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Finding Near-Optimal Configurations in Colossal Spaces with
Statistical Guarantees
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A Software Product Line (SPL) is a family of similar programs. Each program is defined by a unique set of features,
called a configuration, that satisfies all feature constraints. “What configuration achieves the best performance
for a given workload?” is the SPL Optimization (SPLO) challenge. SPLO is daunting: just 80 unconstrained
features yields 1024 unique configurations, which equals the estimated number of stars in the universe. We
explain (a) how uniform random sampling and random search algorithms solve SPLO more efficiently and
accurately than current machine-learned performance models, and (b) how to compute statistical guarantees
on the quality of a returned configuration, i.e., it is within x% of optimal with y% confidence.
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1 INTRODUCTION

Table 1. SPL space sizes.

1 A Software Product Line (SPL) is a family of programs with
similar functionalities. Each SPL program or product is defined
by features, i.e., standardized increments of program function-
ality. Features have constraints: a feature may require and/or
preclude other features. All features and their constraints are
defined in a feature model. A configuration is a unique set of
features that satisfies the SPL’s feature model. The configuration
space or product space of an SPL, denoted C, is the set of all
SPL configurations, exactly one program/product per configur-
ation. A configuration space can be colossal (≫1010); a set of f
unconstrained features yields a space of size 2f. A space of size 250K, which is near the upper-limit
to product space enumeration [116], has f ≈18 features, which is tiny for an SPL. Most SPLs are
larger. Table 1 lists the sizes of contemporary SPLs taken from [48, 50, 69, 79, 89].
Clients want an SPL program to satisfy constraints. Functionality constraints declare required

or forbidden features. There are environmental (hardware and platform) constraints. There are
performance constraints on program usage workloads. There are specification challenges: mutually
1 This paper extends two prior publications: [91] from 2017 and [16] from 2021.
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1:2 Oh, Batory, and Heradio

exclusive features often implement the same functionality in different ways, each with a unique per-
formance surface. There are (sometimes unknown) combinations of features that are advantageous
or detrimental to performance. Given these hurdles, what product of an SPL achieves the best
performance? This is the challenge of SPLOptimization (SPLO).
SPLO is daunting. The complexity of feature constraints and the performance influence of fea-

tures and feature interactions is beyond human reasoning. Simply using default configurations is
notoriously bad [7]. To find a configuration with near-optimal performance is known to be difficult
[41, 43, 49, 55, 60, 83–85, 88, 91, 94, 100, 103, 115, 127].
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Fig. 1. Performance modeling vs. random searching.

The Contestants. There are two known
ways to find a near-optimal configuration
(cno) in a product space: (a) create a Perfor-
mance Model (PM) and use an optimizer or
(b) randomly search using Uniform Random
Sampling (URS) – every configuration in C
has an equal probability of being selected
(e.g., 1

|C | where |C | is the cardinality of C).
The upper path in Fig. 1 abstracts the

process of Machine Learning (ML) PMs: a configuration space is randomly (and not necessarily
uniformly) sampled; samples are interleaved with model learning until a model is sufficiently
accurate. An optimizer uses a PM with a workload and functionality constraints to find a cno.

The bottom path abstracts random searching: a workload-and-functionality-constrained subspace
is uniformly sampled until a cno is found.

Why is SPLO hard? Three reasons:
• URS is a gold standard for statistical analysis. Uniformly sampling an enumerated space is
easy: randomly select an integer from [1..|C |] and index to that configuration. Enumeration
of colossal spaces is infeasible, so non-URS sampling methods are used instead [1, 3, 25, 27,
34, 42, 49, 62, 65]. Probabilistic models of URS are simple, but rarely so for non-URS methods.
And each configuration is a solution to a propositional formula; how to index to a solution is
unknown.
• Building and benchmarking a configuration is very expensive. Minimizing the sample size to
while achieving accuracy is critical to all approaches. Today, only heuristics are known, like:
use sample size (f, 2·f, 3·f, ...) where f is the SPL’s number of features [42, 46].
• Statistical guarantees on the quality of returned cnos should be required: a cno is within x% of
optimal with y% confidence. Such statistical guarantees are unknown today.

1.1 The Central Questions of SPLO

Let a sample be a set of configurations, whose cardinality is its size. Let cbest be a product in C that
has the optimal performance for a given workload and functionality constraints. Then:
(1) How does one find a cno in an SPL configuration space?
(2) How accurate (e.g., how near cbest) is the returned cno?
(3) What sample size should be used?

1.2 Contributions of This Paper

• Order statistics and URS [10, 126] provide an SPLO statistical guarantee: i.e., a returned cno is
within x% of optimal with y% confidence;
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• Given any two of (a) accuracy (x%), (b) confidence (y%), and (c) sample size, the third can be
determined mathematically, which leads to standardized answer tables;
• A scalable algorithm to uniformly sample colossal (≫1010) configuration spaces;
• Experimental SPLO results comparing cno recommendations of existing ML PMs with those of
random search algorithms on enumerable SPLs with ≤250K products;
• Experimental SPLO results on random search algorithms in colossal SPL spaces: one has 1012
products and another has 1081;
• The first solution to the Fixed Budget SPLO problem: given a fixed sample size, return the best
cno with statistical qualifications using multiple random search algorithms.

2 RESULTS ON PERFORMANCE MODELING

2.1 Basic Facts

Performance Modeling. ML approaches to PM creation are enormously diverse [73, 95]; we do
not try to be exhaustive or complete. Instead, we review ideas of Linear Regression (LR), a popular ML
approach used in SPLO. Let $̂(c) be the estimated performance of configuration c∈C. A common
form of $̂(c) is [33, 43, 67, 107, 108]:

$̂(c) = 𝛽0 + 𝛽1 · x1 (c) + 𝛽2 · x2 (c) + . . . + 𝛽h · xh (c) (1)

xi(c)  = 1 if (Fj ∈c)
0    otherwise(a)

(b) xi(c)  = 1 if ( {Fj,Fk,Fq} ⊂ c )
0    otherwise

xio

Fig. 2. Definitions of xi (c).

Consider any xi (c) term in Eqn (1). Either xi (c) represents
a unique feature, say Fj in Fig. 2a, meaning xi (c)=1 if Fj is pre-
sent in c; 0 otherwise. Or xi (c) represents a t-way interaction
of t>1 distinct features. Suppose xi (c) is the 3-way interaction
of features {Fj, Fk, Fq} in Fig. 2b, meaning xi (c)=1 if Fj, Fk, and
Fq are all present in c; 0 otherwise. If an SPL has f features,
the number of distinct xi (c) terms is 2f-1. For any reasonable
f, 2f is far too big. So a typical approach finds 2-way to 5-way interactions that are important to
performance [43, 67, 106], so that h≪2f in Eqn (1). Recent research suggests 3-way is sufficient [67].
Let $(cr) be the benchmarked value of configuration cr. Given a set of {(cr, $(cr))}r=1..t pairs,

LR finds the value B = [𝛽0 . . . 𝛽h] that minimizes the sum of the squares of differences between
measured and predicted values, i.e., min

{ ∑t
r=1

(
$(cr) − $̂(cr)

)2} where B∈Rh+1 [23].

Optimizer Complexity. All xi (c) assume the value 0 or 1. Applying the constraints of a feature
model so that only legal configurations are examined, optimizing Eqn (1) becomes an instance of
0-1 Linear Programming, which is NP-hard [16, 122]. Although this result is specific to LR PMs, any
comparable formulation will not alter this complexity.

Conclusion: An optimizer must solve an NP-hard problem to find cbest.

Workload and Environment Fragility. A workload is a set of tasks that are to be executed by a
program. A benchmark measures one or more performance metrics (build size, completion-time,
maximum memory footprint, etc.) of a program when executing a workload. All ML PM models
known to us are created with a fixed workload. It is well-known that changing the workload alters
cbest; the same for changes in execution environment [6, 7, 15, 29, 128, 130].

Conclusion: A PMmay need to be relearned if its workload or environment changes. More
on this in Section 8.2.
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2.2 PM Answers to Central Questions

Answers to Section 1.1 questions for contemporary PM research are:
(1) A PM “fits” a line or curve through a set of observations

{ (cr, $(cr)) }r=1..t. Prediction errors
are unavoidable, although errors are minimized.

(2) Unless an SPL configuration space is enumerated and benchmarked, it is unknown how close
a cno is to cbest. Of course, enumeration is impractical or impossible in most circumstances.

(3) The sample size to use depends on the learning algorithm (see SPLConqueror in Section 5.1),
although there are rules-of-thumb: let f be the number of SPL features. Start with a sample
size f, build a model, and compute its accuracy α. If α is too low, repeat the process until a
budget of configurations or an acceptable accuracy is reached, i.e., (f, 2·f, 3·f, ...) [42, 46].

3 RESULTS ON SIMPLE RANDOM SEARCHING

3.1 Performance Configuration Space (PCS) Graphs

Fig. 3. A PCS graph.

Imagine it is possible to benchmark every c∈C, where $(c) is c’s measured
performance. Small $ is good (efficient) and large $ is bad (inefficient). Sort
all (c, $(c)) pairs in increasing $(c) order and plot them equally-spaced
along the X-axis. The result is a Performance Configuration Space (PCS)
graph. A normalized PCS graph normalizes the X-axis to the unit interval
[0..1], where cbest=0 and cworst=1. The Y-axis is similarly normalized, where
$(cbest)=0 and $(cworst)=1. See Fig. 3 [91].

All SPLs have finite (perhaps colossal) configuration spaces. Consequently,
their PCS graphs are discrete, discontinuous and stair-stepped like Fig. 3,
because consecutive configurations along the X-axis encode discrete decisions/features that
make discontinuous jumps in performance [78]. Further, every PCS graph is monotonically non-
decreasing; consecutive configurations along the X axis, like ci and ci+1, satisfy $(ci)≤$(ci+1), as
some features have no impact on performance.
Random search algorithms are well-suited for non-differentiable and discontinuous functions,

like PCS graphs.

3.2 Simple Random Search (SRS)
URS requires every configuration to have equal probability 1

|C | to be selected. Given that |C | is
colossal, we can approximate a discrete distribution with the continuous distribution Uniform(0,1):

lim
|C |→∞

1

|C | ·
[
1 .. |C |

]
= lim
|C |→∞

[ 1

|C | ..
|C |
|C |

]
= [0..1] (2)

The Simple Random Search (SRS) algorithm uniformly selects n configurations from C, i.e., n
points from [0..1]. On average, n points partition [0..1] into n+1 equal-length segments. The kth-
best configuration out of n, denoted ck,n, has expected rank k

n+1 . The k· (nk) term in Eqn (3) is a
normalization constant [10, 126]:

ck,n = k ·
(
n

k

)
·
∫ 1

0
xk−1 · (1 − x)n−k · dx =

k

n + 1 (3)

The expected rank or distance cno is from cbest is:
c1,n =

1

n + 1 (4)

Let’s pause to appreciate this result. The lone axis of Fig. 4 represents the X-axis of all PCS graphs.
As the sample size n increases, cno progressively moves closer to cbest at X=0, Fig. 4a→4c. If a
sample size of 99 is used, cno will be 1%, on average, from cbest in ranking along the X-axis.
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Fig. 4. URS in action.

