
Feature Oriented Model Driven Product Lines

Salvador Trujillo Gonzalez

Dissertation
presented to

the Department of Computer Sciences of

the University of the Basque Country

in Partial Fulfillment of

the Requirements

for the Degree of

Doctor of Philosophy
(“doctor europeus” mention)

The University of the Basque Country
Universidad del País Vasco / Euskal Herriko Unibertsitatea

San Sebastián, Spain, March 2007

Summary

Model Driven Development (MDD) is an emerging paradigm for software con-

struction that uses models to specify programs, and model transformations to syn-

thesize executables. Feature Oriented Programming (FOP) is a paradigm for soft-

ware product lines where programs are synthesized by composing features. Feature

Oriented Model Driven Development (FOMDD) is a blend of FOP and MDD that

shows how programs in a software product line can be synthesized in an MDD

way by composing models from features, and then transforming these models into

executables. A case study on a product line of portlets, which are components of

web portals, is used to illustrate FOMDD. This case reveals mathematical proper-

ties (i.e., commuting diagrams) of portlet synthesis that helped us to validate the

correctness of our approach (abstractions, tools and specifications), as well as op-

timize portlet synthesis. These properties expose the nature of metaprograms for

program synthesis (i.e., synthesis is a metaprogram combining primitive operations

that form a geometry). We exploit this to synthesize metaprograms, which when

executed, will synthesize a target program of a product-line. Specifically, we elab-

orate on the generation of metaprograms (not programs) from abstract specifica-

tions. This is the core of GROVE: the GeneRative metaprOgramming for Variable

structurE approach. Variability of synthesis is also considered. Nonetheless, the

ultimate envision is a structural theory behind program synthesis.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 2

1.3 Outline . 4

2 Background 7

2.1 Abstract . 7

2.2 Software Product Lines . 8

2.2.1 Definition . 8

2.2.2 Motivation . 9

2.2.3 Successful Case Studies 10

2.2.4 Software Product Line Engineering 11

2.2.5 Strategies . 11

2.2.6 Existing Approaches . 12

2.2.7 Current Research Issues 13

2.3 Model Driven Development . 14

2.3.1 Definition . 14

2.3.2 Motivation . 15

2.3.3 Successful Case Studies 15

2.3.4 Model Driven Engineering 15

2.3.5 Model Driven Architecture 16

2.3.6 Existing Approaches . 16

2.3.7 Current Research Issues 17

2.4 Portlet Engineering . 17

2.4.1 Definition . 18

2.4.2 Motivation . 19

2.4.3 Successful Case Studies 20

v

vi CONTENTS

2.4.4 Portlet Web Engineering 20

2.4.5 Existing Approaches . 20

2.4.6 Current Research Issues 22

2.5 Related Work . 22

2.5.1 Software Product Lines & Model Driven Development . . 22

2.5.2 Software Product Lines & Web 23

2.5.3 Model Driven Development & Web 24

2.6 Conclusions . 25

3 SPL need Endogenous Transformations 27

3.1 Abstract . 27

3.2 Rationale for Endogenous Transformations 28

3.2.1 Variability Realization Techniques 28

3.2.2 Mathematical Structure in AHEAD 29

3.2.3 Rationale for AHEAD 30

3.3 AHEAD: A Model of Feature Oriented Programming 31

3.3.1 GenVoca . 31

3.3.2 AHEAD . 32

3.3.3 Jak and Java Refinement 34

3.4 Extensions of AHEAD Tool Suite 35

3.4.1 AHEAD Tool Suite (ATS) 35

3.4.2 XAK and XML Refinement 37

3.4.3 WebGUI Tooling . 38

3.5 A Case Study on Feature Oriented Refactoring 39

3.5.1 Rationale for FOR . 39

3.5.2 A Case Study: ATS . 40

3.5.3 Feature Refactoring and ATS 41

3.5.4 The Process of Feature Refactoring ATS 42

3.5.5 Step 2: Refactoring ATS 44

3.5.6 Step 3: Bootstrapping ATS/lib 47

3.5.7 Step 4: Synthesizing APL-Specific Programs 50

3.5.8 Lessons Learned and Future Tool Support 50

3.5.9 Related Work . 54

3.6 Contributions . 55

CONTENTS vii

4 SPL need Exogenous Transformations 57

4.1 Abstract . 57

4.2 Rationale for Exogenous Transformations 58

4.3 Model Transformations . 58

4.3.1 Models . 59

4.3.2 Metamodels . 59

4.3.3 Transformations . 60

4.4 PMDD: Model Driven Development of Portlets 61

4.4.1 Approaching . 61

4.4.2 Revisiting Portlets . 62

4.4.3 A Case Study: PinkCreek 63

4.4.4 Big Picture . 63

4.4.5 Step 1: Define Portlet Controller 64

4.4.6 Step 2: Map SC to PSL 65

4.4.7 Step 3: from PSL to Implementation 67

4.4.8 Step 4: Building the Program 68

4.4.9 Recap and Perspective 68

4.5 Contributions . 70

5 Combining Endogenous and Exogenous Transformations 73

5.1 Abstract . 73

5.2 Rationale for Combination . 74

5.3 Revisiting MDD and FOP . 75

5.4 Feature Oriented MDD . 76

5.4.1 Developing Feature Constant 77

5.4.2 Developing Feature Functions 77

5.4.3 Program Synthesis . 80

5.5 Commuting Diagrams . 80

5.5.1 Experience . 82

5.5.2 Optimization . 83

5.6 Related Work . 83

5.7 Contributions . 85

6 Generative Metaprogramming for Synthesis Process 87

6.1 Abstract . 87

6.2 Rationale for Generation . 88

6.2.1 From Scripting to Generation 88

viii CONTENTS

6.2.2 Synthesis Primitives . 89

6.2.3 Synthesis Geometries . 90

6.3 Generative Metaprogramming 92

6.3.1 Geometry Specification 93

6.3.2 Path Generation . 97

6.3.3 Recap and Perspective 99

6.4 Future Work . 101

6.4.1 Multiple Paths . 101

6.4.2 Multiple Dimensions . 102

6.4.3 Multiple Artifacts . 103

6.4.4 Multiple Product Lines 104

6.4.5 Category Theory . 105

6.5 Related Work . 106

6.6 Contributions . 107

7 Variability on the Production Process 109

7.1 Abstract . 109

7.2 Rationale for Production Variability 110

7.3 Revisiting AHEAD . 111

7.3.1 Production Process in AHEAD 112

7.3.2 ATS Upgrades . 113

7.4 A Case Study for Production . 113

7.4.1 Ant Makefile Process . 113

7.4.2 The Build Process . 114

7.5 Variability on the Build Process 114

7.5.1 Base Build Process . 115

7.5.2 Refinement Build Process 116

7.6 Variability on the Synthesis Process 117

7.6.1 Base Synthesis Process 117

7.6.2 Refinement Synthesis Process 119

7.7 Contributions . 121

8 Conclusions 123

8.1 Abstract . 123

8.2 Results and Contributions . 123

8.2.1 Publications . 125

8.2.2 Research Visits . 126

CONTENTS ix

8.3 Assessment . 127

8.3.1 Limitations . 127

8.3.2 Future Research . 128

A Portlet Product Lines: A Case Study 131

A.1 Abstract . 131

A.2 Rationale for Portlet Lines . 132

A.3 Product Lines of Portlets . 133

A.3.1 Approaching . 133

A.3.2 A Case Study: PinkCreek 135

A.3.3 Domain Analysis . 135

A.3.4 Core Asset Development 137

A.3.5 Production Planning . 141

A.3.6 Application Engineering 141

A.3.7 Experience . 143

A.4 Discussion . 143

A.5 Future Work . 145

A.6 Contributions . 146

Bibliography 147

x CONTENTS

Chapter 1

Introduction

“A journey of a thousand miles begins with a single step”.

– Confucius.

1.1 Overview

Software artifacts are arguably among the most complex products of human in-

tellect. This complexity of software has driven both researchers and practitioners

towards a number of general engineering challenges. So far, those efforts focused

on the engineering of individual products.

As industrialization of the manufacturing processes (e.g., automobile) led to

increased productivity and higher quality at lower costs, industrialization of soft-

ware development process leads to the same advantages. The focus shifts from a

stand-alone product to a family of similar products (a.k.a. mass customization).

This body of research is known as Software Product Lines (SPL). In this scenario,

a number of engineering challenges are being faced [CN01].

A key challenge is how prebuilt pieces are assembled together to synthesize a

program product. Doing so, it is possible to synthesize automatically a customized

program from customer features (i.e., increments of program functionality). That

is Feature Oriented Programming [BSR04]. However, the focus so far was on how

the feature realization code was assembled (i.e., composition of implementation

artifacts), but not on how that code was obtained. There was no specific support to

1

2 Chapter 1. Introduction

obtain such code.

This dissertation shows a way to obtain feature realization code by raising the

level of abstraction. To this end, the general model-driven paradigm is adjusted

in the context of Feature Oriented Programming. Doing so, a feature realization

scales from a set of implementation artifacts to a set of models. The variability

realization techniques deal not only with implementation code, but directly with

models.

Software engineering techniques are used not only in the process of assembling

feature implementations, but in the process of modeling them (enabling an acceler-

ation in the creation of feature implementations). Hence, it is not only possible to

assemble the artifacts derived from models, but also to assemble the models them-

selves, and derive then code artifacts. The latter turns up as an unexpected way to

synthesize products (a.k.a. synthesis paths).

This setting enables the traversal of two different paths to synthesize a product

of a product line. This setting is where commuting diagrams appear in synthesis

(i.e., the same implementation can be synthesized in multiple ways). These proper-

ties help us to validate the correctness of the abstractions, tools, and specifications,

as well as optimize synthesis.

We implement by scripting synthesis metaprograms (i.e., a program that syn-

thesizes a target program). This implies time-consuming, repetitive and cumber-

some tasks. Our goal is to accelerate the development of metaprograms by gen-

erating them from abstract specifications (i.e., MDD is used to generate metapro-

grams). This work describes a way to synthesize metaprograms (not programs),

which when executed, will synthesize a target program of a product-line. Specifi-

cally, we elaborate on the generation of metaprograms from abstract specifications.

Variability of synthesis is also considered. The ultimate frontier is a structural the-

ory for product synthesis. These and other insights are described in this work.

The work presented in this thesis poses an intellectual challenge combining

Software Product Lines and Model Driven Development. It represents an advance-

ment over previous techniques and succeeded in its application to the also chal-

lenging Portlet engineering domain.

