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Refactoring is a core technology in modern software development. It

is central to popular software design movements, such as Extreme Program-

ming [23] and Agile software development [91], and all major Integrated De-

velopment Environments (IDEs) today offer some form of refactoring support.

Despite this, refactoring engines have languished behind research. Modern

IDEs offer no means to sequence refactorings to automate program changes.

Further, current refactoring engines exhibit problems of speed and expressiv-

ity, which makes writing composite refactorings such as design patterns infea-

sible. Even worse, existing refactoring tools for Object-Oriented languages are

unaware of configurations in Software Product Lines (SPLs) codebases. With

this motivation in mind, this dissertation makes three contributions to address

these issues:

First, we present the Java API library, called R2, to script Eclipse

refactorings to retrofit design patterns into existing programs. We encoded

vii



18 out of 23 design patterns described by Gang-of-Four [57] as R2 scripts

and explain why the remaining refactorings are inappropriate for refactoring

engines. R2 sheds light on why refactoring speed and expressiveness are critical

issues for scripting.

Second, we present a new Java refactoring engine, called R3, that ad-

dresses an Achilles heel in contemporary refactoring technology, namely script-

ing performance. Unlike classical refactoring techniques that modify Abstract

Syntax Trees (ASTs), R3 refactors programs by rendering ASTs via pretty

printing. AST rendering never changes the AST; it only displays different

views of the AST/program. Coupled with new ways to evaluate refactoring

preconditions, R3 increases refactoring speed by an order of magnitude over

Eclipse and facilitates computing views of a program where the original be-

havior is preserved.

Third, we provide a feature-aware refactoring tool, called X15, for SPL

codebases written in Java. X15 takes advantage of R3’s view rendering to

implement a projection technology in Feature-Oriented Software Development ,

which produces subprograms of the original SPL by hiding unneeded feature

code. X15 is the first feature-aware refactoring tool for Java that implements

a theory of refactoring feature modules, and allows users to edit and refactor

SPL programs via “views”. In the most demanding experiments, X15 barely

runs a second slower than R3, giving evidence that refactoring engines for SPL

codebases can indeed be efficient.
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Chapter 1

Introduction

Refactoring tools have revolutionized how programmers develop soft-

ware. They enable programmers to continuously explore the design space of

large codebases while preserving existing behavior.1 Modern Integrated Devel-

opment Environments (IDEs), such as Eclipse, NetBeans, IntelliJ IDEA, and

Visual Studio, incorporate primitive refactorings (e.g., rename, move, change-

method-signature) in their top menu and often compete based on refactoring

support. Refactoring is also central to popular software design movements,

such as Extreme Programming [23] and Agile software development [91].

Design patterns are reusable solutions to design problems in Object-

Oriented (OO) programming. In [57], the authors (referred to as the Gang-

of-Four (GoF) explore the capabilities and pitfalls of OO programming and

introduce 23 design patterns. They describe the relationships and interactions

between classes or objects of each pattern.

Despite vast interest and progress, a key functionality that many people

have recognized to be missing in IDEs are refactoring scripts (e.g., [26,67,134]).

1Refactorings do not change program behavior by definition. However, that is not always
true for current refactoring tools [64,80,82,83,127].
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That is, IDEs do not support the writing of scripts that sequence refactoring

steps to mechanize program changes.

It has been 20 years since design patterns were introduced [57] and even

longer for refactorings [65, 103]. For at least 15 years, many design patterns

were known to be expressible as a refactoring script – a programmatic sequence

of refactorings [79,140]. Contemporary texts on design patterns provide step-

by-step descriptions, in which each step is typically a refactoring, on how each

pattern can be introduced into a program [54,57,79]. Figure 1.1 shows a copy

of a “mechanics” section for the Visitor pattern, the body of which describes

informally how to retrofit a Visitor into an application, that moves all methods

in a class hierarchy that have the same signature into a single class [79].

Figure 1.1: Visitor Pattern Mechanics from Kerievsky (pages 325–330) [79].

Reading these instructions, understanding them, and applying them are te-

dious, error-prone, and laborious. Even worse is repeating the same task

every time a new pattern instance is introduced into a program. Thus, it is

both surprising and disappointing that modern IDEs automate few patterns

2



and offer no means to script refactorings to introduce whole patterns.

A key question is: what language should be used to script refactorings?

We found many proposals with distinguished merit [7, 22, 26, 29, 35, 67, 87, 94,

132,145,146] and all fall short in fundamental ways for our goal. Domain Spe-

cific Languages (DSLs) to write refactoring scripts have an unneeded overhead.

They require knowledge of yet another programming language or programming

paradigm. It is also unrealistic to expect that average programmers can quickly

learn sophisticated Program Transformation Systems (PTSs) [22,26,28,29] or

utilities, such as Eclipse Language Toolkits (LTKs) [56], to manipulate pro-

grams. Although PTSs and LTKs are monuments of engineering prowess, their

learning curve is measured in weeks or months.

For practicality, the language for scripting refactorings should be the

same language whose programs are being refactored. Interestingly, this is a

rarity (Section 2.6). We use Java to write scripts that will refactor Java pro-

grams. Further, our thought was to use existing IDE refactorings and provide

a programming interface/façade that presents Java entity declarations (pack-

ages, classes, methods, fields, etc.) as Java objects, whose member methods

are refactorings. This too is a rarity (Section 2.6).

Scripting refactorings should be fundamentally no different than hav-

ing programmers import a Java package and use it to write Java programs (in

this case, refactoring metaprograms a.k.a. scripts). This is our conjecture and

our thesis. In this dissertation, we address these problems for which we have

published new and novel solutions [80–82]. We developed a practical way to

3



move Java refactoring technology forward through three phases: implemen-

tation of (1) an API library for scripting refactorings, (2) a new refactoring

engine that executes 10× faster than the Eclipse refactoring engine, and (3)

an extension to this engine to refactor Software Product Lines (SPLs). We

present a user study that shows undergraduates can write refactoring scripts

using our tool, which also improves the correctness of retrofitting a design

pattern significantly.

Our solution uses Java as a metaprogramming language and exposes

refactoring APIs through a Java package, where scripts become compact Java

methods. There is no need for a DSL. Scalability of refactorings is an essential

attribute required for large-sized (commercial) programs. Further, we extend

our tool to develop the first feature-aware refactoring engine for Java SPLs

using only Java custom annotations. We show how a modification of standard

IDE code folding allows us to project SPL products as a ‘view’ of an SPL

codebase. A programmer can edit and refactor products; behind the curtains

the corresponding edits and feature-aware refactorings are applied to SPL

codebase.
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Chapter 2

Scripting Parametric Refactorings in Java

to Retrofit Design Patterns

2.1 Introduction

Most design patterns are not present in a program during the design

phase, but appear later in maintenance and evolution [79].1 Modern IDEs –

Eclipse, IntelliJ IDEA, NetBeans, and Visual Studio – offer primitive refac-

torings (e.g., rename, move, change-method-signature) that constitute basic

steps to retrofit design patterns into a program [57, 58]. It has been over 20

years since design patterns were popularized [57,58] and longer still for refac-

torings [65, 103, 104]. For at least 15 years it was known that many design

patterns could be automated by scripting transformations [79, 140]. So it is

both surprising and disappointing that modern IDEs automate few patterns

and offer no means to script transformations or refactorings to introduce whole

patterns.

Manually introducing design patterns using primitive IDE refactorings

is error-prone. To retrofit a Visitor pattern into a program requires finding

1The contents of this chapter appeared in “Scripting Parametric Refactorings in Java to
Retrofit Design Patterns” [80], where I was the primary author of the three authors including
Don Batory and Danny Dig. This paper was published in the 31st IEEE International
Conference on Software Maintenance and Evolution.
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all relevant methods to move by hand and applying a sequence of refactorings

in precise order. It is easy to make mistakes. Missing a single method in a

class hierarchy produces an incomplete but executable Visitor. But a future

extension that uses the Visitor can break the program (Section 2.3.1).

We present a practical way to move Java refactoring technology for-

ward. We designed, implemented, and evaluated Reflective Refactoring (R2),

a Java package whose goal is to encode the construction of classical design

patterns as Java methods. Using Eclipse Java Development Tools (JDT) [48],

R2 leverages reflection by presenting a JDT project, its package, class, method

and field declarations as Java objects whose methods are JDT refactorings.

Automating design patterns becomes no different than importing an existing

Java package (R2) and using it to write programs (in this case, refactoring

scripts).

This chapter makes the following contributions:

• JDT Extensions. JDT refactorings, as is, were never designed to script

design patterns. We describe our repairs to make JDT supportive for

scripting.

• OO Metaprogramming. We present the Java package, R2, with sev-

eral novel features to improve refactoring technology. R2 objects are Java

entity declarations and R2 methods are JDT refactorings, primitive R2

transformations, R2 pattern scripts, and program element navigations

(i.e., R2 object searches).

6



• Generality. We encoded 18 out of 23 Gang-of-Four design patterns [57],

inverses, and variants as short Java methods in R2, several of which we

illustrate. This shows that R2 can express a wide range of patterns.

• Implementation. R2 is also an Eclipse plugin that leverages existing

JDT refactorings and enables programmers to script many high-level

patterns elegantly.

• Evaluation. A case study shows the productivity and scalability of R2.

We applied a 20-line R2 script to retrofit 52 pattern instances into 6 real-

world applications. One case invoked 554 refactorings, showing that R2

scales well to large programs.

2.2 Motivating Example

Among the most sophisticated patterns is Visitor. There are different

ways to encode a Visitor; we use the one below. Figure 2.1a shows a hierarchy

of graphics classes; Graphic is the superclass and Picture, Square, Triangle

are its subclasses. Each class has its own distinct draw method.

Mechanics. To create a Visitor for the draw method (Figure 2.1b),

a programmer first creates a singleton Visitor class DrawV isitor. Next, s/he

moves each draw method into the DrawV isitor class, renames it to visit,

and adds an extra parameter (namely the class from which the method was

moved). Referenced declarations (e.g., fields and methods) must become vis-

ible by changing their access modifiers after a method move [133]. Further,
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visitor

(a)

+foo()

A

+foo()

B

+foo()

C

// application

a = new A();
b = new B();
c = new C();
...
a.accept(Visitor.singleton);
b.accept(Visitor.singleton);
c.accept(Visitor.singleton);

(b)

+visit(in a : A)
+visit(in b : B)
+visit(in c : C)

+singleton : Visitor = new Visitor();

Visitor

+accept(in v : Visitor)

A

+accept(in v : Visitor)

B

+accept(in v : Visitor)

C

// application

a = new A();
b = new B();
c = new C();
...
a.foo();
b.foo();
c.foo();

visitor

(a) (b)

+visit(in  : Graphic)
+visit(in  : Picture)
+visit(in  : Square)
+visit(in  : Triangle)

+instance : DrawVisitor = new DrawVisitor();

DrawVisitor

+accept(in  : DrawVisitor)

Graphic

+accept(in  : DrawVisitor)

Square

+accept(in  : DrawVisitor)

Triangle

// application

p = new Picture();
p.add(new Square());
p.add(new Triangle());
...
p.draw();

+add(in  : Graphic)
+draw()

Picture

+draw()

Square

+draw()

Triangle

+draw()

Graphic

0
..

1

-contains

1..*

+add(in  : Graphic)
+accept(in  : DrawVisitor)

Picture

// application

p = new Picture();
p.add(new Square());
p.add(new Triangle());
...
p.accept(DrawVisitor.instance);

0
..

1

-contains

1..*

+visit(in  : Graphic)
+visit(in  : Picture)
+visit(in  : Square)
+visit(in  : Triangle)

+singleton : Visitor = new Visitor();

DrawVisitor

+accept(in  : DrawVisitor)

Graphic

+accept(in  : DrawVisitor)

Square

+accept(in  : DrawVisitor)

Triangle

// application

p = new Picture();
p.add( new Square() );
p.add( new Triangle() );
...
p.draw();

+add(in  : Graphic)
+draw()

Picture

+draw()

Square

+draw()

Triangle

+draw()

Graphic

1

-contains

1..*

+add(in  : Graphic)
+accept(in  : DrawVisitor)

Picture

// application

p = new Picture();
p.add( new Square() );
p.add( new Triangle() );
...
p.accept(DrawVisitor.singleton);

1

-contains

1..*

visitor

-1

Figure 2.1: A Visitor Pattern Refactoring.

s/he creates a delegate (named accept) for each moved method, taking its

place in the original class. The signature of the accept method extends the

original draw signature with a DrawV isitor parameter and whose code for

our example is:

void accept(DrawVisitor v) {

v.visit(this);

}

Finally, s/he replaces all calls to the draw method with calls to accept. Note

that some of these steps can be performed by JDT refactorings, but they

require knowledge and familiarity with available refactorings to know which

to use and in what order. Further, after each step, the programmer recompiles

the program and runs regression tests to ensure that the refactored program

was not corrupted.
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Pitfalls. It is easy to make a mistake or forget a step. A pro-

grammer can inadvertently skip draw methods to move. Suppose a missed

method is Triangle.draw. Although the refactored code would compile and

execute correctly in this version, it breaks when another kind of Visitor is

added in a future maintenance task. Example: another programmer cre-

ates a SmallScreenV isitor that displays widgets for small screens of smart-

phones. When s/he passes an instance of the SmallScreenV isitor instead of

the DrawV isitor, the Triangle.draw method will render the original behavior

for a large screen, not the expected one for small screens (Appendix A).

Complicating Issues. JDT refactorings were never designed with

scripting in mind. We encountered a series of design and implementation

issues in the latest version of Eclipse JDT (Luna 4.4.1, Dec. 2014) [50] that

compromises its ability to support refactoring scripts without considerable

effort. These issues need to be addressed, regardless of our work. Here are

examples.

2.2.1 Separation of Concerns

Figure 2.2a shows method draw in class Square, after a DrawV isitor

parameter was added. Figure 2.2b shows the result of Eclipse moving draw

from Square to DrawV isitor and leaving a delegate behind. Not only was

the method moved, its signature was also optimized. Eclipse realizes that the

original draw method did not need its Square parameter, so Eclipse simply

removes it.
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class Square extends Graphic {

void draw(DrawVisitor v) {}

}

class DrawVisitor {

static final DrawVisitor instance

= new DrawVisitor ();

}

(a) Before

class Square extends Graphic {

void draw(DrawVisitor v) {

v.draw()

}

}

class DrawVisitor {

static final DrawVisitor instance

= new DrawVisitor ();

void draw() {}

}

(b) After Moving draw

Figure 2.2: A JDT Refactoring Being Too Smart

As a refactoring, this optimization is not an error. But when an entire

set of refactorings must produce a consistent result, it is an error. Preserving

all parameters of moved methods in a Visitor pattern is essential. Two con-

cerns – method movement and method signature optimization – were bundled

into a single refactoring, instead of being separated into distinct refactorings.

We programmatically deactivated method signature optimizations in R2; users

cannot disable such optimizations from the Eclipse GUI (Graphical User In-

terface).2

2.2.2 Need for Other (Primitive) Refactorings

Suppose that we want to “undo” an existing Visitor – eliminate the

target Visitor class by moving its contents back into existing class hierarchies.

Each visit method in the Visitor is moved back to its original class. As an

2What this really means is that it is not possible, in general, to use Eclipse refactorings as
is to create the Visitor design pattern. Modifications, which we explain subsequent sections,
are needed to Eclipse refactorings.
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example, Figure 2.3a shows class Triangle after such a move: Triangle has

both accept and visit methods. When the visit method is inlined, the accept

method absorbs the visit method body (Figure 2.3b).

class Triangle extends Graphic {

void accept(DrawVisitor v) {

this.visit(v);

}

void visit(DrawVisitor v) {

if(true) return;

}

}

(a) Before

class Triangle extends Graphic {

void accept(DrawVisitor v) {

if(true) return;

}

}

(b) After Inlining visit

Figure 2.3: Restriction of JDT inline Refactoring

Unfortunately, Eclipse refuses to inline the visit method since a return

statement potentially interrupts execution flow. However, it is not true for

the example of Figure 2.3b. This precondition prevents automating a Visitor

“undo”. We had to deactivate this precondition check to script the Inverse-

Visitor described in Section 2.3.2, in effect adding a new refactoring to JDT,

to accomplish our task.

2.2.3 Limited Scope

A benefit of Visitor is that a single Visitor class enables a programmer

to quickly review all variants of a method. Often, such methods invoke the cor-

responding method of their parent class. Moving methods with super calls is

not only possible, it is desirable. Unfortunately, JDT refuses to move methods

that reference super. It is not an error, but a strong limitation. We removed

this limitation by replacing each super.x() call with a call to a manufactured
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method super xθ(), whose body calls super.x(); θ is just a random number to

make the name of the manufactured method unique.3,4

In Figure 2.4a, the super keyword invokes an overridden methodA.foo().

We remove super by calling a delegate method which calls the overridden

method A.foo(). Figure 2.4b shows a super delegate super fooθ() which re-

places the super.foo() call in B.bar(), thus allowing JDT to move B.bar() to

the Visitor class. Of course, super-delegates throw the same exception types

as its super invocation.

class A {

void foo() {}

}

class B extends A {

void foo() {}

void bar() {

super.foo();

}

}

(a) Before

class A {

void foo() {}

}

class B extends A {

void foo() {}

void accept(Visitor v) {

v.visit(this);

}

void super_fooθ() {

super.foo();

}

}

class Visitor {

static final Visitor instance

= new Visitor ();

void visit(B b) {

b.super_fooθ();
}

}

(b) After

Figure 2.4: Rewrite that Uses Super Delegate

3If super.x() returns a result of type X, super xθ() also returns type X.
4A unique name is needed for a refactoring that “undoes” or “removes” a Visitor (Sec-

tion 2.3.2). It guarantees the correct super-delegate is called, as the meaning of this and
super depends on the position in a class hierarchy from which it is invoked.
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Now consider the use of super to reference fields of a parent class.

Again, JDT refuses to move methods with super-references to fields. Here is

how we fixed this: fields in Java are hidden and not overridden. So we can

get super references simply by casting to their declared type. In Figure 2.5,

methodB.foo() references fieldA.i with the expression super.i. WhenB.foo()

is moved to class V isitor, expression super.i is replaced with ((A)b).i.

class A {

int i;

}

class B extends A {

int i;

void foo() {

super.i = 0;

}

}

(a) Before

class A {

int i;

}

class B extends A {

int i;

void accept(Visitor v) {

v.visit(this);

}

}

class Visitor {

static final Visitor instance

= new Visitor ();

void visit(B b) {

((A)b).i = 0;

}

}

(b) After

Figure 2.5: Super Field Access

2.3 Reflective Refactoring

Let P be a JDT project. We leverage the idea of reflection; R2 defines

class RClass whose instances are the class declarations in P; instances of

classes RMethod and RField are the method and field declarations of P, and

so on. When P is compiled, R2 creates a set of main-memory database tables
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(one for RClass, RMethod, RField, etc.) where each row corresponds to a

class, a method, or a field declaration of P. These tables are not persistent;

they exist only when the JDT project for P is open.

The fields of RClass, RMethod, RField, etc. – henceforth called R2

classes – also define association, inheritance, dependency relationships among

table rows (foo is a method of class A, A is a superclass of B, B belongs to

package C, etc.). The member methods of R2 classes are JDT refactorings,

simple R2 transformations, composite refactorings (our scripts), and ways to

locate program elements (i.e., R2 objects). Representative methods are listed

in Table 2.1.

R2 Type Method Name Semantics

RPackage newClass add a new class to the package

RClass

addSingleton apply Singleton pattern to the class
getAllMethods return a list of R2 objects that are all methods of theclass

getPackage return the R2 object of its own package
newConstructor add a new constructor to the class

newMethod add a new method stub to the class
newField add a new field to the class

setInterface set to implement an interface
RMethod getRelatives return a list of R2 objects of methods with the same signature

RRelativeList
addParameter add a parameter with its default value to all methods

moveAndDelegate move methods to a class, leaving behind a delegate
rename rename all methods

Table 2.1: Methods of R2.