Note: Eqns (3)-(4) do not reference |C |; |C | disappearedwhen
the limit was taken in (2). This means Eqns (3)-(4) predict cno
X-axis ranks for an infinite-sized configuration space. Only for
tiny spaces, |C |≤1000, will predictions by Eqns (3)-(4) be low.
See Appendix A.

How accurate is the 1
n+1 estimate? Answer: We can compute

v1,n, the second moment of c1,n, and then the standard deviation
σ1,n of c1,n [16, 81]:2

v1,n = 1 ·
(
n

1

)
·
∫ 1

0
x2 · (1 − x)n−1 · dx =

2

(n + 1) · (n + 2) (5)

𝜎1,n =

√︃
v1,n − c1,n2 =

√︂
2

(n + 1) · (n + 2) −
( 1

n + 1
)2 (6) diff

0.0%

0.5%

1.0%

1.5%

2.0%

0 250 500 750 1000 1250 1500

%
 d

iff

n = # of samples taken

50

Fig. 5. Difference of 𝜎1,n and c1,n.

For large n, Eqn (6) converges to
√︃

2
n2
− 1

n2
= 1

n , which
equals c1,n = 1

n . Fig. 5 shows the convergence rate:
%diff = 100 · ( c1,n

𝜎1,n
− 1) (7)

When n=50, c1,n is 2% larger than σ1,n. For n≥200, there
is no practical difference between theoretical c1,n and
𝜎1,n values, i.e., the standard deviation of c1,n is small.

Readers may have noticed that our configuration
ranking is along the X-axis, not the Y-axis. This is a
percentile. In SPLO, the goal is to be in the smallest percentile: ≤1% means “in the top 1 percentile”.
Conclusion: To find a cno in a colossal product space, SRS takes a uniform sample
of size n, builds and benchmarks each configuration, and returns the best performing
configuration, cno, that on average is the top 100

n+1 percentile of all products with a standard
deviation of 100

n+1 percentile.

3.3 How to uniformly sample an SPL configuration space

Every SPL has a feature model 𭟋 that can be translated into a propositional formula ϕ [9, 13, 14]. A
#SAT tool can count the number of solutions to ϕ efficiently [111]. We know |ϕ|=|C |. Let cfc be
the client functionality constraints on ϕ. The predicate for a user-constrained space is ϕ∧cfc.
Alg. 13 samples a configuration by assigning a Boolean value to each feature f1, f2, . . . , f𝜔

in 𭟋. First, f1 is randomly assigned according to its probability p1= |𝜙∧f1 ||𝜙 | of being true in any
configuration. Suppose f1 is assigned to false. Then, f2 is randomly assigned according to its
probability p2 of being true in a configuration conditioned to f1’s prior assignment: p2= |𝜙∧¬f1∧f2 ||𝜙∧¬f1 | .
This procedure advances until the last feature f𝜔 is assigned, thereby completing a uniformly

random configuration. A formal proof of Alg. 1’s uniformity is given in Appendix B.

2 The integrals of this section were evaluated by Mathematica 12.1.1.0.
3 Knuth first sketched this algorithm in 2009 [66]. Batory reinvented it in 2016 unaware of his work. Oh was first to
implement it with practical improvements: using Heule’s cube-and-conquer algorithm to find an efficient ordering of
features to partition the space [52], caching #SAT computations to avoid repeated evaluations, replacing the remaining last
g bits to assign when they are “don’t cares” with a random g-bit number, and (optionally) caching configurations to remove
duplicates thereby achieving sampling-without-replacement [91].
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Algorithm 1: Uniform Random Sampling (URS)
1 Configuration URS(𝜙 , F):

Input : 𝜙 feature model propositional formula ∧ client functionality constraints
F = (f1, f2, . . . , f𝜔 ) be a static list of all features in the feature model,

to which no Boolean value has been assigned
Output :a random configuration composed of Boolean assignments ai for each fi ∈ F

2 |𝜙 | ← #SAT computes the number of solutions to 𝜙 ;
3 for each i in (1..𝜔) do
4 |𝜙 ∧ fi | ← #SAT computes the number of solutions to 𝜙 ∧ fi;
5 Generate an independent random value j uniformly distributed in [0,1];
6 if j ≤ |𝜙∧fi ||𝜙 | then
7 ai ← true; 𝜙 ← 𝜙 ∧ fi; |𝜙 | ← |𝜙 ∧ fi |;
8 else
9 ai ← false; 𝜙 ← 𝜙 ∧ ¬fi;

10 |𝜙 | ← #SAT computes the number of solutions to 𝜙 ∧ ¬fi;
11 return (a1, a2, . . . .a𝜔 );

BDDSampler. A new tool, called BDDSampler [17, 50], implements an optimized version of Alg. 1
[91]. BDDSampler is built on top of the CUDD [31] library for BDDs and is remarkably fast, even for
colossal spaces. The last column in Table 2 shows the time BDDSampler needed to sample 1,000
configurations with replacement for different SPLs4 averaged over 100 executions.5 The 3rd column
in Table 2 lists the BDD synthesis times for feature models by the procedure of [35].6

Time (secs)

SPL |C | Synthesis Sampling

JHipster 3.1.6 2.6·104 0.01 0.04

DellSPLOT 7.4·106 0.29 0.08

Fiasco 2014092821 5.1·109 0.14 0.07

axTLS 1.5.3 3.9·1012 0.05 0.04

ToyBox 0.5.2 1.5·1017 0.02 0.25

uClibc 201 50420 7.5·1050 0.41 0.14

BusyBox 1.23.2 7.4·10146 0.62 0.26

EmbToolkit 1.7.0 4.0·10334 4304.68 2.61

LargeAutomotive 5.3·101441 21.50 12.07

Table 2. BDDSampler sampling time for 1,000
configurations.

SRS requires (i) building a BDD structure, (ii)
sampling configurations, (iii) building products,
and (iv) benchmarking products. Actions (i)-(ii)
can be done relatively quickly, but (iii)-(iv) are
computationally expensive, and that is whyminimizing
the sample size is critical to both SPLO and ML per-
formance [79]. For example, sampling all 26,256 con-
figurations of JHipster with BDDSampler took 4.48
seconds.5,7 However, building and benchmarking
all 26,256 configurations took 4,376 hours of CPU
time (182 days approximately or 10min/build-and-
benchmark) and needed 5.2 terabytes of disk on the
INRIA supercomputer Grid’5000 [48].

3.4 What Sample Size to Use?

A basic question for any SPLO sampling method is: What sample size is needed to find a near-optimal
solution for a given accuracy? As rigorous analyses are usually not cited by the authors of proposed
non-URS methods (e.g., [30, 34, 40, 42, 49, 82]), this question may have no answer. URS does. Let
4 The BDDs of the SPLs in Table 2 are available at: https://doi.org/10.5281/zenodo.4514919
5 An Intel(R) Core(TM) i7-6700HQ, 2.60GHz, 16GB RAM, operating Linux Ubuntu 19.10 was used.
6 The tool used to synthesize the BDDs is available at: https://github.com/davidfa71/Extending-Logic
7 We did not enumerate all configurations but sampled them by running: BDDSampler -norep 26256 JHipster.dddmp,
which asks BDDSampler to generate 26,256 random configurationswithout replacement from a BDD that encodes the JHipster
feature model.
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ρ be the desired percentile of accuracy (e.g., top 1% sets ρ=.01). Each selected configuration is a
Bernoulli trial. The confidence/probability ¢ that a uniform sample of size n returns a cno in the top
ρ accuracy is Eqn (8):

¢ = 1 − (1 − ρ)n (8)

Solving for n yields Eqn (9):

n =
ln(1 − ¢)
ln(1 − ρ) (9)toTake

n = sample  size ¢ = %confidence
ρ = %accuracy 90.0% 95.0% 98.0% 99.7%

5.00% 45 58 76 113
4.00% 56 73 96 142
3.00% 76 98 128 191
2.00% 114 148 194 288
1.00% 229 298 389 578
0.50% 459 598 780 1159
0.30% 766 997 1302 1933
0.20% 1150 1496 1954 2902
0.10% 2301 2994 3910 5806

Table 3. Sample Size n given ¢ and ρ.

Table 3 lists the sample size that achieves a given confidence
(¢) and accuracy (ρ) for an infinite-sized space. Example: A con-
figuration in the top 2% of C with 95% confidence is returned
when n=148.

Other tables can be derived from Eqn (8) for accuracy (ρ)
and confidence (¢). Table 4(a) says a budget of 100 samples
and 95% confidence returns a configuration in the top 2.95%
of all solutions.

ρ = %accuracy n = sample size
¢ = %confidence 25 50 100 200 400 800 1600

90.0% 8.80% 4.50% 2.28% 1.14% 0.57% 0.29% 0.14%
95.0% 11.29% 5.82% 2.95% 1.49% 0.75% 0.37% 0.19%
98.0% 14.49% 7.53% 3.84% 1.94% 0.97% 0.49% 0.24%
99.7% 20.73% 10.97% 5.64% 2.86% 1.44% 0.72% 0.36%

¢ = %confidence n = sample size
ρ =% accuracy 25 50 100 200 400 800 1600

4.000% 64.0% 87.0% 98.3% 100.0% 100.0% 100.0% 100.0%
2.000% 39.6% 63.6% 86.7% 98.2% 100.0% 100.0% 100.0%
1.000% 22.2% 39.5% 63.4% 86.6% 98.2% 100.0% 100.0%
0.500% 11.8% 22.2% 39.4% 63.3% 86.5% 98.2% 100.0%
0.250% 6.1% 11.8% 22.1% 39.4% 63.3% 86.5% 98.2%
0.125% 3.1% 6.1% 11.8% 22.1% 39.4% 63.2% 86.5%(a) (b)

TwoTab

Table 4. Tables for Expected Accuracy and Confidence

3.5 Why URS is Important

t n=sample size

¢=%confidence 25 50 100 200 400 800 1600

90.0% 1.71 1.68 1.66 1.65 1.65 1.65 1.65

95.0% 2.06 2.01 1.98 1.97 1.97 1.96 1.96

98.0% 2.49 2.4 2.36 2.35 2.34 2.33 2.33

99.7% 3.3 3.12 3.04 3 2.99 2.98 2.97

Table 5. t-values given ¢ and n.

