
Journal of Intelligent Information Systems, , 1{18 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

P2: A Lightweight DBMS Generator

DON BATORY AND JEFF THOMAS fbatory,jthomasg@cs.utexas.edu

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712

Editor:

Abstract. A lightweight database system (LWDB) is a high-performance, application-speci�c
DBMS. It di�ers from a general-purpose (heavyweight) DBMS in that it omits one or more features

and specializes the implementationof its features to maximizeperformance. Although heavyweight
monolithic and extensibleDBMSs might be able to emulate LWDB capabilities, they cannotmatch
LWDB performance.

In this paper, we describe P2, a generator of lightweight DBMSs, and explain how it was used
to reengineer a hand-coded, highly-tuned LWDB used in a production system compiler (LEAPS).
We present results that show P2-generated LWDBs reduced the development time and code size

of LEAPS by a factor of three and that the generated LWDBs executed substantially faster than
versions built by hand or that use an extensible heavyweight DBMS.

Keywords: lightweight DBMS, extensible DBMS, GenVoca, P2.

1. Introduction

General-purpose DBMSs are heavyweight; they are feature-laden systems that are
designed to support the data management needs of a broad class of applications.
Among the common features of heavyweight DBMSs are support for databases
larger than main memory, client-server architectures, and checkpoints and recov-
ery. A central theme in the history of DBMS development has been to add more
features to enlarge the class of applications that can be addressed. As the number
of supported features increased, there was sometimes a concomitant (and possi-
bly substantial) reduction in performance. A hand-written application that does
not use a DBMS might access data in main memory in tens of machine cycles; a
comparable data access through a DBMS may take tens of thousands of machine
cycles. It is well-known that there are many applications that, in principle, could
use a database system, but are precluded from doing so by performance constraints
(Miranker, 90-91; Brant, 91-93).

Extensible or open database systems (Batory, 88; Carey, 90; Haas, 90; Stone-
braker, 91-93; Wells, 92) promoted DBMS customization by enabling individual
features or groups of features to be added or removed. Unfortunately, extensible
DBMSs were basically customizable heavyweight DBMSs; their architecture and
implementations (e.g., layered designs, interpretive executions of queries) imposed
the onerous overheads of heavyweight DBMSs. While extensibility can improve per-

2

formance, it has been our experience that the gains are rarely su�cient to satisfy
the requirements of performance-critical applications.

A lightweight database system (LWDB), in contrast, is an application-speci�c,
high-performance DBMS that omits one or more features of a heavyweight DBMS
and specializes the implementations of its features to maximize performance. Ex-
amples include main memory DBMSs (e.g., Smallbase (Heytens, 94)), persistent
stores (e.g., Texas (Singhal, 92)), and primitive code libraries (e.g., Booch Compo-
nents (Booch, 87)). Each of these examples strip features from a general-purpose
DBMS (e.g., Smallbase removes the disk-resident database feature, Texas removes
client-server architectures, and the Booch Components further strip checkpoints
and recovery) and demonstrate the performance advantages gained by doing so. In
principle, an application achieves its best performance when it uses a \lean and
mean" LWDB that exactly matches its needs.

Because there are no formalizations, tools, or architectural support, LWDBs are
hand-crafted monolithic systems that are expensive to build and tune. The chal-
lenge in building LWDBs stems from scalability: a \lean and mean" LWDB by
de�nition supports m features out of a set of n features, where m is application-
dependent and n is constantly growing (Biggersta�, 94). Clearly, the number
of unique combinations of features is exponential, and thus, building a library of
LWDBs that implement unique combinations is both impractical and unscalable.
We believe that the only way of economically producing LWDBs that exactly match
application needs is via generation.

In this paper, we describe P2, a generator of LWDBs. P2 provides the architec-
tural support to assemble high-performance LWDBs from component libraries. P2
users code their applications in a database programming language that is a superset
of C. P2 automatically builds (generates) a custom LWDB by analyzing applica-
tion code and by following user-speci�ed directives that de�ne the database features
that are to be supported. P2 performs many optimizations at generation-time: it
compiles queries, inlines code to manipulate indices, and partially evaluates code

statically. These optimizations enable the performance of P2-generated LWDBs to
be comparable or to exceed that of hand-written LWDBs.

A classical lightweight database application is the LEAPS production system
compiler (Miranker, 90-91; Brant, 91-93). LEAPS produces the fastest sequential
executables of OPS5 rule sets by relying on highly-tuned, complex, and unusual data
management features. No existing DBMS provides the features and performance
necessary for LEAPS: non-extensible heavyweight DBMSs lack certain features and
performance, and extensible heavyweight DBMSs lack performance. Thus, prior to
the introduction of P2, LEAPS relied on hand-coded LWDBs. In this paper, we
present results that show P2-generated LWDBs reduced the development time and
code size of LEAPS by a factor of three and that the generated LWDBs executed
substantially faster than versions built by hand or using an extensible heavyweight
DBMS.

3

2. Generating Lightweight Database Systems

The conventional approach to lightweight database system construction is fraught
with problems. With a partial understanding of the work loads that a LWDB is
to support, LWDB designers invent data/storage structures and algorithms that
match the perceived need. Implementing the design is tedious, expensive, and
time-consuming, as it often involves adapting, coding, and debugging well-known

algorithms. Once completed, the LWDB is integrated with the target application to
see how well it performs. Without exception, the anticipated work load is di�erent
than the actual work load, and thus some of the design decisions/features of the
hand-coded LWDB are recognized to be sub-optimal. At this point, designers face
two unpleasant options: either leave the LWDB as is, knowing that its performance
could be improved, or redesign and recode the LWDB for yet another round of
testing. Redesigning has the additional unpleasant side-e�ect that the interface to
the LWDB may change, which in turn, would cause parts of the application that
use the LWDB to be recoded.

