral, and T. L. Riché. From software extensions
to product lines of dataflow programs. Software and Systems Modeling (SoSyM),
Dec. 2017.

[29] C. A. González, F. Büttner, R. Clarisó, and J. Cabot. Emftocsp: A tool for the
lightweight verification of emf models. In FormSERA, June 2012.

[30] H. Husmann and S. Zschaler. The object constraint language for uml 2.0 an
overview and assessment. 2004.

[31] Java generics, inheritance, and subtypes. https://docs.oracle.com/javase/tutorial/
java/generics/inheritance.html.

[32] S. Kallel and et al. Automatic translation of ocl meta-level constraints into java
meta-programs. In Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing 2015, 2016.

[33] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits. The MIC Toolsuite: Metapro-
grammable Tools for Embedded Control System Design. In IEEE CCACSD, Oct.
2006.

[34] J. Kim, D. Batory, and D. Dig. X15: A tool for refactoring java software product
lines. In SPLC, 2017.

[35] E. Lippe and A. H. Ter Hofstede. A category theory approach to conceptual data
modeling. RAIRO-Theoretical Informatics and Applications, 1996.

[36] M. Mabrok and M. Ryan. Category theory as a formal mathematical foundation
for model-based systems engineering. Applied Mathematics and Information
Sciences, 2015.

[37] E. Meijer, B. Beckman, and G. Bierman. Linq: Reconciling object, relations and
xml in the .net framework. In SIGMOD, 2006.

[38] B. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
[39] R. Rosebrugh and R. Wood. Relational databases and indexed categories. In

Proceedings of the International Category Theory Meeting, 1991.
[40] B. Rossiter, D. Nelson, and M. A. Heather. The Categorical Product Data Model as

a Formalism for Object-Relational Databases. University of Newcastle upon Tyne.
Computing Laboratory, 1995.

[41] B. Rumpe. Javaocl based on new presentation of the ocl-syntax. In Object
Modeling with the OCL: The Rationale behind the Object Constraint Language.
Springer Berlin Heidelberg, 2002.

[42] P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie, and T. G. Price.
Access Path Selection in a Relational Database Management System. In ACM
SIGMOD, 1979.

[43] A. J. Shidqie. Compilation of ocl into java for the eclipse ocl implementa-
tion. https://www.semanticscholar.org/paper/Compilation-of-OCL-into-Java-
for-the-Eclipse-OCL-Shidqie/89ae7c8a840df6cefc35dcb871eabf34ba3e6029, 2007.

[44] A. Silberschatz, H. Korth, and S. Sudarshan. Database Systems Concepts. McGraw-
Hill, Inc., New York, NY, USA, 5 edition, 2006.

[45] D. Spivak. Categorical databases. http://categoricaldata.net/fql/oracle.pdf, 2014.
[46] Use:uml-based specification environment. https://sourceforge.net/projects/

useocl/, 2019.
[47] M. Vaziri and D. Jackson. Some shortcomings of ocl, the object constraint

language of uml. In TOOLS, 2000.
[48] Violet UML Editor. http://alexdp.free.fr/violetumleditor/page.php.
[49] Relational algebra. https://en.wikipedia.org/wiki/Relational_algebra, 2017.
[50] Span (category theory). https://en.wikipedia.org/wiki/Span_(category_theory),

2017.
[51] Sql:2016. https://en.wikipedia.org/wiki/SQL:2016, 2018.
[52] C. Wilke and B. Demuth. Uml is still inconsistent! how to improve ocl constraints

in the uml 2.3 superstructure. In Workshop on OCL and Textual Modelling, 01
2011.

[53] E. D.Willink. An extensible ocl virtual machine and code generator. In Proceedings
of the 12th Workshop on OCL and Textual Modelling, OCL, 2012.

[54] Xtext: Language engineering for everyone! https://www.eclipse.org/Xtext/index.
html, 2017.

[55] T. Yue and S. Ali. Empirically evaluating ocl and java for specifying constraints
on uml models. Software & Systems Modeling, Jul 2016.

[56] B. Zieliński, P. Maślanka, and Ś. Sobieski. Allegories for database modeling. In
International Conference on Model and Data Engineering, 2013.