What is the value 𝜇 of configur-
ation space property 𝜆? Answer:
take a uniform sample of size n
and benchmark each configuration to
obtain its 𝜆 value. Then compute the
mean 𝜇 and standard deviation s of
sampled 𝜆 values. By the Central Limit
Theorem (CLT) [114], the true population mean 𝜇 is contained in the following confidence interval:(

𝜇 − t· s√
n

)
≤ µ ≤

(
𝜇 + t· s√

n

)
(10)

where t is determined from Student’s t-distribution given a desired confidence level ¢ and sample
size n. Table 5 lists t values for some combinations of ¢ and n [114]. Note: A precondition of CLT
and Eqn (10) is that samples are uniform.

Example. Let µ be the average number of features that are present in a configuration. Fig. 6 plots
µ estimates for two SPLs with different sampling methods and sample sizes. The X-axis is n, the
sample size, and the Y-axis is µ estimates. The straight line (−−) indicates the correct µ as these
SPLs are small enough to enumerate and compute the correct answer. The dashed lines indicate
the 95% confidence envelope for each µ estimate, Eqn (10). é marks estimates by URS. Sampling
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1:8 Oh, Batory, and Heradio

methods ▲ and ^ are proposed as alternative methods to URS: ▲ is QuickSampler [34] and ^ is
DDbS [62]. 8 Observe:
• All three 𝜇 estimates converge to an answer with increasing n;
• URS correctly estimates 𝜇 with increasing accuracy; other methods converge to different
incorrect answers;
• Method⋄ selects different sample sets each time in Fig. 6b, but oddly the same number of
features occurs in all samples. Thus, the estimate by⋄ is suspicious as it lacks variability.

Fig. 6. Why URS is Important.

Conclusion: Classical statistical methods assume URS as a precondition; if this precon-
dition is violated, computed statistics are suspect [21]. Other benefits of URS include:
• Population statistics (like µ) can be predicted by probability analyses. URS can confirm the
correctness of these predictions; and
• When analytical predictions are unavailable, URS can estimate population statistics that a
correct analysis would return.

3.6 PCS Graphs of Enumerable and Non-Enumerable SPLs

What do real PCS graphs look like? This is not a fundamental question, but one asked of curiosity.
Several small SPLs were enumerated and benchmarked by Siegmund et al. [105, 106], which took
months to complete. From his data, we computed their unnormalized PCS graphs, Fig. 7.
• Apache is an open-source Web server [8]. With 9 features and 192 configurations, the maximum
server load size was measured through autobench and httperf;
• LLVM is a compiler infrastructure in C++ [75]. With 11 features and 1024 configurations, test
suite compilation times were measured;
• H264 is a video encoder library for H.264/MPEG-4 AVC format written in C [45]. With 16 features
and 1152 configurations, Sintel trailer encoding times were measured; and
• BerkeleyDBC is an embedded database system written in C [19]. With 18 features and 2560
configurations, benchmark response times were measured.
A complete PCS graph plots every point in C; this is possible when an SPL configuration space is

enumerable. But what about spaces that are too large to enumerate? A number of techniques were
tried, and the simplest worked best:

8 From prior experiments [92], we knew that samples from these methods were not uniform and Eqn (10) was not applicable.
We wondered how they performed w.r.t. URS as they were proposed as URS substitutes.
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Fig. 7. Complete PCS graphs for enumerable SPLs – raw data by Siegmund [105, 106].

Fig. 8. uClibc-ng PCS graph.

.

(1) Take a uniform sample of size n=100 or n=200 as this (to
us) yields a minimal fidelity PCS graph;

(2) For each configuration c, build and benchmark it to
measure $(c);

(3) Sort the (c, $(c)) tuples from best-performing to worst;
(4) Let yi be the ith best performance. Plot a PCS graph using

these points
{( i

n+1 , yi
)}n

i=1
.

Example. uClibc-ng is a C library for embedded Linux
systems with 269 features and |C |=∼8×1026 [90]. A minimum
fidelity (n=200) PCS graph of uClibc-ng is Fig. 8. Build size
was measured.

3.7 SRS Answers to Central Questions

Section 1.1 listed three questions; SRS offers elegant answers for each:
(1) How does one find a cno in an SPL configuration space? Answer: Take a uniform sample of

size n, benchmark each configuration, and return the best-performing configuration, cno;
(2) How accurate (e.g., how near cbest) is the returned cno? Answer: On average, the cno is 100

n+1
percentiles from cbest with standard deviation of 100

n+1 percentiles; and
(3) What sample size should be used? Answer: Choose a desired accuracy and confidence for a

cno, and use Table 3 to determine the sample size.
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4 RECURSIVE RANDOM SEARCH (RRS)

We believe SRS offers a minimal performance bound for every SPLO algorithm, as more sophisticated
algorithms and those that exploit domain-specific knowledge should perform better. In this section,
we review another promising random search algorithm. There are no replacements for SRS yet; a
replacement would have an SPLO statistical guarantee on the cnos it returns.

RRS. A cno will be in the top 1
1+9=10% percentile using a uniform sample of size 9. Increasing the

solution precision to the top 1
1+99=1% requires a sample size of 99, 11× larger. Suppose from the first

9 configurations feature F is inferred to be common to configurations in the top 10%. If the scope of
the search is restricted to (𝜙 ∧ F) and another uniform sample of size 9 is taken, a near-optimal
solution would be within 1

1+9 · 1
1+9=

1
100=1%, for a total of 18 configurations; a 5.5× improvement.

This is Recursive Random Search (RRS).

Implementation. A rule-of-thumb for cbest is that it contains some of the top performance-
enhancing features of an SPL [22]. We call such features noteworthy. The twist is that some features
become noteworthy only in the presence of other noteworthy features.
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Fig. 9. Stairs of LLVM.

Consider the PCS graph of LLVM, Fig. 9a. This graph is almost linear. Look hownoteworthy features
(f or ¬f) present themselves in Fig. 9a-d, in order of most-influential to next-most-influential, and
so on, recursively restricting the next subspace to search.
We mechanized the noteworthy procedure by: (1) qualifying features to consider, as not all are

relevant, (2) checking selected features for compability, (3) filtering remaining features based on
their performance influence.

First, we found experimentally that examining only the features of the top configuration T1 was
misleading – some noteworthy features of T1 do not belong to cbest and by selecting them assures
RRS never reaches cbest. Examining features shared by the top two configurations (T1, T2) was less
misleading. And shared features in the top three (T1 ..T3) configurations was too constraining, as
important features may not be in all three configurations.

Second, let S be the features common to T1 and T2. A SAT solver was not needed to validate that
features of S are compatible (meaning no feature(s) of S precludes another). All features of T1 are
compatible, and so too is any subset. Any shared subset among T1 and T2 must also be compatible.

Third, let N configurations be uniformly sampled per recursion.9 For every sampled configuration
c, we know its features and its measured performance $(c). Now, what features of S are noteworthy?
Answer: Consider each feature f∈S. Compute the average performance $(f) of configurations
sampled sofar with feature f, and the average performance $(¬f) of configurations without f.
Their difference $Δ(f) is the performance influence of f:

$Δ(f) = $(f) − $(¬f) (11)

9 See Section 6 for additional constraints on RRS termination, which samples ≤ N configurations on the last recursion.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: September 2022.



Finding Near-Optimal Configurations in Colossal Spaces with Statistical Guarantees 1:11

Algorithm 2: Recursive Random Search (RRS)
1 Configuration RRS(N, 𝜙 , NW):

Input : N number of configurations per recursion
𝜙 feature model propositional formula ∧ client functionality constraints
NW set of noteworthy features (set to empty on initial call)

Output : best configuration found
2 sample← randomly sample N configurations from 𝜙 ∧ NW;
3 sort sample so that sample[0] has best performance, and sample[1] has next best;
4 commons← negative or positive features common to sample[0] and sample[1];
5 for each f in commons do
6 if (Δ(f) < 0) ∧ MannWhitneyUTest(f) then
7 add f to NW;
8 if (NW unchanged from previous recursion) or (N ≥ |𝜙∧ previous NW|) then
9 return sample[0] ; // best configuration found

10 else
11 return RRS (N, 𝜙 , NW);

The sign of $Δ(f) indicates whether f improves (negative value) or degrades (positive value)
average performance. Further, a t-test [38] checks whether $Δ(f) is statistically significant with
95% confidence; if significant, f is noteworthy else it is discarded.10 RRS is Alg. 2.9

Comparison. The accuracy of SRS and RRS can be compared by experiments that compute the
true average rank 𝜇 of solutions (which is possible for enumerable SPLs) to the theoretical accuracy
of SRS for a sample size n, 1

n+1 a.k.a. Eqn (4). The experiment uses:
• N as the number of configurations per RRS recursion; and
• n as the total number of configurations taken by RRS.

Fig. 10 plots averages of 100 experiments for different SPLs and different N. While both 𝜇 and 1
n+1

decrease sharply with increasing N, 𝜇 is on average better than 1
n+1 .
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Fig. 10. Comparison of SRS and RRS.

Key limitations of RRS are:
• It is not always better than SRS when the N (configurations per recursion) is too small; and
• It lacks analyses like cno rank prediction (Eqn (4)) and confidence guarantees (Eqn (8)).

A solution to these limitations is given in Section 7. The next sections evaluate SRS and RRS.
10 A typical rule-of-thumb [38] states that the Central Limit Theorem holds whenever the sample size is ≥30. Accordingly,
the distribution of the sample means is normal and thus the performance contribution of each feature is estimated by
subtracting means and using a t-test. However, when N<30, a more robust estimator and a non-parametric test is required;
in particular, the feature’s performance is calculated by Δ(f)=median

(
$(f) )−median

(
$(¬f) ) , and statistical significance

checked with a Mann-Whitney U-test [77]
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5 EVALUATION USING ENUMERABLE SPLS

SPL researchers used enumerable SPLs (|C |≤ 250K) as benchmarks with metrics for overall accuracy
(MAPE, defined in Section 5.4) and, to a lesser extent, solution accuracy (average rank of returned
cnos) and reliability (standard deviation of returned cnos) to compare different PM algorithms [42, 46,
47, 62, 88]. We adopt these guidelines.

Using the same sample size or smaller, an SPLO algorithm is more accurate than others if it
finds better solutions (cnos) and is more reliable than others if its solutions have a smaller standard
deviation (𝜎). A higher 𝜎 means solutions vary more.

We ask the following research questions about SPLO algorithms:
• RQ1: Which algorithm is the most accurate across selected SPLs?
• RQ2: Which algorithm is the most reliable across selected SPLs?
• RQ3: Are PM accuracy and PM solution accuracy correlated?