1.2 Contributions

This thesis has been developed in the context of engineering. This pushes us to

achieve not only an academic contribution but also to look at the broader applica-

1.2. Contributions 3

bility of these ideas. This introduces a remarkable challenge throughout the thesis:

the need to realize (implement) the ideas we describe. In our opinion, this thesis

provides the following contributions:

A PRODUCT LINE OF PORTLETS

Problem Statement: Portlets need to be reusable services to accomplish the

Service Oriented Architecture (SOA) vision.

Contribution: This work introduces a reusability approach based on SPL. It

is one of the test cases of this work. Overall, building a product line of Portlets

exposes many research issues.

A MODEL DRIVEN APPROACH TO PORTLET DEVELOPMENT

Problem Statement: Portlet development encompasses the implementation of

repetitive and cumbersome code.

Contribution: We propose an approach to the generation of Portlets driven

by model specifications. Doing so, starting from abstract models, repetitive and

cumbersome implementation can be generated.

FEATURE ORIENTED MODEL DRIVEN DEVELOPMENT

Problem Statement: Model Driven Development promotes models to play a

pivotal role in software development. However, product-line techniques (e.g., Fea-

ture Oriented Programming) focus on code artifacts.

Contribution: FOMDD combines Feature Oriented programming and Model

Driven Development together where a new synthesis design space appears. This

space shows interesting commuting properties that allow (i) to check the validity of

the approach, and (ii) to optimize program synthesis. Our working case for Portlets

is used to illustrate these findings.

GENERATIVE METAPROGRAMMING FOR SYNTHESIS PROCESS

Problem Statement: We implement synthesis metaprograms by scripting. This

implies time-consuming, repetitive and cumbersome tasks. This work reveals also

the nature of program synthesis in FOMDD. Commuting was symptomatic of some

structure (and theory) behind our work.

Contribution: This work pioneers study on the primitives that form synthesis

metaprograms. This is then exploited to synthesize metaprograms, which when ex-

ecuted, will synthesize a target program of a product-line. We generate the imple-

mentation code of the metaprograms (not programs) from abstract specifications.

This is the core of the GeneRative metaprOgramming for Variable structurE ap-

proach (GROVE).

4 Chapter 1. Introduction

VARIABILITY ON THE SYNTHESIS PROCESS

Problem Statement: Synthesis process is a key factor in product-lines. The is-

sue is how to accommodate synthesis to different production strategies in a product-

line setting.

Contribution: A way to introduce variability into the synthesis process, and

how to cope with such variability issues is described. More to the point, program

features are separated from process features (i.e., it is possible to reuse the same

synthesis process across different product-lines).

FEATURE REFACTORING MULTIPLE-REPRESENTATIONS

Problem Statement: The challenge is to mine a large-scale legacy program

into a product-line family. This scale is almost 2 orders of magnitude larger than

previous work. Additionally, this work not only refactors code, but multiple repre-

sentations such as XML documents.

Contribution: It describes a large case study on feature refactoring where multi-

ple and heterogeneous representations were refactored. As a result, a new product-

line was refactored from an original program where new extensions are added in

terms of features.

1.3 Outline

Our work starts by addressing web applications customizability. Shortly after, the

well-known concept of variability arises. This leads us to Software Product Lines.

Web applications were steadily moving towards the realm of Portals (i.e., a

website as an entry point for others). It was the birth of Portals and Portlets (i.e.,

basic building blocks of Portals and units for reuse). An SPL was then created to

produce Portlet variants. Beyond the economical motivation inherent to SPL was

the need to produce the same Portlet for different customer Portals. Portlet variants

are needed to deal with those different requirements that Portal customers demand.

Our intention was to fully create a factory from which Portlet applications were

later automatically produced. In so doing, the customer specifies the desired re-

quirements within the available choices the SPL offers, and then produces the cus-

tomized application. This approach provides a number of general benefits (e.g.,

time and cost reductions). However, these benefits always depend on the domain

at hand.

Portlets were the inspiration to find a number of open issues. Being service-

oriented, they provide new SPL issues. Overall, the Portlet domain was the setting

1.3. Outline 5

Figure 1.1: Map of Chapters

where Feature Oriented Programming and Model Driven Development were com-

bined together to yield FOMDD. Their combination is the core of this thesis.

Figure 1.1 shows a chapter map with the major ideas covered by this thesis. It

consists of 8 chapters (including this) and one appendix.

Chapter 2 introduces the background (Software Product Lines, Model Driven

Development and Portlets) on top of which the remaining chapters are developed.

Chapter 3 discusses the endogenous transformations SPL need to realize feature

variability. AHEAD is selected to deal with such transformations. We extended

AHEAD Tool Suite (ATS) with further functionality (e.g., XAK is described as a

solution for XML Refinement). A case study of feature refactoring a large program

is then described. The target program is ATS which was refactored (from a single

program) onto a product line.

Chapter 4 discusses the exogenous transformations SPL need to abstract im-

plementation using models. An example is shown to illustrate a model-driven ap-

proach to Portlet development.

Chapter 5 combines Software Product Lines and Model Driven Development.

Feature Oriented Model Driven Development arises as a blend of both. The new

challenges to realize model increments are presented: model refinements and trans-

formations between model refinements. Product synthesis exposes commuting di-

agrams, which suggest a structural theory behind synthesis process.

6 Chapter 1. Introduction

Chapter 6 describes ideas to synthesize metaprograms, which when executed,

will synthesize a target program of a product-line. Specifically, we elaborated on

the generation of metaprograms from abstract specifications.

Chapter 7 describes how to apply variability to the synthesis process. To attain

this, it separates features that impact on the program and features that impact on

how the program is built (i.e., the synthesis itself has features that change how it is

done).

Chapter 8 exposes the main contributions, results and publications. The entire

work is evaluated with the benefit of hindsight. Here limitations of the work are

discussed and future research directions are suggested.

Appendix A looks at Portlets as a family of products within an SPL (i.e., Portlets

are synthesized from a product-line). Our test case is used to illustrate a general

product-line approach. We explore as well the key issues that make Portlets worth

from a product-line perspective, and which challenges should be faced to cater for

product lines of Portlets.

Chapter 2

Background

“A child of five would understand this. Send someone to fetch a child of five.”

– Groucho Marx.

2.1 Abstract

Software Product Lines (SPL) offer a paradigm to develop a family of software

products. The focus shifts from the development of an individual program to the

development of reusable assets that are used to develop a family of programs. Dis-

tinct approaches, methodologies and tools are proposed to realize SPL in a cost-

effective way.

Model Driven Development (MDD) is a paradigm to develop programs based

on modeling. Software models are specified, from which other models or even code

are derived. This paradigm eases cumbersome and repetitive tasks, and achieves

productivity gains.

Portlets are basic building blocks for portal construction. Their main benefit

is that can be used in a variety of scenarios and by distinct portal customers (and

end-users).

This chapter provides a quick glance at Software Product Lines, Model Driven

Development, and Portlet (and Web) Engineering. Also, existing works bridging

these fields are introduced. We invite the reader to skip this chapter if familiar with

those concepts.

7

8 Chapter 2. Background

2.2 Software Product Lines

Mass production was popularized by Henry Ford in the early 20th Century. McIl-

roy coined the term software mass production in 1968 [McI68]. It was the begin-

ning of Software Product Lines. In 1976, Parnas introduced the notion of soft-

ware program families as a result of mass production [Par76]. The use of features

(to drive mass production) was proposed by Kang in the early 1990s [Kea90].

Shortly, the first conferences appeared turning SPL into a new body of research

[vdL02, Don00].

2.2.1 Definition

SPL are defined as "a set of software-intensive systems, sharing a common, man-

aged set of features that satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

way" [CN01].

We redefine SPL into five major issues:

1. Products: “a set of software-intensive systems...”. SPL shift the focus from

single software system development to SPL development. The development

processes are not intended to build one application, but a number of them

(e.g., 10, 100, 10,000, or more). This forces a change in the engineering

processes where a distinction between domain engineering and application

engineering is introduced. Doing so, the construction of the reusable assets

(a.k.a., platform) and their variability is separated from production of the

product-line applications1.

2. Features: “...sharing a common, managed set of features...”. Features are

units (i.e., increments in application functionality) by which different prod-

ucts can be distinguished and defined within an SPL [BSR04]2.

3. Domain: “...that satisfy the specific needs of a particular market segment

or mission...”. An SPL is created within the scope of a domain. A domain

is “a specialized body of knowledge, an area of expertise, or a collection of

related functionality” [Nor02].

1Terminology: The terms system, application, variant, program and product are used interchange-
ably to refer to the outcome of a product-line.

2Other definitions of features include “user-visible aspects or characteristics of the domain”
[Kea90], "a logical unit of behavior that is specified by a set of functional and quality requirements"
[Bos00] or “a recognizable characteristic of a system relevant to any stakeholder” [CE00].

2.2. Software Product Lines 9

Figure 2.1: Software Product Lines versus Single Software Development

4. Core Assets: “...are developed from a common set of core assets...”. A core

asset is "an artifact or resource that is used in the production of more than

one product in a software product line" [CN01].

5. Production Plan: “...in a prescribed way”. It states how each product is

produced. The production plan is "a description of how core assets are to

be used to develop a product in a product line and specifies how to use the

production plan to build the end product“ [CM02]. The production plan

ties together all the reusable assets to assemble (and build) end products.

Synthesis is a part of the production plan.

2.2.2 Motivation

In general, SPL foster reuse in software development. Behind reuse, there are

economic reasons.

SPL provide a number of general and potential benefits, namely, (i) produc-

tivity gains, (ii) improved product quality, (iii) faster time-to-market, and (iv) de-

creased labor needs [CN01, Coh01]. However, as in the real world, it depends on

the specific case at hand.

An SPL approach is useful in many domains, but not for all domains. It de-

pends not only on the number of products to be developed out of the SPL, but on

the economic viability of the SPL. Hence, economic models are needed to study

each case beforehand.

10 Chapter 2. Background

Most of the economic arguments are based on singular data points derived from

case studies or convincing arguments based on reasonableness and simplistic cost

curves. For instance, a general assumption is that a product line should consist at

least of 3 products [BCM+04]. Figure 2.1 sketches this scenario where a graphic

comparing single system versus software product line is presented [Beu03, Mut02].

Typically, an SPL has a higher (initial) upfront investment, but it makes the differ-

ence in the long-term compared to single software where profitability appears.

Existing models of conventional development costs in the context of reuse can

only be applied in a restricted way as product line development involves some

fundamental assumptions that are not reflected in these models.