A CATEGORY THEORY, ALLEGORIES, AND
RELATIONAL ALGEBRA

Category Theory (CT) is a theory of functions, mathematical struc-
tures, and their relationships [37]. CT is foundational to diverse
software paradigms such as dataflow architectures, software prod-
uct lines, and model driven engineering [5, 7, 27].

This section presents a gentle introduction to CT, showing that
standard CT encodings of class diagrams are inappropriate for an
OCL replacement, and explaining why generalizing to allegories and
relational algebra (RA) is needed.

A.1 Basic Category Theory (CT)
A category is a directed multigraph3 whose nodes are domains4
and edges are arrows [37]. A domain is a set of elements. Fig. 12
is a category diagram with the Emp, Dep, and Div domains. Emp is
the domain of employees, Dep is the domain of departments in
which employees work, and Div is the domain of divisions to which
departments belong.

Emp Dept DivworksIn isIncat

Figure 12: A Category Diagram.

An arrow θ : D→C is a total function that pairs each element in
domain D with an element in co-domain C. Fig. 12 has two arrows:
worksIn : Emp→Dep and isIn : Dep→Div.

Letα : A→B,β : B→C, and γ : C→D be arrowswith domains {A,B,C,D}
not necessarily distinct [37]. CT has three axioms: Arrows compose
(1) and arrow composition is associative (2). Both should be familiar
to readers as they are axioms of function composition:

(β · α) :A→C (1)
(γ · β) · α = γ · (β · α) (2)

In addition, every domain A has an identity arrow IA : A→A that
pairs each element a∈A to itself. For any arrow α :A→B, axiom (3)
requires:

IB · α = α ∧ α · IA = α (3)
Identity arrows are implied (not drawn) in our category diagrams.

Lastly, the product A×B of two domains, A and B, is the set of all
ordered pairs [a,b]where a∈A and b∈B. Each product is definedwith
projection arrows πA : A×B→A and πB : A×B→B to extract elements of
a pair. The product of three or more domains and their projection
arrows are logical generalizations.
Example. An Emp class is shown in Fig. 13a and Fig. 13b is its cat-
egory diagram. Emp is the product String×Int×String with three
projection arrows education : Emp→String, name : Emp→String, and
age : Emp→Int. Given an Emp instance e, the name, age and education
values of e are computed by the expressions name(e), age(e) and
education(e).

3A multigraph allows any number of edges between two nodes.
4Domains are called objects in CT. We use ‘domains’ to avoid the obvious confusion
in the context of Java and other OO languages.

10

https://www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf
https://www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf
https://docs.oracle.com/javase/tutorial/java/generics/inheritance.html
https://docs.oracle.com/javase/tutorial/java/generics/inheritance.html
https://www.semanticscholar.org/paper/Compilation-of-OCL-into-Java-for-the-Eclipse-OCL-Shidqie/89ae7c8a840df6cefc35dcb871eabf34ba3e6029
https://www.semanticscholar.org/paper/Compilation-of-OCL-into-Java-for-the-Eclipse-OCL-Shidqie/89ae7c8a840df6cefc35dcb871eabf34ba3e6029
http://categoricaldata.net/fql/oracle.pdf
https://sourceforge.net/projects/useocl/
https://sourceforge.net/projects/useocl/
http://alexdp.free.fr/violetumleditor/page.php
https://en.wikipedia.org/wiki/Relational_algebra
https://en.wikipedia.org/wiki/Span_(category_theory)
https://en.wikipedia.org/wiki/SQL:2016
https://www.eclipse.org/Xtext/index.html
https://www.eclipse.org/Xtext/index.html

Aocl : A Pure-Java Constraint Language for MDE conference, month-day-year, place

-name : String
-age : Int
-education : String

Emp

String Int

na
m

eed
uc

at
io

n

age

Emp

emp

(a) (b)

Figure 13: Domain Emp as String×Int×String.

Henceforth whenever you encounter a category diagram, take
note the computations that it expresses. The category in Fig. 13b
computes education(e), name(e) and age(e) ∀e∈Emp.

A.2 Metamodels and Models
A metamodel is a UML Class Diagram (umlCD) plus constraints. We
focus on umlCDs now and consider constraints later in Section 2.2.