Internally, we leveraged XML scripts which Eclipse uses only to replay

refactoring histories. An R2 method call generates an XML script which we

then feed to JDT to execute. In this way, we automate exactly the same pro-

cedures Eclipse users would follow manually. R2 exposes every available JDT

refactoring as a method and a few more (Section 2.2). Overall, we changed 51

lines in 8 JDT internal packages; the R2 package consists of ∼ 5K LOC.
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2.3.1 Automating the Visitor Pattern

Visitor is fully automatable as an R2 script. Figure 2.6 is an R2 script to

create a Visitor design pattern. For a programmer to create a Visitor for some

method m, s/he identifies a method called a “seed” in a class hierarchy that

s/he wants to create a Visitor; s/he then invokes R2’s makeV isitor refactoring

from the Eclipse GUI. Doing so invokes seed.makeV isitor(N), where seed is

R2 object of the seed and N is the name of the Visitor class to be created.

makeV isitor gets the seed’s package, creates a Visitor class v with name N

in that package, and makes v a Singleton (Lines 3–5). Next, all methods with

the same signature as the seed are collected onto a list. Every method on the

list is renamed to accept (Line 8), and then a parameter of type v is added

whose default value is the Singleton field of N (Line 10). The index value

that is returned is the index number of the Visitor parameter. Only movable

methods (e.g., abstract or interface methods cannot be moved) are relocated

to class N , leaving behind delegates, respectively (Line 11). All methods in

the Visitor class are renamed to visit. makeV isitor returns v, the R2 Visitor

class object.

Looping through a list of methods and invoking a refactoring on each

method would be the obvious way to add a parameter to relatives. But this

is not how the JDT change-method-signature refactoring works (Line 10). It

is applied to the seed method only. Consider Figure 2.7. Suppose D.m is the

method that seeds a change-method-signature. All m methods in D’s class

hierarchy {A.m, B.m, C.m, D.m} and interconnected interface and class hier-
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1 // member of RMethod class

2 RClass makeVisitor(String N) {

3 RPackage pkg = this.getPackage ();

4 RClass v = pkg.newClass(N);

5 RField singleton = v.addSingleton ();

6
7 RRelativeList relatives = this.getRelatives ();

8 relatives.rename (" accept ");

9
10 int index = relatives.addparameter(singleton );

11 relatives.moveAndDelegate(index );

12
13 v.getAllMethods (). rename ("visit ");

14
15 return v;

16 }

Figure 2.6: R2 makeVisitor Method.

archies {I1.m, I2.m, E.m} are affected by this refactoring. That is, all of these

methods (relatives) will have their signature changed. The relatives variable

in Line 7 is the list of all methods in P whose signature will change. This

list includes methods that cannot be moved, such as interface and abstract

methods. In this example, the methods moved into the Visitor are from classes

{A, B, C, D, E}.

Note: Although Eclipse provides ways to find methods, it is still easy

to miss program methods (relatives) that are distributed over the entire

program. Forgetting to move a method when creating a Visitor manu-

ally is easy, yet it is hard to detect as no compilation errors identify non-

moved methods. R2 eliminates such errors by invoking a trustworthy R2
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+m()

B

+m()

A

+m()

C

+m()

D

+m()

E

«interface»I3

+m()

«interface»I2

+m()

«interface»I1

seed

Figure 2.7: Methods Altered by Change Signature.

getRelatives() method.

We show below how makeV isitor is used in an example of Visitor

pattern script where method C.m() in package p of project R is the seed.

RPackage pkg = RProject.getPackage("R", "p");

RClass cls = pkg.getClass("C");

RMethod m = cls.getMethod("void", "m", null);

m.makeVisitor("Visitor");

2.3.2 Automating the Inverse Visitor

Figure 2.8 depicts a common scenario: An R2 programmer creates a

Visitor to provide a convenient view that allows her/him to inspect all draw

methods in the graphics class hierarchy from our motivating example of Fig-

ure 2.1. The programmer then updates the program, including Visitor meth-

ods, as part of some debugging or functionality-enhancement process. At
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which point, s/he wants to remove the Visitor to return the program back to

its original structure.5

isec14‐1

visitor class modified
classes in red

Figure 2.8: A Common Programming Scenario.

In this scenario, undoing a Visitor is not a roll-back, as a roll-back re-

moves all of the programmer’s debugging edits. Instead, an Inverse-Visitor – a

refactoring that removes a Visitor and preserves debugging edits – is required.

Yet another practical reason is if a program already contains a hand-crafted

Visitor, weaving its methods back into the class hierarchy would be an opti-

mization. Similar scenarios apply to other design patterns, such as Builder

and Factory Method.

Figure 2.9 shows our inverseV isitor, a method of RClass, that moves

visit methods back to their original classes and deletes the Visitor class. Here

is how it works: Lines 8–9 recover the original class of a visit method. As we

turned off method signature optimization in Section 2.2.1, the original class

is encoded as the type of the visit method’s first parameter. Line 11 moves

the method back to its original class. Lines 13–14 inline super-delegates if

5Of course for this to be possible, certain structures and naming conventions (as we use
in our makeV isitor method) should not be altered. Effectively the only edits that are per-
mitted are those that would have modified the original program. Restricting modifications
can be accomplished similar to GUI-based editors, where generated code is “greyed” out
and cannot be changed.
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1 // member of RClass class

2 void inverseVisitor(String originalName) {

3 RMethod aDelegate = null;

4
5 for(RMethod m : this.getMethodList ()) {

6 aDelegate = m.getDelegate ();

7
8 RParameter para = m.getParameter (0);

9 RClass returnToClass = para.getClass ();

10
11 m.move(returnToClass );

12
13 m.inlineSuperDelegate ();

14 m.inline ();

15 }

16
17 RRelativeList relatives = aDelegate.getRelatives ();

18
19 relatives.removeParameter (0);

20 relatives.rename(originalName );

21
22 this.delete ();

23 }

Figure 2.9: An inverseVisitor Method.

they exist by replacing each call to super xθ() with super.x() (Section 2.2.3)

and then restore the original method body (which is the body of the visit

method) by inlining. Lines 6–14 are performed for all visit methods. At this

point, the accept methods (i.e., the delegate methods) contain the body of the

original methods. Lines 17–20 collect all of the accept methods, remove their

first parameter (of type Visitor class), and restore the original name of the

method. The Visitor class is then deleted in Line 22.
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Note: The challenge is to determine the correct order to apply move and

inline refactorings. What if every visit method is moved and then inline

is applied to each visit? To see the problem, let class A be the parent of

class B and suppose both A and B have visit methods. Now, B.visit is

inlined. B still inherits A.visit. Eclipse recognizes that inlining might alter

program semantics and issues a warning: “method to be inlined overrides

method from the parent class”. A similar warning arises had A.visit been

inlined first. The solution is to move one method at a time, followed by an

inline, as done in Figure 2.9, to avoid warnings.

2.3.3 More Opportunities

Design patterns have many variations; Visitor is no exception. Consider

Visitor PV of Figure 2.10 adapted from [136]. It differs from the Visitor of

our example of Section 2.2 in several ways: PV is not a Singleton, it includes

state totalPostage, it has a custom non-visit method getTotalPostage(), and

at least one of its visit methods visit(Book) references totalPostage.

The Visitor variant of Figure 2.10 requires a slight modification of our

R2 inverseV isitor method. Figure 2.11 shows the modified method; it differs

from Figure 2.9 by moving only methods named newName, not removing the

Visitor parameter, and not deleting the Visitor class.

These examples illustrate the power of R2: (1) we can automate these

patterns (by transforming a program without these patterns into programs

with these patterns), (2) we can remove these patterns (by transforming pro-
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+accept(in  : PostageVisitor)

CD

+accept(in  : PostageVisitor)

DVD

+accept(in  : PostageVisitor)
+getPrice() : double
+getWeight() : double

-price : double
-weight : double

Book

+accept(in  : PostageVisitor)

«interface»
Item

+visit(in  : Book)
+visit(in  : CD)
+visit(in  : DVD)
+getTotalPostage() : double

-totalPostage : double

PostageVisitor

void visit(Book book) {
    if (book.getPrice() < 10.0) {
        totalPostage += book.getWeight() * 2;
    }
}
void visit(CD cd) {}
void visit(DVD dvd) {}

double getTotalPostage() {
    return totalPostage;
}

+accept(in  : PV)

CD

+accept(in  : PV)

DVD

+accept(in  : PV)
+getPrice() : double
+getWeight() : double

-price : double
-weight : double

Book

+accept(in  : PV)

«interface»
Item

+visit(in  : Book)
+visit(in  : CD)
+visit(in  : DVD)
+getTotalPostage() : double

-totalPostage : double

PV

void visit(Book book) {
    if (book.getPrice() < 10.0) {
        totalPostage += book.getWeight() * 2;
    }
}
void visit(CD cd) {}
void visit(DVD dvd) {}

double getTotalPostage() {
    return totalPostage;
}

Figure 2.10: Visitor with State.

grams with hand-crafted patterns into programs without those patterns), and

(3) express common variations that arise in design patterns. R2 offers a prac-

tical way to cover all of these possibilities.

2.4 Other Patterns

Table 2.2 is our review of the Gang-of-Four Design Patterns text [57]: 8

out of 23 patterns are fully automatable, 10 are partially automatable. For the

remaining 5 patterns, we are unsure of their role in a refactoring tool (although

some are automatable). R2 scripts for all of the 18 automatable patterns are

listed in [110]. We elaborate our key findings below.
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1 // member of RClass class

2 void inverseVisitorWithState(String originalName ,

3 String newName) {

4 RMethod aDelegate = null;

5
6 for(RMethod m : this.getMethodList(newName )) {

7 aDelegate = m.getDelegate ();

8
9 RParameter para = m.getParameter (0);

10 RClass returnToClass = para.getClass ();

11
12 m.move(returnToClass );

13
14 m.inlineSuperDelegate ();

15 m.inline ();

16 }

17
18 RRelativeList relatives = aDelegate.getRelatives ();

19 relatives.rename(originalName );

20 }

Figure 2.11: Another inverseVisitor Variant.

2.4.1 Fully Automatable Patterns

The Visitor pattern, its inverse and variants are fully automatable

as they produce no “TO DOs” for a user. Another is Abstract Factory

which provides an interface to concrete factories. Figure 2.12b shows interface

AbstractFactory that exposes factory methods for every public constructor

of each public class in a given package: the package of Figure 2.12a contains

classes A and B; the interface AbstractFactory is implemented by concrete

factory class ConcreteFactory in Figure 2.12b. Figure 2.13 is the R2 method

that produces a concrete factory for a package. A similar R2 script creates the
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Design Pattern
Automation Possibility
Full Some Unsure

Abstract Factory X
Adapter X
Bridge X
Builder X

Chain of Responsibility X
Command X
Composite X
Decorator X

Façade X
Factory Method X

Flyweight X
Interpreter X

Iterator X
Mediator X
Memento X
Observer X
Prototype X

Proxy X
Singleton X

State X
Strategy X

Template Method X
Visitor X

Total 8 10 5

Table 2.2: Automation Potential of Gang-of-Four Design Patterns.

AbstractFactory interface.

2.4.2 Partially Automatable Patterns

10 out of 23 patterns are partially automatable, i.e., these patterns

produce “TO DOs” that must be completed by a user. The Adapter pattern

is typical. It resolves incompatibilities between a client interface and a legacy

class. Given interface Target and class Legacy in Figure 2.14, an intermediate

class (called Adapter) adapts Target to Legacy.
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Factory

+A()
+A(in ...)

A

+B()
+B(in ...)

B

+createA()
+createA(in ...)
+createB()
+createB(in ...)

<<interface>>
AbstractFactory

+createA()
+createA(in ...)
+createB()
+createB(in ...)

ConcreteFactory

A createA( ) { return new A(); }
A createA(...) { return new A(...); }
B createB( ) { return new B(); }
B createB(...) { return new B(...); }

+A()
+A(in ...)

A

+B()
+B(in ...)

B

(a) (b)

Figure 2.12: Factory Pattern.

1 // member of RPackage class

2 RClass makeConcreteFactory(String factoryName) {

3 RClass factory = this.newClass(factoryName );

4
5 for(RClass c : this.getClassList ()) {

6 if(c.isPublic ())

7 for(RMethod m : c.getConstructorList ())

8 if(m.isPublic ())

9 factory.newFactoryMethod(m);

10 }

11
12 return factory;

13 }

Figure 2.13: A makeConcreteFactory Method.
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+d()
+e()
+f()

Legacy

*

-legacy

1

a( ) {  /* TO DO */  }
b( ) {  /* TO DO */  }
c( ) {  /* TO DO */  }+a()

+b()
+c()

«interface»
Target

+Adapter(in l : Legacy)
+a()
+b()
+c()

Adapter

+Parent(in arg)

Parent

(a) (b)

+d()
+e()
+f()

Legacy

*

-legacy

1

Adapter( Legacy le ) {
   legacy = le;
}

a( ) {  /* TO DO */  }
b( ) {  /* TO DO */  }
c( ) {  /* TO DO */  }

+a()
+b()
+c()

«interface»
Target

+a()
+b()
+c()

Adapter

Figure 2.14: Adapter Pattern.

1 // member of RInterface class

2 RClass makeAdapter(RClass c, String N) {

3 RClass adapter = this.getPackage (). newClass(N);

4
5 RField f = adapter.newField(c, "legacy ");

6 adapter.newConstructor(f);

7
8 for(RMethod m : this.getAllMethods ())

9 adapter.newMethod(m);

10
11 adapter.setInterface(this);

12
13 return adapter;

14 }

Figure 2.15: A makeAdapter Method.

Figure 2.15 is an R2 script that creates an Adapter. A programmer

uses the Eclipse GUI to identify a Java class c that is to be adapted to Java

interface i. The programmer then invokes R2’s makeAdapter refactoring (just
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like a built-in Eclipse refactoring), which in turn invokes i.makeAdapter(c,N)

where N is the name of the Adapter class to be created. Class N is created

in the same package as interface i (Line 3), to which is added a field named

legacy of type c and a constructor to initialize legacy (Lines 5–6). A stub

is generated for each method in interface i (Line 9). The created class N

implements interface i (Line 11). The R2 object for N is returned as the result

of makeAdapter. Programmers must provide bodies for the generated method

stubs; these are the user “TO DOs”. Although partially automated – method

bodies are still needed – tedious and error-prone work is done by R2.

2.4.3 Remaining Patterns

We are unsure of the role for the remaining patterns in a refactoring

tool (some of which are automatable):

• Façade is a convenient class abstraction for a package. Creating a façade

requires deep knowledge of an application that only an expert, not a

refactoring tool, will have. An R2 script can be written to produce a

particular façade, but it will be application-specific and unlikely to be

reusable.

• Interpreter is common in compiler-compiler tools [13, 112]; given a lan-

guage’s grammar, a class hierarchy for creating language ASTs can be

generated. Providing a grammar to a refactoring engine to generate a

class hierarchy is possible, but seems inappropriate.
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• State is a common application of Model Driven Engineering (MDE).

Given a statechart of a finite state machine, MDE tools can generate the

class hierarchies and method stubs that implement the State pattern [12].

Again, providing a statechart to a refactoring engine to generate the code

of a State pattern is possible, but also seems inappropriate.

• Mediator is the basis for GUI builders; the drag-and-drop of class in-

stances from a palette of classes is the essence of a Mediator. Again, it

is unclear that this functionality belongs in a refactoring engine.

• Iterator is already part of the Java language. It is unclear what a refac-

toring engine should do.

2.5 Evaluation

We evaluated R2 by answering two research questions:

• RQ1: Does R2 improve productivity?

• RQ2: Can R2 be applied to large programs?

Both questions address the higher level question “Is R2 useful?” from different

angles: Productivity measures whether R2 methods save programmer time.

Scalability measures whether R2 can work with large programs.
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2.5.1 Experiment

Some design patterns (e.g., Adapter) are relatively simple: create a few

program elements, change class relationships, or make minor code changes.

Others are different. All patterns are tedious and error-prone to create man-

ually when the target program is non-trivial. There are R2 scripts for all 18

automatable patterns. We evaluate R2 using patterns that (a) exercise most R2

methods and capabilities and (b) are difficult to create manually. These are the

Make-Visitor and Inverse-Visitor patterns, which we have already presented.

We used six real-world Java applications that satisfied the following

criteria: (1) they were publicly available, (2) they had non-trivial class hierar-

chies, (3) regression tests were available for us to determine if our refactorings

altered application behavior, and (4) there were numerous method candidates

that could “seed” a Visitor. We randomly selected methods among these can-

didates. We believe this selection process presents both a representative set

of applications and a fair test for R2. The Subject column of Table 2.3 lists

these applications, their versions, application size in LOC, and the number of

regression tests. We used an Intel CPU i7-2600 3.40GHz, 16 GB main memory,

Windows 7 64-bit OS, and Eclipse JDT 4.4.1 (Luna).
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2.5.2 Results

We have two sets of results: creating a Visitor and removing a Visitor.

First consider creating a Visitor. Table 2.3 lists results of Make-Visitor applied

to different methods in multiple applications. Each row represents data from

a subject program. The columns are:

• SeedID identifies the experiment.

• Subject is the Java subject program.

• SeedMethodName is the seed of the Visitor.

• SuperDelegate is the number of super-delegates created (Section 2.2.3).

• ChangeSignature is the number of change-method-signatures applied.

• Move is the number of methods moved into the Visitor.

• Rename is the number of methods renamed.

• #ofRefactorings is the total number of JDT refactorings invoked by

the makeV isitor call.

• Time is average clock time (in seconds) to perform makeV isitor.

• #ofErrors is the total number of errors created by JDT bugs in the old

version of Eclipse (Juno 4.2.2 [49]) that we started with.
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RQ1: Does R2 Improve Productivity? Table 2.3 shows that R2

performs tasks that are unachievable manually. Our largest experiment, A3,

invoked 554 JDT refactorings took 10 minutes. Had programmers attempted

A3 by hand, we believe that most would have given up at its sheer scale.

R2 offers a huge improvement in productivity even for programmers who

are experts in JDT refactorings. An R2 script takes a fraction of the time (with

no user intervention): the order in which refactorings should be sequenced,

their parameters, and which refactorings to use has already been determined,

in addition to choosing the “correct” options for refactorings (should there be

options). The hard work has been done; R2 eliminates the errors and tedium

of the process.

RQ2: Can R2 be applied to large programs? Table 2.3 clearly

demonstrates that R2 can be applied to non-trivial programs. A number of

these programs are more complicated than they appear as we explain below.

Recall makeV isitor invokes addParameter to the list of methods that

are relatives of the method seed. Ideally, these relatives are descendant from a

single root method (A.m in Figure 2.16a). This means that the addParameter

invokes the JDT change-method-signature refactoring once on A.m to add an

extra parameter to all of its relatives B.m and C.m.

In general, there can be multiple roots.6 Figure 2.16b shows a seed

whose relatives are not descendant from a single root. This means that the

6Some may argue that using multiple roots is too general; only one root should ever be
used. This is programmatically adjustable within R2.
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seed

seed

root(a) (b) root

Figure 2.16: Method Seeds and Method Roots.

R2 addParameter invokes change-method-signature refactoring three times,

once for each root E.m, F .m, G.m, to add an extra parameter to all relatives.

Programmers who apply JDT refactorings manually would have to realize this

situation and make these extra renames.

Now look at row/experiment A3 in Table 2.3. Our tool created a

Visitor for the printorder method in AHEAD. R2 moved 276 methods into a

Visitor, created no super-delegates, and applied one change-method-signature.