There are two fundamental problems with this approach. First, LWDBs should
not have ad hoc interfaces. A LWDB should provide a stable, well-designed interface
that would permit applications to be insulated from changes in LWDB implemen-
tations. Second, there needs to be a way of reusing well-known algorithms, so that
the rote tasks of adapting, coding, etc., can be largely avoided. These are the moti-
vating objectives of P2. To accomplish them, P2 users follow a two-phase approach
to the development of LWDBs and their applications.

The �rst phase is application development. P2 extends the C language with
special data types (e.g., cursors and containers). LWDB applications are coded
in terms of these data types without regard to how these types are implemented.

This approach radically simpli�es programming: application development using
high-level database abstractions is substantially easier than using low-level, ad hoc
interfaces of hand-crafted LWDB modules. In Section 2.1, we present the data

model and embedded language of P2. In Section 4, we document the productivity
gains by programming with P2 types.

The second phase of development is LWDB feature speci�cation, i.e., how the
features of a LWDB are declared and how implementations of the P2 data types
are to be generated. For P2, a lightweight database system for an application is the

implementation of the P2 data types that it references. We will see in Section 2.2
that both feature speci�cation and data type implementations are accomplished
by composing components from the P2 library. An important advantage of this
approach is that it is possible to radically alter the implementations of cursors,
containers, etc., of an application (via a recombination of components) to improve
application e�ciency without modifying application code. Thus, tuning P2 LWDBs
is considerably simpli�ed. We demonstrate the power of this capability in Section 4.

4

2.1. Phase 1: Application Development using P2 Data Types

The P2 data modeling concepts are rather conventional: a P2 database consists
of one or more containers, where a container is a sequence of elements that are
instances of a single data type. Container elements can be retrieved, referenced,
and updated via cursors. Our choice of these abstractions was deliberate: we
wanted the P2 API to be as familiar and easy to learn as possible to database
programmers.
The P2 data language is a superset of C; cursors and containers are added as

built-in parameterized types.1 Containers are parameterized by the type of element
that is to be stored; cursors are parameterized by the container to be traversed and
optionally by a selection predicate and/or sort criterion. An abbreviated declaration
of a container of EMP TYPE instances and a cursor that references selected instances
are given below. In general, P2 cursor and container types are �rst-class; they can
be used like any C type. (Note that predicates in P2 are strings; attribute A of the
element referenced by a cursor is denoted $.A. The $ denotes to P2 the name of
the cursor):

typedef struct { ... } EMP; // C struct declaration

container <EMP> emp_container; // abbreviated container declaration

typedef cursor <emp_container> // cursor typedef declaration

where "$.dept == 7 && $.age < n" // n is a user-defined variable

EMP_CURSOR;

EMP_CURSOR emp_cursor, *p, a[5]; // cursor declarations

int f(EMP_CURSOR *p) { ... } // function with cursor parameter

P2 o�ers an (extensible) set of operations on cursors and containers. The code
fragment below illustrates the P2 foreach construct, which is used to iterate over

elements of a container. Once a cursor is positioned, the referenced element can be
examined, updated, and/or deleted.

foreach(emp_cursor) { // for each selected employee

printf("%s",emp_cursor.name); // print employee name

if (emp_cursor.job == 7) // if employee id is 7

delete(emp_cursor); // delete employee

else // else

emp_cursor.dept = 12; // update employee

}

Composite cursors are used to retrieve tuples of elements produced by multicon-
tainer retrievals. A composite cursor k is an n-tuple of cursors, one cursor per con-
tainer to be joined. A particular n-tuple of elements (e1; e2; : : : ; en) is represented
by having the i-th cursor of k positioned on element ei. By advancing k, succes-
sive tuples of a multicontainer join are retrieved. A composite cursor (compcurs)

5

declaration is given below that joins the department and employee containers. d

and e are aliases for the cursors over the department and employee containers,
respectively:

compcurs <d department, e employee> // composite cursor declaration

where "$d.dept == $e.dept" k;

foreach(k) { // for each pair

printf("(%s,%s)",k.d.name,k.e.name); // print department, employee

delete(k.d); // delete department

}

Perhaps the most novel aspect of composite cursors is that P2 permits the ele-
ments referenced by a composite cursor to be updated. Unlike view updates (where
changes are restricted (Keller, 82)), updates are unrestricted, but they may e�ect
the tuples that are subsequently retrieved. For instance, once an element of a tuple
is deleted, that element should not belong to any subsequently retrieved tuple. In
the code fragment above, if tuples of k were computed eagerly (i.e., set-at-a-time),
k might return tuples with deleted elements. Figure 1a shows an eager join return-
ing department-employee tuples (d1,e2) and (d1,d3) after department d1 has
been deleted. (Clearly, modifying or deleting previously deleted elements is mean-
ingless). Figure 1b, in contrast, shows a valid join which notes database updates
performed since the last advance of k, and skips tuples containing deleted elements.
P2 generates the code that supports valid retrieval semantics.