Bockle et al. proposed an initial model for SPL economics [BCM+04]. Later,

a comprehensive cost model was proposed. It was called the Structured Intuitive

Model for Product Line Economics (SIMPLE3). This model enables to calculate the

costs and benefits, and hence the return on investment (ROI), that we can expect

to accrue from various product line development situations [CMC05]. Recently,

some experience on industrial cases to predict the ROI beforehand was reported

[GMY06].

2.2.3 Successful Case Studies

Several successful stories have been reported so far on organizations following SPL

approaches. Next, a list of successful stories are presented.

Cummins Inc. was able to field more than 1.000 separate products based on

just 20 software builds. They can build and integrate the software for a new diesel

engine in about a week, whereas before, it took a year [CN01].

The U.S. National Reconnaissance Office commissioned a software product

line of satellite ground control systems from Raytheon and reported a 10x quality

improvement and a 7x productivity improvement as a result [CN01].

CelsiusTech Systems was able to decrease their software staff from 210 to

around 30, while turning out more, larger, and more complex ship command and

control system products. The product line approach let them change the hardware-

to-software ratio for their systems from 35:65 to 80:20 [CN01].

Previous stories were on large organizations. Nonetheless, there are also re-

ported cases for small organizations like Market Maker Software AG [KMSW00],

or for embedded systems [Beu03]. Some stories on SPL for web applications are

3http://simple.sei.cmu.edu/

2.2. Software Product Lines 11

described shortly in section 2.5.2.

2.2.4 Software Product Line Engineering

In general, facing an SPL implies to distinguish between two separate processes,

namely, the domain engineering process, and the application engineering process.

Domain Engineering is defined as “the activity of collecting, organizing and

storing past experience in building systems or parts of systems in a particular do-

main in the form of reusable assets (e.g., architecture, models, code, and so on), as

well as providing an adequate means for reusing these assets [...] when building

new systems” [CE00].

Using a "design-for-reuse" approach, domain engineering (a.k.a., core asset de-

velopment [CN01]) is in charge of determining the commonality and the variability

among product family members. In general, domain engineering is divided into do-

main analysis, domain design and domain implementation. However, this simple

division hides a number of practices and activities. Refer to [CN01, PBvdL06] for

a complete account.

Application Engineering is “the process of building a particular system in the

domain” [CE00]. Application engineering (a.k.a., product Development [CN01])

is responsible for deriving a concrete product from the SPL using a "design-with-

reuse" approach. To attain this, it reuses the reusable assets developed previously.

This process is subdivided into application analysis, application design and appli-

cation implementation (some other activities are omitted as well [CN01]).

Some authors introduce a separated process for Management where organiza-

tional issues are handled specifically [CN01].

For a broader review, we invite the reader to check comprehensive literature on

software product line engineering [CN01, Gom04, PBvdL06].

2.2.5 Strategies

Clements and Krueger classify existing SPL strategies into extractive, reactive or

proactive [CK02].

The extractive approach reuses one or more existing software products for the

product line initial baseline. To be an effective choice, the extractive approach re-

quires lightweight software product line technology and techniques that can reuse

existing software without much re-engineering. This approach is very effective

for an organization that wants to quickly transition from conventional to software

12 Chapter 2. Background

product line engineering, and brings the opportunity to start an SPL reusing exist-

ing code.

The reactive approach is like the spiral or extreme programming approach to

conventional software. You analyze, architect, design, and implement one or sev-

eral product variations on each development spiral. This approach works in situ-

ations where it is difficult to predict the requirements for product variations well

in advance or where organizations must maintain aggressive production schedules

with few additional resources during the transition to an SPL approach.

The proactive approach is like the waterfall approach to conventional software

where all product variations on the foreseeable horizon are analyzed, architected,

designed, and implemented upfront. This approach might suit organizations that

can predict their SPL requirements well into the future and that have the time and

resources for a waterfall development cycle. This approach is aimed to quickly

manufacture products reducing production cost on a large scale production basis.

2.2.6 Existing Approaches

The literature shows a number of different approaches (following different strate-

gies) to face software product lines. The aim of this section is to briefly introduce

them. To this end, existing approaches are classified into 3 major concerns using

an early classification proposed by Kang [Kea90]:

The process concern considers how the methodology will affect an organiza-

tion (e.g., evolutionary vs. revolutionary); how to manage and maintain the prod-

ucts; how the producer gathers, organizes, validates, and maintains information;

and how the users can effectively apply the products in the development. Several

approaches fit in this area: Feature Oriented Domain Analysis (FODA) [Kea90],

Feature Oriented Reuse Method (FORM) [KKL+98], FeatuRSEB [GFd98], Family-

oriented Abstraction Specification and Translation (FAST) [WL99], ProdUct Line

Software Engineering (PuLSE) [Bea99], KobrA [ABM00], SEI’s Product Line

Practice Initiative (PLPI) [CN01, SEI], Feature Oriented Product Line Software

Engineering (FOPLE) [KLD02], Quality-driven Architecture Design and quality

Analysis (QADA) [MND02, Mat04], Evolutionary Software Product Line Engi-

neering Process (ESPLEP) [Gom04], Product Line Use case modeling for Systems

and Software engineering (PLUSS) [EBB05], and PRIME [PBvdL06]. A com-

plete survey with further approaches, practices and patterns involved in SPL are

described at [CN01, CE00, PBvdL06].

The product concern considers the types of products that are generated by

2.2. Software Product Lines 13

the approach; how they are represented; and how applicable they are in applica-

tion development. Regarding product-line architecture [Batb], it should be men-

tioned architecture-centered methodology [Bos00] and Architecture Description

Languages (ADL) like KOALA [vOvdLKM00] or xADL [DvdHT05]. Regarding

product synthesis or manufacturing, it should be stated AHEAD [BSR04], Genera-

tive Programming [CE00], CONSUL [BPSP04], Frames Programming [JBZZ03],

and Feature Oriented Programming [BSR04, Pre97]. Implementation wise, a set

of variability realization techniques are available [AG01].

The tool support concern considers the availability of tools and the extent to

which the tools support the approach. It also looks at how well the tools are in-

tegrated, their ease of use, and their robustness. Some feature modeling tools are

GuiDSL [Bat05], FeaturePlugin [CA05a] and XFeature [CPRS04]. Other tools

support a complete approach, namely, AHEAD Tool Suite [Bata], GEARS [Kru02],

CONSUL is supported by pure::variants [Sys], and XVCL supports Customization

Scripts (frames) [JBZZ03].

2.2.7 Current Research Issues

The history of SPL development shows that it is a relatively new field in the broader

area of Software Engineering. Though it is maturing, there are of course many

opportunities for research. Next, some general trends in current research are dis-

cussed.

Early works on software product lines focused more on the practical cases that

on how that cases could be generalized. Many of the works were pioneer in their

respective areas [CN01]. The next challenge is to spread this strategy into regular

companies (as it is today in other industrial production scenarios) [GMY06]. To at-

tain this, further work on economic models, on product line quality, and on product

line initiation activities is needed.

Another interesting field of research is that of extractive approaches to refactor

existing legacy programs into a product line [LBL06, TBD06]. The interest of this

work rests on the great amount of existing legacy software.

Traditional software is moving towards scenarios where functionality is pro-

vided by services. A number of challenges appear in service-oriented architectures,

namely, how different products are produced (from different product lines) solving

customization/privacy implementation [WKvdHW06], how variability is achieved

in the production [DTA05], how distributed production is faced [Tea07], how avail-

ability is resolved, how a service is reconfigured [LK06]. Portlet development is

14 Chapter 2. Background

a service-oriented scenario. A small subset of the challenges presented previously

were faced by this work.

SPL are not developed from scratch (proposing new methodologies), but a lot

of legacy software engineering methodologies could be reused somehow. Model-

driven paradigm is one of these methodologies that could be reused into SPL.

2.3 Model Driven Development

Model Driven Development (MDD) is a relatively new paradigm where models are

central in the development. Model Driven Architecture (MDA) is a framework for

software development proposed by the Object Management Group (OMG) in 2001

[OMG03] (i.e., MDA is a concrete realization of MDD). The notion of Model

Driven Engineering (MDE) emerged later as a paradigm generalizing the MDA

approach for software development [Ken02].

2.3.1 Definition

Model-driven is a paradigm where models are used to develop software. This

process is driven by model specifications and by transformations among models. It

is the ability to transform among different model representations that differentiates

the use of models for sketching out a design from a more extensive model-driven

software engineering process where models yield implementation artifacts.

Model Driven Architecture provides specific means for using models to ac-

complish the understanding, design, construction, deployment, maintenance and

modification of software.

MDA’s modeling techniques distinguish between business and technical as-

pects. This advocates that the designer must first capture the business concerns

of the system in a model, called the Platform-Independent Model (PIM), while

abstracting away technical details. Then, the PIM is transformed into a Platform-

Specific Model (PSM) by introducing technical aspects of the target platform (in an

MDA context). In general, a key challenge is the transformation of these models.

This transformation is usually specified by a set of precise mapping rules (more

shortly). Finally, the resulting PSM can be used to generate implementation code.

2.3. Model Driven Development 15

2.3.2 Motivation

In general, model-driven is a paradigm to reuse specific patterns or domains of soft-

ware development. This emerges through the extensive use of models, which re-

places cumbersome (and usually repetitive) implementation activities. In this way,

model-driven approaches improve development practices by accelerating them.

According to [Kon], specific benefits of MDD are (i) productivity, (ii) reduced

cost, (iii) portability, (iv) reduced development time, and (v) improved quality.

Overall, the main economic reason behind model-driven is the productivity gain

achieved, which is reported by some studies [HR03, OMG].

2.3.3 Successful Case Studies

OMG reports a number of success stories on the applications of MDD in well-

known companies (e.g., ABB, Daimler Chrysler, Lockheed Martin) [OMG].

In general, these studies report an increment in productivity. Hence, time to

market was shortened on these projects where MDD was used (although this does

not imply to hold for all projects). Specifically, some particular experiences are

reported: (i) fast and high ROI, (ii) quality improvements, (iii) effort reduction,

(iv) reduce of development staff, and (v) reuse across multiple platforms.

2.3.4 Model Driven Engineering

Kent defines Model Driven Engineering (MDE) by extending MDA with the no-

tion of software development process (i.e., MDE emerged later as a generalization

of the MDA for software development) [Ken02]. MDE refers to the systematic

use of models as primary engineering artifacts throughout the engineering lifecy-

cle4. Kurtev provides a discussion on existing MDE processes [Kur05] (refer to

[BFJ+03, Béz04] for a specific approach). In general, these approaches introduce

concepts, methods and tools [Sch06]. All of them are based on the concept of

model, meta-model, and model transformation.