The number of renames (277) was determined in this way: each method that is

moved is renamed to visit (276). Although 276 method delegates were created,

only one had to be renamed to accept. By renaming a root method, all of its

descendants were renamed. Thus the total number of renames is 276 + 1 =

277.

Now consider row/experiment J3. R2 created a Visitor for the getName

method in JUnit. R2 moved 5 methods into a Visitor, created no super-

delegates, and applied 4 change-method-signatures. The reason for 4 is that

there were 4 method roots for the given seed (Figure 2.16b). Thus, the number

of renames performed is 9; 5 methods were moved, and 4 (root) delegates were
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renamed.

Finally, consider row/experiment W5. Our tool created a Visitor for

the pruneOriginalCandidates method in RefactoringCrawler. R2 moved 13

methods into a Visitor, where these methods had 7 “super” references and

thus required a super-delegate for each to be created.

Seed Change
Move Inline Rename

# of
Time

ID Signature Refactorings
A1 26 26 26 26 104 97s
A2 17 17 17 17 68 61s
A3 1 276 276 1 554 395s
A4 1 29 30 1 61 42s
A5 1 47 54 1 103 70s
C1 1 2 2 1 6 5s
C2 4 4 4 4 16 15s
C3 4 4 4 4 16 15s
C4 2 4 4 2 12 10s
C5 1 2 2 1 6 5s
I1 1 1 1 1 4 4s
I2 1 1 1 1 4 4s
I3 1 2 2 1 6 6s
I4 1 1 1 1 4 5s
I5 1 2 2 1 6 5s
J1 1 7 8 1 17 13s
J2 1 1 1 1 4 4s
J3 4 5 5 4 18 22s
J4 1 9 11 1 22 18s
J5 1 1 1 1 4 5s
Q 1 7 7 1 16 11s
W1 1 13 13 1 28 22s
W2 1 1 1 1 4 8s
W3 1 12 12 1 26 37s
W4 1 4 5 1 11 14s
W5 1 13 20 1 35 34s

Table 2.4: Inverse-Visitor Results.

Removing a Visitor. Table 2.4 lists the results of inverting (remov-

ing) the Visitors created in Table 2.3.

Consider row/experiment A5. Our tool removed a Visitor of the reduce-

2Java in AHEAD. 47 visit methods were moved back to original classes. The
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number of inlines (54) was determined in this way: each visit method that is

moved is inlined (47) and 7 super-delegates are also inlined. Only one had to

be renamed to its original name (reduce2Java) and removed a Visitor-type

parameter. That is because, by changing a root method’s signature, all of its

descendants were updated. In addition, we turned off an inline precondition

described in Section 2.2.2 for A4, A5, and C1. Note the difference in execu-

tion time between creating and removing a Visitor is due to different numbers

and types of refactorings.

2.6 Related Work

Writing program transformations is a non-trivial exercise as research

has shown [7,22,26,28,29,35,56,60,67,87,94,97,103,113,117,132,141,144–146].

Prior work introduced a number of impressive metaprogramming languages

such as ASF+DSF [145], iXj [26], JunGL [146], Parlanse [22], Rascal [67],

Refacola [132], SOUL [94], Stratego [29], Tom [7], and TXL [35]. None match

our requirements.

There are two primary distinctions between R2 and prior work. First,

R2 uses the base language – the language in which programs to be refactored

are written – as the scripting language. Interestingly, the base and scripting

language are identical only in Wrangler [87]; all others use a different scripting

language (possibly even a different programming paradigm) than the base. The

second is whether a user has to implement primitive refactorings in order to

script them. Since writing primitive refactorings (e.g., rename, move, change-
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Tool or Scripting
Base Language Paradigm

Primitives
DSL Language Available

R2 Java Java Imperative X
Wrangler Erlang Erlang Functional

ASF+SDF ASF, SDF • Term Rewrite
iXj iXj Java Imperative

JunGL JunGL C#
Functional

Logic Query
DMS Parlanse • Lisp-like

Rascal Rascal Java
Imperative

X
Non-OO

Refacola Refacola Eiffel, Java Constraint
SOUL SOUL Java, C, Cobol, Smalltalk Logic Programming X
XT Stratego • Term Rewrite
Tom Tom C, Java, Python, C++, C#, etc. Term Rewrite

TXL TXL • Functional
Term Rewrite

Codelink (GUI-based) • (N/A)
SmaCC SmallTalk Java, C#, Delphi Imperative

• indicates arbitrary languages that can be defined by users.

Table 2.5: Tools and Languages to Script Refactorings.

method-signature) is non-trivial, it is important to distinguish approaches that

can leverage existing refactoring engines from those where primitives need to

be written by users. Only SOUL and Rascal (besides R2) satisfy the second

criterion. Table 2.5 categorizes these distinctions to the best of our knowledge.

JunGL and Refacola are DSLs specialized for scripting refactorings.

JunGL is an ML-style functional language implemented on the .NET platform

and targets C#. JunGL facilitates AST manipulation with higher order func-

tions and tree pattern matching. It also has querying facilities for semantic and

data flow information look-up. Refacola is a constraint language where refac-

torings are specified by constraint rules. The Refacola framework supports

implementation of program element queries and constraint generation.

Program transformation systems are monuments of engineering prowess.
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Among them are Codelink [141], DMS [22], SmaCC [28], Wrangler [87], and

XT [29]. Wrangler, mentioned earlier, is a tool (refactoring framework) imple-

mented in Erlang which is also the base language. Wrangler supports refac-

toring commands for locating program elements and provides a custom DSL

to execute the commands.

Like R2, Rascal [67] also uses JDT refactorings, which are available as

APIs in the Rascal JDTRefactoring library. They too target Java, but their

scripting language (Rascal) is not an OO language. Further, manual code

changes are required in their transformation process to fix incorrect access

modifiers, clean up unnecessary codes, etc., which we would have preferred to

be automated.

SOUL [94] uses declarative metaprogramming to define design patterns

and their constraints in a language-independent manner. Their use of a variant

of Prolog is elegant, as they tackle problems similar to R2.

Moreover, R2 deals with scripting high-level refactorings, not with rec-

ommending when and which refactorings to apply or detecting existing refac-

torings. There are excellent papers [16–21,24,34,40,63,92,95,96,115,122,124,

128,138,142] on this, but all are orthogonal to the use and goals of R2.

Finally, refactoring research has grown enormously in the last decade.

Traditional refactorings improve design, like R2. More recent refactorings im-

prove non-functional qualities (e.g., energy consumption [114]), address more

challenging languages (e.g., Yahoo! Pipes [135]), or use novel paradigms to
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check refactoring safety [32]. These works are beyond the scope of R2.
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Chapter 3

Improving Refactoring Speed by 10×

3.1 Introduction

In R2, we added scripting to Eclipse JDT, exposing the core declarations

of a Java program (packages, classes, methods, etc.) as objects whose methods

are JDT refactorings.1 Refactoring scripts that add or remove design patterns

are short Java methods. R2 is an Eclipse plug-in that uses the JDT Refactoring

Engine (JDTRE) as it represents state-of-the-practice in refactoring. However,

experiments revealed JDTRE is ill-suited for scripting for three reasons:

• Reliability. JDTRE is buggy [64, 127]. We filed 39 new bug reports

to date, but only a fraction has been fixed in the latest version of

Eclipse [47]. Prior to the current release, one R2 script executed 6 JDT

refactorings producing a program with 27 compilation errors. Another

script invoked 96 refactorings, producing a program with 100 compila-

tion errors. These errors are not due to R2, but are egregious bugs in

JDTRE. We are constantly discovering more. Worse is waiting months

1The contents of this chapter appeared in “Improving Refactoring Speed by 10X” [82],
where I was the primary author of the four authors including Don Batory, Danny Dig, and
Maider Azanza. This paper was published in the 38th ACM/IEEE International Conference
on Software Engineering.
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or years for a repair [47]. We rediscovered a bug that took 5 years to be

fixed [45]. Note: We are not in a position to repair JDTRE. There is

no reason for us to believe our patches would be accepted. We report

bugs as others do.

• Expressivity. We found the need for additional primitive refactorings

and to repair existing refactorings. JDTRE refuses to move methods that

include the super keyword; moving methods with super reference(s) is

really useful (Section 2.2.3). We also had to turn off parameter optimiza-

tion, for example, to make JDT refactorings produce design patterns

correctly (Section 2.2.1).

• Speed. JDTRE’s Achilles heel is its speed: it is surprisingly slow. While

a single JDT refactoring is fast, executing many is not. R2 scripts that

invoke 20 refactorings take over 10 seconds. One script invoked 554 refac-

torings and took 5 minutes to execute. Programmers expect refactorings

to be instantaneous.

We concluded that a radically different approach to build refactoring

engines for scripting was needed to remove these problems. Our novel solution,

called R3, creates a database of program elements (such as classes, methods,

fields), their containment relationships, and Java language features such as

inheritance and modifiers. Precondition checks consult harvested values in

database tuples; refactorings alter the database. ASTs are never changed;

refactored code is produced only when pretty-printing ASTs that reference
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database changes. This strategy yields a 10× increase in refactoring speed

and a 50% smaller codebase.

The contributions of this chapter are:

• A novel foundation (R3) of database+pretty printing for designing a new

generation of refactoring engines that support scripting,

• R3’s codebase is a mere 4K LOC and does not use LTK [56] utilities,

• Efficient ways to evaluate refactoring preconditions: boolean proper-

ties of ASTs are harvested during database creation where precondition

checks consult their values and the database supports fast searches,

• An empirical evaluation of R3 on 6 case studies executed 52 scripts.

R3 runs at least 10× faster on average, in two cases 285× faster than

JDTRE, and

• A user study involving 2 classes (44 undergraduates and 10 graduates)

showed R3 improved the success rate of retrofitting design patterns by

25% up to 50%.

3.2 R3 Concepts

3.2.1 Modularity Perspectives

Elementary physics inspired R3. A physical object looks different de-

pending upon an observer’s location. Silhouette portraits of people are differ-

ent from frontal portraits. Just as viewpoints of a physical object are created
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by rotations and translations, called coordinate transformations that preserve

object properties, R3 does the same for programs: it refactors programs by

pretty-printing without changing the program’s ASTs or behavior.

To see how, we strip away OO notation. A method implements an

absolute function (the reason for ‘absolute’ is explained shortly) where all

method parameters are explicit as they would be in a C-language declaration.

Figure 3.1a is the signature of an absolute function foo with three parameters

whose types are B, C, D.

A foo(C c, D d)

A foo(B b, D d)

static A foo(B b, C c, D d)

A foo(B b, C c, D d)(a)

(b)

(c)

(d)

if

expr stmt

(a)

if expr

then stmt;

if (expr)

{ stmt }
(b)

(c)

expr

stmt

yes no

(d)

Figure 3.1: An Absolute Function and its Relative Methods.

If foo is displayed as a member of class B, Figure 3.1b is its signature:

the B parameter becomes this and is otherwise implicit. If foo is displayed

as a member of class C, Figure 3.1c is its signature, where the C parameter

is this. We say the natural homes of an absolute function are its parameter

types. The natural homes for method foo are B, C, D. If foo is displayed as

a member of class E, not a natural home, it appears as the static method of

Figure 3.1d which has no implicit this parameter.

A modularity perspective assigns absolute functions to class declara-

tions. The idea generalizes to other entity declarations (e.g., packages, classes,

fields) and their containment relationships. To illustrate, nested classes gen-
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eralize absolute functions in an interesting way. Figure 3.2a shows class B

nested inside class A. Method m of class B has the absolute function:

void m(A a, B b) { a.i = a.i + b.j; }

Although m() displays without parameters inside B, it really has two implicit

parameters: this (of type B) and A.this (of outer type A). We see that m()

can be displayed as a member of class A using our modularity perspective

techniques by making the B parameter explicit. See Figure 3.2b.

class A {

int i = 5;

class B {

int j = 4;

void m() {

i = i + j;

}

}

}

(a)

class A {

int i = 5;

void m(B b) {

i = i + b.j;

}

class B {

int j = 4;

}

}

(b)

class A {

int i = 5;

void t() {

new B() {

int j = 4;

void p() {

i = i + j;

}

};

}

}

(c)

Figure 3.2: Nested Classes

A ‘coordinate transformation’ interpretation also explains why refactor-

ing engines do not move methods of anonymous classes. Consider Figure 3.2c.

The absolute function of method p has signature p(A a, ? b), where ? denotes

an anonymous subclass of B. Since ? has no name to display, refactoring

engines refuse to move p.
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In R3, by creating a database of program elements and their contain-

ment relationships, classical refactorings become simple database modifica-

tions and never alter the ASTs of the target program. The AST is ‘absolute’

or immutable; it appears different relativetothemodularityperspective from

which it is displayed. The move-instance-method refactoring, which is what

Figure 3.1 is about, is a coordinate transformation for software; it preserves

the semantic properties of a program. The same holds for other primitive

refactorings.

3.2.2 The R3 Database

R3 maintains an internal, non-persistent database to record changes

in perspective. When R3 parses compilation units of a program, it creates

relational database tables for all declaration types in a program. Each tuple of

the RClass table represents a unique class declaration in the program. Among

RClass attributes is a pointer to the AST of that class. Each tuple of the

RMethod table represents a unique method (or absolute function) declaration

in the program. Each RMethod tuple points to the AST of its method and

to the RClass tuple in which that method is a member. Similarly, there are

tables for package declarations (RPackage), field (RField), etc. There are no

tables for Java executable statements or expressions; only classes, interfaces,

fields, methods, and parameters, as these are the focus of Gang-of-Four design

patterns and almost all classical refactorings.

Program source is compiled into ASTs which are traversed to populate

43



class Graphic { 

void draw() { … }

}

class Square extends Graphic {

void draw() { … }

}

class Picture extends Graphic {

void add(Graphic g) { … }

void draw() { … }

}

package

Square

draw

Picture

drawadd

Graphic

draw

𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟

Source
Abstract Syntax Tree

AST methID name args clsID

m1 draw { }

m2 add { c1 }

m3 draw { }

m4 draw { }

AST clsID name parent

c1 Graphic

c2 Square c1

c3 Picture c1

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙

RClass

RMethod

Database

class Graphic { 

void draw { … }

}

class Square extends Graphic {

void draw() { … }

}

class Picture extends Graphic {

void add(Graphic g) { … }

void draw() { … }

}

Figure 3.3: R3 Database.

R3 tables. Figure 3.3 shows the basic set-up. Three RClass tuples (Graphic,

Square, Picture) are created. So too are four RMethod tuples (Graphic.draw,

Square.draw, Picture.add, Picture.draw) that are linked to the RClass tuple

for which each is a member.

Refactorings update this database. Renaming a method updates the

name field of that method’s R3 tuple. Moving a method to another class

updates the method’s R3 tuple to point to its new class. Only when an AST

is rendered (displayed) is the information in the R3 database revealed. When

a method’s AST is displayed, the name of the method is extracted from the

method’s R3 tuple.

When a class is displayed, the tuples of the fields, methods, construc-

tors, etc. that belong to it are extracted from the database. The ASTs of these

tuples are then displayed, relative to their current class. Figure 3.4 sketches

the RClass display method: it prints the class keyword, the current class

name, extends clause with its superclass name, and implements clause with

interface name(s); all names obtained from the database. Then each member

that is assigned to that class is displayed, following by the display of the clos-
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ing brace ‘}’. R3 reproduces the original order in which members appeared

for ease of subsequent reference by programmers and preserves all source code

comments.

void display() {

ast.displayHeader();

List<RMembers> 

mlist = getMemberList();

for (RMember m : mlist)

m.display();

ast.displayFooter();

}

class A extends B 

implements I {

member1;

member2;

member3;

}

(b) Code that is displayed(a) Method to display an RClass tuple

class A<T> {

void m(B b) {

T t = null;

}

} 

(a) Can’t move with
non-local type T

class A {

<T> void m(B b) { 

T t = null;

}

}

(b) Can move with 
local type T

(c) Generic entity target

class A {

<T> void m(T t) {

}

}

Figure 3.4: RClass Display Method.

Rendering is fast and less involved than updating ASTs and moving

AST subtrees from one parent to another. Consider the changes that are

needed when absolute method foo (Figure 3.1a) is moved from class B to

C. All invocations of foo, such as b.foo(c, d), are altered to c.foo(b, d). A

rendering simply changes the order in which arguments are displayed; it is

more work to consistently update pointers when making this change to an

AST.

Typical refactoring engines modify ASTs. In contrast, R3 eliminates

AST manipulation. R3 still needs to create ASTs when new program elements

are needed, but other than that, R3 does not manipulate ASTs. As we report

later, a consequence of the above is that the codebase for R3 is much smaller

and simpler than JDTRE.
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3.2.3 Primitive Refactorings

We now explain some representative primitive refactorings to see how

they are implemented in R3. All R3 methods are listed in [111]. In the refac-

toring community, behavior preservation is determined by statically analyzing

whether the input code passes the refactoring’s preconditions [103]. If all pre-

conditions are met, the refactoring engine is allowed to change the program

code. We partition our discussion on refactorings into two segments: database

changes corresponding to code transformations in conventional refactorings

(considered in this section) and precondition checks (discussed in the next

section).

3.2.3.1 Rename Method

Rename-instance-method refactoring modifies the name field of the

method’sRMethod tuple. This refactoring, like most, have a database transac-

tion quality. Consider a class hierarchy where all classes have their own method

foo. To rename foo to bar can be expressed as a loop, where getRelatives()

finds all overriding/overridden methods with the same signature as foo:

for (RMethod m : foo.getRelatives()) {

m.rename("bar");

}

Until the loop completes, not all methods are renamed and preserv-

ing program semantics is not guaranteed. R3 performs renames on sets of
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overriding/overridden methods with identical signatures, and by being a set

operation, does not expose an inconsistent database to users:

RRelativeList relatives = foo.getRelatives();

relatives.rename("bar");

3.2.3.2 Change Method Signature

Change-method-signature adds, removes, and reorders method param-

eters. Encoded in the R3 database is a list of formal parameters for every

method. Adding a parameter to a method simply adds the parameter and its

default value to the database. When the method is displayed, it is shown with

its new parameter; method calls are displayed with its default argument.

Prior work [100,143] found that highly-parameterized refactorings with

options (name, parameter add/delete/reorder, exception, delegate) discourage

the use of refactorings and make them harder to understand. Accordingly, R3

has separate methods to add, remove, and reorder parameters. Line 1 below

finds the R3 tuple for a field with name f in class C of package p. The field’s

type serves as the type of the new parameter and a reference to that field is the

parameter’s default value (Line 2). The new parameter, by default, becomes

the last formal parameter of methods in relatives list. Line 3 makes it the

first parameter of relatives methods:

1 RField v = RField.find("p", "C", "f");

2 RParameter newParam = relatives.addParameter(v);

3 newParam.setIndex (0);
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3.2.3.3 Move Method via Parameter

The move-instance-method refactoring in R3 changes the home class of

a method m. Recall that a home parameter is any parameter of m, and a

home class is the class of a home parameter. Moving m to a home class simply

updates m’s R3 tuple to point to the tuple of its home class. Presuming c is a

home class, the code below moves method m to class c:

m.move(c);

3.2.3.4 Move Method via Field

The move-via-field refactoring is illustrated in Figure 3.5. Method m

in class A, whose absolute signature is C m(A a, B b), is moved to class D

via field d. A local invocation, m(b), becomes d.m(this, b). Here is where

scripting comes in handy: move-via-field is the following R3 script:

// member of RMethod class

void moveViaField(RField f) {

RParameter newHome = addParameter(f);

move(newHome);

}

A member method addParameter of RMethod, whose access modifier

if private, is invisible to R3 users.