(d1,e1)

(d1,e2)

(d1,e3)

(d2,e4)

(d2,e5)

(d3,e6)

(d1,e1)

(d2,e4)
skip

(d3,e6)

skip

(a) tuples returned by eager join (b) tuples returned by valid join

Figure 1. Eager and valid joins.

Tuple validation is speci�ed through a valid clause predicate, which disquali�es
tuples for retrieval. The following declaration and code fragment eliminates the
problems of Figure 1a by only returning tuples with undeleted department ele-
ments. deleted() is a P2 operation that returns TRUE i� the speci�ed element has
been deleted.

compcurs <d department, e employee> // valid composite cursor declaration

where "$d.id == $e.id"

valid "!deleted($d)" v;

6

foreach(v) { // for each valid pair

printf("(%s,%s)", v.d.name, v.e.name); // print department, employee

delete(v.d); // delete department

}

Tuple validation is a general-purpose feature that is useful in graph traversal and
garbage collection algorithms, where previously positioned cursors may suddenly
�nd themselves referencing deleted elements, and automatic repositioning of cursors
upon advancement is critical for algorithm correctness.

2.2. Phase 2: Feature Speci�cation Using Component Compositions

Coding LWDB applications in terms of P2 data types is straightforward. The
second phase of P2 application development is to de�ne the features that the ap-
plication's LWDB is to support and to declare how implementations of the P2 data
types are to be generated. The key to any generative approach is to create a do-

main model of families of P2 data type implementations (i.e., families of LWDBs),
where individual members of this family have a precise and unique speci�cation in
the model (Prieto-Diaz, 91). We used the GenVoca model to express our domain
model of LWDBs (Batory, 92).
As a brief overview, the GenVoca model of software system generation was dis-

tilled from the experiences of building generators for the disparate domains of
database management systems, communication protocols, avionics, �le systems,
and data structures (Batory, 88; Hutchinson, 91; Batory, 93; Coglianese, 93; Heide-
man, 94). The motivation for these generators was the scalability problem outlined
in Section 1: customized software systems implement m features out of a possible
n features. Rather than building an exponential number of monolithic systems

that o�er unique sets of features, one should build systems by composing primitive
components that encapsulate individual features. Thus, by making feature combi-

natorics explicit, it is possible to describe vast families of systems with a relatively
small number of components. In P2, a target LWDB is speci�ed as a composition
of P2 components.
The set of components that implement the same interface is called a realm. A

realm is, in e�ect, a library of plug-compatible and interchangeable components.
Among the realms of P2 are ds and mem. ds components export a standardized
container-cursor interface. Among the components of ds are those that implement
common storage structures (e.g., binary trees, doubly-linked ordered and unordered
lists) and cursor-container mappings (e.g., free lists of previously deleted elements,
sequential and random storage). mem components export standardized memory
allocation and deallocation operations. Among its members are components that
manage space in persistent and transient memory. A partial listing of ds and mem

components are given below.

7

ds = {

odlist[key, ds], // key-ordered doubly-linked list

bintree[key, ds], // binary tree

dlist[ds], // unordered doubly-linked list

avail[ds], // free list of deleted elements

mlist[key, ds, ds], // multilist indexing

predindx[pred, ts, ds], // predicate index

hpredindx[pred, ts, key, ds], // hashed predicate index

tlist[ts, ds], // timestamp ordered lists

htlist[ts, ds], // hashed timestamp ordered lists

malloc[mem], // heap storage

array[mem], // sequential storage

delete_flag[ds], // logical element deletion

...

}

mem = {

transient, // transient memory allocation

persistent[file], // memory mapped persistence

...

}

Note that components have two kinds of parameters: realm parameters such as
ds and mem (i.e., parameters that are instantiated by components) and nonrealm

or con�guration parameters such key, pred, ts, and file (i.e., parameters that are
instantiated by key �eld names, predicates, timestamp �eld names, �le names, etc.).
To illustrate their distinction, consider the component odlist, which encapsulates
the concept of key-ordered linked lists. odlist has two parameters: a nonrealm

parameter key and a realm parameter ds. The key parameter declares the key
�eld of the list. The ds parameter indicates that odlist imports the ds interface.
Other components are interpreted in a similar way.2 Currently there are over �fty
P2 components. LWDBs are de�ned by compositions of components, called type

equations, that typically reference up to twenty components. We will illustrate a
P2 type equation shortly.
A unique feature of P2 components (and GenVoca components, in general) is

that they are program transformations that encapsulate consistent large-scale data
and operation re�nements. It is beyond the scope of this paper to explain the
GenVoca methodology or to present an in-depth discussion of these concepts and
their relationships; we will, however, illustrate the essential ideas with elementary
examples.
A large-scale transformation is a program transformation that re�nes multiple

data types simultaneously. All P2 components re�ne element, cursor, and con-
tainer data types in a consistent manner. As an example, the odlist component
transforms a container of elements into a container whose elements are linked to-
gether onto an ordered doubly-linked list.

8

container

elements
cursor

container
first last

elements
cursor

current

Figure 2. The odlist transformation.

odlist encapsulates the following data re�nements:

� element types are augmented with next and prev pointer �elds (for double-
linking).

� container types are augmented with first and last pointer �elds (for head
and tail list accessing).