Fig. 14a is a umlCD and Fig. 14b is a model or instance (aka., object
diagram). Fig. 14a states that there are two domains: Dep is the
domain of departments and Emp is the domain of employees, where
each Emp worksIn precisely one Dep and the employees of a Dep are
found via hasEmps.

domPairings

(b)(a)

Emp

Dept

-worksIn 1

-hasEmps *

d3d1

e5e4e3e2e1

Dept
Domain

Emp
Domain

d2

Figure 14: A Class Diagram and an Object Diagram.

Two points: First, Emp has two distinct meanings: (1) the domain
of all employees, which is infinite, and (2) the domain of employees
for a model, which is finite. The sizes of the Emp and Dep domains
in the model of Fig. 14b are finite, 5 and 3 respectively. MDE tools
evaluate constraints on models and not on infinite-sized domains.
We use the MDE interpretation.

Second, each domain instance is assigned a (manufactured) iden-
tifier. In Fig. 14b, employees and departments have no explicit
attributes, but they do have identifiers: e1...e5 are identifiers for
Emps and d1...d3 are identifiers for Deps.

A.3 Category Encodings of Class Diagrams
There are many ways to encode umlCDs as categories [3, 11, 34, 38,
39, 45, 56]. The most well-known pairs each class with a domain
of its instances and each primitive data type with a domain of its
values. Fig. 15a shows a umlCD and Fig. 15b is its category diagram.
Associations with *:1 cardinalities, like Emp ∗ 1

worksIn Dep, are encoded
by arrow worksIn : Emp→Dep. In contrast, a *:(0..1)association is
harder to represent. Association D ∗ 0. .1

J C says each instance of D
is optionally paired with an instance of C by role J. Arrow (total
function) J : D→C can be used only if domain C were enlarged by
null to indicate an absence of a pairing for some objects d∈D.

Associations without a 1 or 0..1 end cardinality can not be
directly encoded [8]. Instead, umlCDs with such associations are
normalized by the rewrite/refactoring of Fig. 16, which replaces a
single n:m association with a pair of 1:n and 1:m associations and
an association class AB [44, 50]:

-name : String
-age : Int
-education : String

Emp

-name : String
-nEmps : Int

Dept

-worksIn 1

-hasEmps *

(a) (b) String

Emp Dept

Int

worksIn

cd

Figure 15: A Class Diagram and its Category Diagram.

A

B

-End1

-End2
m

A

B

AB

-Aend

1
-End2

-Bend

1

-End1 n

m

normalizen -End1

-End2

Figure 16: The Association Normalization Refactoring.

To express computations and traversals of umlCDs, we translate
umlCDs to database schemas and their instances to databases — an
ancient tradition in database modeling [42, 44]. Doing so allows us
to think about relational tables and apply RA operations to these
tables.5 Essentially each class of a umlCD becomes a table and its
instances are table rows.

Although the above encoding of umlCD-as-categories is both gen-
eral and common, it has serious computational drawbacks:

• How is association hasEmps of Fig. 15a computed? All arrows
are functions that map a domain instance to a co-domain
instance. hasEmpsmaps a Dep instance to a set of Emp instances.
So given a Dep instance, how does one compute its table of
Emp instances using the category of Fig. 15b? Answer: you
can’t. There are computations (association traversals)
that cannot be expressed.

• How are tables of employees and departments represented?
And operations on tables? At best, tables are expressed indi-
rectly (or as we saw in the last bullet, maybe not at all).

In short, standard encodings of umlCDs as categories are inap-
propriate for our needs because essential OCL computations
are inexpressible.

A.4 Allegories = CT + Power Set Domains
Now consider an encoding that removes the difficulties of the last
section. Recall that MDE domains are of finite size. Let D be a domain
(read: finite table) of tuples and |D | be its cardinality. By 2D we denote
the powerset of D — the set of all unique 2|D| subtables of D.

Given a category diagram, replace each domain D with powerset
2D. That is, 2D is the domain that has the empty table ∅, every sin-
gleton table {d} for each tuple d∈D, every table with distinct pairs
{d1,d2} d1,d2 of tuples in D, and so on, including D itself.

5And finally, rather than using manufactured identifiers for tuples, relational databases
use tuple fields to form tuple identifiers [44]. In doing so, arrows of a category denote
functional dependencies [56]. We use tuples with manufactured identifiers without
loss of generality.