3.2.3.5 Introducing New Program Elements

R3 introduces complex new code declarations (classes, methods, fields,

etc.) into an existing program by creating a compilation unit with these decla-

48



class A {

D d;

C m(B b) {}

C c = m(b); // a call

}

class D {}

(a) Before

class A {

D d;

C c = d.m(this , b); // a call

}

class D {

C m(A a, B b) {}

}

(b) After Moving via Field d

Figure 3.5: Move-via-Field Refactoring

rations. The file is compiled and the database is updated with new declarations

which are then embedded into the existing program via move refactorings. The

code below shows how to create a custom method mul(), whose R3 object is

mth:

String s = "package pkg; \n"+

"class C { \n"+

" int mul() { return 7*57; }\n"+

"}";

RPackage p = RProject.getPackage("Prj", "pkg");

RCompilationUnit cu = p.createCU(s);

RClass cls = p.getClass("C");

RMethod mth = cls.getMethod("mul");

Once the needed methods and fields are removed from compilation unit cu, the

unit can be marked deleted in the database using the R3 remove refactoring.

The AST of cu remains, but at pretty-printing time no text of its (now empty)

compilation unit is produced.
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3.2.3.6 Scripting Refactorings

R3 supports all refactorings that are essential to introduce or remove

design patterns from existing programs. R3’s interface is compatible with R2.

That is, R2 scripts port to R3. This gives us the ability to script refactorings

to retrofit design patterns into Java programs and we can build compound

refactorings as compositions of primitive refactorings. We already saw scripts

for makeAdapter (Figure 2.15), makeV isitor (Figure 2.6), and moveV iaF ield

in Section 3.2.3.4.

3.2.4 Preconditions

Precondition checks are the major performance drain in refactoring en-

gines. JDTRE is typical: it checks preconditions as needed. Every refactoring

call r() on an R3 object obj requires a conjunction of precondition checks

obj.ρ1()∧ obj.ρ2()∧. . . ∧obj.ρn() where ρi() is a primitive precondition. For

example, the JDT move-instance-method refactoring has 19 distinct checks

(which are also present in R3); if any one fails, the move is disallowed. Since

JDTRE does not know if a programmer will invoke obj.r(), JDTRE does the

obvious thing by evaluating obj.ρ1()∧obj.ρ2()∧. . . ∧obj.ρn() only when needed.

R3 is different. We too do not know what refactorings a programmer

will invoke. But we can precompute the value of many – not all – ρi() for

all R3 objects at database build time, even though we may never use these

values. For each ρi(), we add a boolean attribute to R3 tables to indicate

whether a tuple’s AST satisfies ρi(). The checks for a refactoring then become
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a conjunction of these boolean attributes.

The R3 database is created by traversing the ASTs of a program and

collecting semantic information. Doing so populates the R3 database with

tuples and assigns boolean values to these checks. Further, in cases where

harvested boolean values are insufficient, we optimized the R3 database to

facilitate fast searches, e.g., R3 collects all references of a declaration to re-

duce search overhead. We will see in Section 3.4 these techniques improve

performance significantly.

3.2.4.1 Boolean Checks Made by a Single Tuple Lookup

In R3, fifteen preconditions (which JDT move-instance-method uses and

are shared by other refactorings) are AST-harvestable at database build time

as boolean values. Here is a representative sample:

• Abstract – is the method abstract?

• Native – is the method native?

• Constructor – is the method a constructor?

• Interface Declaring Type – is the enclosing type of the method an

interface?

• Non-Local Type Reference – if the method references a non-local

type parameter (e.g., a type parameter of a generic class), it cannot be

moved. Figure 3.6a illustrates a non-local type parameter which prevents
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a move of method m. In contrast, method m in Figure 3.6b can be moved

as its parameter is local.

class A<T> {

void m(B b) {

T t = null;

}

}

(a) Can’t Move with
Non-local Type T

class A {

<T> void m(B b) {

T t = null;

}

}

(b) Can Move with
Local Type T

class A {

<T> void m(T t) {}

}

(c) Generic Entity
Target

Figure 3.6: Generic Constraints

• Generic Entity Target – moving a method via a type parameter is

disallowed (Figure 3.6c).

• Unqualified Target – a natural home of a method cannot be an interface.

A natural home is disqualified if its argument is assigned a value as in

Figure 3.7a since the assignment statement becomes illegal in Java after

move (Figure 3.7b).

• Null Home Value – if a method call has a null home parameter as

in Figure 3.7b, a move to that home is disallowed as it will dereference

null.

void m(D d) {

d = new D();

}

(a)

void m() {

this = new D(); // illegal

}

(b)

void m(D d) {}

... m(null) ... // call

(b)

Figure 3.7: Target Constraints
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• Polymorphic Method – when the target method is polymorphic, it

cannot be moved unless a delegate is left behind. Our makeV isitor

script satisfies this constraint.

• Super Reference – JDTRE refuses to move any method that uses the

super keyword. To write general purpose refactoring scripts, we removed

this precondition in both R2 and R3 (Section 2.2.3). Other IDEs, such

as IntelliJ IDEA [71] and NetBeans [102], do move such methods, but

do so erroneously (Figure 3.8).

class A extends B {

void m(C c) {

super.n();

}

}

(a) Method with super Call

class C {

void m() {

super.n();

}

}

(b) IntelliJ IDEA

class C {

void m(A a) {

a.super.n();

}

}

(c) NetBeans

Figure 3.8: Super Call Bugs

3.2.4.2 Checks that Require Database Search

Not all primitive preconditions are reducible to boolean attributes;

these outliers require a database search, which R3 performs efficiently. Here

are some for the move-instance-method:

• Accessibility – after a method is moved, it must still be visible to all

of its references. Symmetrically, every declaration that is referenced in-

side the method’s body should be accessible after the move. JDTRE
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promotes access modifiers of the moved method and/or referenced dec-

larations to satisfy all visibility requirements. R3 does the same.

Associated with each RMethod object m is a list of its references (this

list is collected at database creation time). R3 traverses this list to en-

sure that m is still visible to each reference. Similarly, R3 maintains a

second list of tuples (again collected at database creation time) that are

referenced in m’s body. R3 traverses this list to ensure that all refer-

enced declarations remain visible to m. R3 makes the same adjustments

in modifiers as JDTRE.

• Conflicting Method – a method can be moved only when it does

not change bindings of existing method references. Consider the 3-class

program of Figure 3.9. A method call m(...) inside B.n(C) invokes

A.m(C). When JDTRE moves method C.m(B) to class B, the method

call changes its binding to the newly moved method B.m(C).

class A {

void m(C c) {}

}

class B extends A {

void n(C c) {

m(c); // binding change

}

}

class C {

void m(B b) {}

}

Figure 3.9: Method Binding Change

Clearly this is wrong. JDTRE determines if a conflict exists in the desti-

nation class but not its superclasses, an error that we have reported [46].

R3 does better by traversing the class hierarchy and evaluating access

modifiers to find conflicts [119].
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• Duplicate Type Parameter – JDTRE moves method m in Figure 3.10

to classB only when type parameter T is removed fromm since T already

exists in class B. After the move, however, T inside method m changes

its binding to the existing T in class B.

class A {

<T> void m(B<T> b) {

T t = null;

}

}

class B<T> {}

(a) Before

class A {}

class B<T> {

void m() {

T t = null;

}

}

(b) After Moving m

Figure 3.10: Duplicate Type Parameter

R3 harvests type parameter names and stores them in the database tuple

where they are declared. R3 searches the type parameter collections to

find a match.

3.3 Implementation

JDTRE does not use a standard pretty-print AST method. To mini-

mize R3 coding, we used a pipeline of tools, relying on Eclipse minimally and

using AHEAD [13], which has pretty-print methods ideal for R3. Figure 3.11

shows the R3 pipeline: it is a series of stages (A)-(G) that map a target Java

program (JDT project) on the left to a refactored program on the right.

(A) Eclipse parses a Java program into ASTs. Figure 3.12 is a target program

with a generic method that prints its array argument of different types.
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Java 
program

Eclipse 
ASTs + 
Symbol 

table

AHEAD
ASTs

Java 
program’

Refactored
program

(A)

(C)

(B)

(D)

(E)
(F)

(G)

R3 DB R3 DB with 
links to AHEAD ASTs

R3 DB with 
refactoring updates

Java 
program

Eclipse
ASTs + data

(A)

(B)
(E)

(F)

(G)

R3 DB R3 DB with 
links to ASTs

R3 DB with 
refactoring updates

Figure 3.11: R3 Pipeline.

package p;

class C {

// generic method

static <E> void print(E[] array) {

for(E e : array)

System.out.printf("\%s\n", e);

}

}

Figure 3.12: A Java Program with a Generic Method

(B) JDT ASTs are traversed to harvest a major part of the R3 database.

Later, step (E) completes the database.

(C) AHEAD requires a context-free parser. To satisfy this constraint, a ver-

sion of the original program is output (Figure 3.13) where white space

and comments are preserved and all identifiers are replaced with man-

ufactured and unique identifiers ID #; symbols “<” and “>” that in-

dicate generics are replaced with unambiguous symbols “<:” and “:>”.

AHEAD can parse the revised compilation unit and with the database

of (B) can reconstruct the identical text of the original program.
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package ID_0;

class ID_1 {

// generic method

static <:ID_2:> void ID_3(ID_4[] ID_5) {

for(ID_6 ID_7 : ID_8)

ID_9.ID_10.ID_11("\%s\n", ID_12 );

}

}

Figure 3.13: A Java Program with Manufactured-identifiers

(D) AHEAD parses the manufactured-identifier program.

(E) R3 database tuples are doubly-linked to their AHEAD AST nodes so

each pretty-printer of an AST node can reference the corresponding R3

tuple and vice versa.

(F) R3 refactorings are executed. They modify only the R3 database, not

AHEAD parse trees.

(G) The source code of the refactored program is pretty-printed as described

earlier.

3.4 Evaluation

To evaluate the usefulness of R3, we answer the following research ques-

tions:

• RQ1 (Performance): How fast is R3 compared to JDTRE?

• RQ2 (Correctness): Does R3 improve the correctness of the result when

retrofitting a design pattern?
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• RQ3 (Productivity): Does R3 reduce the required time to retrofit a

design pattern?

Previously, we evaluated the expressiveness of R2, by demonstrating that its

scripts can retrofit design patterns into real-world programs. We focused on

patterns that (a) were the hardest to manually create and (b) executed the

most JDT refactorings. We used the same R2 tests for R3, not only to show

that R3 is similarly expressive and can handle the complexities of real-world

programs, but also to measure R3’s performance w.r.t. JDTRE – noting that

JDTRE is representative of the state of the practice in refactoring engines.

In addition, we also focus on practicality. Namely, can programmers use R3

effectively?

To answer these questions, we use a combination of two empirical meth-

ods: a case study using 6 Java real-world programs and user studies (with 44

undergraduates and 10 graduate students) that complement each other. The

user study allows us to quantify programmer time and programmer errors,

while the case studies give more confidence that R3 generalizes to real-world

situations.
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3.4.1 Performance

The first column of Table 3.1 lists the programs of the R3 evaluation,

along with their version, LOC, and number of regression tests. We performed

two sets of experiments. The first set retrofitted a Visitor pattern into six Java

applications. The second set removed a Visitor by executing an Inverse-Visitor

script that exercises a different set of refactorings. These experiments engage

the primitive refactorings that are used the most often in design patterns. We

ran the regression tests on each application after script execution to confirm

there was no difference in their behavior. We used an Intel CPU i7-2600

3.40GHz, 16 GB main memory, Windows 7 64-bit OS, and Eclipse JDT 4.4.2

(Luna) in our work.

Table 3.1 shows the performance results of the first set of experiments.

Each program (with the exception of Quark) has five methods that serve as

a Visitor seed. The complexity of a refactoring task is measured by (1) the

number of JDT refactorings executed; this number is given in the # of Refacs

column2 and (2) the CPU time listed in the Total column.3

JDTRE execution time has two parts, precondition checks and code

changes, whose sum equals column Total. Column Precon Check is the

time for all precondition checks discussed in Section 3.2.4 and a check/parse

2Our makeV isitor and inverseV isitor scripts create and delete program elements but
these operations are not counted as JDT refactorings.

3We used profiling tool V isualV M (ver. 1.3.8) [147] to measure CPU times in running
the JDTRE and R3 scripts. We repeated each experiment five times and report the average
execution time.

60



to see if the compilation units (Java files) involved in the refactoring are

‘broken’ – meaning that the file has syntax errors. Code change (column

Perform Change) is the sum of times for calculating the code changes to

make, updating the Eclipse workspace, and writing updated files to disk.

Note: precondition checks in JDTRE consume about 87% of refactoring exe-

cution time.

R3 execution time covers six steps (B)-(G) in Figure 3.14. Steps (C)-(D)

are due to our use of AHEAD for coding convenience and would be unnecessary

if JDTRE had usable pretty-print methods. We exclude times for (C)-(D) as

they have nothing do with R3 performance.

Eclipse 
ASTs + 
Symbol 

table

AHEAD
ASTs

Java 
program’

Refactored
program

(C)

(B)

(D)

(E)
(F1) + (F2)

(G)

R3 DB R3 DB with 
links to AHEAD ASTs

R3 DB with 
refactoring updates

Figure 3.14: Performance Pipeline of R3.

A cost of R3 is (B) creating the database and (E) linking database tuples

to AST nodes, shown as columns in Build DB and Link AST in Table 2.3.

These execution times are minuscule. During the brief interval that it takes to

display the R3 GUI refactoring menu, a database can be created+linked with

an unnoticeable delay.
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The true execution time for R3 is (F1) checking preconditions, (F2)

updating databse, and (G) at the end of the script execution pretty-printing

the compilation units that have changed. The sum of these numbers, the Total

column, is R3’s run-time.

We compute the ratio of the JDTRE and R3 Total columns, listed

in the Speed Up column. R3 ranges from 5× to 163× faster than JDTRE.

The longest JDTRE execution time was seed A3 to create a Visitor of 276

methods, taking 298 seconds of CPU time. In contrast, R3’s execution time

was 2.2 seconds. Interestingly, even if the number of refactorings executed in a

makeV isitor script are small (4∼6), R3 was 17× faster on average; for larger

numbers of refactorings (>50), the speed-up was 91× faster. On average for

these experiments, R3 was 38× faster than JDTRE.4

Table 3.2 shows the corresponding run-times for our second set of ex-

periments that removed a Visitor. Although a different set of refactorings are

exercised, we reach similar conclusions. R3 ranges from 5× to 291× faster than

JDTRE. On average, R3 was 55× faster than JDTRE.5

There are three basic reasons for the huge difference in performance.

First, as mentioned earlier, JDTRE evaluates preconditions by searching ASTs,

and piggy-backs the collection of information to know what text changes to

make to perform an actual refactoring, such as creating a method delegate,

4Had we included database creation time for steps (B) and (E) in our calculations, the
average speed-up ratio drops to 11×.

5Had we included database build time for steps (B) and (E) in our calculations, the
average speed-up ratio drops to 10×.
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Seed
ID

# JDTRE time (seconds) R3 time (seconds)
Speed
Up

of Precon Perform
Total

Precon DB
Proj Total

Refa Check Change Check Update

A1 104 50.80 8.47 59.27 0.003 0.005 0.20 0.21 286
A2 68 27.19 5.10 32.29 0.001 0.006 0.10 0.11 291
A3 554 167.27 46.59 213.86 0.023 0.021 1.75 1.79 119
A4 60 9.98 5.78 15.76 0.008 0.006 0.53 0.55 29
A5 96 19.23 8.97 28.21 0.010 0.008 0.99 1.01 28
C1 6 1.59 0.70 2.29 0.001 0.001 0.43 0.43 5
C2 16 6.61 0.68 7.28 0.000 0.001 0.28 0.28 26
C3 16 7.10 0.40 7.50 0.000 0.001 0.23 0.23 33
C4 12 4.61 0.59 5.20 0.000 0.001 0.20 0.20 26
C5 6 1.70 0.59 2.29 0.000 0.001 0.35 0.35 6
I1 4 2.20 0.21 2.40 0.000 0.000 0.05 0.05 51
I2 4 2.22 0.30 2.52 0.000 0.000 0.07 0.07 35
I3 6 2.21 0.50 2.71 0.000 0.001 0.33 0.33 8
I4 4 1.99 0.20 2.19 0.000 0.000 0.06 0.06 34
I5 6 1.51 0.49 2.00 0.000 0.001 0.30 0.30 7
J1 16 4.75 0.99 5.74 0.000 0.002 0.26 0.27 22
J2 4 1.90 0.20 2.10 0.000 0.000 0.04 0.04 51
J3 18 11.60 0.69 12.28 0.001 0.001 0.31 0.31 39
J4 20 5.81 1.10 6.91 0.001 0.002 0.45 0.46 15
J5 4 2.78 0.21 2.98 0.000 0.000 0.09 0.09 34
Q 16 2.58 0.80 3.38 0.000 0.001 0.08 0.08 41
W1 28 6.28 1.79 8.07 0.002 0.002 0.33 0.33 25
W2 4 5.01 0.40 5.41 0.000 0.001 0.11 0.11 49
W3 26 21.19 1.52 22.71 0.000 0.002 0.31 0.31 74
W4 10 7.92 0.87 8.79 0.000 0.001 0.20 0.20 44
W5 28 15.74 1.68 17.42 0.001 0.002 0.33 0.33 53

Table 3.2: Inverse-Visitor Result Comparison.

adjusting declaration visibility, etc. Profiling experiments indicate that the

vast majority of time (avg: 60%, sd: 15%) of the Precon Check column for

JDTRE is simply due to AST searching. R3 reduces the overhead by collect-

ing all program elements and values needed for precondition checks or code

transformation in advance.

Second, the R3 database has been optimized to make normally slow op-

erations lightning fast. One such operation is the rebinding of all references to

one declaration to those of another (Figure 3.15a). The move-and-delegate

refactoring is an example. Following the ‘one-fact-in-one-place’ mantra of
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database normalization, R3 introduced an RBinding table where declaration

bindings are represented once and with one update, all references are rebound

(Figure 3.15b).

class A {

<T> void m(B<T> b) {

}

}

class B<T> {

}

class A {

int i;

class B {

void m(C c) {

i=0;

}

}

}

ref1

ref3

ref2

dec1

dec2
slow
update

ref1

ref3

ref2

dec1

dec2

(a)

ref1

ref3

ref2

bind1 dec1
fast

update

ref1

ref3

ref2

bind1 dec1

(b)

dec2 dec2

Figure 3.15: Reference Binding in R3.

Third, JDTRE parses all files involved in a refactoring and writes out

changed files after each refactoring. In contrast, R3 refactorings are virtually

instantaneous database updates. Projection (i.e., writing out changed files) is

performed only once after the script execution is finished.

In short, JDTRE was not designed for efficient scripting.

3.4.2 Practicality

We conducted an evaluation of R3’s practicality. We designed two con-

trolled experiments (the Adapter experiment and the Visitor experiment) as

course assignments to assess how users worked with R3.6 We ran the experi-

ments with 44 students in Spring 2015 at the undergraduate CS373S Software

Design [129] course at the University of Texas at Austin. The course exposes

6Our experiments were not research projects but formed into homework assignments.
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students to fundamental structures and concepts in software development,

with an emphasis on automation. Two lectures were devoted to refactoring

and seven more were dedicated to design patterns.

We ran another Visitor experiment with 10 students in Fall 2014 at the

graduate CS561 Advanced Software Engineering [1] course at the Oregon State

University. This course exposes students to seminal topics and recent trends

in software evolution; in particular automating common changes to improve

software quality. Results from both executions were consistent.

3.4.2.1 Experimental Design

We had two dependent variables : correctness and time. Correctness was

first measured as a boolean metric: either the result was correct or not. We

also used a score that measured the degree of correctness (0 meant nothing had

been done to the existing code, and 100 meant the pattern had been correctly

introduced). Time was measured in minutes. The only independent variable

was the method used to retrofit the pattern (i.e., R3 scripts vs. using available

JDT refactorings or manual edits).