� cursor types are augmented with a current pointer �eld (to indicate the current
element of the list).

odlist is a large-scale transformation because it automatically re�nes element,
container, and cursor data types by adding new data members, algorithms, and
optimizations (e.g., query optimization, code inlining, partial evaluation) for the
ordered-list feature. So, the way to understand the odlist transformation is that
it takes a P2 program (with cursors, containers, elements) as input, and produces
a re�ned P2 program (with re�ned cursors, containers, elements) as output. By
cascading transformations (i.e., composing components in type equations), imple-
mentation details of the target LWDB are progressively revealed.

Some simple P2 type equations are:

typex {

T1 = odlist["age", delete_flag[malloc[transient]]];

T2 = bintree["name", odlist["city", array[persistent["x"]]];

};

T1 means that the elements of a container will be linked together onto a doubly-
linked list ordered on �eld "age" (by odlist). List nodes will be marked deleted
without reclaiming their space (by delete flag) and will be allocated from a heap
(by malloc) that resides in transient memory (by transient).

On the other hand, T2 de�nes a very di�erent storage structure. T2 declares that
the elements of a container will be linked together onto a binary tree whose key
�eld is "name" (by bintree); binary tree nodes will be linked together onto a linked
list ordered by �eld "city" (by odlist). List nodes will be stored sequentially (by
array) in persistent �le "x" (by persistent).

9

Type equations are declared via the P2 typex declaration; complete container
declarations specify the type of elements to store and the type equation that de�nes
the container/cursor/element implementations:

container <EMP> stored_as T1 // full container declaration

emp_container;

As these examples suggest, P2 programmers are armed with a small handful of
P2 components that can be composed in vast numbers of ways to produce large
families of distinct LWDB implementations. This powerful feature allows P2 users
to explore di�erent LWDB's implementations easily by altering just a container's
type equation and recompiling; no other source code modi�cations are needed.
Further details about type equations and P2 components are discussed in (Batory,
93; Batory 94b-c).

3. The LEAPS Lightweight Database Application

The LEAPS production system compiler is a classical lightweight database appli-
cation. LEAPS (Lazy Evaluation Algorithm for Production Systems) produces the
fastest sequential executables of OPS5 rule sets (Miranker, 90-91). A LEAPS exe-
cutable is a lightweight database application, because it represents its database of
assertions as a set of containers, and because it uses unusual search algorithms and
novel container implementations to enhance rule processing e�ciency; no heavy-
weight DBMS o�ers the performance or features needed by LEAPS.
As a brief overview, OPS5 is a forward-chaining rule programming language

(Cooper, 88). An OPS5 program is a set of rules; an OPS5 rule named done

is shown below. It consists of a left-hand side of three condition elements, an arrow
(-->), and a right-hand side with two actions.

(p done

(context ^value done)

(last_seat ^seat1 <seat>)

(seating ^seat2 <seat>)

-->

(write Yes we are done)

(modify 1 ^value print_results))

Each condition element (CE) speci�es a container and one or more selection pred-
icates. Names in angle brackets (<>) denote variables whose values are to be in-
stantiated during a search. The �rst CE of done de�nes the selection predicate over
the context container:

context.value == 'done'

The next two CEs join the last seat and seating containers by the equijoin
predicate:

10

last_seat.seat1 == seating.seat2

The selection predicate of an OPS5 rule is the conjunction of the predicates of its
CEs, which in this case is:

context.value == 'done' && last_seat.seat1 == seating.seat2

OPS5 execution follows a match-select-act cycle: rules whose predicates can be
satis�ed are identi�ed (match), a satis�able rule is chosen (select), and the actions
of the chosen rule are evaluated by a tuple that satis�es the rule predicate (act).
(The actions of the done rule print the string "Yes we are done" and update the
value �eld of the selected context element to be 'print results'). This cycle
continues until no rule can be satis�ed.
LEAPS translates OPS5 rule sets into C programs (Figure 3). To implement

LEAPS using P2, we wrote a translator RL (Reengineered Leaps) that converts
an OPS5 rule set into a P2 program that embeds the LEAPS algorithms. The
RL-generated P2 program is converted into a C program by the P2 generator, thus
accomplishing in two translation steps what the LEAPS compiler does in one.

RL P2
programtranslator generator

P2
program

C
rule set
OPS5

RL system

LEAPS

Figure 3. Relationship between LEAPS and RL.

3.1. Phase 1: Application Development

The LWDB applications produced by RL are very complicated. Every OPS5 rule
set is translated into a set of containers, a composite cursor type for each rule, and
the LEAPS algorithms that manipulate elements, cursors, and containers. The rule
set containing the done rule would have at least the following P2 containers, where
RLx is a LEAPS container type equation to be de�ned in Section 3.2.

container <CONTEXT> stored_as RLx context;

container <LAST_SEAT> stored_as RLx last_seat;

container <SEATING> stored_as RLx seating

The done rule itself would be translated into the following composite cursor data
type:

11

#define done_query "$a.value == 'done' && $b.seat1 == $c.seat2"

#define done_temporal "$a.ts <= gts && $b.ts <= gts && $c.ts <= gts"

#define done_valid "!deleted($a) && !deleted($b) && !deleted($c)"

typedef compcurs <a context, b last_seat, c seating>

where done_query " && " done_temporal

valid done_valid DONE_CURSOR_TYPE;

The containers to be joined by done are parameters to the compcurs declara-
tion. The done selection predicate is expressed by done query. This part of the
translation is simple.
During rule set execution, it is possible that multiple cursors of DONE CURSOR TYPE

may be active. Timestamps are used by LEAPS to achieve fairness|i.e., to preclude
rules from being �red more than once by the same tuple of elements. LEAPS
augments every element with a timestamp �eld ts, whose value indicates when the
element was inserted. done temporal is the temporal predicate used by LEAPS
to accomplish fairness; ts is the timestamp �eld of an element and gts is a global
timestamp whose value is determined by LEAPS.
When a rule is �red, a composite cursor is pushed on a stack, thereby suspend-

ing the execution of its joins. Only when the cursor is popped o� and advanced
are its joins resumed. During the time the cursor is on the stack, any or all of
the elements that it referenced may have been deleted. Consequently, the cursor
must be validated upon advancement. The done valid predicate de�nes the valid
conditions.