For a broader review, we invite the reader to check further literature on MDE

[BBG05, Fra03, KWB03].

4http://en.wikipedia.org/wiki/Model_Driven_Engineering

16 Chapter 2. Background

2.3.5 Model Driven Architecture

Model Driven Architecture (MDA) is a concrete realization of MDD. As mentioned

above, MDA classifies models into 2 classes: Platform Independent Models (PIMs)

and Platform Specific Models (PSMs) [OMG03]. A PIM is “a view of a system from

a platform-independent viewpoint”. Likewise, a PSM is “a view of a system from

a platform-dependent viewpoint” [OMG03]. Doing so, the definition of platform

becomes fundamental.

This classification depends on the dependence from a given platform, which

is defined as “a set of subsystems and technologies that provide a coherent set of

functionality through interfaces and specified usage patterns, which any applica-

tion supported by that platform can use without concern for the details of how the

functionality provided by the platform is implemented” [OMG03].

MDA integrates the existing technologies standardized by OMG. It defines a

set of basic concepts such as model and modeling language, meta-model, and trans-

formations [JBR98, RGJ04, OMG05b]. Models are expressed in Unified Modeling

Language (UML) and UML profiles [OMG05b]. New modeling languages should

be defined using the meta-modeling language of the Meta Object Facility (MOF)

[OMG06]. Models are serialized to XML format using the XML Metadata In-

terchange (XMI) [OMG05c]. The transformations of models are described using

Queries/Views/Transformations language (QVT) [OMG05a].

2.3.6 Existing Approaches

A number of tools are intended to support a model-driven approach (often based on

MDA). Typically, they enable to define models in terms of UML, and to transform

models using transformations. The following is a list of some existing approaches:

• IBM Rationale Software design is a well-known set of tools [IBM].

• Vanderbilt’s Model Integrated Computing (MIC) [SK97].

• Eclipse Modeling Framework (EMF) [Ecl].

• ATL (ATLAS Transformation Language) framework [BDJ+03].

• Microsoft’s Software Factories [GS04].

• MOMENT is a model management framework [BCR05, BCR06].

• RubyTL is a tool for transformations [CMT06].

2.4. Portlet Engineering 17

Please, refer to [Mod] for a comprehensive list.

2.3.7 Current Research Issues

Several research directions are being explored nowadays in MDD. Selic (in his

keynote at [RW06]) proposed these specific topics: (i) theory of modeling lan-

guage design, (ii) theory of model transformations, (iii) model analysis, (iv) model

synthesis, and (v) tools for automation support. He also detected some challenges

and opportunities on automated model analysis, formal validation, and automatic

code generation.

Languages to define model transformations [CMT06, Kle06, WvdS06] and

model operations (e.g., model weaving [BJT05], model merging [BBdF+06] or

model management [BCR05]) is a topic. Additionally, further work on how to

make consistent models, and on how to implement constraints for those models is

being carried out [dFBRG06, MCL06]. Refactoring techniques that enable exist-

ing software systems to be refactored into an MDA framework is the subject of

ongoing work (a.k.a., harvesting [RGvD06]).

2.4 Portlet Engineering

The first node of ARPANET (the precursor network of today’s Internet) went live in

1969. Fourteen years later (1983), the first TCP/IP wide area network (afterwards

named NSFNet) interconnected some universities. This is nowadays considered

the birth of Internet.

CERN publicized the new World Wide Web project in 1991 where Tim Berners-

Lee developed hypertext technologies (e.g., HTTP, HTML). The web enabled to

create and access (static content) web pages across the world. Shortly after, the

words Internet and web became familiar to the public.

These technologies soon demonstrated their power. Hypertext was comple-

mented with functionality. This was named a web application. Functionality was

steadily more and more complex and diverse.

The use of Internet became common for many activities, and existing sites

rocketed steadily. According to NetCraft5, Internet sites were 18.000 in 1995,

50 millions in 2004, and 100 millions in 2006 (although only half of them are

considered active). This growth fostered the emergence of search engines or central

5http://news.netcraft.com/

18 Chapter 2. Background

Figure 2.2: MyYahoo Portal

access points (e.g. Yahoo!, Altavista). Soon after, these sites were watered down

as Portals (i.e., entry doors that provide access to diverse services and content). In

this setting, each service was named a Portlet.

2.4.1 Definition

A portlet is a presentation oriented web service [OAS03]. Unlike web services,

which offer only business logic methods, portlets additionally provide a web-GUI

presentation interface. Hence, portlets not only return raw data but also renderable

markup (e.g., XHTML) that can be displayed within a portal page in a way similar

to Windows applications.

A portal is a web site that provides centralized access to a variety of services

[DR04]. An increasing number of these services are realized as portlets. For in-

stance, consider personalized portals as MyYahoo6 (see Figure 2.2), where a vari-

ety of services are provided, some of which may be portlets.

Being presentation-oriented, portlets encapsulate an interface layer. portlets

have multiple steps that provide the navigation logic that guides the user to ac-

complish the portlet aim (i.e., the service). Hence, portlet implementation is far

from being straightforward as they encapsulate full-fledged applications. There-

fore, portlet design should be made in terms of high-level models that abstract

from concrete platforms and standards.

2.4. Portlet Engineering 19

Figure 2.3: Portals and Portlets

2.4.2 Motivation

Until recently, portlet realization was dependent on the infrastructure of the service

provider and the service container (e.g., the portal). This changed with the release

of the Web Services for Remote Portlets (WSRP) [OAS03], which standardized the

web service interface between the consumer (portal) and the producer (portlets),

and the Java Specification Request 168 (JSR 168) [JCP03], which defined how to

implement portlets in Java (i.e., the interface between the producer and the portlet

itself in J2EE [SSJ02]).

This accounts for portlet interoperability whereby portlets can be seamlessly

deployed independently of the platform in which they were developed or accessed.

Figure 2.3 depicts a 3-tier architecture for portlets, where an end-user’s MyBrowser

accesses the Portal_1 page through HTTP. Portal_1 is hosted by Consumer_1 and

consists of a layout aggregating (through SOAP [W3C03]) the Alpha, Beta, and

Delta portlets that are hosted by different producers. Likewise, Portal_2 is hosted

by Consumer_2 and aggregates the Alpha portlet used by Portal_1 and additional

portlets from third-party producers (e.g., Lambda portlet from Producer_D). Note

that each portal uses a different product variant of the portlets customized to its

requirements (next we will see that these variants can be developed as a product

line of portlets).

Portlet interoperability fosters a market for portlets à la COTS. This implies

that different portlets can be delivered to distinct customers which overlap in their

6http://my.yahoo.com/

20 Chapter 2. Background

Figure 2.4: Portlet Architecture

functionality. Sharing a common platform and customizing assets to provide re-

current functionality have proven to be a cost-effective way to achieve mass cus-

tomization within a given domain. Hence, it may be appropriate to support portlets

as SPL products.

2.4.3 Successful Case Studies

There exists a number of tools available to construct portals based on portlets.

Multiple vendors (e.g., IBM WebSphere Portal, BEA WebLogic Portal, Oracle

Portal, Vignette Application Portal) provide tooling for this technology [DR04].

Likewise, some open source portals (e.g., eXo Portal platform, Apache WSRP4J,

Liferay portal and uPortal) are available. We refer to the sites (of those tooling

vendors) where some successful case studies are reported.

2.4.4 Portlet Web Engineering

There exist several methodologies to approach web engineering. When developing

Web applications we need to face not only functionality but also content, naviga-

tion and presentation issues. Existing works focus on these last three issues (e.g.,

WebML [CFM02], W2000 [BGP00], UWE [NA02] or OO-HMethod [PGIP01])

from which applications are derived (manually or automatically) [PM00]. How-

ever, to the best of our knowledge, there is a lack of specific approaches (method-

ologies) for portlet engineering.

2.4.5 Existing Approaches

Portlets favor a distributed architecture (see figure 2.4) promoting the logical sep-

aration of portlets from portal servers (a.k.a., consumers) that use their services.

2.4. Portlet Engineering 21

They are an example of Service-Oriented Architectures (SOA) [OAS06a].

In the traditional portal model, portlets run on the same J2EE application server

the portal server does, interacting via simple J2EE interprocess communication.

However, scalability considerations move the portlet to another piece of hardware.

Frequently, departments within an organization decide to keep control over their

own portlets. This task is hard to accomplish when portlets must be deployed to a

centralized portal server.

WSRP was not only designed to allow remote portlet-to-portal communication.

Even in an scenario where portlets are deployed locally, WSRP keeps its value as

a platform-independent specification. Doing so, a J2EE-based portal server could

interoperate with a portlet running on a .NET machine as long as it exposes its

functionality via WSRP-compliant Web services.

Once in a portlet container (a.k.a., producer), portlets can be realized in dis-

tinct platforms (e.g., J2EE, .NET, etc). Here is when JSR168 becomes important.

[JCP03]. This specification defines a standard set of APIs for portlets to be plugged

into J2EE-based portal servers. In the same way that Servlets run into a Servlet

container, JSR168 defines a portlet container that manages portlets. The container

is the true interlocutor with the portlet consumer, and the responsible for mapping

WSRP requests into JSR168 operations. This enables the portlet programmer to

ignore the intricacies of WSRP. The container also offers infrastructure for person-

alization, presentation and security of portlets.

The WSRP standard WSRP was a joint effort of two OASIS technical com-

mittees (TC), namely, the Web Services for Interactive Applications (WSIA) and

the Web Service for Remote Portals (WSRP) [OAS03]. The WSRP TC is formed

by people from diverse companies (e.g., BEA Systems, Citrix Systems, IBM, and

so on). WSRP layers on top of the existing web service stack, utilizing WSDL

for defining a set of interfaces [W3C03, W3C01]. It standardizes the application

programming interfaces (API) between consumers and producers of portlets, the

communication protocol, and some aspects of the component model (e.g., modes,

personalization descriptions, CSS terms and the like). WSRP is also extensible.

The specification 1.0 contemplates four interfaces, namely, service description,

markup, registration, and portlet management. According to the specification,

producers are “presentation-oriented Web Services that host Portlets”. Hence, a

WSRP producer is modeled as a compound of portlets [DR04].