As an approximation, the complexity of a pattern instance is the num-

ber of refactorings that must be applied to produce the instance. There is

clearly more: programmers must order refactorings in a proper sequence to

achieve the desired result. In any case, creating and removing Visitor and

Adapter pattern instances require sequences of refactorings of different length

using different sets of primitive refactorings. We believe both are representa-
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tive of refactoring scripts that programmers can (or would like to) apply.

Based on these patterns, we designed two separate experiments: one for

Visitor and another for Adapter. To counteract the impact of the order of the

method participants used, we counterbalanced it. Each experiment consisted

of two tasks. Group A performed the first task using R3 and the second using

the available JDT refactorings; Group B did in the opposite order. Further,

we balanced Group A and Group B w.r.t.their backgrounds, using information

that students provided in a survey at the beginning of the course.

To ensure uniform knowledge among participants, each participant read

and practiced online tutorials to:

• make and remove a Visitor and Adapter manually [80],

• write and run R3 scripts, and

• apply JDT refactorings such as rename, move, and change-method-signature,

with an explanation of their options.

Students submitted practice assignments (code and scripts); only when they

passed the tutorial assignments could they proceed to the real experiment.

In the Visitor experiment, each student received a target program,

RefactoringCrawler [42], an open-source Eclipse plugin. RefactoringCrawler

has 119 Java classes, 17 interfaces and 7K LOC, including a suite of JUnit tests.

In the first task, Group A wrote a general R3 script to make a Visitor,

and applied this script to create a Visitor with 13 methods given seed W1.
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Group B applied Eclipse refactorings manually to make the same Visitor. In

the second task, (1) participants removed an existing Visitor with 12 methods

from the target program, but from a different class hierarchy and (2) we flipped

the control group: Group A applied Eclipse refactorings manually and Group

B wrote and applied a general R3 script.

In the Adapter experiment, Group A was required to write a general R3

script to make an Adapter that implements 35 methods, Group B created the

same Adapter by hand as JTDRE offers no useful refactorings for this task. In

the second task, we flipped the control group and targeted a different Adapter

of the same size.

We capped each task to 2 hours, although some participants extended

this limit. Participants were not allowed to take extended breaks but were free

to abort after spending the maximum time. Participants had to verify their

work by running the regression tests that came with RefactoringCrawler.

Tasks were homework assignments. Participants had access to class-

room material and tool tutorials. To determine participant success or failure,

we analyzed their refactored programs and R3 scripts, ran the regression tests,

and manually inspected their code. Students also reported the time they spent

on each task and completed a follow-up survey.

3.4.2.2 Results

Tables 3.3 and 3.4 summarize the results we obtained from the UT

and OSU executions respectively. As Shapiro-Wilk tests showed a significant
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Visitor
Metric Baseline R3 z p r
Success 39.5% 78.0% 3.441 0.001 0.519

Mean SD Mean SD
Score 73.5 24.8 93.5 13.6 3.629 0.000 0.547
Time 37.2 29.7 91.8 46.9 4.918 0.000 0.741

Adapter
Metric Baseline R3 z p r
Success 54.5% 81.8% 3.207 0.001 0.483

Mean SD Mean SD
Score 96.0 5.2 97.9 5.1 2.315 0.021 0.349
Time 19.9 9.2 43.7 27.2 5.152 0.000 0.777

Table 3.3: Experimental Results from UT (44 undergrad students)

Visitor
Metric Baseline R3 z p r
Success 20.0% 70.0% 2.236 0.025 0.707

Mean SD Mean SD
Score 56.0 39.2 91.0 12.9 2.176 0.030 0.688
Time 66.6 38.3 92.1 37.7 2.075 0.038 0.656

Table 3.4: Experimental Results from OSU (10 grad students)

deviance from normality for score and time, we resorted to non-parametric

Wilcoxon signed-rank tests for all the analyses. Both tables present the per-

centage of successful submissions, means and standard deviations for the score

they obtained, and time spent. Tables also show the test result (z), its corre-

sponding p value and the effect size (r) in the cases where statistically signifi-

cant differences were found between both methods (p < 0.05).

Results are consistent in both executions. For RQ2 (Correctness), we

found statistically significant differences that favor R3 in both success and

score in both UT and OSU. Moreover, the effect size introduced by R3 was

large (r > 0.5) for the Visitor experiment and medium (r > 0.3) for the

Adapter experiment, showing that R3 has a significant impact on success and
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score rates. We hypothesize that even greater benefits for R3 accrue when the

complexity of a pattern (i.e., the types and numbers of required refactorings)

increases. More on RQ2 in Section 3.4.3.

For RQ3 (Productivity), results show statistically significant differ-

ences that favor using JDT refactorings in the required time to apply the

design pattern. Effect sizes are large in all cases. In other words, for this

experiment and design pattern instances, it was faster to manually invoke

JDT refactorings than to write an R3 script from scratch (however, once a

script is written, it can be reused many times). More on RQ3 in Section 3.4.3.

Clearly students can write R3 scripts. In a follow-up poll, 91% of them

said that writing (R3) refactoring scripts would be a useful addition to their

IDE and 79.5% said that writing scripts improved their understanding of the

Visitor and Adapter patterns. Their response was gratifying as it supported

primary motivation for our research.

3.4.2.3 Threats to Validity

Every user study has limitations. First, although our results were com-

parable with undergraduate and graduate students, the results might not be

translatable to more experienced programmers. Second, there might have

been control loss due to the tasks being homework assignments. This was

unavoidable considering the course design. The problem of reconciling class-

room objectives and experimental designs has been largely recorded in the

literature [14,55]. Lastly, students were aware that R3 was developed by their
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instructors and, while we asked for their honest answers and were careful not

to influence them on this point, this might have impacted the results.

3.4.3 Perspective

There are at least two dimensions that are not captured by our user

study. There is a non-zero probability e that each manually performed refac-

toring will be erroneous. Assuming Bernoulli trials, Figure 3.16 shows the

probability P = (1− (1− e)n) that one or more errors will occur in a manual

retrofit of a design pattern requiring n refactorings. From Table 3.1 row W1,

the value of n is 28. From Table 3.3, the value of P is 1 − 0.395 = 0.605.

Solving 0.605 = (1− (1− e)28) yields e = 1/30.6. That is, our students made

an error, on average, every 30.6 manual refactorings. The dashed vertical lines

in Figure 3.16 and Figure 3.17 indicate the point on this graph that corre-

sponds to our user study. Figure 3.16 predicts the results of additional future

user studies on RQ2. As refactoring tasks become more complicated, R3 wins

easily; it can perform tasks correctly that humans can not.

A second dimension is time spent per refactoring task/script. We gave

students only 1 manual refactoring task in our evaluation of RQ3. The real

benefit is when a design pattern script is reused. Figure 3.17 shows that the

break-even point of writing a script rather than manual pattern construction

is on its third use. R3 wins easily on further reuse.
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Figure 3.16: Probability of Failure

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80

P
ro

b
ab

ili
ty

 o
f 

Fa
ilu

re

# of Refactorings Performed          

(a)  Probability of Failure

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e 
Sp

e
n

t 
in

 M
in

u
te

s

# of Different Applications of Script

manual

R3

(b)  Effort Expended with Reuse

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80

P
ro

b
ab

ili
ty

 o
f 

Fa
ilu

re

# of Refactorings Performed          

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e 
Sp

en
t 

in
 M

in
u

te
s

# of Different Applications of Script

manual

R3

Figure 3.17: Error Expended with
Script Reuse

3.4.4 Other Relevant Observations on R3

R3 uses the same or improved precondition definitions as JDTRE; these

definitions are well-documented in the JDTRE code base. We extracted from

the JDTRE regression suite (org.eclipse.jdt.ui.tests.refactoring [105]) tests

that are relevant to R3 refactorings. We excluded tests on Java 8 features (e.g.,

lambda expressions), as R3 presently works on Java Runtime Environment

(JRE) 7. There were 122 tests for change-method-signature, 72 for move-

method, 73 for pull-up, 59 for push-down, and 138 for rename. R3 satisfies all

464 extracted tests; they are now part of the R3 regression suite.7 Further, in

building R2 and R3, we discovered and reported 39 bugs in the JDTRE, 7 of

which have now been corrected [47].

7R3 does not produce exactly the same refactored source as JDTRE. For example, R3
keeps track of moved methods. All type declarations in these methods are displayed with
fully qualified names so that additional import declarations do not need to be added.
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Comparing the size of R3 to JDTRE in LOC is misleading, as JDTRE

relies on layers of Eclipse functionality, whereas R3 is self-contained. To level

the playing field, we used the EcLEmma code coverage tool [68] to see what

volume of code was executed by JDTRE and R3 when the makeV isitor script

runs – this gives us an estimate of the number of Unique LOC (ULOC) exe-

cuted for equivalent functionalities.

R3 executes 1,782 ULOC for makeV isitor. But these ULOC are self-

contained, meaning that print, file open and close methods are its only external

calls. In contrast, JDTRE executes 1,050 ULOC, which in turn calls 1,691

ULOC in ltk.core.refactoring (the primary package for JDTRE) and 975 ULOC

in ltk.ui.refactoring where other core refactoring functionality resides.8 We

conservatively estimate R3’s codebase to be 2× simpler than JDTRE.

3.5 Related Work

We said in Section 3.2.1 that R3 was inspired by elementary physics.

Another inspiration was Intentional Programming (IP) [33]. IP is a structure

editor whose ASTs could be adorned with different pretty-print methods, al-

lowing the contents of an AST to be printed textually or graphically. R3 is not

a structure editor or a small tweak on IP. IP displays entire trees; R3 integrates

a database of program facts and the display of disconnected ASTs to yield a

rendering that gives the appearance of a single refactored program. The phi-

8Example: see checkInitialConditions, checkFinalConditions, and createChange methods
in MoveInstanceMethodProcessor.java [99]
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losophy and infrastructure of IP would suggest that refactorings would have

been implemented as AST rewrites. Standard precondition checks in today’s

refactoring engines to verify that name collisions do not arise (e.g.,, rename

and move) were never part of IP; every IP entity has a unique internal identi-

fier. This allowed any number of program elements to have the same display

name (e.g., multiple variables with the name in the same function) and IP

could easily distinguish them.

In developing R2 [80], we found 13 prior works [7, 22, 26, 28, 29, 35, 67,

87, 94, 132, 141, 145, 146] that could be used to implement refactoring scripts.

We classified them as program transformation systems, DSLs, and refactoring

engines built atop of IDEs. Notably none reported performance of refactoring

engines; all were demonstrations that their particular infrastructure or tool

could be used to implement refactorings or transformation scripts. Most re-

search on refactoring engines mentions the importance of refactoring reliability

or error detection [38,64,73,86,127].

Like R2, a critical property of R3 is that refactorings and refactoring

scripts are written in the same language as the programs to be transformed

(i.e., Java). We feel this property is crucial because programmers do not have

to learn yet another language or programming paradigm to write refactoring

scripts. As we discussed in Section 2.6, only one prior tool had this property:

Wrangler [86]. Wrangler refactorings and refactoring scripts were written in

Erlang to modify Erlang programs.
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Chapter 4

Refactoring Java Software Product Lines

4.1 Introduction

An SPL is a family of related programs [5, 125, 130].1 Amortizing the

cost to design and maintain their commonalities makes SPLs economical [5].

Programs of an SPL are distinguished by features — increments in program

functionality. Each program, henceforth product , in an SPL is defined by a

unique set of features called a configuration [5].

Variability in a SPL codebase relies on presence conditions , a predicate

expressed in terms of features, that indicate when a fragment of code, file

or package is to be included in an SPL product [5]. A typical use-case is

with #if-#endif preprocessor constructs: if the presence condition of #if

is true for a configuration, the content that is enclosed by #if-#endif is

included in the product; otherwise it is erased [5]. The Linux Kernel is a huge

SPL, consisting of 8M LOC and over 10K features [90, 125]. It uses the C-

preprocessor (CPP) to remove code and files to produce the C codebase for a

1The contents of this chapter appeared in “Refactoring and Retrofitting Design Patterns
in Java Software Product Lines” [81], where I was the primary author of the three authors
including Don Batory and Danny Dig. This paper was published as a technical report in
the Department of Computer Science at University of Texas at Austin.
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configuration.

The presence or absence of a feature in Java can be encoded by a global

static boolean declaration; the Java compiler can evaluate feature predicates

to remove unreachable code in if(feature expression) statements. But re-

moving entire declarations (packages, types, fields, and methods) is not possi-

ble with existing Java constructs. So Java SPLs are hacked in some manner

to achieve this additional and essential effect.

Preprocessing is the standard solution [72,108,126], although officially

Java shuns preprocessors [53]. Another way is to copy and assemble code

fragments from an SPL codebase P to produce an SPL product PC where C is

PC ’s configuration [6, 13, 25, 76]. Both create a separate codebase for PC that

a user edits to improve, tune, and repair PC . Doing so exposes two critical

problems in SPL tooling.

First, given an edited product PC , how are its edits propagated back

to P, the SPL codebase? Early SPL tools [13, 25] had back-propagation ca-

pabilities. Furthermore, there are many prototype tools for projecting CPP

codebases to ‘view’ codebases that can be edited and their changes back-

propagated to P (see [131, 148] for surveys). But none correctly propagates

changes from PC to P made by refactorings. Why? Renaming a field in PC is

easy, but not all references to the field reside in PC ; other references may exist

in P that are not in PC . Thus, back-propagating edits will rename some, but

not all, references to a field, breaking P. In short, SPL back-propagation tools

must become ‘refactoring-aware’ [43].
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Second, the first refactoring engine for C-language SPLs appeared in

2015, offering the inline, rename, and extract refactorings [88]. One might

ask: why did this tool not appear a decade earlier? There are many reasons:

(i) Existing SPL tools rely on preprocessors that lack type information needed

for precondition checks and code transformations of refactorings, (ii) Special-

purpose compilers for main-stream languages integrated with CPP constructs

are hard to build [22, 77, 88, 149], (iii) Refactoring engines are also hard to

build, and (iv) SPL tool and refactoring engine integration requires a rare

combination of both.

We present X15, the first feature-aware refactoring engine for Java that

solves the above problems. X15 (i) uses a standard Java compiler, (ii) relies on

Java custom annotations to encode SPL variability in a simple and intuitive

way, (iii) incorporates code folds of an SPL codebase to produce a ‘view’ of

an SPL product that programmers can edit and refactor; behind the curtains

X15 applies corresponding edits and feature-aware refactorings to P. The novel

contributions are:

• The X15 tool for editing, projecting, and refactoring Java SPLs and their

products;

• Identifying primitive refactoring preconditions that must become feature-

aware; and

• Case studies that apply 2, 316 refactorings in 8 Java SPLs and show X15

is as efficient, expressive, and scalable as state-of-the-art feature-unaware
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refactoring engine R3.

4.2 X15 Encoding of Java SPLs

Every feature-based SPL has a feature model (FM) that defines the

features of an SPL and their relationships (mandatory vs. optional; alternative

vs. multiple-choice) [5]. Figure 4.1 depicts an E-Shop FM with a single cross-

tree constraint that CreditCard implies High [5,39,150]. It is well-known that

FMs can be mapped to a propositional formula where features are the boolean

variables [5, 9]. Each solution to this formula — a true or false assignment

to every variable — defines a combination features that uniquely identify a

product in an SPL. A common name for a solution is a configuration.

Figure 4.1: E-Shop Feature Model.

Feature modules can be implemented in many ways, ranging from pre-

processor or annotative means [76, 137] to specialized languages that support

explicit feature modules and their composition [6, 13,27,118].

Explicit feature modules have the advantage of clean encapsulations of
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large (packages, classes) and medium scale (fields, methods, method wrappers)

program declarations in Java; annotative approaches do better when feature-

specific code fragments are tiny and modularizing them as explicit methods

clutters designs [76].

A m(boolean b){

A f = new A();

#if(H)

if(b)

f = f.apply (1);

#endif

return f.apply (2);

}

(a) Annotated

A m(boolean b){

A f = new A();

f = h(f, b);

return f.apply (2);

}

A h(A ff, boolean bb){

return ff;

}

(b) Feature Module BASE

A m(boolean b){

A f = new A();

f = h(f, b);

return f.apply (2);

}

A h(A ff, boolean bb){

if(bb)

return ff.add (1);

return ff;

}

(c) Feature Module H

Figure 4.2: Annotated Codebase and Feature Modules

Figure 4.2a shows a tiny code fragment in the middle of method m

that appears when feature H is selected. This fragment is equivalent to a

composed pair of feature modules, BASE and H, in Figure 4.2b-c. Figure 4.2b

shows the BASE module that lifts this code fragment into a tiny method,

h, to define the default do-nothing action. The H module in Figure 4.2c

overrides h with the revised definition [6, 13, 118]. Figure 4.2a encodes two

distinct products: one with H absent and one with H present. In a feature

module approach, these codebases are represented by: BASE and BASE +

H. In feature modularizing legacy applications, it has been observed that

methods often have many such optional code fragments, causing their feature

modules to have many tiny methods [76]. In summary, features can be used in
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both feature-module implementations and annotation-based implementations

of SPLs.

X15 relies on annotation-based implementations of SPLs. X15 uses the

Java custom annotation type Feature to encode a configuration file. Ev-

ery feature F of an SPL has a static boolean variable F declared inside

Feature whose value indicates whether F is selected (true) or not (false).

@interface Feature {

static final boolean X = true;

static final boolean Y = true;

static final boolean Z = false;

boolean value ();

}

Figure 4.3: The Feature Annota-
tion Type

Figure 4.3 shows a Feature declaration

with three features X, Y , and Z where

X and Y are selected and Z is not.

The specified configuration is {X,Y }.

Feature.java is generated by a feature

model configuration tool [5, 9].

X15 uses Java’s built-in annotative means to encode variability. (Do-

ing so exposes basic SPL design rules or guidelines for X15 SPLs, which are

described in Appendix C.) Let P denote the code base of a Java SPL. Ev-

ery Java declaration (class, method, field, constructor, initializer) in P has an

optional Feature annotation with a boolean expression of Feature variables.2

If the expression is true for a configuration, the declaration is present in that

configuration’s product; otherwise it is not. If a declaration has no Feature

annotation, it is included in every product of the SPL.

Figure 4.4a shows three declarations: Graphics, Square, and Picture.

2Package-level annotations in Java are placed in a package-info.java file.
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Interface Graphics belongs to every program of the SPL as it has no Feature

annotation. Square is added by feature X. Picture is added whenever a pair

of features, Y and Z, are both present.

interface Graphics {...}

@Feature(X)

class Square

implements Graphics {...}

@Feature(Y)

class Picture

implements Graphics {...}

(a)

@Feature(X)

int i, j, k;

(b)

@Feature(X)

int i, j;

@Feature(Y)

int k;

(c)

Figure 4.4: Feature Annotations

Figure 4.4b shows a declaration of three integer fields i, j, k, all belonging

to feature X; the Feature annotation is for the entire line. If fields i and j

belong to feature X, and k to feature Y , Figure 4.4c is used.

Variability in executable code is written using if(feature expression)

statements. For example, it is common to have different bodies for a single

method in an SPL. Suppose features X and Y are never both selected. Fig-

ure 4.5a is a CPP encoding that introduces at most one declaration of method

m in any program; Figure 4.5b shows the cascading if -else statements used

in X15 to encode the same variability inside one declaration of m.

Here is how X15 works: It parses P and looks for the parse tree of

Feature.java, from which it extracts the boolean value for each feature.

These values define the current configuration C.

80



#if(X)

int m() { return 1; }

#elif(Y)

int m() { return 2; }

#else

int m() { return 0; }

#endif

(a)

int m() {

if(X) return 1;

else if(Y) return 2;

else return 0;

}

(b)

Figure 4.5: Encoding Different Method Bodies

Let PC be the source of the SPL product with configuration C. Fig-

ure 4.6 sketches the parse tree of a Feature-annotated class declaration of P.