There are many other sources of complexity in LEAPS. For example, an OPS5
rule can have any number of negated condition elements. A negated CE is a pred-
icate that disquali�es tuples of elements that satisfy the (positive) CEs of a rule.
An unusual aspect of negated CEs is that their predicate is temporal; additional
containers (called shadows) must be created to contain the elements deleted from
non-shadow containers in order to evaluate negated CEs. As another example,
LEAPS reduces string matching time by maintaining a symbol table (i.e., a con-
tainer) so that element address comparisons can be used in place of expensive
character-by-character string comparisons. Other details are explained in (Batory
94a).

3.2. Phase 2: Feature Speci�cation

LEAPS algorithms require containers to be searched in timestamp order. Thus, all
container storage structures used by LEAPS maintain timestamp ordering. The
P2 tlist component maintains elements of a container on a time-stamp ordered
list. (The P2 component odlist might also be used, where the key-�eld would
be the element's timestamp �eld. tlist is preferred, however, as it has special
optimizations that give it superior performance.)
Because rule sets are static, LEAPS takes advantage of the fact that it knows

the complete set of predicates that will be evaluated during rule set execution. A

12

special storage structure, called a predicate index, is used to enhance rule processing
e�ciency. A predicate index is a timestamp-ordered list of elements that satisfy a
given predicate; the predicate itself is over a single container and has no variables.
The P2 component predindx implements predicate indices.
The reclamation of deleted elements in LEAPS is delayed until execution reaches

a �x-point; the reason is that composite cursors (whose executions have been sus-
pended) may reference deleted elements. For this reason, elements are logically
(but not physically) deleted using the delete flag component.
Finally, as the number of elements to be stored is unbounded, allocation of

storage space must be done through a heap (using the P2 component malloc).
Memory allocation in transient memory is accomplished using the P2 component
transient; persistent memory allocation via memory-mapped I/O is accomplished
using persistent.
An unusual, but critical, aspect of the LEAPS algorithms is its dependency on

nested loop join algorithms. All other join algorithms (hash-join, merge-sort, etc.)
create intermediate relations during join processing. The LEAPS implementors
discovered the creation of intermediate relations to be a primary obstacle to fast
rule processing.3 Given this dependency, we discovered that we could improve the
e�ciency of nested loop joins by emulating hash joins. This was accomplished
by replacing timestamp-ordered lists with hashed-timestamp ordered lists (com-
ponent hlist) and predicate indices with hashed-predicate indices (component
hpredindx). That is, rather than searching a time-stamp ordered list for ele-
ments with a given join key, we hashed on join keys to search a (small) bucket
of timestamp-ordered elements. As we'll see in Section 4, using these structures
yields a substantial improvement in LEAPS performance.
The general forms of the P2 type equations that we used to store LEAPS data-

bases are RL1-RL4:

typex {

RL1 = predindx[...tlist[delete_flag[malloc[transient]]]...];

RL2 = predindx[...tlist[delete_flag[malloc[persistent["x"]]]...];

RL3 = hpredindx[...htlist[delete_flag[malloc[transient]]]...];

RL4 = hpredindx[...htlist[delete_flag[malloc[persistent["x"]]]...];

}

For each equation, there are zero or more predicate indices (or hashed predicate
indices) maintained per container. RL1 di�ers from RL2 only in the transient or
persistent storage of containers. RL3 di�ers from RL1 by replacing structures that
don't use hashing with ones that do. RL4 is the persistent storage counterpart of
RL3.

4. Results

The LEAPS algorithms are notoriously di�cult to understand. In interviews with
the LEAPS development team, they felt that their expertise would enable them to

13

rewrite LEAPS in 2-3 months, whereas novices (us) would take at least twice that
long to code (e.g., 6 months). It did take us several months to comprehend the
algorithms, but only took us two months to code RL.4 As supporting evidence, RL
is less than 5K lines of C, lex, and yacc. LEAPS is four times larger|almost 20K
lines: 10K for the basic compiler and another 10K for the run-time system included
in all LEAPS-produced executables. Thus for the LEAPS application and LWDBs,

using P2 reduced the development time and code size by a factor of three.

We discovered two reasons for this. First, P2 o�ers substantial leverage in devel-
oping LWDBs and their applications. P2 is currently 50K lines of code; it performs
general optimizations that LEAPS experts had to hand-code into their compilers.
Second, by far the most substantial productivity gain was using P2 data types to
express the LEAPS algorithms. Although complicated, the LEAPS algorithms are
elegant when expressed in P2. The P2 separation of LWDB implementation details
from its client applications signi�cantly reduced the complexity RL's development
and the understanding, coding, and debugging of the LEAPS algorithms.