5.1 Evaluation Setup

Enumerated spaces allow us to (a) know the true PCS rank of a cno and (b) compute the difference
of a cno’s true performance $(cno) from a PM’s estimate $̂(cno). Taken from [105, 106], the SPLs are:
• BerkeleyDBC is an embedded database system with 18 features and 2,560 configurations [19].
Benchmark response times were measured;
• 7z is a file archiver with 44 features and 68,640 configurations [2]. Compression times were
measured; and
• VP9 is a video encoder with 42 features and 216,000 configurations [116]. Video encoding
times were measured. To our knowledge, VP9 is the largest SPL that has been enumerated.

Each successive SPL in the above list has a configuration space that is ∼10× larger than its
predecessor. Fig. 11 shows their unnormalized PCS graphs.

$(c)

c

$(c)

c

$(c)

c

PCSGraphs

Fig. 11. PCS graphs of selected enumerable SPLs.

We compare SRS and RRS with two PMs: SPLConqueror [107] and DeepPerf [46]. DeepPerf is a
state-of-the-art deep sparse neural network that outperformed other major PMs in 2019, including
CART [43], DECART [42], Fourier [93], and SPLConqueror. We include SPLConqueror as it is the
state-of-the-art in LR PMs, using linear regression as described in Section 2.
Recall the purpose of a PM is to predict the performance of any configuration in C. It is not

to find an optimal or near-optimal solution. That is the purpose of an optimizer. We explained
in Section 2.1 that finding cbest by an optimizer is NP-hard. To discount this difficulty, we use a
perfect optimizer that returns the optimal configuration according to its PM for free by using the
PM to evaluate minc∈ |C | $̂(c). Of course, such an optimizer is impractical but can be emulated for
enumerable configuration spaces. So the conclusions of this section favor PMs.
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For SRS and DeepPerf, we ran experiments with sample sizes 50, 100, 200, 500, and 1000. DeepPerf
asks for the sample size to use and the number of experiments; hyperparameters for its neural
network are configured automatically. For RRS, we ran experiments with N∈{15, 20, 30, 50, 100, 200}
configurations per recursion and summed the total number of configurations used after RRS
terminates. Remember RRS does not perform well w.r.t. SRS when too few configurations per
recursion are used. RRS has aminimum sample size (MinSS) whose value is revealed by experiments
RQ1 and RQ2.

For SPLConqueror, the settings of Kaltenecker et al. were used [62]. All five sampling methods of
SPLConqueror were evaluated, each producing a distinct PM. Diversified Distance-Based Learning,
which we label as S2, was reported to have the best prediction accuracy.11 For each sampling
method, three different sample sizes were used, corresponding to t-way population sizes t∈ {1, 2, 3},
although some SPLConqueror algorithms used additional configurations whose numbers we could
not control but did report. See [62, 107] for more details.
Each experiment was repeated 100 times averages are reported. 100 was chosen so that our

evaluations would finish in two weeks of compute time. Statistical significance tests are reported
in Appendix C for those interested. Our source code and experimental data are available at https:
//doi.org/10.5281/zenodo.7485062.

5.2 RQ1: Which algorithm is the most accurate across selected SPLs?

Let n be the number of configurations benchmarked by a PM in an experiment; n the average over
100 experiments. Let 𝜇x be the percentile rank of its cnos, also averaged over 100 experiments. 𝜇x=5%
means that the cnos returned by a PM are in the top 5% (.05 percentile), on average, from cbest.

The lines of Fig. 12 (next page) connect (n, 𝜇x) points of each PM. SPLConqueror has 5 lines, one
for each sampling method. Fig. 12a-c show the full results; Fig. 12d-f show a top 5% (.05 percentile)
magnified view. Tables (not graphics) for Fig. 12 are in our Zenodo download.

We found:
• SRS and RRS exhibited the overall best performance;
• When using ≤20 configs/recursion, SRS dominates RRS in all but one point in 7z, Fig. 12e.
When ≥30 is used, RRS dominates SRS for all SPLs. This discussion continues in RQ2;
• When RRS uses >200 configurations total, it returns a cno whose normalized rank is less than
0.2% on average, compared to the theoretical SRS cno normalized rank of 0.5%, Eqn (4);
• The 𝜇x of SPLConqueror PMs varied, depending on the sampling method and sample size. S2
dominated other SPLConqueror algorithms and outperformed RRS in BerkeleyDBC and 7z.
No SPLConqueror algorithm outperformed SRS or RRS in VP9 (the largest SPL space);
• DeepPerf under-performed SRS and RRS for all sample sizes and SPLs. DeepPerf dominated
SPLConqueror on VP9, but under-performed BerkeleyDBC and 7z except on three points.

With respect to better cno accuracy with larger sample sizes, we observed:
• SRS and RRS steadily improved 𝜇x values with increasing sample sizes in all SPLs. SRS and
RRS produced the most consistent results;
• More configurations did not assure better cnos for PMs. DeepPerf found progressively better
cnos as sample sizes increased to 500 but did not consistently improve cnos afterward;
• SPLConqueror PM cnos varied considerably. Only two results, S2 and S3 in VP9, showed strictly
improving cnos with increasing sample size.

11 S1 is Distanced-Based, S2 is Diversified Distance-Based, S3 is Solver-Based, S4 is uniform sampling from an enumerated
configuration space, and S5 is Randomized Solver-Based [62].
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Fig. 12. Average percentile rank (𝜇x) vs. Average Sample Size (n) by SPL and SPLO.
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With respect to theoretical predictions:
• Fig. 13(a) shows the 𝜇x of SRS with sample size n matches Eqns (4)-(6). The 𝜇x of 7z and VP9
measurements are slightly lower than theoretical 𝜇x as some configurations exhibit the same
performance but the rank that we assigned measured the number of configurations that have
better performance. This possibility is evident in the flat shelf of configurations approaching
the origin in the PCS graphs of these SPLs (Fig. 11).

Theoretical

BerkeleyDBC

7z

VP9

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 200 400 600 800 1000 1200

P
er
ce
n
ti
le
 S
ta
n
d
ar
d
 D
ev
ia
ti
o
n

# of Samples

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 200 400 600 800 1000 1200

A
ve
ra
ge
 N
o
rm

al
iz
ed

 R
an
k

# of Samples

(a) (b)

𝜇 𝜎

Fig. 13. SRS Theoretical (𝜇x,𝜎x) and Experimental (𝜇x,𝜎x).

Summarizing Fig. 12:
• RRS generally outperforms SRS, DeepPerf and SPLConqueror over a wide range of different
sample sizes in different SPLs.
• SRS and RRS cnos progressively move toward the origin (cbest) of each PCS graph as sample
sizes increase. DeepPerf cnos plateau for BerkeleyDBC and 7z.
• We consider SRS as a “minimal performance bound” for SPLOs, as it relies only on URS.
DeepPerf failed to outperform SRS for all plotted 45 points in Fig. 12. SPLConqueror failed to
outperform SRS in 28-of-45=62% plotted points.12 These results raise a general concern on
the cno accuracy of PMs.
• SPLConqueror outperformed RRS in 12-of-45=27% of the data points in Fig. 12.13 However,
the sampling method and sample size that yielded these results were unknown before these
experiments. A priori, it is not obvious which SPLConqueror algorithm to use ahead of time.
• A perfect optimizer was used, which biases the results of this section toward PMs.

Conclusion: Sampling (esp. RRS) produced the best 𝜇x solutions in these experiments.

5.3 RQ2: Which algorithm is the most reliable across selected SPLs?

The standard deviation 𝜎x of 𝜇x measures the reliability of solutions returned by SPLO algorithms.
The larger the 𝜎x, the less stable or more variable the result; the smaller the 𝜎x, the better.

The lines of Fig. 14 (next page) connect (n,𝜎x) points of each SPLO algorithm. Fig. 14a-c are
the full results; Fig. 14d-f show a magnified top 5% (.05 percentile) view. Tables (not graphics) for
Fig. 14 are in our Zenodo download. We found:

12 SRS bettered SPLConqueror on 6 points of BerkeleyDBC, 7 in 7z, and 15 in VP9, for a total of 28-of-45=62%. Some
SPLConqueror experiments used smaller or larger numbers of samples compared to SRS experiments. For these cases, we
used order statistics (1/(n+1)) to derive if SPLConqueror performed better than SRS or not.
13 SPLConqueror outperformed SRS in 7 points of BerkeleyDBC, 5 in 7z, and 0 in VP9, for 12-of-45=27%.
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• SRS and RRS demonstrated consistently small 𝜎x below 1% for n ≥ 200 in all SPLs, matching
the theoretical predictions of Fig. 5. Further the 𝜎x of SRS and RRS decreased steadily – well
below 1% – as the sample size increased;
• When using ≥30 configs/recursion, the 𝜎x of 𝜇x is clearly lower for RRS than SRS (see Fig. 14b-
c). Henceforth, we use MinSS=30 configurations per recursion unless otherwise specified.10
• DeepPerf reduced 𝜎x with increasing sample sizes up to 500; but not consistently over 500 (𝜎x
of 7z increased >500). Further DeepPerf has a significantly higher 𝜎x than SRS and RRS for all
SPLs, doing no better than 𝜎x=6%.
• 𝜎x for SPLConqueror varies considerably. S3 and S5 had the lowest 𝜎x as it approached 0. The
S3 and S5 PMs were created by samples from a SAT solver which is known to be biased [62].
We conjecture these PMs returned similar solutions. In general, larger sample sizes did not
consistently lower 𝜎x and SPLConqueror 𝜎x were higher than those of SRS and RRS.
• The 𝜎x of SRSmatches the theoretical 𝜎x for Order Statistics, Fig. 13(b). The SRS 𝜎x for 7z and
VP9 measurements are slightly lower than theory Eqns (4)-(6) for the reason given earlier.

Conclusion: Sampling (esp. RRS) produced the lowest 𝜎x values and were the most reliable
in these experiments.

Additional Evidence. In [91], we compared a draft of RRS (here called RRS0), with two PMs, one
by Sarkar [101] and a precursor to SPLConqueror [106], on small SPLs explained earlier: Apache
(|C |=192), LLVM (|C |=1024), and H264 (|C |=1152). SRS dominated these PMs on all SPLs, and RRS0
dominated SRS, consistent with results of this section.