22 Chapter 2. Background

The JSR168 standard The Java Standardization Request 168 (JSR168) is a Java

Community Process (JCP) initiative that standardizes the way a portlet is developed

in a J2EE framework [JCP03]. The JSR168 was co-led by IBM and Sun and had

a large expert group (that includes Apache Software Foundation, BEA, Citrix Sys-

tems among others). It is defined as a set of extensions to the Java Servlets APIs

[CY03]. Basically, three main actors are involved, namely, the portlet entity as a

new web component, the portlet application, and the portlet container.

2.4.6 Current Research Issues

The first versions of portlet standardization efforts aimed to unify previously exist-

ing vendor-specific implementations. Hence, favoring this unification, a number of

issues were postponed, some of which are subject of forthcoming work.

WSRP 1.0 is being revised nowadays. WSRP 2.0 (revision of the specifica-

tion) will add consumer managed coordination, additional lifecycle management

and a set of related aggregation enhancements [OAS06b]. Consumer managed co-

ordination (a.k.a., orchestration) enables inter-portlet communication. This is the

subject of current research [DII05]. Nonetheless, the final draft is not yet scheduled

(presumably along 2007).

JSR-286 (the Portlet Specification 2.0 is the next version of JSR-168 [JCP03])

is now under review at the JCP [JCP06]. According to the proposal (at the time

of this writing), the following areas are to be addressed: add access to Com-

posite Capability/Preference Profiles (CC/PP) data via the JSR188 API, introduc-

tion of portlet filters, J2EE 1.4 support, enhance the portlet tag library, coordi-

nate to better align JSF with portlets [Sun]. Some issues align with WSRP 2.0

[OAS06b], namely, inter-portlet communication, public render parameters, and en-

hance caching support. The final draft was initially scheduled to the end of 2006.

2.5 Related Work

2.5.1 Software Product Lines & Model Driven Development

The idea of merging MDD and product lines is not new [AFM05, AGESR06,

CA05b, DSvGB03, GBLC05, SNW05]. The term Model Driven Software Prod-

uct Lines were first coined by [CA05b], and we know of few examples. Batory

provides a unification of the vocabularies used in FOP and MDD [Bat06].

2.5. Related Work 23

There exists three major approaches: (i) Czarnecki’s work on mapping fea-

tures to models [CA05a], (ii) PuLSE-MDD that provides a process to drive pattern

generation [AFM05], and (iii) BoldStroke that is a product-line written in several

millions lines of C++ for supporting a family of mission computing avionics for

military aircraft [Gea04]. Conversely, our work introduces Feature Oriented Model

Driven Development (FOMDD) which scales AHEAD model of variability by in-

troducing modeling, and provides some mathematical background (e.g., commut-

ing diagrams).

In general, existing approaches differ in several ways: (i) the paradigm used to

distinguish products is different (e.g., decisions vs. features), then (ii) the model to

realize (implement) variability is also different, even (iii) the process to develop the

product line reusable infrastructure differs, doing so (iv) the mechanisms used to

synthesize (derive) a product (and its models) are also different. These differences

call to a deeper analysis that was discussed in a workshop on the integration of SPL

and MDD [SNW05].

2.5.2 Software Product Lines & Web

Jarzabek et al. presented a study on portal cloning (source code repeated from prod-

uct to product). This study revealed that cloning rate ranges upwards to 50-60%

[RJ05]. This cloning rate was resolved by means of a product-line using XVCL

[JBZZ03]. In fact, this pioneering work reported a first case study on the use of

XVCL for web applications. XVCL is a technique based on customized extensions

where raw artifacts (i.e., frames in XVCL terminology) are instrumented for flex-

ibility by inlaying variation points. A variation point denotes a particular place in

a raw artifact where choices need to be made as to which variant to use. In this

way, variations are completely detached from raw artifacts, and their effects are

separately described through customization scripts. Scripts produce customized

artifacts (i.e., artifacts that cater for certain variants of the feature model).

Capilla et al. proposed a lightweight approach to SPL web application [CD03].

It analyzed existing SPL assets using differentiation techniques (e.g., diff). Diff -

detected common fragments were factored out into so-called core assets (i.e., the

platform of the SPL). This approach was intended to build a few number of prod-

ucts where a number of benefits appear. The authors claim that the upfront invest-

ment is lower than in traditional (heavy) approaches. The setting up is quicker.

Thus, the initial time-to-market is reduced. However, it might result in long-term

drawbacks when the product line is created to build many (hundreds or thousands)

24 Chapter 2. Background

products. Core assets are not documented. The production plan is informal (i.e.,

not defined), so product production is a hand craft process where human interven-

tion is required. In summary, this lightweight approach is powerful when the SPL

consists of a few products, but it shows drawbacks scaling.

Balzerani et al. presented Koriandol as a product-line architecture designed

specifically to develop web families [BdRPdA05]. It provides a common set of

web modules and a way to configure them. Each module provides common web

functionality, but does not provide means to deal with domain-specific variability

when facing a web-specific SPL development. So, variability is achieved by just

configuring such modules, developing domain-specific functionality, and integrat-

ing them together in built products.

Diaz et al. provided a first attempt to portlet syndication by means of variability

[DR05]. Shortly, they focused on automatizing the production plan and bringing

variability to it [DTA05]. The point was not only on how the core assets vary to

create a feature-customized product, but on how the process to synthesize product

varies (see chapter 7). To this end, a production plan capability with two levels of

variability was created. The first affects to the product features (i.e., build process),

while the second affects to the process features (i.e., synthesis process).

2.5.3 Model Driven Development & Web

Kurtev introduces XML transformations to develop XML applications [KvdB05].

Web applications face not only functionality but also content, navigation and pre-

sentation issues. Several approaches also introduce models in web engineering

(e.g., WebML [CFM02], W2000 [BGP00], UWE [NA02] or OO-HMethod [PGIP01]).

Web Software Architecture (WebSA) approach [MG06a, Mel07] is based on the

MDE paradigm [Béz04] and more specifically on the MDA [OMG03]. In general,

WebSA offers the designer a set of architectural models and transformation models

to specify a web application. Starting from these models, the designer can integrate

the Web functional models (e.g., domain, navigation and presentation) with the

architectural models. This is achieved applying a set of model transformations

where QVT is used [OMG05a]. The result is the integration model, which is a

platform independent model that can be transformed into the different platforms

such as J2EE, .NET, etc.

Though the literature in web and model-driven is rich, to the best of our knowl-

edge, there is a lack of specific approaches for portlets.

2.6. Conclusions 25

2.6 Conclusions

The purpose of this chapter was to provide a brief introduction to the existing

background on top of which this work is built on.

• Software Product Lines

• Model Driven Development

• Portlet (and Web) Engineering

Some related work inter-connecting those presented fields was also discussed:

• Software Product Lines & Model Driven development

• Software Product Lines & Web

• Model Driven Development & Web

We invite the reader to check the bibliography section for a comprehensive account.

26 Chapter 2. Background

Chapter 3

SPL need Endogenous

Transformations

“Every new beginning comes from some other beginning’s end”.

– Seneca.

3.1 Abstract

The previous chapter introduced Software Product Lines (SPL) whereby a family of

programs can be created. Doing so, development shifts from individual programs

to reusable artifacts that can be used in different programs. These programs are

distinguished by different requirements, which typically involve the realization of

different increments in functionality. Hence, SPL need techniques to realize these

increments in functionality.

A key issue is how to realize this variability (a.k.a., variability realization tech-

niques). There exist different techniques, and the selection of one technique im-

poses how the program synthesis is later realized. In general, the code of a reusable

artifact is transformed during program synthesis. This transformation does not

change the type of the artifact (e.g., code), but only increments its functionality.

This type of transformation is known as endogenous and is fundamental to realize

SPL variability.

27

28 Chapter 3. SPL need Endogenous Transformations

In this chapter, we discuss the need for endogenous transformations in SPL.

AHEAD is specifically selected as the variability realization technique to realize en-

dogenous transformations during program synthesis. Hence, this chapter is about

AHEAD, which is exploring the structure that increments in functionality (a.k.a.,

features) impose on programs. This feature structure is represented using mathe-

matics. Its algebraic representation describes features and how programs are syn-

thesized by composing features.

This chapter deals not only with AHEAD and endogenous transformations,

but introduces as well some specific contributions, namely, (i) our extensions of

AHEAD Tool Suite (ATS) to cope with variability of heterogeneous representations

such as XML documents, and (ii) a case study for feature refactoring a large scale

program with heterogeneous representations. The substantial program is ATS.

3.2 Rationale for Endogenous Transformations

In this section we discuss the rationale for using transformations between models

expressed in the same language [MG06b]. Particularly, we are interested in those

specific endogenous transformations that increment the functionality of programs.

Such transformations are commonly used to synthesize a set of different pro-

grams from an SPL (i.e., different programs demand different variations). Al-

though it is not trivial to achieve such variability, there exist variability realization

techniques to support the creation of different SPL programs.

3.2.1 Variability Realization Techniques

There are different SPL strategies, visions, and schools (section 2.2.6 introduces

existing approaches). It is not our intention to describe them, but to argue why

the Feature Oriented Programming (FOP) paradigm and its realizing model

AHEAD is used in this work.

Existing techniques realize variability for different types of reusable artifacts

(e.g., code, architecture, etc). This work concentrates initially on the code im-

plementation level where distinct techniques have been proposed to realize vari-

ability, namely, aggregation/delegation, aspect-oriented programming, conditional

compilation, dynamic class loading, dynamic link libraries, frames, inheritance,

overloading, parameterization, configuration properties, static libraries, etc. See

[AG01] for a discussion.

3.2. Rationale for Endogenous Transformations 29

In general, all these techniques can be used to realize artifact variability (e.g.,

conditional compilation, parameterization, configuration properties), but some do

not lend themselves to automatic program synthesis. This implies that program

synthesis requires human intervention (e.g., configure certain parameters for con-

ditional compilation or give some config properties).

Alternatively, some techniques support synthesis (e.g., frames, inheritance,

etc). Hence, programs are synthesized automatically (i.e., without human interven-

tion). Several approaches belong to this group, namely, CONSUL-pure::variants

[Sys], XVCL [JBZZ03], and AHEAD [BSR04]. These techniques have been suc-

cessfully applied to create SPL in different contexts.

The differences stem from the specific technique (i) to represent artifact vari-

ability, (ii) to realize synthesis, and (iii) to structure artifacts. Different techniques

are used for (i): CONSUL allows any type of transformation1, XVCL uses frames2,

and AHEAD uses mixin-inheritance3. This implies that the mechanisms to real-

ize synthesis also differs: CONSUL applies transformations, XVCL applies Cus-

tomization Scripts into frames, and AHEAD applies feature composition4.