To help us evaluate the performance of RL/P2-generated programs, the LEAPS
development team provided us with OPS5 rule set benchmarks: tripl (3 rules
that output 3-tuples of numbers ranked in descending order), manners (8 rules that
�nd seating arrangements with constraints), waltz (33 rules that de�ne a 2-D line
labeling program), and waltzdb (38 rules that de�ne a more complex version of
waltz). Each of these rule sets processed scalable input data sets; programs that
generated these data sets were included with each rule set. The LEAPS develop-
ment team also provided us with two versions of LEAPS: OPS5.c (a version that
generates programs whose databases are main-memory resident (Miranker, 90-91))
and DATEX (a version that generates programs whose databases are disk-resident
(Brant, 93)). DATEX databases are stored by Jupiter, the (heavyweight) Genesis �le
management system (Batory, 88). Thus, OPS5.c and DATEX provided us with an
ideal opportunity to evaluate the scalability of P2: we could compare P2-generated
LWDBs with both hand-coded main-memory LWDBs and a heavyweight extensible

disk-resident DBMS. We accomplished this using the same P2 programs generated
by RL, but swapping the type equations RL1 and RL2 (de�ned previously).

Prior to benchmarking, it was our goal to have RL/P2 generated programs have
a performance within 10% of LEAPS. We expected to be slower because (1) P2
is a general-purpose tool, whereas LEAPS was hand-coded by experts, and (2) we
converted OPS5 programs to C programs in two translation steps, whereas LEAPS
accomplished this in one step (Figure 3).

Results of our benchmarking are presented in Figure 4.5 Let's consider �rst the
performance of RL1 and RL2. In all cases, their performance exceeded that of OPS5.c
and DATEX. RL1 was typically two times faster than OPS5.c, while RL2 was typically
�fty times faster than DATEX.

RL1's improved performance over OPS5.c was due to several reasons. First, P2
generated code is more e�cient than that of OPS5.c; P2 performs optimizations
automatically that are di�cult, if not impractical, to do by hand. Second, express-
ing the LEAPS algorithms in terms of P2 abstractions clearly revealed some simple

14

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
 o

f c
om

bi
ne

d
us

er
 +

 s
ys

te
m

 ti
m

e)

0.1

1

10

100

1000

0 10 20 30

tripl

 DATEX

 OPS5.c
 RL2
 RL1

1

10

100

1000

10000

100000

12 25 37 50 75

waltz

 DATEX

 OPS5.c
 RL2
 RL1

 RL4
 RL3

0.01

0.1

1

10

100

1000

10000

1632 64 128 256

manners
 DATEX
 OPS5.c

 RL2
 RL1

 RL4
 RL3

1

10

100

1000

10000

100000

4 8 12 16 20

waltzdb
 DATEX

 OPS5.c
 RL2
 RL1

 RL4
 RL3

Input data set size (tuples)

Figure 4. Results of LEAPS experiments.

optimizations that were otherwise obscured. Third, the design and implementation
of OPS5.c was so complicated that it was necessary to replicate predicate indices

for understandability; eliminating replicated indices was trivial in the RL/P2 ver-
sion. Fourth, OPS5.c used a tagged type system and performed dynamic garbage
collection unnecessarily. (This was an example of a LWDB being designed to meet
perceived needs that never arose.) It was through our experiments with RL/P2
that the LEAPS implementors learned that garbage collection was unnecessary.

RL2's improved performance over DATEX was due in part to the reasons cited
over OPS5.c, but by far the most substantial gains came from eliminating the large

overheads of heavyweight (extensible) DBMS construction. These included: layered
software designs, interpretive execution of queries, bu�er management, and general-
purpose storage structures that were not as e�cient as the LEAPS-optimized stor-
age structures of OPS5.c. These overheads caused DATEX to be slower than OPS5.c

by more than an order of magnitude, whereas swapping the transient component
in RL1 with persistent to produce RL2 (i.e., replacing transient memory with
memory-mapped I/O) reduced performance by only a few percent.

When we swapped RL1 and RL2with RL3 and RL4 (i.e., when we used hashed struc-
tures instead of non-hashed), we observed an astounding performance improvement
for three of the rule sets. For manners, waltz, and waltzdb, RL3 executed over
an order of magnitude faster than OPS5.c and RL1; RL4 was three orders of mag-

nitude faster than DATEX. The reason is simple: nested loops is an ine�cient join
algorithm; by emulating hash joins, we obtained big improvements in performance.

15

We did not achieve speedups for tripl, as tripl has only inequality-joins and thus
hash-joins could not improve its performance.
We can make three important observations here. First, experimenting with very

di�erent LWDB implementations was e�ortless: all we needed to do was to alter
type equations and recompile. Second, when needed components were absent from
the P2 library (as was the case for htlist and hpredindx), it took us only three
days to write them. We were able to reuse other components of the P2 library
to minimize our coding e�orts. In contrast, DATEX was a full rewrite of OPS5.c
and took many months to complete. Third, P2 provides a technology by which
customized LWDBs (i.e., customized type equations) can be generated per rule

set to maximize performance; this capability is impossible with standard LWDB
implementation techniques, including those used by LEAPS.