5.4 RQ3: Are PM accuracy and PM solution accuracy correlated?

An implicit assumption in the SPL ML PM literature is “PM accuracy is correlated to PM solution
accuracy” [42, 43, 106, 107, 109], which we call conjecture K . To quantify K , we use the Mean
Absolute Percentage Error (MAPE), which is widely used as the overall measure of PM accuracy in
SPL literature [42, 46]. MAPE is the average absolute difference between c’s predicted performance
$̂(c) and c’s benchmarked performance $(c). For an enumerable space C:

MAPE =
100

|C | ·
∑︁
c∈C

|$(c) − $̂(c) |
$(c) (12)

The box-plots14 of Fig. 15a summarize MAPE values for the PMs obtained with DeepPerf and SPL-
Conqueror. DeepPerf consistently produces more accurate and reliable PMs than SPLConqueror (i.e.,
the boxes are nearer to the X-axis and narrower, respectively).

However, DeepPerf’s predictions are not that good and worsen as |C | increases. Fig. 15b zooms
MAPE values to DeepPerf’s scale. DeepPerf’s (a) accuracy decreases with increasing SPL size |C |,
as the median values are 3.7% (BerkeleyDBC), 9.7% (7z), and 17.5% (VP9) and (b) reliability also
reduces with increasing SPL size |C |, as the 25th and 75th percentiles are [2.6, 5.8] for BerkeleyDBC,
[7.9, 19.0] for 7z, and [10.1, 44.0] for VP9. This suggests that although PMs for increasingly larger
spaces can be created with small sample sizes, PM MAPE accuracy suffers.
The solution accuracy (β) of a PM is the rank of the cno that it returns in an RQ1 experiment.

(Again, 100 such experiments were done per [PM, SPL, sample size] triplet). A (MAPE,β) pair can be
defined for each PM per experiment. The scatter-plot in Fig. 16 shows the (MAPE,β) pairs collected
from all RQ1 experiments. Now conjecture K : If MAPE and β are ideally correlated, there would be
14 A box-plot encodes the values of five percentiles [121]. The bottom of the thin vertical line is the 0th percentile (or lowest
value); the top denotes the 100th percentile (or highest value). The horizontal line in the box denotes the median; the box
extends downwards to indicate 25th percentile boundary and upwards the 75th percentile boundary.
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Fig. 15. MAPE accuracy of DeepPerf and SPLConqueror (S1-S5).

a 1-to-1 relationship between MAPE and β values; the points would follow a clear pattern, being
aligned on a straight line or a curve. And if they were positively correlated, low MAPE values would
correspond to low βs. If this is the case, an optimizer should return better cnos with lower MAPE
values.

Fig. 16 doesn’t show this: DeepPerf in BerkeleyDBC displays a wide range of βs for the same
MAPE values (i.e., the points are vertically stacked). Inversely, for SPLConqueror S1 in VP9, PMs with
very different MAPE values got roughly the same βs (i.e., the points are horizontally aligned at
different heights).

Algorithm Correlation measure
Spearman’s 𝜌 Kendall’s 𝜏 Hoeffding’s D dCor

DeepPerf 0.122 0.082 0.337 0.165
SPLCon. S1 0.214 0.131 0.345 0.229
SPLCon. S2 0.450 0.330 0.379 0.293
SPLCon. S3 0.443 0.323 0.370 0.342
SPLCon. S4 0.336 0.229 0.361 0.272
SPLCon. S5 0.559 0.420 0.433 0.783

Table 6. Correlation between MAPE and β for
DeepPerf and SPLConqueror.

Table 6 lists the dependency between MAPE
and β estimated with Spearman’s 𝜌 , Kendall’s 𝜏 ,
Hoeffding’s D [53], and Distance Correlation (dCor)
[110]. The magnitude of these measures shows
the strength of the dependency. The higher the
magnitude, the more dependent are MAPE and β.
A correlation measure c can be interpreted as
very weak if c<0.2, weak if 0.2≤c<0.4, moderate
if 0.4≤c<0.6, strong if 0.6≤c<0.8, and very strong if
c≥0.8.

Note: The magnitude of 𝜌 , 𝜏 , and dCor goes from 0 (no dependency) to 1 (total dependency),
while D ranges from -0.5 (no dependency) to 1 (total dependency). To facilitate its comparison
with the other measures, D was rescaled to [0..1]. Also, 𝜌 and 𝜏 might have a negative sign if
MAPE and β had an inverse relationship (β decreasing as MAPE increases), but this didn’t occur.

Conclusion: An implicit assumption in ML PM literature is PM accuracy is correlated to PM
solution accuracy. We found evidence to the contrary, as the correlation was weak in our
experiments.
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Fig. 16. PM accuracy (MAPE) and solution accuracy (β).

5.5 Threats to Validity

There are three confounding factors: SPLs, sample size, and graph shape.

• SPLs.We considered three enumerable SPLswhose sizes were∼10× larger than the next. Differ-
ent performances might have resulted using other SPLs. However, SRS and RRS experimental
results on an additional three enumerable SPLs in [91] (smaller than the SPLs used here) were
consistent with this paper’s results (see end of Sect. 5.3.)
• Sample Size. A goal or motivation of prior work was to use the smallest sample sizes possible
to get accurate predictions. (Performance was the reason given in Sect. 3.3). We followed a
standard evaluation procedure used in prior work to compare SRS and RRS with DeepPerf
and SPLConqueror [46]. SRS and RRS consistently exhibited the smallest 𝜇x and smallest 𝜎x
of cnos returned across all sample sizes and SPLs considered. It is possible with larger sample
sizes that DeepPerf and SPLConqueror might have performed better.
• Graph Shape. By chance, the three PCS graphs of enumerable SPLs, Fig. 11, are convex, i.e.,
all have a gradual descent (from right to left) to the origin, cbest. Concave PCS graphs are
harder to optimize. We delay further discussion of this topic, as Section 6 presents examples
and the impact of concavity on optimization.
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Research on ML PMs continues to advance, and so too their accuracy. The statements and results
presented in this paper are state-of-the-art as of 2023.

5.6 Summary

SRS and RRS consistently produced the lowest ranked and most stable cnos (i.e., smallest 𝜇x and
𝜎x) across diverse enumerable SPLs of different sizes and sample sizes. We noticed in the ML PM
literature an implicit assumption that a more accurate PM should produce more accurate cnos, but the
results of RQ1 and RQ2 suggested otherwise. Upon further investigation, we found the correlation
of PM model accuracy is weak w.r.t. cno (solution) accuracy. We again remind readers that we
used a perfect optimizer to compute our PM results; an imperfect optimizer would unlikely
improve PM performance.

We offer an explanation for these results. Learning a function PM:C→R to predict the performance
of every c∈C with MAPE accuracy ≤8% and C is colossal (≫1010) and with sample sizes <5K is
unbelievable. ML PMs should do better with larger sample sizes, but this will be expensive.
In contrast, finding near-optimals using a sample size <300 and be within 1% of optimal
with 95% confidence in infinite-sized spaces is doable with sampling (see Table 3). Look
carefully at Figs. 12-16 to see a recurring trend: as SPL size |C | increases, performance graphs
become progressively more wild, meaning that the average accuracy and standard deviation of
cnos decrease with increasing |C | for the same sample sizes. And we learned that greater overall PM
accuracy does not necessarily lead to better near-optimals. We are not optimistic that small sample
sizes can produce truly accurate PMs for large SPL spaces. It is asking too much. Others, prior to us,
reached a similar conclusion [128, 130].
Conclusion: Random sampling is a better technology match for SPLO than ML PMs.

6 EVALUATION OF SRS AND RRS ON KCONFIG SPLS
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Fig. 17. PCS graph estimates using 200 configurations.

We evaluate SRS and RRS on
two SPLs that, to our know-
ledge, have not been evaluated
in prior PM work and cno
estimates of cbest were found.
Both use the Kconfig config-
uration tool [65]:
(1) axTLS 2.1.4 is a client-

server library with 94
features and 2·1012 con-
figurations [11];

(2) ToyBox 0.7.5 is a Linux
command line utilities
package with 316 features and 1.4·1081 configurations [112].

Both were benchmarked for their build size. Fig. 17 shows their minimum fidelity PCS graphs. We
ask:

RQ4: Does RRS outperform SRS in colossal configuration spaces?
Unlike the SPLs from Section 5, we cannot measure the precise X-axis rank of configurations nor

the value of cbest as both require enumeration. We can compare the true build size of solutions of
SRS and RRS from the same SPL to determine the best cno.
We devised an experiment to address RQ4 so that it could be completed within two weeks:
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• Compare SRS and RRS with the same total number of samples n = {100, 200, 300, 400, 500};
• SRS samples n configurations and reports the minimum build size;
• RRS samples MinSS=30 configurations per recursion;
• RRS terminates once the total number of configurations it uses reaches n, or by not finding a
noteworthy feature, or when the constricted configuration subspace is smaller than 30 then
enumeration occurs; and
• All experiments are repeated 25 times.

Fig. 18 shows the results.
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the evaluation within 2 weeks.

‐ All experiments are repeated 25 times.

Observations: 
‐ For axTLS, ROpt terminated early for N = 300~500, where actual samples collected are 210, 217, 220 on 
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Fig. 18. Optimization of Kconfig SPLs using different sample sizes.

Observations. SRS generally found progressively better solutions as n increased for both axTLS
and ToyBox; solutions for axTLS seemed to reach a fixed point when n>200.
RRS terminated early for axTLS for n∈{300, 400, 500}, where the average number of configurations

benchmarked was 210, 217, 220. At termination, the last constricted space was so small that it was
enumerated. The odd shape of Fig. 18a is simply RRS repeatedly converging on a near-minimum
build size after examining >200 configurations. Overall, RRS found cnos with smaller build sizes
than SRS.

How good are these results? In an abandoned experiment prior to RQ4, we uniformly sampled
and benchmarked 46250 configurations each from axTLS and ToyBox (included in our Zenodo
download). We salvaged this work for RQ4 as a 46250 point PCS graph, Fig. 20. The best solution
had the percentile rank of 1/(46250 + 1) · 100% = .22% or 5-sigma (≤.23%), a high level of resolution
[98, 119]. We then overlaid the results of Fig. 18 and Fig. 20 to produce Fig. 21.

Fig. 21 magnifies Fig. 20 to the top-performing percentiles. PCSbest is the best-performing of all
46250 configurations. The dashed black line is the PCSbest boundary. With increasing sample sizes,
SRS solutions approach PCSbest, as expected, but are never below PCSbest. RRS solutions appear as
s; they are literally inside the .22% percentile, visually on the Y-axis of each PCS graph usually

below PCSbest. Overall, RRS solutions are better than PCSbest once n≥200.

0 .03.01 .02

(a)

Convex PCS Graph

0 .03.01 .02

(b) Concave PCS Graph

Fig. 19. Convex vs. Concave.

On the Shape of PCS graphs. A key influence on SPLO is
the shape of a PCS near the origin. There are two possibilities:
a PCS graph is convex or concave, Fig. 19. The PCS graphs
of enumerable SPLs, Fig. 11, are convex: they have a gradual
slope to the origin where the performance (Y-axis) difference
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between 5%, 1%, and .05% percentile cnos may not be much, and stopping a search sooner than .05%
might seem acceptable.