X15 sees the Feature annotation and evaluates the feature expression knowing

the current configuration. If the expression is true then X15 pretty-prints the

parse tree including the Feature declaration (minus code fragments that are

configuration-disqualified). If the expression is false, X15 comments-out the

source of the entire parse tree, effectively erasing the entire declaration. This

is how X15 projects P w.r.t. C to produce PC . X15 never changes a parse tree

during a projection.

X15 uses projection in two distinct ways. One projection is sent to the

Java compiler to produce an executable. The second projection relies on the

standard IDE functionality of ‘code folding’, where code that is not part of PC

is hidden in a code fold. A code fold indicates the location of a variation point

(VP) — where code in some SPL product is known to exist, but is not present

in PC [5]. Code folds also provide a practical way for programmers to edit

code that is visible (i.e., code that belongs to PC). Programmers can inspect,

but not edit, folded contents. Figure 4.7a shows P, Figure 4.7b shows PC with
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TYPE

Y Z

&&Feature

NAME INTERFACE 
TYPES

Graphics

BODY 
DECLARATIONS

Source: @Feature(Y && Z)

class Picture implements Graphics {}

PictureANNOTATION

MODIFIER

VALUETYPE

Parse Tree:

Figure 4.6: A Parse Tree with an Feature Annotation.

folded code when BLUE=false, and Figure 4.7c shows PC with unfolded code

when BLUE=false.3

15

(a) 
SPL Codebase

(b) 
BLUE = false (folded)

(c) 
BLUE = false (expanded)

(a) SPL Codebase (b) BLUE = false (folded) (c) BLUE = false (expanded)

Figure 4.7: Code Folding in X15.

Together, both projections provide a useful end-user functionality: an

3Of course, there are situations where to correctly edit PC , programmers must edit P.
Suppose a programmer wants to provide a new body to an existing method. To do so, s/he
must edit P to achieve the desired projection. X15 offers a GUI button for users to toggle
between editing P and PC , should the need arise. [131] has other examples.

82



SPL programmer can see and edit a ‘view’ (projection) of PC , the SPL prod-

uct of the current configuration. Further, s/he can compile PC and debug

it through the code-folded projection, giving the impression that the SPL

programmer is editing, debugging, and developing a single product PC , even

though behind the curtains edits are being made directly to P.

4.2.1 Refactorings are Not Edits

If refactorings were just text edits, we would be done. A programmer

invokes a refactoring on product PC , the code of PC is changed and the edits

are made directly to P. End of story.

The problem is that refactorings are more than text edits. Consider the

SPL codebase P of Figure 4.8a. The separate codebase PX for configuration

{X} is Figure 4.8b. Figure 4.8c shows PX after renaming Grafix to Graphics.

The problem is evident in Figure 4.8d: propagating text changes made to PX

back to P breaks P because not all occurrences of Grafix in P are renamed to

Graphics — the program for configuration {Y } no longer compiles.

In a nutshell, text-edit back-propagation tools for SPLs are not ‘refactoring-

aware’; they are inadequate to deal with the changes made by refactorings. Dig

and Johnson demonstrated an analogous problem for version control [43]. In

effect, future SPL tools must provide ‘refactoring aware’ back-propagation.

The key insight to achieve ‘refactoring awareness’ is discussed next.
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4

(b) Codebase PX

abstract class Grafix {...}

@Feature(X)

class Square 

implements Grafix {...}

(c) Rename-Refactored PX

abstract class Graphics {...}

@Feature(X)

class Square 

implements Graphics {...}

abstract class Graphics {...}

@Feature(X)

class Square 

implements Graphics {...}

@Feature(Y)

class Picture 

implements Grafix {...}

(d)  Code-backpropagation to ℙ

(a) Codebase ℙ

abstract class Grafix {...}

@Feature(X)

class Square 

implements Grafix {...}

@Feature(Y)

class Picture 

implements Grafix {...}

Figure 4.8: Problems in Refactoring Separate Codebases.

4.3 Algebras of Feature Compositions

Features have long been viewed as the conceptual modules or building

blocks of SPL products. Early research (AHEAD [13], FeatureHouse [6], DOP

[118]) not only developed algebras for feature compositions, but also invented

OO language extensions to define concrete feature modules. While the ideas

behind these language extensions — role-based programming, mixin-layers,

and context-oriented programming — have been widely explored, they have

not yet caught on. In an annotative approach, the code fragments of a feature

are distributed throughout codebase P. A feature module, in contrast, collects

these same fragments in a single package-like structure. So any theorem that

can be proven using feature modules should hold for both annotative and

feature-module implementations. These algebras provide insight on how OO

refactoring engines and back-propagation tools can become feature aware. We
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sketch known ideas and then present the insight that made X15 possible.

4.3.1 Sum and Projection of Feature Modules

Algebras axiomatize the summation or composition of feature modules

to produce SPL products [10,11].4 The ideas are simple and can be informally

conveyed; see citations for details.

A feature module Fi encapsulates the implementation of feature i. Prod-

uct PC with configuration C is produced by summing the modules of its fea-

tures [6, 13, 118]. Thus, if C = {X, Y, Z} where X, Y , and Z are features,

product PC is:

PC =
∑
i∈C

Fi = FX + FY + FZ (4.1)

Let F be the set of all features. The codebase P of an SPL is:5

P =
∑
i∈F

Fi (4.2)

Projection, as discussed in Section 4.2, is a complementary operation

to summation. The C-projection of P yields PC :

ΠC(P) = PC (4.3)

4A cross-product of features exposes the submodules of features that arise from fea-
ture interactions [10, 123]. Cross-products rely on module summation, and are otherwise
orthogonal to this paper.

5A common name for P is a 150% design – it includes all possibilities.
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Think of projection as the operation that eliminates feature modules that do

not belong to C. Let C1 and C2 be different sets of features from the same

SPL (i.e., C1, C2 ⊆ F). An axiom that relates projection and summation is:

ΠC1(
∑
i∈C2

Fi) =
∑

i∈C1∩C2

Fi (4.4)

Equation (4.1) follows from (4.2) and (4.4):

ΠC(P) = ΠC(
∑
i∈F

Fi) // (4.2)

=
∑
i∈C∩F

Fi // (4.4)

=
∑
i∈C

Fi // where C ⊆ F

As said in Section 4.2, X15 implements projection in two different ways: Πfold
C

code-folds P to expose only the code of PC for viewing, editing and refactoring.

Πcomment
C comments-out unnecessary code which is then fed to the Java com-

piler to produce bytecodes for PC ; this compiled version enables programmers

to execute, debug, and step-through the code folded version of PC .

4.3.2 Theorem for Refactoring SPLs

The unknown is this: how do refactorings extend the algebras of feature

compositions? No one to our knowledge has answered this question before; an

answer will tell us how SPL codebases can be refactored.

Let R be a refactoring. If we R-refactor PC , we get PRC :

R( ΠC(P) ) = R(PC) = PRC (4.5)
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As R changes PC , R must also change P. But how? Our conjecture and

theorem is this: PRC can be computed by the R-refactoring of P followed by a

C-projection:

ΠC( R(P) ) = PRC (4.6)

ℙ 𝑃𝐶

𝑃𝐶
ℰℙℰ′

Π𝐶

Π𝐶

ℰ′ ℰ

(a)

𝑃𝐶
ℰ = Π𝐶 ℰ′ ℙ

= ℰ Π𝐶 ℙ

(b)

Π𝐶
ℙ 𝑃𝐶

𝑃𝐶
ℛℙℛ

Π𝐶

ℛ ℛ

Figure 4.9: Key Theorem
of SPL Refactoring.

Equivalently, (4.6) is the commuting diagram of

Figure 4.9 where the operations of projection and

refactoring commute [106].

SPL programmers must realize that refac-

toring an SPL codebase P has more constraints

than just refactoring a single product PC . We ex-

plain in Section 4.4.2 that the preconditions to R-

refactor P imply the preconditions to R-refactor

PC . Our proof of (4.6) assumes the preconditions

to R-refactor P are satisfied. Therefore R in (4.6) really represents the code

transformation that is made by an R refactoring.

We observed the following distributivity identity over years of develop-

ing feature-based SPLs: the R-refactoring of a sum of feature modules A and

B equals the sum of the each R-refactored feature module:

R(A+B) = R(A) +R(B) (4.7)

This axiom is intuitive: common refactorings are largely oblivious to feature

module boundaries. That is, when a program P = A+B is R-refactored, one

expects both modules A and B to be modified by R, namely PR = AR+BR.
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Example: Methodm in Figure 4.10 is defined in class/featureA. Class/fea-

ture B calls m. When m is renamed to n, both features A and B are

modified to AR and BR.

@Feature(A)

class A {

void m() {}

}

@Feature(B)

class B {

void foo(A a) {

a.m();

}

}

(a) Before

@Feature(A)

class A {

void n() {}

}

@Feature(B)

class B {

void foo(A a) {

a.n();

}

}

(b) After Renaming m to n

Figure 4.10: Rename-Method Refactoring

The proof of (4.6) follows from (4.5) and (4.7):

ΠC( R(P) ) = ΠC( R(
∑
i∈F

Fi) ) // by (4.2)

= ΠC(
∑
i∈F

R(Fi)) // by (4.7)

=
∑
i∈C

R(Fi) // by (4.4)

= R(
∑
i∈C

Fi) // by (4.7)

= R(PC) // by (4.5)

= PRC // by (4.5)

If axiom (4.7) holds, it tells us two things: (1) it reaffirms that algebras

for feature summation and refactoring are intuitively simple;6 and (2) tells

6The name of this algebraic structure is a ‘left M-semimodule over a monoid’ [69].
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us how to translate refactorings of views of SPL products (namely PC) to

refactorings of the SPL codebase P. That is, when an SPL programmer

applies a refactoring R on an X15 view of PC , s/he sees R(PC) = PRC as the

result. But behind the curtains, X15 is really applying R to P, and taking its

C-projection to present PRC to the programmer.

Example: A X15 user renames Grafix to Graphics in PX of Figure 4.8.

X15 applies this refactoring to the entire codebase P. The result is that all

references to Grafix are renamed to Graphics and that the resulting pro-

jection (view) of PX is correct as in Figure 4.8c. X15 updates all programs

in an SPL that are affected by this rename, and thus keeps P consistent.

4.4 Feature-Aware Preconditions

Applying a code transformation R to a codebase is well-understood

[29,82], both in pretty-printing refactorings (Chapter 3) and in AST transfor-

mations. An interesting part about X15 is how it handles refactoring precon-

ditions. We begin by reviewing a fundamental SPL analysis, and then show

how this analysis is relevant to refactoring preconditions.

4.4.1 Safe Composition

Safe Composition (SC) is a common SPL analysis. It is the verification

that every program of an SPL compiles without error [5, 36,77,78,101,139].

Suppose that field x is added by feature X, field y is added by feature Y ,
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and statement “x = y;” is added by feature F . This relationship is expressed

by the presence condition ψ :=(F⇒X∧Y ). That is, when statement “x = y;”

appears in a product, so too must the declarations for x and y.

Let φ be the propositional formula of the SPL’s FM [5, 9]. If φ∧¬ψ

is satisfiable, then at least one program in the SPL does not satisfy ψ and

hence will not compile [36]. Similarly, dead code is source that appears in no

SPL program. Let δ be the presence condition for code fragment `. If φ∧δ is

unsatisfiable, then ` is dead code.

An SC tool culls P for all distinct ψ and δ and verifies that no program

in the SPL violates either constraint. We say P satisfies SC if no presence

condition ψ is violated and P is dead code free if no dead code fragments are

found.

4.4.2 Preconditions for SPL Refactorings

class A {

void foo() {...}

@Feature(X)

void bar() {...}

}

Figure 4.11: Renaming
foo to bar Fails

Theorem (4.6) assumes the preconditions for

R-refactoring P are satisfied. But what are these

preconditions? Consider the example of Figure 4.11:

A programmer wants to refactor the base product

Pbase whose SPL codebase P is Figure 4.11. Method

bar is invisible to the programmer as it belongs to

unselected feature X. If the programmer tries to rename foo to bar, the

rename fails since there is at least one product in the SPL (any configuration

with X) where this rename fails, even though renaming foo to bar in Pbase is
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legal. We use the rule of Liebig, et al. [88]: An R-refactoring of an SPL fails

if R fails on any product of that SPL.

X15 reports precondition failures of a refactoringR by citing a condition

or SPL configuration where it fails. This is done by ‘lifting ’ a refactoring

precondition to a SC constraint ψ and verifying all SPL products satisfy ψ.

(By definition the lifted constraint implies the precondition on program PC).

R3 supports 34 different primitive refactorings and uses 39 distinct primitive

precondition checks, where each R3 refactoring uses a subset of these 39 checks.

X15 supports all of R3’s primitive refactorings and preconditions.

We expected most R3 preconditions would be feature-aware, but were

surprised when only 5 of the 39 required lifting. Why?

1. Java annotations cannot be attached to any code fragment, such as a

Java modifier. Thus, preconditions dealing with modifiers are not lifted,

and thus remain identical to their unlifted R3 counterparts. And

2. Some preconditions are feature-independent, such as Declaring Type7

and Constructor,8 so lifting them is unnecessary.

Here is a precondition that required lifting:

• Binding Resolution. Before a method is moved, a lifted check is per-

formed: the moved method should still be present in all programs in

7A method cannot be moved if its enclosing type is an annotation or interface.
8A constructor cannot be moved.
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which it appeared before the move and all declarations referenced in its

body are still present and visible, otherwise the move refactoring is re-

jected. Figure 4.12 shows the before and after result of moving method

A.m to class C. One SC check for parameter type B prior to the move is

GREEN∧BLUE ⇒ Y ELLOW 9 and after the move the check becomes

RED ∧BLUE ⇒ Y ELLOW .

@Feature(GREEN)

class A {

@Feature(BLUE)

void m(B b, C c) {...}

}

@Feature(YELLOW)

class B { }

@Feature(RED)

class C { }

(a) Before

@Feature(GREEN)

class A { }

@Feature(YELLOW)

class B { }

@Feature(RED)

class C {

@Feature(BLUE)

void m(B b, A a) {...}

}

(b) After Moving A.m to C.m

Figure 4.12: Binding Resolution Constraint

The remaining four other R3 preconditions that became ‘feature aware’ in X15

are reviewed in Appendix B.

4.5 Implementation Notes on X15

The execution pipeline of X15 appears in Figure 4.13. The only addi-

tions to the R3 pipeline in Figure 3.11 are steps α, β, and γ.

(α) X15 constructs feature predicates for all identifiers and stores them

9Also, the presence of method m implies the presence of class C.
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Figure 4.13: X15 Pipeline.

in the database;

(β) At a user’s request, X15 checks for dead code, validates SC, and

performs code folding for viewing, editing, and debugging SPL pro-

grams;

(γ) adds feature-awareness to precondition checks.

Feature models of SPLs are rather static; they do change but slowly.

X15 culls P for constraints which are translated to a large number of SAT

problems to solve. From experimental results in Section 4.6, a crude estimate

is about 1 SAT check per every 2 lines of source. A saving grace is that the

number of unique SAT checks is small, possibly orders of magnitude smaller

than the crude estimate [139].

X15 leverages the stability of an SPL’s feature model by caching the

results of SAT checks. When a feature-aware condition arises, X15 identifies

the unique SAT checks to verify, and looks in its SAT cache. Only when a
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previously unseen SAT check is encountered will a SAT solver be invoked, and

of course, its result is henceforth cached. The cache is cleared whenever the

feature model is updated.

4.6 Evaluation

We use makeVisitor and inverseVisitor scripts to compare X15’s

performance w.r.t. R3. X15 has the same expressivity as R3 – except of course

in an SPL context. Like R3, X15 supports 18 of the 23 design patterns in [57];

the other 5 patterns do not benefit from automation [82].

We consider three research questions:

• RQ1: Can X15 refactor Java SPLs?

• RQ2: How fast is X15 compared to its feature-unaware counterpart R3?

• RQ3: Does caching SAT checks improve performance?

4.6.1 Experimental Set-Up

Many public SPLs are written in the C language [77, 88, 125], but not

so many for Java; there are even fewer Java SPLs with regression tests. We se-

lected 8 Java SPLs for our studies. Three (AHEAD, Calcuator, and Elevator)

had regression tests that could validate X15 transformations worked correctly.

Two (Notepad and Sodoku) lacked regression tests but could be checked by

manually invoking their GUIs before and after running X15 scripts to con-

firm behavior preservation. The remaining three (Lampiro, MobileMedia,
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and Prevayler) also lacked regression tests. We did not know how to execute

these programs, so we could only verify that they compiled without errors

before and after refactoring.

A significant challenge is translating these SPLs into X15 codebases.

SPLs that used AHEAD [13] and FeatureHouse [6], namely Mixin, Calcuator

and Elevator, were partially translated by tools – manual work was still needed.

The remaining five applications (Notepad, Sudoku, Lampiro, MobileMedia,

and Prevayler) used CIDE [76], which could be transformed into javapp au-

tomatically, and then into X15 form. More on this in Section 4.6.3.

Like the R3 evaluation, makeVisitor ‘seed’ methods were chosen so that

they created the largest Visitors in terms of the number of ‘visit’ methods.

As the number of refactorings needed to make a Visitor is proportional to

the number of ‘visit’ methods, large-sized Visitors were appropriate for X15

evaluations.
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4.6.2 Results

4.6.2.1 Table Organization

Table 4.1 shows the results of makeVisitor. The first column lists

the eight target programs along with their lines of code, number of regression

tests, and number of features. Each row is an experiment that corresponds to

makeVisitor invoked on the ‘seed’ method in the Seed ID column. The third

column, # of Refs, is the total number of refactorings executed to make a

Visitor for that seed.

Each of our SPLs has a ‘max’ configuration – all features are selected.

We let R3 execute the same refactoring script on the ‘max’ configuration pro-

gram of each SPL to estimate the overhead of X15 w.r.t. R3. The next six

columns show the times spent on each R3 pipeline step of Section 3.3:10

• Bld DB (B): time to build the R3 database by harvesting type informa-

tion from Eclipse ASTs and symbol tables.

• Link AST (E): time to link AHEAD AST nodes with R3 database

tuples.

• Pre Chk (F1): time to check feature-unaware preconditions.

• DB Upd (F2): time to update the R3 database during a script execution.

• Proj (G): time to write the refactored code to files.

10The run times of X15 scripts were measured by the V isualV M (ver. 1.3.8) [147]. Each experiment was
executed five times to calculate our reported averages.
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• Tot (R3T): total time in pipeline stages (B), (E), (F1), (F2), and (G).

The next three columns list the computations for feature-aware refactorings

in X15:

• Pred Coll (α): time to collect presence conditions on all declarations

and references.

• Ext Prec (γ): time spent on precondition checks, including SAT invo-

cations to check feature-aware preconditions and the time when caching

SAT solutions.

• Tot (X15T): total time of (R3T)+(α)+(γ) with/without caching.

By comparing the total times using R3 and X15, we estimate the overhead of

feature-aware refactorings in our experiments, the subject of the last column:

• Overhead: the overhead difference (X15T) - (R3T) in terms of execu-

tion time with/without caching.

Table 4.2 lists the results of inverseVisitor in an identical tabular structure.
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4.6.2.2 Answers to Research Questions

RQ1: Can X15 refactor Java SPLs? X15 successfully retrofitted 64 design

pattern instances on our SPLs using a total of 2,316 refactorings: 32 added a

visitor pattern and 32 removed a visitor. The most challenging experiments,

A5 in Tables 4.1 and 4.2, executed 552 primitive refactorings, respectively.

Most other experiments required fewer as they have fewer ‘visit’ methods.

Our conclusion is that X15 can indeed refactor SPL codebases.