5. Observations, Insights, and Related Work

Database applications change over time. New or customized storage structures or
query processing algorithms might be needed to enhance application performance.
When new structures are needed, the DBMS must provide facilities for the orderly
and e�cient migration of data: i.e., the conversion of data stored in one structure to
that of another.6 Migration is a problem faced by all DBMSs, lightweight and heavy-
weight, but most lightweight systems don't support migration. When applications
entirely \outgrow" the DBMS they currently use, a new DBMS must be selected,
and applications must be ported to use the interface of that DBMS. This outgrowth
problem is more common for LWDBs than heavyweight DBMSs. P2 o�ers impor-
tant advantages for addressing these problems. First, P2's type equations greatly
reduce the problem of selection, since they allow very high-level selection of DBMS
features and implementation. Second, P2's realms greatly reduce the problem of

porting, since they provide standardized interfaces which are largely independent
of LWDB features and are entirely independent of LWDB implementation.
Building customized DBMSs from components has been an active area of research

for over ten years. Genesis was the �rst \lego" technology for constructing heavy-
weight DBMSs (Batory, 88). It is our experiences with Genesis and the performance
of heavyweight DBMSs that led us to develop P2; P2 relies on the same conceptual
ideas but has a much more sophisticated and performance-driven implementation.
The DMEA (DataManagement Extension Architecture) of Starburst independently
evolved many of the central features of Genesis: Starburst attachments are \layers"
similar to Genesis and P2 components (Haas, 90). Each attachment encapsulates
the data processing, query optimization, etc., algorithms associated with a (heavy-
weight) implementation of a DBMS \feature". It is this approach to encapsulation
that o�ers the desired \plug-and-play" feature of attachments. So the central ideas
on which P2 is based have had a long history of independent development and
veri�cation.
Extensible DBMSs have matured signi�cantly beyond these early (late-1980s) ef-

forts to become universal servers, i.e., heavyweight extensible systems that allow

16

extensions to the type system in order to support arbitrary data types, such as
document, time series, image, and spatial data (Ubell, 94; Norman, 96). These ex-
tensions (called DataBlades by Montage, Illustra, and Informix) are often packaged
as modules that users can plug-in to servers at run-time. To support arbitrary data
types, universal servers allow the addition of base and composite types, functions,
functional indices, access methods, and storage managers. These extensions allow
very special-purpose, e�cient algorithms, but universal servers themselves must
be very general to support such extensions. For example, DataBlades require vir-
tual dispatch of database functions, which adds overhead to all applications, even
those that do not use the extensions (Norman, 96). The generative paradigm of
P2 is general enough to permit similar extensions to the type system, but compiles
away unnecessary overhead by making the extensions at compile-time, rather than
run-time.

The generality o�ered by heavyweight DBMSs might be required for one-of-a-
kind, legacy, and/or enterprise-critical applications. But for many mass-produced,
embedded, and/or performance-critical applications, run-time e�ciency is essential.
LEAPS is a classical example where the few minutes P2 spends on optimization
and generation is amortized by the vast performance improvement gained over the
run-time generality of heavyweight DBMSs.

6. Conclusions

The data management needs of many applications are not met by conventional
DBMSs: non-extensible heavyweight DBMSs lack certain features and performance,
and extensible heavyweight DBMSs lack performance. What is needed are light-
weight DBMSs, database systems that omit features of heavyweight DBMSs and
that optimize the implementations of the supported features to maximize perfor-
mance.

In this paper, we described P2, a lightweight DBMS generator that combines
a relatively traditional data model and embedded data language with a powerful
model of software system construction (GenVoca). This combination of technolo-
gies enables P2 to generate e�cient LWDBs automatically from a simple set of
speci�cations (e.g., GenVoca type equations). We reported results of several exper-
iments on a very complex LWDB application (LEAPS) that showed P2 generates
e�cient code, o�ers a powerful form of LWDB customizability, and substantially
simpli�es the development of LWDB applications as well as the tuning of LWDBs
by enabling di�erent algorithms/features to be tried merely by plugging and un-
plugging components.

We are currently extending the capabilities of P2. New components will o�er
additional DBMS features (e.g., concurrency control, client/server architecture, set-
oriented queries) as well as a greater variety of implementations of existing features
(e.g., t-trees (Lehman, 86) and sort-merge joins). This will allow us to use P2 to
generate LWDBs for a broader range of applications.

17

We believe lightweight DBMSs have a wide applicability and practical importance.
We feel that our work with P2 demonstrates that generating lightweight DBMSs is
feasible. In the hope that P2 will bene�t other researchers, we provide the source
code and documentation for P2 via anonymous ftp and the web:

ftp.cs.utexas.edu:/pub/predator/

http://www.cs.utexas.edu/users/schwartz/

Acknowledgments

We thank David Brant at The Applied Research Laboratories at the University
of Texas for supporting our research. We thank Dan Miranker and Bernie Lafaso
for their patience in explaining the LEAPS algorithms to us, and we thank Vivek
Singhal for his insightful comments on earlier drafts of this paper.

Notes

1. We chose C, rather than C++, as the host language for P2 initially for convenience because
our target applications were written in C. Also, it was not clear to us when we began the P2
project in 1991 how successful LWDB generation would be. C++ would, in retrospect, have

been a better host language.

2. Components that export and import the same interface, such as odlist, are called symmetric;

most P2 (and Gen Voca components, in general) are symmetric. Symmetric components can
be composed in virtually arbitrary ways; this feature signi�cantly enhances the scalability and
composibility of GenVoca components.