Fig. 20. Estimated PCS graphs using 46250 configurations.

Fig. 21. Estimated PCS graphs, SRS and RRS results.

Concave PCS graphs are different: they have a steep drop to the origin. Concave graphs are harder
to optimize, simply because the next round of sampling or recursion might produce a noticeably
better cno, so continued optimization is worth the effort. The 200-point PCS graph of ToyBox in
Fig. 17b suggests concavity; not so for axTLS in Fig. 17a. However, their magnified (46250-point)
PCS graphs in Fig. 21 confirm both are concave.

The dilemma is this: Generally, you don’t know a priori whether a PCS graph is convex or concave
near the origin until you look; there is no downside for continued searching if the allotment of
configurations permits.
Conclusion: RRS finds better 𝜇y solutions than SRS. This has been a consistent result from
small through colossal SPLs in our experiments.

7 FIXED BUDGET SPLO: THE ESSENTIAL PROBLEM

Sections 5–6 compared different SPLO algorithms by averaging experiments that sampled tens of
thousands of configurations per SPL. This extravagance is unlikely to be common in practice.
Instead, users are more likely to have a fixed budget (a maximum allotment of configurations

for benchmarking) because of limited time, limited costs, etc. The challenge is that no single
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SPLO algorithm will outperform all other algorithms for all SPLs or sample sizes. We know that
RRS-is-always-better-than-SRS is false: there are cases in this paper where SRS performs better than
RRS. But if a statistical bound on the quality of a solution is needed, SRS is the only game in town.
Here is a solution to the fixed budget SPLO: run both SRS and RRS with the same number of

configurations. Both are executed in steps of N configurations, where N≥MinSS.
The first step samples N configurations using SRS. These samples are reused as the first N

configurations of RRS. At this point, both SRS and RRS return the same “near optimal” configuration.
In subsequent steps, SRS samples another N configurations from the entire space, while RRS samples
a different set of N configurations from a noteworthy-constricted space. This last step is repeated
until the allocation is exhausted. The best cno returned by SRS or RRS is chosen, along with the
statistical guarantees of the SRS cno. SRS guarantees give a conservative bound on the goodness of
the RRS cno.

Example. Consider a budget of 450 configurations. The first 50 are used by both SRS and RRS; 400
configurations remain. 200 configurations are then allocated to both SRS and RRS, and are consumed
in 4 additional rounds of 50 configurations each. A total of 450 configurations is consumed.
We repeated this 3 times, i.e., we conducted 3 identical experiments (R1–R3) whose results are

not averaged. Fig. 22 shows all three experiments return essentially the same result. Each red dot
on the Y-axis indicates the first round results for both SRS and RRS for an experiment. Each red dot
attached to two lines: one for SRS and the other for RRS.
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Fig. 22. Three examples of SRS and RRS using a Fixed Budget.

Table 7. Results of fixed budget experiments.

Table 7 tallies the results of (R1–R3). The cno
columns list the minimum build size found and
“Best Alg” lists the algorithm that produced the
solution. θ-Bound is a conservative theoretical
bound on the goodness of the solution, derived
from Eqn (8) using 250 configurations with 95%
confidence yields 1.2% accuracy.

Conclusion: Conclusion: A solution to the
fixed budget SPLO problem gives the same
number of configurations to SRS and RRS, and takes the best solution of the two. The
statistical quality of the SRS solution serves as a conservative bound for RRS.
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8 RELATED AND FUTURE WORK

8.1 Highly Configurable Systems

Highly Configurable Systems (HCSs) define a broader universe in which SPLs and SPLO reside. HCSs
have configuration parameters that are real and/or binary variables called options or tuning knobs.
Unlike SPLs, an HCS has no feature model.
A pipeline of t tools is an example. Each tool has k (e.g., command-line) options. Selecting any

or all of the k options for a tool is possible, and selecting/deselecting an option for one tool has
no effect on the selection or deselection of options of other tools. The configuration space size for
this problem is precisely 2k·t. HCSO, the HCS counterpart to SPLO, finds values for each of the k·t
options that work best together for a given workload and environment [57].

Another example is a database system with w real-valued tuning knobs [7]. A space of Rw option
combinations must be explored; the setting of one knob may trigger adjustments of other knobs. A
challenge is to create ML models to understand the causal functional relationships among knobs
[57]. HCSO finds a w-tuple that achieves a near-optimal performance [128, 130].

Yet another example is the algorithm configuration or parameter tuning problem [54], where the
parameters of an algorithm are configured to achieve the algorithm’s optimal performance for a
given set of problem instances.
At a high abstraction level, HCSO and SPLO look alike. Unbeknown to us in 2003, Ye and

Kalyanaraman developed an RRS-like algorithm (also named RRS) to search contour plots for
minima in network parameter configurations [128]. They uniformly sampled an R2 space and used
performance rankings to identify the top “noteworthy” 2D points. Then their RRS recursively drills
down on areas surrounding these points to find minima. As there are no features (as in SPLs), the
mechanisms of their RRS algorithm differ from ours. They also discovered Eqns (8)-(9) to guide
their search and to choose sample sizes. Here again, their context and use of these equations differs
from ours, but much is the same.

Fig. 23. Contours Explored Randomly.

Fig. 23 is taken from [128]: the 2D contour is
randomly sampled, and the top (in this case 3)
performing regions in blue are “noteworthy” and
RRS explores regions around these points.

The core differences between HCSs and SPLs are:
• HCSs have no feature model;
• Our SRS algorithm provides statistical guaran-
tees on cnos it returns. Order statistics are also
useful and may be relevant to HCSO algorithms;
and
• URS of SPL spaces is much harder as configurations are solutions to propositional formulas
rather than points in continuous real 2D or n-D HCS spaces.

The rest of this section focuses on related work in the SPL domain.

8.2 Relevant Results in ML PMs

Other PMs for SPLOs. Guo et al. encoded a PM as a Classification and Regression Tree (CART) [43].
Sarkar et al. extended [43] with “projective sampling”, a technique that checks performance-
estimation accuracy improvement with more samples [101]. Later, Guo et al. improved the efficiency
of CART by resampling and automated parameter tuning techniques [44].

Zhang et al. used Fourier learning and incrementally sampled configurations until a PM achieved
a desired accuracy [129]. Ha et al. combined Fourier learning with LASSO regression to improve
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the efficiency of learning Fourier coefficients for each feature [47]. Dorn et al. used probabilistic
programming to derive a PM that captures the uncertainty from benchmarking configurations and
reasoning with incomplete data [33]. Martin et al. compared different ML techniques and discovered
that different methods work better for different SPLs and that feature selection techniques from ML
can improve learning in general [80]. These papers were evaluated using relatively small SPLs with
≤60 features and |C |≤250K. A survey of other PMs for configurable systems is in [1].

Scaling PMs. As of today, PMs of SPLs with |C |>106 are rare. When attempted, a non-URS sample is
taken whose size ranged from 500-5000 configurations, i.e., the size of an enumerated SPL in this
paper. Recently, PMs for Linux were created from 85K configurations [79]. Whether accurate PMs for
colossal spaces can be learned from small samples (85K≪∼104000) and be optimized efficiently is
an interesting question beyond the scope of our paper.

Improving PM Accuracy. PMs are not very accurate [79, 115]. An SPL codebase can be carved
into regions (methods or groups of methods) that have the same feature presence condition (i.e., a
feature qualification that must be satisfied for the region to be present in a product). By using fixed
workloads and selecting configurations that cover (almost) all execution paths per region, a PM for
each region is created. These PMs are then composed to produce a composite PM with improved
accuracy.

Transfer Learning. A PM is created with a fixed workload. Should the workload change, the PM
may need to be relearned (Section 2). An alternative is transfer learning [59]. Let $̂:C→R be the
performance estimation function of a PM for space C. A transfer function (TF) translates a $̂ learned
for workload w to another function $̂′with a different workload w′. A linear TF, $̂′ (c) =𝛼 · $̂(c) + 𝛽 ,
is postulated, ∀c∈C. The values of constants 𝛼 and 𝛽 are learned. Linear TFs work well for small
workload distortions, but existing evidence suggests otherwise for greater distortions [59, 79].

A recent paper by Martin et al. [79] presents a heterogeneous transfer learning method (tEAMS)
that works surprisingly well to evolve PMs of progressive releases of Linux. MAPE values for newly
learned PMs are in the 8.2%-9.2% range. When using the same budget, tEAMS produces transferred
PMs with MAPE values 5.6%-7.1%. However, MAPE values tend to degrade after multiple transfers.

8.3 Optimizers

Optimizers for SPLs. Optimizers in the SPLO literature have focused on multi-objective optimiza-
tion using evolutionary algorithms [32, 68, 127], active learning [131], filtered Cartesian flattening
[117, 118], and integer programming [127]. Two other tools known to us used PMs specifically to
learn near-optimals: rank-learners [87] and FLASH [88].

Nair et al. observed experimentally that PM accuracy improves rapidly as more configurations are
used to train them. A point is eventually reached where improvement stagnates, and it is wasteful
to use additional configurations. The stagnation point can be detected by measuring if the accuracy
of PM trained with more additional configurations differs substantially (e.g., computing the MAPE
difference between PMs). Nair et al. claim that comparing PMs ability to rank configurations instead
of their accuracy is a better stopping criterion that detects the stagnation point earlier and with
the goal of returning good near-optimal configurations. Experiments show their rank stopping
criterion sometimes saves configurations, but Fig. 7 in [87] says it gets slightly worse rankings than
conventional non-ranked approaches.

FLASH is a follow-on paper by the same authors. It relies on Sequential Model-Based Optimization
[56], a broad generalization of RRS for HCSO. To optimize a performance metric, FLASH builds a
CART model with an initial learning set L of benchmarked configurations. Then another set S of
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configurations is chosen, CART estimates the performance of each s∈S, and the best-performing
configuration, cno, from S is returned. This cno is then benchmarked, added to L, and this cycle
repeats for a budgeted number of iterations. FLASH was evaluated on tiny (<6 options w. |C |<4K)
and small (<20 options w. |C |<240K) HCSs.

In both of these papers, no statistical guarantees (within x% of optimal with y% confidence) are
returned, which we feel is essential for optimization.

Domain-Specific Optimizers. Exploiting domain-specific knowledge can lead to better cnos.
COZART [72] is a tool to find a Linux kernel configuration with minimum build size. With prior
knowledge of which features are necessary for booting the Linux kernel and that build size decreases
by deselecting features, COZART derives a configuration that selects the necessary features and
excludes others as much as possible. COZART does not search for configurations, yet it finds a
configuration smaller than sampling does.