AHEAD supports compositional programming as opposed to others. Compo-

sitional programming represents structure. By structure we mean the parts of an

SPL and how these parts are composed to yield products. This structuring of ar-

tifacts differentiates AHEAD from other approaches. AHEAD imposes a general

structure to arrange artifacts for synthesis. What is original of AHEAD is the way

it expresses this structure via mathematics.

3.2.2 Mathematical Structure in AHEAD

Individual programs have inherently structure. Indeed, structuring programs and

modularization are inherent to computer sciences.

SPL are not an exception. SPL programs are synthesized from structures con-

taining artifacts. Doing so, a program is synthesized as a composition of structures

of artifacts (i.e., synthesis composes units of structure). Frequently, features are

1This implies that not only endogenous, but also other types of transformations like exogenous
can be used to increment a program in functionality. SPL need endogenous transformations just to
increment functionality. The use of other transformations could alter this restricted goal because they
are intended to realize other purposes (e.g., Model Driven Development).

2It is a template programming technique where variations (a.k.a., customization scripts) are ap-
plied on base templates. It is based on Bassett’s frames [Bas97].

3Mixin inheritance details are introduced next. This technique is a specific endogenous transfor-
mation which only adds functionality.

4Refer to Blair et al. [BB04] for a comparative of generative approaches (XVCL vs. AHEAD).

30 Chapter 3. SPL need Endogenous Transformations

those units (i.e., incrementing application functionality) by which different pro-

grams are not only distinguished and defined, but also SPL artifacts structured.

When features are used to impose that structure, it is known as Feature Ori-

ented Programming (FOP) [BSR04]. This work focuses specifically on FOP and

its realizing model AHEAD, which is a general structural model based on math-

ematics [BSR04]. It provides a particular case for endogenous transformations

where structure of artifacts is central.

FOP structures code pieces into features. Doing so, a set of code pieces realizes

the functionality addressed by such feature. AHEAD is a structural model realiz-

ing FOP that explores the structure that features impose on programs. To attain

this, AHEAD studies feature modularity structure and its use in program synthesis

[BSR04, LH06, Sma99].

The way AHEAD expresses structure is via mathematics. Indeed, the math-

ematical perspective is a search for structure (nothing more and nothing less).

Mathematics is the science of structure. Those interested in understanding struc-

ture implications precisely are interested in mathematics to describe such structure

[Len06]. Doing so, a scientific approach to programming methodology is pursued

where algebra represents structure.

3.2.3 Rationale for AHEAD

FOP is driven by features [BSR04, Kea90]. The core idea behind FOP is not the in-

tensive use of the term feature, but the idea that some unit is needed to distinguish

among products within an SPL. This unit to distinguish products is fundamental to

any SPL approach (e.g., decisions and features).

AHEAD fundamental idea is to structure artifacts based on features (i.e., the

set of artifacts realizing a feature are grouped together). Doing so, the increment in

functionality of each feature is separated into a feature module realizing it (a.k.a.,

feature layer). Features are not only used in domain analysis, but in the whole

development of SPL by imposing a top-down use of features. AHEAD takes the

definition of feature (i.e., encapsulates an increment of functionality) to the fullest

extent of its consequences.

The artifacts that realize a feature have a dual nature in AHEAD. Some of

them are introductions (i.e., newly introduced artifacts), whereas others are re-

finements (i.e., extensions at predefined points of previously introduced artifacts).

This dual nature is similar in other SPL approaches, but is represented differently

(e.g., variation points [Bos00, Gom04]).

3.3. AHEAD: A Model of Feature Oriented Programming 31

Refinement is a central concept of AHEAD. It is a technique to realize variabil-

ity where increments are realized using mixin-inheritance. Inheritance is broadly

used, and mixin-inheritance is just a special case of regular inheritance [BC90]

(detailed in section 3.4.1). Nonetheless, the term refinement could be misleading

because it has different usages nowadays in computer science (explained shortly).

However, what is common to any SPL approach is the need of some variability

realization technique [AG01].

Overall, AHEAD structural model is intended to synthesize programs by com-

position. The composition of features implies the composition of their structure

and artifacts. Composition of introductions is straightforward (i.e., just copy them).

On the other hand, refinements must be composed with existing artifacts. Hence, a

composition operator is necessary (i.e., mixin-inheritance composition). This op-

erator enables to automate feature composition. This automation is the key that

would eventually make compositional programming possible (i.e., the automatic

composition of products from features) [Sma99].

The realization of a feature involves frequently not only source code artifacts,

but other multiple representations (e.g., HTML pages, UML models, etc). To

attain this, composition is a polymorphic operator (i.e., an specific composer tool

for each type). This allows the composition of multiple and heterogeneous artifacts.

AHEAD has a companion suite of tools realizing described structural model.

However, the availability of tools is not restricted to AHEAD. What is specific of

AHEAD is that its usage is documented and that tool download is free [Bata].

3.3 AHEAD: A Model of Feature Oriented Programming

Feature Oriented Programming is a general paradigm of SPL program synthesis

where feature units are the building blocks of programs. Each feature unit (a.k.a.,

feature layer or module) may include any number of artifacts (i.e., representations).

GenVoca was an early model of FOP; Algebraic Hierarchical Equations for Appli-

cation Design (AHEAD) is the current model [BSR04].

3.3.1 GenVoca

GenVoca is an algebra that offers a set of operations, where each operation realizes

a feature. We write M = {f, h, i, j} to mean model M has operations or features

f , h, i and j. GenVoca distinguishes features as constants or functions. Constants

(or constant functions) represent base programs. For example:

32 Chapter 3. SPL need Endogenous Transformations

f // a program with feature f

h // a program with feature h

Functions represent program refinements5 that extend a program that is received as

input. For instance:

i • x // adds feature i to program x

j • x // adds feature j to program x

where • denotes function application. GenVoca is based on step-wise refinement

paradigm for developing a complex program from a simple program by adding fea-

tures incrementally [Dij76]. Endogenous transformations are used to map between

models (e.g., programs) expressed in the same language, and GenVoca is a specific

case to add functionality incrementally. Doing so, the design of a program is a

named expression, e.g.:

prog1 = i • f // program prog1 has features f and i

prog2 = j • h // program prog2 has features h and j

prog3 = i • j • h // program prog3 has features h, j, and i

The set of programs that can be created from a model is its product line6. Ex-

pression optimization corresponds to program design optimization, and expression

evaluation corresponds to program synthesis [BCRW00, LB04, SAC+79]. Not all

features are compatible. The use of one feature may preclude the use of some fea-

tures or may demand the use of others. Tools that validate compositions of features

are discussed in [Bat05, BRCT05, Ben07, BSTRC07].

3.3.2 AHEAD

Algebraic Hierarchical Equations for Application Design (AHEAD) extends Gen-

Voca to express nested hierarchies of artifacts (i.e., files) and their composition

[BSR04]. If feature f encapsulates a set of artifacts af , bf , and df we write f=

5Note that refinement is used in the context of FOP to represent a refinement function that incre-
ments in feature functionality [BSR04]. It is inspired on Dijkstra’s Step-Wise Refinement [Dij76].
Next chapter describes an alternative definition of refinement in the context of MDD, which is often
used when a specification is gradually refined into a full-fledged implementation by means of suc-
cessive concrete steps that add more concrete details [MG06b]. Although similar, each is intended
for a different purpose. Refer to [Ape07] for more detail.

6Note: Although we write the composition of features a and b as a • b, it really is an abbreviation
of the expression compose(a,b). We use • to simplify FOP expressions.

3.3. AHEAD: A Model of Feature Oriented Programming 33

Figure 3.1: Features as Directories

{af , bf , df}. Similarly, i = {ai, bi, ci} says that feature i encapsulates artifacts ai,

bi, and ci . As artifacts themselves may be sets, a feature is a nested set of artifacts.

AHEAD uses directories to represent nested sets. Figure 3.1a shows an AHEAD

feature and its corresponding directory.

The composition of features is governed by the rules of inheritance. In the

composition i • f , all artifacts of f are inherited by i. Further, artifacts with the

same name (ignoring subscripts) are composed pairwise. This is AHEAD’s Law of

Composition:

i • f = {ai, bi, ci} • { af , bf , df} = { ai•af , bi•bf , ci, df} (1)

Features are composed by applying (1) recursively, where directories are folded

together by composing corresponding artifacts in each directory. Figure 3.1b shows

the composition of features A and B. The result is feature C, where artifact X.jak

of C is synthesized by composing X.jak (from B) with X.jak (from A) [BSR04].

The polymorphism of the • operator is central to AHEAD. Artifacts of a given

type (.jak, .b, etc.) and their refinements are defined in a type-specific language.

That is, the definition and refinements of .jak files are expressed in the Jak(arta)

language, a superset of Java. The definition and refinement of .b files are expressed

as Bali grammars, which are annotated BNF files. And so on. One or more tools

implement the • operator for each artifact type. The jampack and mixin tools

implement the • operator for .jak files (i.e., .jak files are composed by either the

jampack and mixin tools), and the balicomposer tool implements the • operator

for .b files. ATS is the set of tools that compose artifacts, produce and analyze

compositions, and derive artifacts of one type from others (e.g., the jak2java tool

translates a .jak file to its .java counterpart).

34 Chapter 3. SPL need Endogenous Transformations

Figure 3.2: Jak Refinement

3.3.3 Jak and Java Refinement

Jak(arta) is an extension of Java for FOP [Bata]. It supports special language con-

structs to express refinements of classes. Jak classes can be translated to standard

Java classes using jak2java tool [Bata]. A refinement implies that there is some-

thing to be refined (i.e., the argument of the refinement). Indeed, we can think of

refinement as a function (e.g., an endogenous transformation) that takes a base arti-

fact as input, and returns another similar artifact which has been updated to support

a given feature.

Jak refinement is not implemented by regular inheritance. It is implemented by

mixin-based inheritance [BC90, SB02]. A mixin is an abstract subclass that can be

applied to various classes to yield a new class (i.e., a class whose superclass is pa-

rameterized [BC90]). Composing a mixin and a class is called mixin composition.

The relationship between mixin and superclass is called mixin-based inheritance,

a form of inheritance that delays the link between subclass and superclass until

composition time. The difference is that the link to the superclass is not fixed un-

til composition time, whereas this link is fixed in regular inheritance. Figure 3.2

illustrates examples for Jak refinement.

Figure 3.2a shows a Jak artifact Foo defining a method bar realizing the feature

Base. Now consider that the realization of Feature1 implies changing the existing

class Foo by extending the method bar with further functionality7. Figure 3.2b

shows the definition of this refinement function in Jak [BSR04]. The expression

Feature1(Base) returns a Jak artifact which refines Base. Figure 3.2c illustrates this

composition. Similarly, 3.2d shows the realization of Feature2 where method bar

7Super().bar(); calls parent class. Note that Super() differs from common super.