RQ2: How fast is X15 compared to R3? To answer this question, we used

three measures:

1. Consider the execution times for X15 for all makeVisitor and inverseVisitor

experiments. The largest X15 experiment, Row A5, took 4.8 seconds.

The comparable experiment using R3 took 3.6 seconds. (For a perspec-

tive on R3’s improvement over the Eclipse refactoring engine, a compa-

rable refactoring to A5 took Eclipse 298 seconds to execute, a speedup

of over 100× [80].)

Row L5 took 5.4 seconds; the comparable experiment using R3 took 3.6

seconds. The numbers for inverseVisitor in Table 4.2 are similar. For

less demanding scripts – remember: rows are not individual refactorings

– all X15 executions complete in under 1.4 seconds; the corresponding R3

executions finish in under 1 second. On average across all experiments,

X15 was 1/2 seconds slower than R3 per experiment.
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2. Database creation time is small for R3; the largest experiments (A and L

rows) take less than 2 seconds. X15 additionally collects feature presence

predicates column (see column α of Table 4.1); this adds one more second

of execution time for the largest SPLs. For smaller SPLs, X15 and R3

database build times are indistinguishable. For a perspective, between

the time a user clicks the Eclipse GUI and the list of available scripts is

displayed, both R3 and X15 harvesting can be done with time to spare.

3. Over 80% of Eclipse refactoring execution time is consumed by check-

ing preconditions [82]. In contrast, R3 precondition checking is almost

instantaneous (see column (F1)). X15 takes advantage of R3’s speed,

but spends extra time for feature-aware precondition checks. They do

indeed incur additional overhead (see column (γ)). In the largest SPLs,

this adds another 1.2 seconds without theorem caching. As before, for

smaller SPLs, the additional time is unnoticeable.

Our conclusion is that X15 refactors SPLs at comparable speeds to R3, a

feature-unaware refactoring engine.

RQ3: Does caching SAT checks improve performance? To answer this

question, we used two measures:

1. The average overhead for checking feature-aware preconditions in the

makeVisitor experiment was 0.5 seconds without caching SAT solu-

tions. With caching, the average overhead dropped to 0.4 seconds. For
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App
No-caching (seconds) Caching (seconds) Speed Up
Dead Safe Dead Safe Dead Safe
Code Composition Code Composition Code Composition

A 1.179 [182] 94.675 [19,811] 1.130 [176] 4.210 [62] 1.04 (6) 22.46 (19,749)
C 0.110 [42] 0.140 [108] 0.100 [39] 0.080 [9] 1.10 (3) 1.75 (99)
E 0.230 [158] 0.256 [676] 0.229 [155] 0.130 [16] 1.00 (3) 1.97 (660)

N 0.380 [188] 0.497 [635] 0.470 [188] 0.240 [86] 0.81 (0) 2.07 (549)
S 0.285 [79] 0.426 [854] 0.300 [64] 0.250 [14] 0.95 (15) 1.70 (840)

L 0.780 [138] 6.741 [29,501] 0.680 [62] 1.260 [11] 1.15 (76) 5.35 (29,490)
M 0.362 [125] 0.869 [1,976] 0.270 [87] 0.220 [25] 1.34 (38) 3.95 (1,951)
P 0.445 [94] 1.244 [3,329] 0.470 [88] 0.470 [12] 0.95 (6) 2.65 (3,317)

– N of [N] is the number of SAT problems solved for extra precondition checks.
– N of (N) is the number of SAT problems whose solution was found in the
cache.

Table 4.3: Dead Code and Safe Composition Check Results

a perspective, experiment L5 spent 1.2 seconds proving 1,294 theorems,

a vast majority of which were duplicates. With caching, only one extra

theorem required a SAT proof, taking 0.1 seconds.

2. Table 4.3 shows the time and number of SAT problems for dead code and

SC checks on the SPLs in Table 4.1. P satisfying SC and being dead code

free is a precondition for X15 refactorings. Again, we took two different

approaches (non-caching and caching) to measure how much time X15

can save by reusing SAT solutions. On average for our experiments,

caching increased the speed of dead code checks by 1.03× and SC by

15×.

Table 4.2 shows results of our inverseVisitor experiment. On aver-

age, the overhead for feature-awareness in inverseVisitor refactorings was

0.5 seconds without caching and 0.4 seconds with caching, which is miniscule.

The results of inverseVisitor are no different than those of makeVisitor.
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Readers may be surprised at the response time of our SAT invocations.

This is due to the fact that the feature models of our SPLs are relatively

simple. Having said this, our observations are consistent with prior work that

SAT problems for feature models are ‘easy’ [93].

Our conclusion is that caching solutions to SAT checks does indeed

improve performance.

4.6.3 Threats to Validity

Every SPL tool today uses a unique means to encode variability.11 In

order to use these SPLs in our experiments, we had to modify them to use X15

annotations.

SPLs that used AHEAD [13] and FeatureHouse [6], namely Mixin,

Calcuator and Elevator, were partially translated by tools – manual work was

still needed. The remaining five applications (Notepad, Sudoku, Lampiro,

MobileMedia, and Prevayler) used CIDE [76], which could be transformed

into javapp automatically, and then into X15 form.

In Section 4.6.1, we said that the four applications in Table 4.1 used

javapp to specify features [72]. In order to use them, we had to reformat

javapp to Java custom annotations by hand. We did our best to keep the

original feature specification but there were some code fragments that required

special care. Example: Figure 4.14a shows a compilation unit belonging to

11Even variability-aware compilers require source adjustments to be used [78,88]; there is
no free lunch to use any existing SPL tool.
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optional feature X using javapp. As imports cannot be annotated in Java,

we assigned feature X to the class declaration A in Figure 4.14b. However, in

case class B belongs to X which is unselected, Figure 4.14b violates SC: it is

an error in Java to import a non-existent class. Our solution was to use the

fully qualified name instead as shown in Figure 4.14c.12

#ifdef X

package p;

import q.B;

class A {

B b;

}

#endif

(a)

package p;

import q.B;

@Feature(X)

class A {

B b;

}

(b)

package p;

@Feature(X)

class A {

q.B b;

}

(c)

Figure 4.14: Translation javapp to @Feature Annotations

Note: There are no “standard” tools, perhaps other than CPP, for SPL

construction. All new SPL prototypes, including X15, require translations

(often manual) of existing Java codebases to a form that the prototype can be

used. There is no “free lunch” for any tool.

4.7 Related Work

4.7.1 A Survey of SPL Tools

Future tools for Java SPLs should have the following properties:

1. Support the refactoring of SPL codebase P,

2. Do not create a separate code base for PC ,

12Even variability-aware compilers require source adjustments to be used; there is no free lunch.
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3. Propagate text edits from PC back to P,

4. Propagate refactorings of PC back to P.

because refactorings are central to Java program development; and manual

propagation of changes is laborious and error prone [13,25].

If SPL tools created a separate codebase for PC , it is possible to auto-

matically propagate edits in PC to P. But not the edits made by refactorings.

Why? Recall the Rule of Liebig et al [88]: An R-refactoring of an SPL fails if

R fails on any product of that SPL. Refactoring PC as an isolated codebase

will not account for modifications of other products of the SPL where that

refactoring’s precondition fails. Thus, unless a separate codebase for PC also

keeps track of all other products in P, back-propagating of edits will fail.

Table 4.4 categorizes the properties of X15 with eight well-known SPL

tools (AHEAD [13], CIDE [76], Choice Calculus tools [131, 148], DeltaJ [84],

DOPLER [44], Gears [25], FeatureHouse [6], and pure::variants [109]13). X15

is unique among existing SPL tools in that it supports all key properties.

4.7.2 Variation Control Systems

Variation Control Systems (VarCSs) are tools that project a reconfig-

urable codebase P to produce a separate codebase called a ‘view’. The view is

edited and its changes are back-propagated to P by an update tool. AHEAD

and Gears are VarCSs among many others [148].

13pure::variants has a tool that updates SPL products when P is changed [30]; this is
forward-propagation P→ PC of changes, not back-propagation PC → P of X15.
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Tool

Supports OO
of refactorings
Java SPL
codebases

Tools to
project
editable
views

Does NOT
create a separate
codebase for
debugging and
execution

Back-propagates
edits

Feature-aware
back-propagation

AHEAD 7 7 7 3 7
Choice Calculus 7 3 7 3 3

CIDE 7 7 7 7 7
DeltaJ 7 7 7 7 7

DOPLER 7 7 7 7 7
Gears 7 7 7 3 7

FeatureHouse 7 7 7 7 7
Pure::Variants 7 7 7 7 7

X15 3 3 3 3 3

Table 4.4: Comparing Capabilities of SPL Tooling

The most advanced VarCS tools [131, 148] are based on the Choice

Calculus [52] and rely on the edit isolation principle (EIP), which says that

all edits made to a view are guaranteed not to effect code that was hidden

by projection. X15 follows the EIP as long as refactorings are not performed;

refactorings violate EIP. We showed that propagation tools for text edits are

inadequate to deal with the changes refactorings make to SPL products. Never-

the-less, empirical results by Stanciulescu et al. show VarCS tools are feasible

to edit and maintain real-world SPLs [131]. VarCS ideas can offer additional

improvements to X15.

4.7.3 Other Java Variabilities

The Choice Calculus [52] is a formal model of variability-aware (not

just feature-aware) languages. A capability that the ChoiceCalculus has (and

we might add so does CIDE [76]) that X15 does not is the removal of method

parameters that are Feature-annotated [52,76,88]. Consider the Java code of
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Figure 4.15a. Parameter a is Feature-annotated, suggesting that it is removed

if X is not a feature of the target configuration. Figure 4.15b shows the

projected result when ¬X holds. There are SPL tools that support such

variability [52,76,88].

(a) void m( @Feature(X) A a ) {...}

(b) void m( ) {...}

Figure 4.15: Parameter Removal by Projection

X15 presently ignores Feature annotations on parameters of methods and

generics. We are unconvinced that parameter projection is a good idea as it

encourages unscalable SPL designs: if methodm has 2 parameters in some SPL

programs, 3 in others, and 4 in the remainder, it quickly becomes confusing

to know which version to use and when. If there are many such methods, to

keep all of these variations straight, the SPL codebase becomes impossible to

understand. There is no technical reason that precludes parameter projection

in X15 other than increased complexity; we leave its necessity for others to

decide and add.

Java annotations have room for improvement. Cazzola et al. [31] pre-

sented @Java, an extension to Java language, that can annotate finer-grained

code fragments such as blocks and expressions that cannot be annotated by

Java. The atjava tool translates @Java annotations to Java-compilable code

and then inserts custom attributes into bytecode instead of the translated

code. @Java could improve X15 when atjavac (i) provides the start and end
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of each annotated code fragment, (ii) preserves the original @Java annotation’s

value expression (i.e., feature expression in X15), and (iii) keeps the annotated

expression if it exists. atjavac currently supports (i) and (iii), and can be

customized to do (ii).

4.7.4 Variability-Aware Compilers

Conditional compilation in Java has taken two forms: One is OO

language-extensions to support type safe variability, such as [8, 51, 70]. These

latter papers are elegant proposals to extend OO languages with conditionals

to enable static variability and type safety using generics.

The other uses preprocessors, such as [72,108,126], which leads to work

on VACs [22, 52, 77, 88, 149]. Developing tools to parse C-with-CPP source to

analyze the impact of feature variability is difficult [33,62,77], but unavoidable

if CPP-infused SPL codebases are to be analyzed. It may be years, if ever,

before a VAC for C++ appears. Most of the effort in developing VACs deals

with the artificial complexity that CPP constructs add to host languages [59,

61]. And using these VACs is not without effort – the codebase must use

disciplined annotations [89].

In contrast to the above research, X15 requires no changes to Java or

its compiler. X15 directly supports feature-variability for view editing, view

compilation, and view refactoring, capabilities that existing SPL tools lack.
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4.7.5 Refactoring Variability-Aware Codebases

Schulze et al. [120] report experiences on integrating FeatureHouse [6]

with refactorings, such as pull-up, but also refactorings that partition large

features into a composition of smaller features. The authors report the dif-

ficulties on refactoring SPLs when physical feature modularity is used. A

deliberate design decision of ours was to use an annotative (or implicit feature

modularity) approach to avoid these implementation difficulties. X15 relies on

pure Java, not a custom extension of Java. We argued that the mathematics

of (4.6) applies to all feature-based SPL implementations — including those

that rely on special languages to support feature modularity. But to do so

requires building a custom compiler and a custom refactoring engine, which is

daunting.

There are other useful kinds of feature ‘refactoring’. Schulze et al. [121]

presented module refactorings such as rename, merge, and remove for DOP

SPLs. Code smells were proposed to identify refactoring opportunities in DOP

[116]. These are potential future extensions of X15.

Kuhlemann et al. [85] proposed Refactoring Feature Modules (RFMs).

Just as we use the term feature modules to mean building-blocks of SPL prod-

ucts, an RFM is a feature module or a single product refactoring (not a refac-

toring script). An RFM refactoring is feature-unaware and is applied to a

feature-unaware product to adapt it for use in a legacy application. Although

RFMs have a name that is suggestive of our work, it does not deal with feature-

aware refactorings. Nevertheless, subsequent refactoring an SPL program for
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adaption is a good idea because it separates the concerns for SPL product

development and creation from later adaptation.

Aspect-aware refactorings [2, 66, 98, 151] are a counterpart to feature-

aware refactorings. The technical issues and solutions explored were specific

to AspectJ (e.g., pointcuts and wild-cards), and are distant topics to OO

refactoring feature-based Java SPLs.
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Chapter 5

Conclusions and Future Work

OO refactoring technology is now more than 25 years old. Most re-

searchers, ourselves included, tacitly assumed that few significant advances in

tooling classical Java refactorings were possible after this time. But looking

closer, motivated by practical needs and applications for refactoring, reveals

that significant advances are not only possible but are necessary. This thesis

identified three core problems in software refactoring tools:

• There are many program transformation tools with distinguished merit,

but none (to us) seems practical in the long run for refactoring scripts.

Writing customized refactorings is a task that is largely reserved to tool

experts due to overly complex programming interfaces and paradigms.

We presented a refactoring tool for undergraduate students to write high-

order refactorings (e.g., design patterns) as parameterized refactoring

scripts in Java.

• Most research on code transformation mentions that many infrastruc-

tures or tools could be used to implement refactoring or transformation

scripts. Notably none reported performance of refactoring engines. Our
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experiments show that refactoring performance is critical for future refac-

toring engines. We built a radically different refactoring engine based on

AST rendering to tackle issues of performance, expressivity, and scala-

bility for large programs. Our engine runs 10× faster than the Eclipse

refactoring engine.

• Existing refactoring tools for OO languages are unaware of software vari-

ability. We presented an approach to refactor Java SPL products and to

back-propagate the changes to the SPL codebase. Our tool is based on

a custom variability mechanism using innate Java annotations and IDE

code folding/commenting.

Our tools R2, R3, and X15 have addressed these problems.

5.1 R2: Practical Scripting of Refactorings

Retrofitting design patterns into a program using refactorings is tedious

and error-prone. The burden can be alleviated, either partially or fully, by

refactoring scripts. Today’s IDEs offer poor or no support for scripts, or require

a background and understanding of IDE internals that students and most

programmers will never have. Proposed DSLs that can be used for scripting

require knowledge of yet another programming language or the need to code

primitive refactorings.

Our solution R2 uses (1) Java as a scripting language, (2) R2 objects are

class, method, and field declarations of a Java program, and (3) R2 methods
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are native JDT refactorings, primitive transformations, or our scripts. We

used R2 to automate 18 out of 23 classical design patterns, where each R2

script is a compact Java method. The R2 idea is also portable to other Java

IDEs such as IntelliJ IDEA, NetBeans, and Visual Studio; it is not limited to

Eclipse (or to Java, for that matter). Our user study shows that R2 (and R3)

refactoring scripts (1) improve the success rate of retrofitting design patterns

by up to 3.5×, (2) are reusable on non-trivial programs, and (3) safer than a

manual process for even relatively small programs.

Practical issues still remain. We found that refactoring scripts place a

heavy demand on the correctness, expressiveness, and speed of IDE-provided

refactorings:

• Correctness of IDE-supplied refactorings remains a serious problem. One

of our experiments executed 96 JDT refactorings and introduced 100

errors (in Juno 4.2.2) that we had to fix manually. It took two years for

a version of JDT (Luna 4.4.1) to resolve these bugs.

• IDE-supplied refactorings should be expressive and easy to understand.

Odd or limited refactorings (as discussed in Section 2.2) preclude or

otherwise distort elegant scripts. An expressive basis set of primitive

refactorings to be supported by IDEs remains an open problem. Our

work takes this first step to eliminate the rough edges of JDT refactorings

by generalizing them enough to be useful in scripting design patterns.

• Refactoring speed is important as programmers expect instantaneous
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results. In our experiments, many executions are over 20 seconds; the

largest is 10 minutes.

5.2 R3: 10× Speed Improvement

We built a new refactoring engine that executes R2 scripts almost in-

stantaneously. Also, we showed how classical Java refactorings (e.g., move,

rename, change-method-signature) and refactorings that are essential to script

the creation and removal of Gang-of-Four design patterns, can be implemented

by a novel combination of databases and AST pretty-printing. Our tool R3:

• improves correctness by (1) applying more precise preconditions, (2)

passing all available JDTRE regression tests, and (3) fixing the bugs

that we discovered so far,

• like R2, expresses eighteen Gang-of-Four design patterns which can be

fully or partially automated as refactoring scripts, and

• executes refactoring scripts 10× faster than JDTRE on average.

Whether off-the-shelf JDT (or other IDE refactoring engines) will ever match

these capabilities remains to be seen. Standard OO refactoring engines leave

a lot to be desired – slow speed, no support for scripting, and overly complex

code bases.

Having said the above, R3 in no way eliminates the need for general-

purpose program transformation systems. There are many refactorings that
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are not used in scripting design patterns [15, 54] and there are many refac-

torings that cannot simply be “pretty-printed”, such as refactoring sequential

legacy code into parallel code [41]. Our response is: let’s do the basics bet-

ter and to provide scripting for the vast majority of programmers, which we

believe is critical to next-generation OO refactoring engines.

5.3 X15: Refactoring Java Software Product Lines

X15 is a tool that not only brings critical refactoring support to Java

SPLs, it also solves four other vexing problems:

• propagation of edits and refactorings of SPL programs back to the SPL

codebase,

• scripting refactorings to automatically retrofit SPL codebases with de-

sign patterns,

• not requiring language extensions to Java or a special variability-aware

compiler; a standard Java compiler will suffice, and

• efficiency: X15 is only 1.8 seconds slower than R3 for the largest SPL

application in our experiments.

X15 leverages practical experiences in years of Java SPL construction

to eliminate artificial complexities and ambiguities in SPL design. It also

leverages a theorem for refactoring feature-based SPLs that reveals a key dis-

tributivity property (refactorings distribute over feature module compositions)
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that makes X15 concepts and implementation clean. We believe that X15 sig-

nificantly advances and simplifies the state-of-the-art in SPL tooling.

5.4 Lessons Learned

We spent two years on R2. Our initial goal was to create a refactoring

engine that undergraduates could understand and use. It is well-known that

PTSs are difficult to use, and are typically used only by their authors. For

example, Semantic Design’s DMS (Design Maintenance System) [22] is an

impressive, industry-hardened tool for large-scale program transformations.

DMS has its own proprietary programming language called Parlanse. The

learning curve for undergraduates to become proficient in Parlance (or more

generally another language whose programming paradigm is different from

Java) makes DMS (and lesser tools) unappealing to the masses.

In general, we found PTSs are intimidating and are not for casual

users. To us, Eclipse is no different. Although the Eclipse is typical of the

state-of-the-art refactoring tools, it is not a system that can be easily given

to undergraduates to pick up, use, and modify. JDT refactorings use the

LTK framework to provide language-neutral refactoring APIs. LTK consists

of a refactoring core, UI components, and incorporates the JDT’s UI and

language-specific support. We were not aiming our effort at people with hard-

core interests writing arbitrary program transformations; the LTK framework

and DMS engine are for them.