Random Search Optimizers. Random Search is a family of numerical optimization algorithms
for functions that are discontinuous and non-differentiable [18, 123]. SRS and RRS are examples.
There is nothing preventing SRS or RRS to be used as an optimizer for a PM: replace the component
that builds a configuration c and benchmarks it, with a component that calls a PM to return an
estimate of c’s performance. The inaccuracy of PM predictions may limit the utility of statistical
guarantees of SRS.

8.4 Sampling SPL Configurations

As late as 2020, it was believed that URS of non-enumerable SPL spaces was infeasible [62, 97].
Consequently, novel sampling algorithmswere proposed as substitutes. Dutra et al. devised QuickSampler
which randomly selects features to form a configuration and attempts to fix the configuration
using a MaxSAT solver [34], a solver that tries to maximize the number of satisfiable CNF clauses.
Kaltenecker et al. introduced Diversified Distance-based Sampling (DDbS) which treats configurations
as vectors and derives configurations with maximum difference among them [62]. MaxSAT (and
thus QuickSampler) does not achieve URS and DDbS is not scalable [92]. Many more are cited in [1].
Some build tools offer their own sampling algorithm. Kconfig [65] has the conf tool [36], that

has the randconfig option to randomly generate configurations that are not uniform. randconfig
assigns values to features in the order they appear in a Kconfig specification, so that a valid
value for a feature being examined may be constrained by the selection of prior features. Samples
are therefore biased. Recently, another tool called KconfigSampler [37] supports the hierarchical
random sampling of the Linux Kernel. This kind of sampling is not uniform but ensures that features
at the same abstraction level in the Kconfig specification have the same probability of appearing in
a random configuration. KconfigSampler is implemented as a net of interconnected BDDs.

Other tools partition the solution space into cells as evenly as possible using universal hashing
functions. Then, the tool selects one cell at random, and generates a solution with a SAT solver.
UniWit [26] was the first sampler to implement this idea, which guaranteed uniformity but has
serious scalability limitations. Two later iterations of UniWit, called Unigen [28] and Unigen2 [25],
tried to improve scalability while keeping uniformity, with not much success [51, 97]. The last
UniWit iteration is UniGen3 [76], which finally sacrifices uniformity to provide scalability.

Other work achieved URS by counting solutions of a propositional formula ϕ. Oh et al. were first
to experimentally demonstrate URS of large SPL spaces. They used a model counting BDD to count
the exact number of solutions to ϕ and functionality-constrained versions of ϕ [91]. This work
was later generalized with the Smarch tool, which uses #SAT and Alg. 1, Section 3.3.
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Three other samplers based on counting are Spur [5], KUS [102], and BDDSampler [50]. Spur relies
on #SAT technology, KUS on a knowledge compilation structure called Deterministic Decomposable
Negation Normal Form (d-DNNF), and BDDSampler on BDDs. The evaluation of Unigen2, Smarch, Spur,
KUS, and BDDSampler was reported in [50]; a variety of models, in terms of size (from 14 to 18,570
variables) and application domain (automotive industry, embedded systems, a laptop customization
system, a web application generator, integrated circuits, etc.) were examined. Results showed that
only BDDSampler currently provides both uniformity and scalability.

8.5 Feature Models and URS

Numerical Features. This paper focused on binary {0,1} features to match classical SPL fea-
ture models [9, 14]. However, the Linux build tool Kconfig [64] has feature models with binary
and numerical features (NFs). An NF is a numerical value within a bounded range, which can
be approximated by an integer in a corresponding range. Bit-blasting is a technique to encode
numerical values as bit vectors and arithmetic operations and constraints as propositional formulas
[24]. This allows NF propositional formulas to be directly analyzed “as is” by both SRS and RRS
[83, 84]. As DeepPerf and SPLConqueror can handle NFs natively, future work should compare how
SRS and RRS perform w.r.t. DeepPerf, SPLConqueror, and FLASH on NF models.

Scalability of URS. Our analysis of URS, Eqns (2)-(9), yields results for an infinite-sized config-
uration space. However, the best tools today [17] cannot analyze Linux, the largest known SPL,
whose estimated size exceeds 102200. Extending today’s #SAT and BDD technologies to analyze Linux
remains a challenge.

Dimension Reduction. Not all features contribute to performance; most features of an SPL are
of this type. There are several ways in which irrelevant features can be identified and removed
from ML PMs [4, 46, 107].

SRS and RRS do something similar: they ignore non-noteworthy features. In contrast, how
performance-irrelevant features can be eliminated from a feature model’s propositional formula ϕ
and still admit model counting is not obvious. If this could be done, it might solve the scalability
problems that remain for URS, discussed above.

Tseitin’s Transformation. Not any translation of a feature model to propositional formula ϕ
and then to a CNF formula, ϕcnf, can be used with a #SAT sampling tool. Some translations do
not preserve the 1:1 correspondence between products and solutions of ϕ, resulting in an over-
counting. Tseiten’s transformation is one of several transformations that preserves the required 1:1
correspondence for URS [113]. The check: if a translation of ϕ to ϕcnf adds no additional variables
(features), then |C |=|ϕcnf|. BDDs do not have this problem. See Appendix D for more details.

RRS vs. SRS. A perfect RRS would constrain C in each recursive iteration by selecting a subspace
that always contains cbest. Currently, RRS uses a heuristic that chooses noteworthy features with
the best contributing performance in a sample. This procedure works most times, but as we saw
not always. An open problem remains: is there an improved RRS algorithm or analysis that always
selects a subspace containing cbest with a computable degree of confidence?

9 CONCLUSIONS

ML is an alluring way to explore PMs for SPLs. But lacking a scalable way to uniformly sample
highly-constrained spaces of colossal (≫1010) SPLs had two consequences. (1) Serious efforts were
spent on non-URSmethods to find substitutes for URS [1, 3, 25, 27, 34, 42, 49, 62, 65], but to properly
evaluate their statistical behavior, a gold standard required URS. (2) Most PMs were not adequately
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evaluated for scalability; SPLs with enumerable spaces (≤250K) were common until recently (e.g.,
[79]). In Sect. 3.3, we diminished these problems by showing how to uniformly sample colossal SPL
configuration spaces as large as 101441.

An initial motivation for PMs was to find SPL cnos for a given workload. Typical PMs required an
optimizer to find a cno; but the only way to determine the quality of cnos (e.g., how near they are
to optimal) required enumerable SPLs. In Sects. 3.1–3.2, we showed how order statistics with URS
provided a needed statistical guarantee for colossal SPLs: a cno is within x% of optimal with y%
confidence. Further, given any two of

(
accuracy x%, confidence y%, or sample size n

)
for a cno, the

third is computed by an equation or found in a table.
Two random search algorithms that used URS were presented, SRS and RRS. With enumerated

SPLs in Sect. 5, we compared them to state-of-the-art PMs, DeepPerf (a sparse neural network) and
SPLConqueror (linear regression), on cno accuracy (average distance µ from optimal) and reliability
(standard deviation of µ). Experiments showed SRS dominated both PMs, and RRS dominated SRS.
Further, a common belief in the PM literature is “a more accurate PM produces a more accurate cno”.
We found evidence to the contrary, where PM accuracy was weakly correlated to cno accuracy.

In Sect. 6, we demonstrated the efficacy of RRS and SRS on two colossal SPLs: axTLS (|C |=1012)
and ToyBox (|C |=1081). Sampling at most 500 configurations, RRS found cnos that were inside .22
percentile (or 5-sigma) of optimal for both SPLs. And in Sect. 7, we presented a fixed budget
algorithm that gave the same sample size to both RRS and SRS, let each compute their cnos where
the best cno was returned along with the statistical guarantees of SRS, as RRS has no guarantees.
Our work encourages further research on topics of substance: (1) generalize URS to numerical

features; (2) compare PMs with SRS and RRS on numerical feature models; (3) use URS to determine
how well PMs scale to colossal SPLs; and (4) improve URS scalability to the largest known SPL: the
Linux Kernel.
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A |C | > 1000: WHEN AN INFINITE SPACE CAN APPROXIMATE A DISCRETE SPACE

|C | is big enough when Eqns (4)-(6) are satisfied, i.e., when the mean ( c1,n ) and standard deviation
(𝜎1,n ) of many samples converge to their theoretical counterparts, c1,n and 𝜎1,n, Eqns (4)-(6). Fig. 24
shows the result of simulating 1,000 samples, with |C | configurations each, for different values of
|C |. For each |C |, there is one point representing the mean, c1,n, in Fig. 24a, and one point for the
standard deviation, 𝜎1,n, in Fig. 24(b). Red lines show the theoretical c1,n and 𝜎1,n counterparts.

The vertical (blue) line of Fig. 24 shows the approximation works well for |C |=1024 (a tiny SPL),
i.e., for SPLs with 10 unconstrained optional features. A more conservative estimate was |C |>2000
in [91].

Fig. 24. Minimal |C | to satisfy the URS continuous Approximation.
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B PROOF OF UNIFORMITY OF THE URS ALGORITHM

Two kinds of probabilities need to be distinguished to prove the uniformity of Alg. 1:
(1) The probability P(c) that configuration c is sampled; and
(2) The probability P(f) that feature f belongs to a sampled configuration, i.e., P(f) = |𝜙∧f |

|𝜙 | .
Uniformity means that every configuration has the same chance to be sampled. According to the

probability definition, ∑ |𝜙 |i=1 P(ci) = 1. Hence, uniformity is satisfied whenever P(c) = 1
|𝜙 | for any c.

Alg. 1 samples a configuration by incrementally assigning true or false to each of the𝜔 features in
a feature model. In Eqn (13), ai stands for the value assigned to feature fi. Due to feature constraints,
assignments depend on each other, and so feature values must be generated following the chain
rule [124] to ensure the final configuration is valid, i.e., using feature conditional probabilities,
Eqn (14). In each iteration i, the algorithm produces a random assignment ai by taking into account
the probabilities of the previous assignments a1, a2, . . . , ai−1 (Eqn. 15). At the end, all features are
assigned and |𝜙 ∧ a1 ∧ a2 ∧ . . . ∧ a𝜔 | = 1, since a complete feature assignment corresponds to a
unique configuration. As a result, the probability of sampling the configuration is P(c) = 1

|𝜙 | (Eqn.
16), which guarantees the sampling procedure is uniform.