3.4. Extensions of AHEAD Tool Suite 35

is overridden (i.e., the previous functionality of this method is lost). Figure 3.2e

illustrates the expression Feature2(Base).

The order of feature composition can matter. Consider the expression Fea-

ture1(Feature2(Base)) that stands for Base being composed with Feature1 and

Feature2. In this case, Feature2 overrides Base, and Feature1 extends the result.

Conversely, the expression Feature2(Feature1(Base)) produces a different result

because Feature2 overrides Feature1 and Base. This yields a different bar method.

Therefore, the result differs depending on the order of composition.

In general, when the artifact is source code, a class refinement8 can introduce

new data members, methods and constructors to a target class, as well as extend or

override existing methods and constructors of that class. In addition, composition

is polymorphic. AHEAD provides the principle of uniformity to generalize refine-

ment [BSR04]. This implies that it is possible to refine other types of artifacts in

addition to code. Each type of artifact has a language in which such artifacts can

be refined. Also, there are type-specific composers that enable base artifacts to be

composed with their refinements [BSR04]. There has been little work to show how

an XML document can be refined. This topic is part of the next section.

3.4 Extensions of AHEAD Tool Suite

The AHEAD Tool Suite (ATS) is a set of tools supporting AHEAD. We developed

a number of ATS extensions to (i) deal with heterogeneous artifacts such as XML

documents, and (ii) to provide a web interface for ATS synthesis (a.k.a., product

production).

3.4.1 AHEAD Tool Suite (ATS)

ATS is a collection of tools that were developed for feature-based program synthesis

[Bata]. Over time, ATS grew to different tools such as: (i) jampack and mixin tools

to compose Jak files; (ii) jak2java a Jak to Java file translator; (iii) composer a

tool that composes features; (iv) modelexplorer is a GUI tool to browse feature

realizations; and (v) guidsl a tool for feature modeling.

36 Chapter 3. SPL need Endogenous Transformations

Figure 3.3: XAK Module Hierarchy

Figure 3.4: XAK Base Document Example

Figure 3.5: XAK Composition Example

3.4. Extensions of AHEAD Tool Suite 37

3.4.2 XAK and XML Refinement9

XAK (pronounced “sack”) is a tool for composing base and refinement artifacts

in XML format [Gro]. The need for XAK arose two years ago while developing

SPL for Portlet applications using AHEAD [DTA05]. In general, an unusual char-

acteristic of web applications is that a sizable fraction of their definition is not Java

or Jak source, but rather XML specifications [RJ05] (e.g., JSP, HTML, and Struts

control flow files [str]). Thus, it is common for a feature of a web application to

contain XML artifacts (base or refinements) and Jak source (base or refinements).

We began our work at a time when AHEAD did not have a language for XML arti-

fact refinement and a tool for XML artifact composition. This lead to the creation

of XAK.

XAK follows the AHEAD paradigm of module definition and refinement. An

XML document is a tree rooted at node t1 in Figure 3.3a. Its XAK counterpart is

slightly different: it is a tree of trees (e.g., trees rooted at nodes t1, t2, and t3 in

Figure 3.3b), and each of these nodes is tagged with a xak:module attribute, so that

the XAK module abstraction of the original tree is a tree of modules (module m1

contains modules m2 and m3 in Figure 3.3a).

In general, a XAK module has a unique name and contains one or more con-

secutive subtrees. Each subtree may contain any number of modules. Note that the

modules of an XML artifact reflect a natural hierarchical partitioning into semantic

units that can be refined (more on this shortly).

As a concrete example, Figure 3.4a shows a XAK artifact that defines a bib-

liography. The artifact is partitioned into modules (see the xak:module attributes)

which impose the module structure of Figure 3.4b. Also, the root of the artifact is

labeled with the xak:artifact attribute. Note that all modules have unique names.

A refinement of a XAK module is defined similarly to method refinement in

the Jak language [BSR04]. A refinement of the XAK artifact of Figure 3.4a is

shown in Figure 3.5a that appends a new author to the mATSAuthors module. The

xak:super node is a marker that indicates the place where the original module body

is to be substituted. In general, a XAK refinement artifact can contain any number

of xak:module refinements.

The result of composing the base artifact of Figure 3.4a and the refinement

of Figure 3.5a is the artifact in Figure 3.5b. Note that it is possible for a XAK

8Beyond Jak, there are refinements for other code artifacts such as C++.
9This section is extracted from our GPCE 2006 paper [TBD06]. A draft describing XAK is at

[ADT06a].

38 Chapter 3. SPL need Endogenous Transformations

Figure 3.6: Feature Selection/Product Production screenshot

refinement to add new modules. In this example, only new content is added to an

existing module. Thus, the modular structure of Figure 3.4b is unchanged.

The result of a XAK composition is a XAK artifact. The underlying XML ar-

tifact is the XAK artifact with the xak:artifact and xak:module attributes removed.

XAK has other functionalities not needed for our work, such as interfaces, schema

extensions and validation [ADT06a].

3.4.3 WebGUI Tooling

WebGUI is a web-interface (specifically Portlet) tool we created for product-line

synthesis (i.e., to create individual programs). Its functionality is roughly (i) to

configure a given factory project, (ii) to select features, and (iii) to invoke produc-

tion processes. This tool uses feature composition by invoking ATS and our own

refinement operators to synthesize a custom product. This tool is built on top of

ATS tooling using composer. It is complementary to the GUI existing tools like

GuiDSL or modelexplorer, but aimed for a Portlet setting.

Figure 3.6 shows 2 screenshots of this tool. On the left side, the (fourth) tab to

select features is shown (see Product Featurer). This interface allows the browsing

of feature model information and the selection of features. It displays a feature

3.5. A Case Study on Feature Oriented Refactoring 39

model loaded from an XML specification in a tree-like fashion [BTT05]. Note

that the tool provides 2 types of feature modeler: one for products (i.e., fourth

tab named product featurer) and other for the production process (i.e., second tab

named process featurer). The difference between both would become clearer in

chapter 7. On the right side, a screenshot for builder is shown. Basically, this inter-

face allows the invocation of processes (e.g., ant makefiles to synthesize products).

The tool also provides 2 types of builder: one for products (i.e., fifth tab named

product builder) and other for the production process (i.e., third tab named process

builder). Both are similar.

3.5 A Case Study on Feature Oriented Refactoring10

Feature Oriented Refactoring (FOR) is the inverse of feature composition. Instead

of starting with a base program B and features F and G, and composing them to

build program P = F •G•B, feature refactoring starts with P and refactors P into

an expression F •G •B. FOR is the process of decomposing a program into a se-

quence of features, that encapsulate increments in program functionality. Doing so,

different compositions of features yield different programs. As programs are de-

fined using multiple representations, such as code, makefiles, and documentation,

feature refactoring requires all representations to be factored. Thus, composing

features produces consistent representations of code, makefiles, documentation,

etc. for a target program. We present a case study of feature refactoring a sub-

stantial tool suite that uses multiple representations. We describe the key technical

problems encountered, and sketch the tool support needed for simplifying such

refactorings in the future. First, we begin with a review of the rationale behind

FOR.

3.5.1 Rationale for FOR

Program evolution can be described in a high-level and easy-to-understand way as

the process of adding and removing features. Giving applications a feature-based

design facilitates such extensibility. Designing an application from the ground

using features is one approach [BSR04]; an alternative is to refactor a legacy appli-

cation. FOR is about the latter. In general, the rationale behind FOR is to refactor

an FOP product-line starting from an existing application.

10The core of this section comes from our GPCE 2006 paper [TBD06].

40 Chapter 3. SPL need Endogenous Transformations

The challenge of FOR is two-fold. First, feature implementations often do not

translate cleanly into traditional software modules, such as methods, classes, and

packages. Refinements (e.g., fragments of methods, classes, and packages) are

better suited [BSR04]. This requires a theory of program structure that is based

on features [LBL06]. Second, what makes FOR unusual is that feature imple-

mentations are not monolithic: the implementation of a feature can vary from one

program to another (i.e., interactions) [LBL06].

Features have a modular structure that we need to make explicit. To attain this,

FOR manipulates program structure in a highly disciplined and sophisticated way.

FOR is supported by a theory that relates code refactoring to algebraic factoring,

defines relationships between features and their implementing modules, and why

features in different programs of a product-line can have different implementations

[BSR04, LBL06, ZJ04]. FOR provides a conceptual basis of program structure

and manipulation in terms of FOP. Next, a case study on FOR is described.

3.5.2 A Case Study: ATS

A program has many representations. Beside source code, there may also be re-

gression tests, documentation, makefiles, UML models, performance models, etc.

When a program is refactored into features, all of its representations code, re-

gression tests, documentation, etc. must be refactored as well. That is, a feature

encapsulates all representations (or changes to existing representations) that define

the features implementation. When a program is built by composing features, all

relevant representations are synthesized.

In this section, we present a case study in feature refactoring that demonstrates

these concepts. The program that we refactor is the AHEAD Tool Suite (ATS)

which is a collection of tools that were developed for feature-based program syn-

thesis [Bata]. Over time, ATS has grown to 24 different tools expressed in over

200 KLOC Java. In addition to code, there are makefiles, regression tests, docu-

mentation, and program specifications, all of which are intimately intertwined into

an integrated whole. There has been an increasing need to customize ATS by re-

moving or replacing certain tools. This motivated the feature refactoring of ATS,

in order to create a product line of its variants.

What is new about our work is the scale of refactoring. Prior work on feature

refactoring dealt with small programs under 5 KLOC and focused only on code

refactoring [LBN05, LBL06]. In this case study, we scale features substantially

in size (ATS is almost two orders of magnitude larger) and in the kinds of repre-

3.5. A Case Study on Feature Oriented Refactoring 41

Figure 3.7: ATS Directory Structure

sentation (ATS required refactoring not only code, but documentation, makefiles,

and regression tests as well). This wholistic approach to refactoring information

is fundamental to feature orientation, and as such this work constitutes a valuable

case study on the scalability of feature-based program refactoring and synthesis.

We describe the technical problems encountered in feature refactoring ATS,

and the kinds of tool support needed for performing such refactorings in the future.

We believe our experiences (except one) extrapolate to the feature refactoring of

other tool suites. The exception is that ATS is bootstrapped, and it posed its own

special conceptual and technical challenges.