3. Remember that the execution of many composite cursor retrievals can be suspended during
rule execution in LEAPS. If cursors used temporary �les for intermediate join results, the space
and time complexity of LEAPS would greatly increase. Computing joins in a \lazy" manner

gives LEAPS its name and execution e�ciency.

4. The un-optimized algorithms of LEAPS were coded in a week. P2 was being written at the
time of our RL work; the remainder of the two months included the time spent waiting for P2
to be debugged and the time needed to add the myriad optimizations to RL that LEAPS uses
(Batory, 94a).

5. The timing results presented here were obtained on a SPARCstation 5 with 32 MB of RAM
running SunOS 4.1.3 using the gcc2.5.8 compiler with the -O2 option. Similar results have
been obtained on other systems.

6. In P2, data migration is equivalent to type conversion: i.e., translating data one of type to
that of another.

References

D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell, and T. Wise, \Genesis:
An Extensible Database Management System," IEEE Transactions on Software Engineering,

November 1988, pp. 1711-1730.
D. Batory and S. O'Malley, \The Design and Implementation of Hierarchical Software Systems
with Reusable Components," ACM Transactions on Software Engineering and Methodology,
Vol. 1, No. 4, October 1992, pp. 355-398.

18

D. Batory, V. Singhal, M. Sirkin, and J. Thomas, \Scalable Software Libraries," ACM SIGSOFT,
December 1993.

D. Batory, \The LEAPS Algorithms," Department of Computer Sciences, University of Texas at
Austin, Technical Report 94-28.

D. Batory, J. Thomas, and M. Sirkin, \Reengineering a Complex Application Using a Scalable
Data Structure Compiler," ACM SIGSOFT, December 1994.

T. Biggersta�, \The Library Scaling Problem and the Limits of Concrete Component Reuse,"
Proceedings of the Third International Conference on Reuse, November 1994.

G. Booch, Software Components with Ada, Benjamin/Cummings, 1987.
D. Brant, T. Grose, B. Lofaso, and D. Miranker, \E�ects of Database Size on Rule System
Performance: Five Case Studies," Proceedings of the 17th International Conference on Very
Large Data Bases (VLDB), 1991.

D. Brant and D. Miranker, \Index Support for Rule Activation," ACM SIGMOD, May 1993.

M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richardson, D. T. Schuh, E. J. Shekita,
and S. Vandenberg, \The Exodus Extensible DBMS Project: An Overview," in D. Maier and
S. Zdonik (editors), Readings on Object-Oriented Database Systems, Morgan-Kaufmann, 1990.

L. Coglianese and R. Szymanski, \DSSA-ADAGE: An Environment for Architecture-basedAvion-
ics Development," Proceedings of AGARD 1993.

T. Cooper and Nancy Wogrin, Rule-based Programming with OPS5, Morgan-Kaufmann, 1988.
L. Haas, W. Chang, G. Lohman, J. McPherson, P. Wilms, G. Lapis, B. Lindsay, H. Pirahesh,

M. Carey, and E. Shekita, \Starburst Mid-Flight: As the Dust Clears," IEEE Transactions on
Knowledge and Data Engineering, March 1990, pp. 143-161.

M. Heytens, S. Listgarten, M. Neimat, K. Wilkinson, \Smallbase: A Main-Memory DBMS for
High-Performance Applications," HP Labs Technical Report, December 1994.

J. S. Heideman and G. J. Popek, \File-SystemDevelopment with Stackable Layers," ACM Trans-

actions on Computer Systems, February 1994.
N. Hutchinson and L. Peterson, \The x-kernel: an Architecture for Implementing Network Pro-

tocols," IEEE Trans. Software Engineering, January 1991.
A. Keller, \Updates to Relational Database Through Views Involving Joins," in P. Scheuermann
(editor), Improving Database Usability and Responsiveness, Academic Press, 1982.

T. Lehman and M. Carey, \Query Processing in Main Memory Database Management Systems,"
ACM SIGMOD, June 1986.

D. Miranker, D. Brant, B. Lofaso, and D. Gadbois, \On the Performance of Lazy Matching in
Production Systems," Proc. National Conference on Arti�cial Intelligence, 1990.

D. Miranker and B. Lofaso, \The Organization and Performance of a TREAT Based Production
System Compiler," IEEE Transactions on Knowledge and Data Engineering, March 1991.

M. Norman and R. Bloor, \To Universally Serve," Database Programming and Design, Vol. 9,
No. 7, July 1996, pp. 26-35.

R. Prieto-Diaz and G. Arango, Domain Analysis and Software SystemsModeling, IEEE Computer
Society Press, 1991.

V. Singhal, S. Kakkad, and P. Wilson, \Texas: An E�cient, Portable Persistent Store," Persis-
tent Object Systems: Proc. Fifth International Workshop on Persistent Object Systems (San
Miniato, Italy), September 1992, pp. 11-33.

M. Stonebraker and G. Kemnitz, \The Postgres Next-GenerationDatabaseManagement System,"
Communications of the ACM, October 1991, pp. 78-92.

M. Stonebraker, \The Miro DBMS," ACM SIGMOD, 1993.
M. Ubell, \The Montage Extensible DataBlade Achitecture," ACM SIGMOD, 1994.
D. Wells, J. Blakeley, C. Thompson, \Architecture of an Open Object-Oriented Database Man-

agement System," IEEE Computer, October 1992, pp. 74-82.

Received Date
Accepted Date
Final Manuscript Date