P(c) = P(a1 ∩ a2 ∩ a3 ∩ . . . ∩ a𝜔 ) (13)
= P(a1) · P(a2 |a1) · P(a3 |a1 ∩ a2) · . . . · P(a𝜔 |a1 ∩ a2 ∩ a3 ∩ . . . ∩ a𝜔−1) (14)

=
|𝜙 ∧ a1 |
|𝜙 | · |𝜙 ∧ a1 ∧ a2 ||𝜙 ∧ a1 |

· |𝜙 ∧ a1 ∧ a2 ∧ a3 ||𝜙 ∧ a1 ∧ a2 |
. . .
|𝜙 ∧ a1 ∧ a2 ∧ . . . ∧ a𝜔 |
|𝜙 ∧ a1 ∧ a2 ∧ . . . ∧ a𝜔−1 |

(15)

=
1

|𝜙 | (16)

C STATISTICAL SIGNIFICANCE

Results of Sections 5 and 6 were analyzed to test their statistical significance. As usual in science,
the confidence level was set to 95%.
A result is said to be statistically significant when it is unlikely to happen by chance. That is,

Sections 5 and 6 answer RQ1–RQ4 by analyzing a sample of SPLs (BerkeleyDBC, 7z, VP9, axTLS,
and ToyBox). However, we could have accidentally selected a very particular set of SPLs that
does not reflect the characteristics of the whole population of SPLs. Statistical significance means
rejecting that possibility, thus supporting the generality of our results.

C.1 RQ1 and RQ2

An ANOVA test is the standard way to check if the differences among each algorithm’s cnos in Section
5 were statistically significant [38]. However, our experiments violated ANOVA preconditions:
• cnos for each algorithm were not normally distributed. Table 8 summarizes Shapiro-Wilk tests
[99] conducted per algorithm; as all p-values were ≤0.05, normality was rejected.
• The variance of cnos returned by each algorithm was highly different. In particular, the Levene
test [74] for variance homogeneity produced F = 191.5 and p-value ∼0. As p-value ≤0.05,
variance homogeneity was rejected.

Algorithm W p-value

SRS 0.599 ∼ 0

RRS 0.238 ∼ 0

DeepPerf 0.714 ∼ 0

SPLCon. S1 0.753 ∼ 0

SPLCon. S2 0.703 ∼ 0

SPLCon. S3 0.611 ∼ 0

SPLCon. S4 0.580 ∼ 0

SPLCon. S5 0.535 ∼ 0

8 S1 is Distanced-Based, S2 is Diversified Distance-Based, S3 is Solver-Based, S4 is “random” sampling from an enumerated
configuration space, and S5 is Randomized Solver-Based.
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Table 8. Shapiro-Wilk’s
normality tests for ANOVA.

The Kruskal-Wallis test [70] was used as the non-parametric
alternative to ANOVA. It raised H=3.050 and p-value ∼0. As p-
value ≤0.05, the test concluded that at least one of the algorithms
achieved cnos significantly different from at least one of the other
algorithms.
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To determine precisely for which algorithms the cnos differ, all
pairwise comparisons in Table 9 were performed following the
method described in [104]. First, all cnoswere ranked (i.e., the smallest
cno scored a rank of 1, the second smallest one a rank of 2, and so on).
Then, the mean of the cno ranks was computed for each algorithm.
The absolute value of the difference between the means of every pair
of algorithms was calculated. These absolute values, called observed differences, were compared to
thresholds, named critical differences and calculated from the number of experiments carried out
per algorithm and the confidence level.

According to [104], observed differences should be considered statistically significant whenever
they are ≥ than their corresponding critical differences. Therefore, all observed differences were
statistically significant except when comparing DeepPerf to SPLConqueror S1, and SPLConqueror
S2 to SPLConqueror S4.

Comparison Observed Critical Statistically
difference difference significant?

SRS vs. RRS 1938.758 293.0368 yes
SRS vs. DeepPerf 2398.176 306.424 yes
SRS vs. SPLCon. S1 2094.880 350.495 yes
SRS vs. SPLCon. S2 1491.906 350.495 yes
SRS vs. SPLCon. S3 522.209 350.495 yes
SRS vs. SPLCon. S4 1230.784 350.495 yes
SRS vs. SPLCon. S5 811.818 350.495 yes
RRS vs. DeepPerf 4336.934 293.037 yes
RRS vs. SPLCon. S1 4033.646 338.854 yes
RRS vs. SPLCon. S2 3430.664 338.854 yes
RRS vs. SPLCon. S3 2460.968 338.854 yes
RRS vs. SPLCon. S4 3169.542 338.854 yes
RRS vs. SPLCon. S5 1126.934 338.854 yes

DeepPerf vs. SPLCon. S1 303.288 350.495 no
DeepPerf vs. SPLCon. S2 906.270 350.495 yes
DeepPerf vs. SPLCon. S3 1875.966 350.495 yes
DeepPerf vs. SPLCon. S4 1167.391 350.495 yes
DeepPerf vs. SPLCon. S5 3209.994 350.495 yes
SPLCon. S1 vs. SPLCon. S2 602.982 389.613 yes
SPLCon. S1 vs. SPLCon. S3 1572.678 389.613 yes
SPLCon. S1 vs. SPLCon. S4 864.104 389.613 yes
SPLCon. S1 vs. SPLCon. S5 2906.707 389.613 yes
SPLCon. S2 vs. SPLCon. S3 969.696 389.613 yes
SPLCon. S2 vs. SPLCon. S4 261.122 389.613 no
SPLCon. S2 vs. SPLCon. S5 2303.724 389.613 yes
SPLCon. S3 vs. SPLCon. S4 708.574 389.613 yes
SPLCon. S3 vs. SPLCon. S5 1334.028 389.613 yes
SPLCon. S4 vs. SPLCon. S5 2042.603 389.613 yes

Table 9. Multiple comparison test.

To summarize:

• The Kruskal-Wallis and multiple comparison
tests support the statistical significance of RQ1
(Section 5.2).
• Levene test supports the statistical significance
of RQ2 (Section 5.3).

C.2 RQ3

Table 10 summarizes the significance of the
correlations between MAPE and β reported in
Table 6 (Section 5.4). As all p-values ≤0.05, all
correlation measures were statistically significant.

C.3 RQ4

Analogous to Appendix C.1, a t-test would be
the standard way [38] to check the significance of
the SRS and RRS difference reported in Section 6;
however, the experimental data violated t-test
preconditions:

• The build sizes of the configurations obtained
with SRS and RRS were not normally
distributed. Table 11 summarizes Shapiro-
Wilk tests [99] conducted per algorithm; as
all
p-values were ≤0.05, normality was rejected.
• The build size variance for each algorithm
was heterogeneous. The Levene test [74] pro-
duced F=28.453 and p-value=1.46 ·10−7. As p-value ≤0.05, variance homogeneity was rejected.

The Mann-Whitney U-test [38], also known as Wilcoxon signed-rank test, was used as the
non-parametric alternative to t-test. It raised W=46043 and p-value∼0. As p-value ≤0.05, the test
concluded that SRS and RRS difference was statistically significant.
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Algorithm p-value
Spearman’s 𝜌 Kendall’s 𝜏 Hoeffding’s D dCor

DeepPerf 2.908 · 10−6 3.198 · 10−6 ∼ 0 ∼ 0

SPLCon. S1 8.591 · 10−11 1.650 · 10−8 ∼ 0 ∼ 0

SPLCon. S2 ∼ 0 ∼ 0 ∼ 0 ∼ 0

SPLCon. S3 ∼ 0 ∼ 0 ∼ 0 ∼ 0

SPLCon. S4 ∼ 0 ∼ 0 ∼ 0 ∼ 0

SPLCon. S5 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Table 10. Significance tests of MAPE and β correlation.

Algorithm W p-value

SRS 0.829 ∼ 0

RRS 0.741 ∼ 0

Table 11. Shapiro-Wilk’s normality
tests for t-test.

D PROPOSITIONAL FORMULA φ TO CNF CONVERSION

SAT and #SAT solvers require aConjunctive Normal Form (CNF) formula as input [20, 120]. Transforming
ϕ into a CNF formula ϕcnf is straightforward with rules of logical equivalence. But doing so may
increase the number of clauses exponentially [120] and simplifying ϕcnf to reduce the number of
clauses is nontrivial [63, 86].
To avoid this, Equisatisfiable Transformations (ETs) are used. Two formulas are equisatisfiable

when one formula is satisfiable only if the other is satisfiable, and vice versa [125]. ETs produce
a CNF formula ϕcnf that is equisatisfiable to ϕ [113]. There are many ETs [58, 96, 113] not all of
which are suitable for URS.

Consider: ϕ = (a ∧ b) ∨ (c ∧ d). An ET from Plaisted and Greenbaum [96] introduces additional
variables x1and x2 for the clauses of ϕ:

ϕcnf = (x1∨x2)∧(¬x1∨a)∧(¬x1∨b)∧(¬x2∨c)∧(¬x2∨d)

Table 12. Solution Comparison
Between φ and φcnf.

Each row of Table 12 is a solution of both ϕ and ϕcnf.
The last solution of ϕ corresponds to 3 solutions of ϕcnf.
A problem for URS is exposed: using ϕcnf yields a biased
sampling of ϕ. Statistical predictions by URS of ϕcnf are
distorted predictions about ϕ:
• |ϕcnf | is 9 and |ϕ| is 7, a 28% over-estimation; and
• The percentage of products with feature d in ϕcnf is
78%= 7

9 , whereas the correct answer in ϕ is 71%= 5
7 ,

a 10% over-estimation.
How do redundant solutions arise? We observed empirically that if ϕcnf adds no new variables to
ϕ then all is OK: URS statistics about ϕcnf match ϕ because |ϕcnf |=|ϕ|.

Adding variablesmight not be a problem. Tseitin’s transformation [113], a well-known ETmethod,
adds variables but does not increase the number of solutions. Tseitin’s transformation extends the
Plaisted and Greenbaum transformation with blocked clauses [71]. The elimination of blocked
clauses [61], which is a SAT preprocessing technique used in top-tier solvers, removes those clauses
and introduces redundant solutions.
The example of Table 12 shows there are bad ETs that both add variables and distort statistical

predictions. The pragmatic problem is this: Given a feature-model-to-propositional-formula
tool, you may not know if the tool (nor the #SAT solver that uses the propositional formula)
employs bad ETs if extra variables are used.
We used the Kmax tool [39] in our work which avoids translation controversies as it adds no

extra variables in translating ϕ to ϕcnf.
Also, Projected Model Counters (#∃SAT) [12] can be used as an alternative to classical #SAT solvers

to prevent miscounting. #∃SAT counts the solutions of ϕcnf with respect to an input set of relevant
variables, called projection variables. If all variables in ϕ are specified as projection variables, #∃SAT
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will ignore any other auxiliary variables in ϕcnf, thus computing the right count. Further, sampling
with BDDs avoids ET problems as BDDs don’t require the input formula to be in any particular form.
This is an advantage of using BDDs.
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