During our two years, we committed ourselves to use JDTRE, at least
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initially, to better understand the problems of contemporary refactoring en-

gines. Consequently, we were convinced that further development of R2 within

Eclipse, using the JDT and LTK, was not the way to go. At the same time,

we extensively studied the JDTRE source to learn how a classical refactoring

engine is implemented, for example, by separating precondition and postcon-

dition checks, pre-computing code generation through AST operations, and

supporting other functionalities such as preview. The knowledge and experi-

ence we gained from JDTRE analyses were essential to our future work; they

helped us design and build a more reliable, expressive, and faster refactoring

engine, which is R3.

We also recognized that designing a scripting interface is not easy at

all. One problem is that we want to encode constraints into a more abstract,

understandable and reusable form for students as opposed to, say, coding them

in Java as is currently done in the JDTRE. (Needless to say, the analyses

needed to evaluate preconditions for each refactoring are the most difficult

tasks to implement a refactoring engine.) Also, refactoring APIs should be

both user-friendly and functional almost as much as GUI. Please note that

there is considerable evidence that refactoring tools are significantly under-

used. Different studies have offered reasons, often pointing to high complexity

of user interfaces for refactoring tools [100,143]. Despite a large amount of time

and effort, we still do not know how to efficiently locate a field variable in an

anonymous class declaration by writing a script. Nevertheless, we believe that

R2 APIs are well-designed to allow students to write programs that sequence
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refactoring steps to mechanize orchestrated program changes, such as design

patterns. Our empirical studies proved that undergraduates can script their

own refactorings at a significantly higher success rate, comparing with using

JDT refactorings. Manual interactions with IDE refactorings require not only

to determine a precise sequence of refactorings to invoke but to make additional

decisions (e.g., when refactorings violate preconditions, but refactorings can

repair these exceptions), all of which is hidden by R2.

R3 (and X15 which is based on R3) renders ASTs to produce refactored

code, which is a radically different approach of implementing a refactoring

engine. To do so, R3 builds a distinct database for pretty-printers to refer-

ence when rendering ASTs. For the sake of the database (which is further

optimized for our purpose), checking preconditions became much simpler and

faster in R3. Also, the removal of AST operations contributed to the speed-up

of R3 refactorings. However, as R3 supports scripting “a series of” refactorings

and performs projection “only once” after executing the entire scripts, the

implementation complexity of (1) recording the changes made by a number

of refactorings into the database and (2) pretty-printing refactored code at

a single phase by calculating all changes in the database was higher that we

expected. An example is explained in Appendix D.

5.5 Future Work

There remain interesting research problems for future work. First, we

need more fine-grained refactorings to achieve the goal of greater automation
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in software design. Fowler introduces over 90 refactorings in his webpage;

only one third of them is currently supported by IDEs including R2 and R3.

Not only are additional primitive refactorings needed, but also technical def-

initions in terms of precondition definitions and code transformation rules.

Contemporary texts on refactorings (and design patterns) lack precision in

their descriptions, offering vague explanations instead.

Second, R3 does not take advantage of the latest technologies in software

parallelism and/or multi-core architecture. R3 builds the entire database at

one time. We wonder how much faster R3 refactorings could be when building

database tables in parallel and locally updating only database tables affected

by code changes. We expect to have a combination of parallelism and database

localization in the next generation of R3. R3 recently improved its projection

speed 10-fold simply by using StringBuilder that outperforms String in

string concatenation.

Third, the real issue of the state-of-the-art refactoring engines is unre-

liability. We revealed that the current refactoring tools are infested with bugs,

which are rarely detected by regression tests. Even worse is that none of them

are aware of flaws in code transformation that we reported recently [83].

Fourth, we plan a user study with X15 to measure productivity when

we refactor SPLs using X15 comparing with manually edits to back-propagate

changes to SPLs. We see improving refactoring engines as a significant, inter-

esting and intellectual challenge, because the behavior preservation property

of refactoring engines is within reach provided that there are pioneers to make
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it so.

Fifth, we believe that R3 and X15 provide a basis for a fundamental

advance in teaching classical refactorings to undergraduate and graduate stu-

dents. No more will it be necessary to offer vague descriptions of refactorings

and patterns; now it will be possible to have students write their own refac-

torings, and compose them to write their own design pattern variants. Our

experience in teaching has clearly revealed that the lack of precision and the

lack of a clear understanding of what refactorings and patterns do are primary

sources of confusion and errors. By presenting tools, such as R3 and X15, we

believe a new dimension of understanding can be reaped by students and prac-

titioners alike, leading to more use of refactoring tools and better tools in the

future.
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Appendix A

Visitor Variants

Given a Visitor-retrofitted program in Figure A.1a, a programmer may

break the pattern structure inadvertently by introducing method B.accept in

Figure A.1b that shares run-time polymorphism with accept methods but lacks

invoking the corresponding visit method. When another programmer makes

a common change to visit methods in the V isitor class, the change will not

be executed when dangling B.accept(V isitor) is invoked. In order to avoid

such mistakes in the follow-up maintenance, refactoring engines would need

to introduce accept and visit stubs that preserve the Visitor structure. Also,

super-delegates are required to relay calls to super accept methods.
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class A {

void accept(Visitor v) {

v.visit(this);

}

}

class B extends A {

}

class C extends B {

void accept(Visitor v) {

v.visit(this);

}

void super_mθ() {

super.accept(Visitor.instance );

}

}

class Visitor {

static final Visitor instance

= new Visitor ();

void visit(A a) {}

void visit(C c) {

c.super_mθ();
}

}

(a) Original Visitor

class A {

void accept(Visitor v) {

v.visit(this);

}

}

class B extends A {

void accept(Visitor v) {

// missing a call to visit

}

}

class C extends B {

void accept(Visitor v) {

v.visit(this);

}

void super_mθ() {

super.accept(Visitor.instance );

}

}

class Visitor {

static final Visitor instance

= new Visitor ();

void visit(A a) {}

void visit(C c) {

c.super_mθ();
}

}

(b) Broken Visitor Structure

Figure A.1: An example of Visitor Pattern
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Appendix B

Feature-Aware Preconditions for

Design Pattern Refactorings

Execution Flow. Figure B.1a shows a feature-unaware class A. It

is illegal to inline method n due to the return statement inside n, as the

i++ statement of method m would never be executed. In contrast, inlining

is allowed in class A of Figure B.1b, provided that feature BLUE implies not

RED. Although this example may seem artificial, we did need this check for

the inverseVisitor script of Section 4.6.

class A {

int i = 0;

void m() {

n();

i++;

}

void n() {

i = 1;

return;

}

}

(a) Without Features

class A {

int i = 0;

void m() {

if(BLUE) n();

if(RED) i++;

}

void n() {

i = 1;

return;

}

}

(b) With Features

Figure B.1: Inlining Constraint

Variable Capture. Renaming field B.j to B.i in Figure B.2a inter-

cepts the binding to inherited variable A.i. In Figure B.2b, capture does not
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arise if features BLUE and RED are mutually exclusive [88].

class A {

int i = 0;

}

class B extends A {

int j = 1;

void m() {

i++;

}

}

(a) Without Features

class A {

@Feature(BLUE)

int i = 0;

}

class B extends A {

@Feature(RED)

int j = 1;

@Feature(BLUE)

void m() {

i++;

}

}

(b) With Features

Figure B.2: Variable Capturing Constraint

Explicit Super Invocation. Default constructors are needed in class

inheritance hierarchies. Suppose that feature BLUE is unselected in Fig-

ure B.3b. Java generates an error for the code as class A has no default

constructor.

class A {

A(int i) {}

A() {}

}

class B extends A {

}

(a) Without Features

class A {

A(int i) {}

@Feature(BLUE)

A() {}

}

class B extends A {

}

(b) With Features

Figure B.3: Non-default Constructor Constraint

Existence of Type Creation. A singleton design pattern refactoring

introduces a single static instance of a class A, and replaces the only construc-

tor call to A in a program with a reference to this instance. The program in

125



Figure B.4b satisfies the singleton constraint provided that features BLUE

and RED are mutually exclusive.

class A {

A a = new A();

public static final

A instance = new A();

A(){

/*do something */

}

}

(a) Without Features

class A {

@Feature(BLUE)

A a = new A();

@Feature(RED)

public static final

A instance = new A();

A(){

/*do something */

}

}

(b) With Features

Figure B.4: Singleton Constraint
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Appendix C

X15 Design Rules

It is well-known CPP encourages bad SPL coding practices and sig-

nificantly complicate tooling [22, 52, 76, 77, 88, 149]. Modern OO languages,

like Java, renounce preprocessors (although unofficial preprocessors exist [72,

108, 126]). SPL tooling for modern languages should follow modern design

practices, and to this end, we propose rules to eliminate unnecessary design

complexity. We consider violations of these rules ‘bad smells’ in SPL design.

Our first rule is a common-sense naming convention: All programs of

an SPL use the same name for the same declaration. Here is why: Let d be a

declaration that appears in many programs of an SPL. Suppose d is given the

name “dd” in some SPL programs and “d” in others. This is name variability :

it doubles the information a programmer must remember. S/he has to know

when to use “d” and when to use “dd”. A decent-sized SPL can have thousands

or tens of thousands of declarations. To remember all type, method, and

variable names is hard enough, but complicating this knowledge with name

variability is untenable. If there are k declarations and each declaration has

two names (with conditions on when to use each), name variability magnifies

design complexity exponentially (O(2k)). Name variability is unnecessary and
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harmful to SPL designs.

Our second rule is similar: We expect the semantics of declarations

to vary slightly among SPL programs, but every declaration should have a

consistent meaning. We do not want a declaration to mean one thing in

some programs and something radically different (e.g., have a fundamentally

different type) in others. This is semantic inconsistency : For method m to

mean one thing in some programs, and something vastly different in others,

doubles the amount of information a programmer needs to remember. For the

same motivations of name variability, semantic inconsistency is unnecessary

and harmful to SPL designs.

Our third rule is that the codebase P of an SPL must compile if any

analysis is to be done. Simply: one cannot check SC or refactoring precon-

ditions if a codebase has type errors; doing so compromises the validity of

semantic analyses [37, 75]. A type-error-free compilation of P need not corre-

spond to a valid SPL program – it is merely a check that every reference is

bound to some declaration in P [139]. If this is not so, at least one program of

the SPL does not compile. Type-error-free compilation of P is a precondition

for SC.

Our fourth rule is that all products of SPL satisfy SC.

Henceforth, we follow four Design Rules for writing, analyzing, and

refactoring a Java SPL codebase:

DR1. Absence of name variability,
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DR2. Absence of semantic inconsistencies, and

DR3. Compilability of the Java SPL codebase P.

DR4. Compilability of all SPL products.

These rules have practical value. Suppose product PC requires particu-

lar variables and methods to have specific names so that PC integrates neatly

with some legacy application. Instead of complicating an SPL codebase P and

violating DR1, separate concerns by maintaining a simple codebase P that

does not violate DR1, and use post-processing to refactor PC for legacy con-

formance. Doing so no longer precludes using PC without these adaptations

or the need to adapt PC to other legacy applications [85].

Just because bad SPL practices are used today (e.g., clone-and-own)

does not mean that their practice should be perpetuated. The four design

rules improve tooling and can be applied to non-X15 SPLs as well:

DR1: Absence of name variability. Java with Feature-annotations

makes it hard to give variables different names in different configurations. It is

not impossible, but requires egregious hacks. Name variability can be easier to

accomplish in CPP, but this requires variability-aware compilers for Java [78],

which to our knowledge do not yet exist. To violate DR1 easily will require

unlikely additions to Java, complicating its compiler and supporting tools.

DR2: Absence of semantic inconsistency. Java with Feature-

annotations makes it hard for a variable to be an instance of one Java type in

some configurations and a different Java type in others. Figure C.1a shows a
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common CPP idiom that violates DR2: field global has type int when feature

X is defined, otherwise it is a bool. It is easy to do with CPP, but would require

egregious hacks in X15. Our solution is either to use different variable names

or give global a single type. Figure C.1b shows another common CPP idiom

for initializing a variable; we express same idea in a slightly more verbose way

in Figure C.1c. This variability does not come free in C-with-CPP: tools are

more complicated. We cannot imagine that a future version of Java will allow

for such variability – doing so will significantly complicate the Java compiler

and its supporting tools.1 We hope/believe that future SPLs will be developed

with modern OO languages that reject such artificial complexities.

#ifdef X

int global;

#else

bool global;

#endif

(a)

#ifdef X

int global = 1

#else

int global = 0;

#endif

(b)

int global;

{

if(X)

global = 1;

else

global = 0;

}

(c)

Figure C.1: C-Preprocessor vs Java SPL Idioms

The remaining rules, DR3: Compilability of the Java SPL code-

base P and DR4: Compilability of all SPL products guarantee that

the validity of semantic analyses is not compromised. Admittedly ignoring se-

mantic correctness can indeed simplify tooling, as early SPL tools testify [13].

1Semantic inconsistencies arise in bad OO designs. Example: superclass Game has a
method draw() to mean make next move and subclass USFootball has method draw() to
mean run a draw play, violating subtype polymorphism [107]. We are unaware of tools that
can detect such errors; eliminating semantic inconsistencies of this sort are the responsibil-
ities of SPL designers.
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However, semantic correctness is something that future SPL users should refuse

to surrender.
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Appendix D

A Challenge of R3 Implementation

When a new refactoring is added to R3, we need to precisely define an

additional rule for both database update and projection to render the related

program elements correctly without side effects on existing refactorings, which

is challenging. For example, move-instance-method refactoring changes the

owner class of a method. Literally, it is implemented as an owner pointer

update of the target method in R3 database. When R3 supported additional

pull-up/push-down refactorings which are also changes of owner pointers, we

had to define two code transformation rules for a “moved” method to render

differently. Further, a moved method renders its AST in a single destination

type only whereas push-down can replicate a method in multiple subclasses as

shown in Figure D.1.

Push
down

+m()

A

B C D

push-down

A

+m()

B

+m()

C

+m()

D

Figure D.1: Push Down m() to Multiple Subclasses.

The move-instance-method and pull-up/push-down refactorings of R3
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are differentiated by (1) the use of a via-parameter and (2) whether the desti-

nation type is either a parent or a child class (for pull-up or push-down). Since

move-via-field incorporates adding a parameter to be used as a via-parameter

internally (see Section 3.2.3.4), move-instance-method always requires a valid

destination parameter for both move-via-parameter and move-via-field refac-

torings while pull-up/push-down does not. Also, when the current owner of a

method is its parent class, R3 applies a special rule for super keyword trans-

formation that replaces super with this if the super prefix is used to reference

a member of the parent (not ancestor) class as shown in Figure D.2a-b.

class A {

void n() {}

}

class B extends A {

void m() {

super.n();

}

void n() {}

}

(a) Before Pull-Up
(d) After Push-Down

class A {

void n() {}

void m() {

this.n();

}

}

class B extends A {

void n() {}

}

(b) After Pull-Up
(c) Before Push-Down

Figure D.2: Pull-Up/Push-Down m() Refactoring

A symmetrical this transformation (replacing this with super) for push-down

is applied when a target method uses this to reference a current member

method/field which is overridden/hidden in the destination subclass as shown

in Figure D.2c-d.
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[6] Sven Apel, Christian Kästner, and Christian Lengauer. Featurehouse:

Language-independent, automated software composition. In ICSE,

2009.

[7] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau,

and Antoine Reilles. Tom: Piggybacking Rewriting on Java. In RTA,

2007.

[8] Joseph A. Bank, Andrew C. Myers, and Barbara Liskov. Parameterized

Types for Java. In POPL, 1997.

134



[9] Don Batory. Feature Models, Grammars, and Propositional Formulas.

In SPLC, September 2005.
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[37] Barthélémy Dagenais and Laurie Hendren. Enabling Static Analysis for

Partial Java Programs. In OOPSLA, 2008.

[38] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated

Testing of Refactoring Engines. In ESEC-FSE, 2007.

[39] Databases and Software Engineering Workgroup. Featureide. wwwiti.

cs.uni-magdeburg.de/iti_db/research/featureide/, 2016.

[40] Jens Dietrich, Catherine McCartin, Ewan Tempero, and Syed M. Ali

Shah. On the Existence of High-Impact Refactoring Opportunities in

Programs. In ACSC, 2012.

138



[41] Danny Dig. A Refactoring Approach to Parallelism. IEEE Software,

Jan 2011.

[42] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Au-

tomated Detection of Refactorings in Evolving Components. In ECOOP,

2006.

[43] Danny Dig and Ralph Johnson. How Do APIs Evolve&Quest; A Story

of Refactoring: Research Articles. Journal of Software Maintenance and

Evolution: Research and Practice, March 2006.

[44] DOPLER: Decison-Oriented Product LIne Engineering for Effective Reuse.

ase.jku.at/modules/product-lines/index.html, 2016.

[45] Eclipse Bug 217753. bugs.eclipse.org/bugs/show\_bug.cgi?id=

217753.

[46] Eclipse Bug 467019. bugs.eclipse.org/bugs/show\_bug.cgi?id=

467019.

[47] JDT Refactoring Bugs. www.cs.utexas.edu/~jongwook/r2/jdtrefactoringbugs.

html.

[48] Eclipse Java Development Tools (JDT) Mars 4.5.2. eclipse.org/jdt/.

[49] Eclipse Juno. eclipse.org/juno/.

[50] Eclipse Luna. projects.eclipse.org/releases/luna/.

139



[51] Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu. Vari-

ance and Generalized Constraints for C# Generics. In ECOOP, 2006.

[52] Martin Erwig and Eric Walkingshaw. The Choice Calculus: A Repre-

sentation for Software Variation. ACM TOSEM, December 2011.

[53] David Flanagan. Java in a Nutshell, 5th Edition. O’Reilly Publishing,

2005.

[54] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don

Roberts. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 2000.

[55] Jack R. Fraenkel and Norman E. Wallen. How to Design and Evaluate

Research in Education. McGraw-Hill, 2009.

[56] Leif Frenzel. The Language Toolkit: An API for Automated Refactor-

ings in Eclipse-based IDEs. www.eclipse.org/articles/Article-LTK/

ltk.html.

[57] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, 1995.

[58] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides.

Design Patterns: Abstraction and Reuse of Object-Oriented Design. In

ECOOP, 1993.

140



[59] Alejandra Garrido. Software Refactoring Applied to C Programming

Language. PhD thesis, University of Illinois at Urbana-Champaign,

2000.

[60] Alejandra Garrido. Program Refactoring in the Presence of Preprocessor

Directives. PhD thesis, University of Illinois at Urbana-Champaign,

2005.

[61] Alejandra Garrido and Ralph Johnson. Challenges of Refactoring C

Programs. In IWPSE, 2002.

[62] Paul Gazzillo and Robert Grimm. SuperC: Parsing All of C by Taming

the Preprocessor. In PLDI, 2012.

[63] Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. Reconciling

Manual and Automatic Refactoring. In ICSE, 2012.

[64] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Overbey, Munawar

Hafiz, and Darko Marinov. Systematic Testing of Refactoring Engines

on Real Software Projects. In ECOOP, 2013.

[65] William G. Griswold. Program Restructuring as an Aid to Software

Maintenance. PhD thesis, University of Washington, 1991.

[66] Jan Hannemann. Aspect-Oriented Refactoring: Classification and Chal-

lenges. In AOSD, 2006.

141



[67] Mark Hills, Paul Klint, and Jurgen J. Vinju. Scripting a Refactoring

with Rascal and Eclipse. In WRT, 2012.

[68] Marc R. Hoffmann. EclEmma 2.3.2. www.eclemma.org, 2014.
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