11

conference, month-day-year, place Don Batory and Najd Altoyan

Let’s reinterpret category diagram Fig. 15b in this manner. An
arrow A :2D→2C maps a table of D tuples to a table of C tuples. So
arrow worksIn :2Emp→2Dep maps an Emp table to the table of Deps
in which these Emps work.
Example. Fig. 14b shows pairings (associations) of Dep and Emp

tuples. e1 is a tuple of Emp. The singleton table in 2Emp containing
e1 is {e1}. So worksIn({e1}) = {d1}.

Even better, the reverse or dual of worksIn is hasEmps :2Dep→2Emp,
which can be computed.
Example. d1 is a tuple of Dep and {d1} is its singleton table in
2Dep. Thus hasEmps({d1}) = {e1,e2,e3}, the table of employees
that work in d1.

We know how to map singleton tables via an association — we use
the association pairings of individual tuples in an instance diagram.
We lift this to compute the mappings for all other tables of a power
set. Let table t∈2D and arrow α :2D→2C:

α (t) =
⋃
d∈t

α ({d}) (4)

α (t) is the union of the tables formed by applying α to the singleton
tables of all tuples of t.
Example. Table {e1,e4,e5}∈2Emp. Then worksIn({e1,e4,e5})

={d1,d3} from Fig. 14b and (4).
Example. Table {d1,d3}∈2Dep. Then hasEmps({d1,d3})

= {e1,e2,e3,e4,e5} = Emp from Fig. 14b and (4).
Allegories are categories with power set domains [25, 56].

A.5 Relational Algebra (RA)
Allegories admit any functions on tables. Consider the functions
select (σp), semijoin (⋊j), and sort (τo):

Select. Select σp :2R→2R eliminates tuples from table r∈2R that do
not satisfy predicate p. The result is subtable r′⊆r.
Example. Let p=

(
name="alex" and age>20

)
and table e∈2Emp. The

expression σp(e) produces subtable e′⊆e ∧ e′∈2Emp that contains
only the tuples of ewhose name attribute equals "alex" andwhose
age attribute >20.

Semijoin. Readers may be familiar with the relation join operation
r ▷◁js. It takes the cross product of tables r and s and applies the
selection predicate j to eliminate unwanted tuples. A right semijoin,
denoted r⋊js, is ‘half’ a join, yielding the subtable s′⊆s whose
tuples join with r tuples on predicate j [44, 49].

Consider an association X B A Ywith arbitrary cardinalities. Every
arrow A :2X→2Y in an allegory is a right semijoin (eg., X⋊AY). And so
too is its dual, B : 2Y→2X. This means we can traverse an association
both in the forward AND reverse directions in an allegory. Recall
Emp={e1...e5} and Dep={d1,d2,d3}:
Example. worksIn(Emp)=(Emp⋊worksInDep)={d1,d3}.
Example. hasEmps(Dep)=(Dep⋊hasEmpsEmp)=Emp.

Sort. Sort τo :2R→2R sorts an input table r∈2R on field o in ascending
(+o) or descending (−o) order.6

6sort(r) rearranges but does not modify tuples of table r. For this reason, sort is
not a RA operation because tuple ordering is not expressible. However, sorting is a
core operation on tables in SQL [51].

Other RA operations, like projection (π) and join (▷◁), are also pos-
sible.

12

	Abstract
	1 Introduction
	2 Aocl
	2.1 Insights Behind Aocl
	2.2 Running Example
	2.3 Aocl Queries
	2.4 Aocl Constraints
	2.5 Model-to-Model Transformations

	3 MDElite Implementation of Meta4
	3.1 Meta4 Front-End
	3.2 Meta4 Back-End
	3.3 A Tour of Dep.java
	3.4 The Aocl Challenge
	3.5 Table Class Hierarchies
	3.6 Aocl Statistics

	4 Evaluation
	4.1 What is wrong with OCL?
	4.2 The Value of General-Purpose Languages
	4.3 The Value of Extensibility
	4.4 What is the Educational and Scientific Value of Aocl?
	4.5 What are reasons for not adopting Aocl?

	5 Related Work
	6 Conclusions
	References
	A Category Theory, Allegories, and Relational Algebra
	A.1 Basic Category Theory (CT)
	A.2 Metamodels and Models
	A.3 Category Encodings of Class Diagrams
	A.4 Allegories = CT + Power Set Domains
	A.5 Relational Algebra (RA)