3.5.3 Feature Refactoring and ATS

Figure 3.7 shows a part of the directory structure of ATS. There is an expression per

tool in the ahead/expressions directory. ahead/lib contains Java archive (JAR) files

for ATS, ahead/models contains directories of AHEAD models, fopdocs contains

HTML tool documents, and regression is a directory of regression tests.

ATS is the baseline program for a product line of variants. We want to feature

refactor ATS into a core (the kernel of ATS) and optional features, one per tool

(e.g., aj, cpp, drc, jedi, etc.). By doing so, we create an AHEAD model of ATS,

which we call the ATS Product Line (APL):

APL = { core, // kernel of ATS

42 Chapter 3. SPL need Endogenous Transformations

Figure 3.8: ATS Refactoring Process

aj, // aspectj translator

cpp, // c++ tools

guidsl, // feature modeling tool

xc, // XML composer

drc, // design rule tool

jedi, // javadoc-like tool

me, // modelexplorer

... }

Given APL, we can synthesize different variants of ATS:

ATS1 = ...cpp • drc • xc • core; // full set of tools

ATS2 = ...cpp • core; // a subset of tools

ATS3 = ...jedi • guidsl • m • core;

ATS4 = ...drc • aj • core;

An essential tool in synthesizing variants of ATS is XAK, whose capabilities we

described before in section 3.4.2.

3.5.4 The Process of Feature Refactoring ATS

Let ATSsrc denote the AHEAD feature that contains the source artifacts for the

AHEAD Tool Suite. The tool binaries (i.e., JAR files) are produced by an ant

3.5. A Case Study on Feature Oriented Refactoring 43

XML build which we model by the function antBuild:

ATSbin = antBuild(ATSsrc)

That is, ATSbin differs from ATSsrc in that tool binaries have been created and

added to the ATS directory. The build process itself creates directories to contain

tool JARs, newly created batch and bash executables11, and runs the regression

tests to evaluate the correctness of tool executables. An ATS build time is about

1/2 hour.

Figure 3.8 illustrates the five-step process that we used to feature refactor

ATSsrc into an SPL of ATS variants.

Step 1. ATSbin was created by an ant build of ATSsrc:

ATSbin = antBuild(ATSsrc)

Step 2. ATSsrc was feature refactored (more on this in Section 3.5.5) into the

APL:

APL = {core, jedi, cpp, aj, ...}

Each APL feature has XAK artifacts, that either define or refine HTML and XML

documents in ATSsrc.

Step 3. Although APL is itself an AHEAD model, we could not compose its

features using the binaries of ATSbin created in Step 1. The reason is that APL

features encapsulate XAK artifacts and their refinements12, and the XAK tool is

not part of ATSbin. However, XAK can be added to ATSbin by refinement. Let

ATSxak be a feature that adds the XAK tool to ATSbin to produce ATSbin′ , which

is a set of tools that can compose APL features:

ATSbin′ = ATSxak • ATSbin (2)

Note that the tools of ATSbin are used to evaluate (2). As we explain in Section

3.5.6, this is a form of bootstrapping where a tool suite is used to build a new

version of itself.

Step 4. We use the tools of ATSbin to synthesize different variants of ATSsrc

by composing APL features, such as:

11Cygwin. http://www.cygwin.com/
12A generic XAK example is shown in section 3.4.2 where XAK tool is also described. APL

contains many XAK artifacts that are refined likewise (e.g., ant makefiles or html documentation).
In addition, chapter 7 introduces specific examples for ant makefiles, which are very similar.

44 Chapter 3. SPL need Endogenous Transformations

Figure 3.9: APL Feature Model

APL1src = aj • core

APL2src = jedi • core

Step 5. Tool binaries of an ATS variant are obtained by an ant build:

APL1bin = antBuild(APL1src)
APL2bin = antBuild(APL2src)

In the following sections, we elaborate the details of steps 2, 3, and 4 in this

process.

3.5.5 Step 2: Refactoring ATS

One of the core contributions of SPL research is the use of features and feature

models to define members of an SPL. Although the process of identifying features,

refactoring them by extraction from the original program, and creating a feature

model is iterative, we proceeded in a largely straightforward fashion (discussed

below) with minimal backtracking.

The APL Feature Model We identified the following features in ATS:

• core. The kernel of ATS includes Jak file tools jampack, mixin, and jak2java,

and Bali file tools such as balicomposer and bali2jak.

• aj, mmatrix, jedi, reform. Tools that process Jak files. aj translates Jak files

to AspectJ files, mmatrix collects statistics on Jak files, jedi is a javadoc-like

tool, and reform is a Jak file pretty-printer.

• guidsl, web, me. GUI-based tools for declaratively specifying programs and

exploring AHEAD models.

3.5. A Case Study on Feature Oriented Refactoring 45

Figure 3.10: APL Grammar

• xak, xc. Tools for composing XML files.

• bctools. Tools that produce, compose, and analyze byte codes.

• obe, drc, cpp. Miscellaneous tools.

Figure 3.9 depicts a feature model for APL using a notation similar to [CA05a].

Alternatively, a feature model is a context free grammar with constraints (a.k.a.,

cross-tree constraints) [Bat05]. Figure 3.10 shows a grammar representation that

is used in AHEAD to specify feature models and cross-tree constraints (e.g., the

selection of bctools or the me tool requires the mmatrix tool). Note that the cross-

tree constraints were discovered during the refactoring of ATS, discussed in the

next section.

The Refactoring Process We refactored ATSsrc in a progressive manner. First,

we identified the kernel of ATSsrc which we called the core feature. The remainder

of ATSsrc was called extra0. So our first step in refactoring ATS was described

by:

ATSsrc = extra0 • core (3)

We knew that we found a correct definition of core when we were able to build

core tools and run their regression tests without errors:

ATScore = antBuild(core) (4)

Unlike prior feature refactoring work, the presence of regression tests in a feature

helped us confirm that our refactoring was correct. If a build failed, we tracked

46 Chapter 3. SPL need Endogenous Transformations

down the missing pieces as files that had to be moved from extra0 into core. That

is, we failed to include all parts of core in our refactoring of (3).

Next, we factored out feature Fn from extran to produce a smaller extran+1

feature:

extran = extran+1 • Fn (5)

To verify that we had a correct definition of Fn, we composed it with core, built

the binaries, and ran the regression tests correctly, which takes over 20 minutes:

ATSn = antBuild(Fn • core) (6)

Again, the regression tests validated both the core tools and the additional tool(s)

encapsulated in Fn. Failed builds helped us identify pieces that were not moved

from extran+1 to Fn .

We repeated (5) and (6) to remove incrementally all features from extra that we

identified in the last section. The final version of extra was empty (i.e., it contained

no files). This refactoring took around 10 person/days.

This process required adjustment when we discovered dependencies among

APL features. For example, the bctools feature required the mmatrix feature be-

cause the bctools invoked the mmatrix tool. We had to create a version v of ATS

with both tools before we could build and test:

ATSv = antBuild(bctools • mmatrix • core)

Refactoring Order The order in which features were refactored from ATSsrc

into features was progressive. The actual order is as follows: core, bc, drc, aj,

cpp, jedi, me, reform, xc, guidsl, mmatrix, and obe. However, this order was not

predefined beforehand. The decision on which feature to extract was taken based

on intuition (i.e., which feature was more feasible at each point). Further work

should study strategies to decide the extraction order and whether this has influ-

ence on the refactoring process. This order implies that the creation of the feature

model shown in Figure 3.9 was also progressive. Doing so, feature model was also

refactored [AGM+06].

Feature Contents Each feature encapsulated a tool or group of tools that roughly

contains the same content. There were new artifacts such as source files, makefiles,

HTML documentation, and regression tests specific to that feature. Refinements

3.5. A Case Study on Feature Oriented Refactoring 47

Figure 3.11: Feature Size and Content Distribution

were generally limited to ant makefiles and HTML document files, both of which

were encoded as XAK files and XAK refinements.

The refactorings of (3) and (5) were straightforward. We first identified the

parts of ant makefiles that triggered the building of a target tool T, its parts, and

its regression tests. These statements were factored from extra into a XAK file

that refined the ant build script of core. (Initially, we simply commented them

out, and once we knew we had a correct set of statements, we moved them into

a XAK refinement file). We followed a similar procedure for refactoring HTML

documents. The remaining work was to move files (source, HTML, regression)

that were specific to the tools of T into the feature T, being careful to retain the

directory hierarchy in which these files were to appear. There were other files in

addition to ant makefiles and HTML documents that had to be refined, but these

were few and simple (e.g., largely text file concatenation); AHEAD had tools to

perform these refinements.

Figure 3.11 shows the detail of disk volume, the number of files and their num-

ber of lines of code in each ATS feature. The FILES column indicates the total

number of files in each feature. The Java, Jak, and XML files were introductions

(constants), while XAK files indicates the number of files that an ATS feature re-

fines.

3.5.6 Step 3: Bootstrapping ATS/lib

One of the unique parts about refactoring ATS is its reliance on bootstrapping:

to build ATS tools requires ATS tools. Many ATS tools are written in the Jak

48 Chapter 3. SPL need Endogenous Transformations

language and are themselves composed from features. Seven ATS tools are needed

for bootstrapping:

• jampack, mixin tools to compose Jak files,

• jak2java a Jak to Java file translator,

• balicomposer a tool to compose Bali files.

• bali2jak a Bali file to Jak file translator,

• bali2javacc a Bali file to JavaCC translator, and

• composer a tool that composes features.

These seven tools are stored as JAR files, which we call bootstrapping JARs, in

directory ATS/lib (see Figure 3.7). As soon as one of the above tools is synthesized

during an ATS build, its JAR file replaces its bootstrapping JAR from that point on

in an ATS build. At the end of an ATS build, no bootstrapping JARs are used.

To synthesize customized versions of ATS from features required three distinct

changes to be made to ATS itself. What makes this intellectually challenging is

whether the changes could be expressed using AHEAD concepts. We wanted to

stress AHEAD to understand better its generality. In the following, we outline the

three changes that we made, and explain how we realized them using refinements.

First, most APL features encapsulated regression tests that were specific to

the tool(s) the feature encapsulated. Among the tests for Jak tools are Jak files

that are syntactically incorrect. (These files are used to test language parsers).

The Jak file composition tools (mixin and jampack) parse all Jak input files before

performing any actions. We refined both tools so that if only one Jak file was listed

on their command line, the file itself would not be parsed, but merely copied to the

target feature directory. In this way, composer could invoke mixin or jampack on

syntactically incorrect Jak files without discovering their syntactic errors.

Second, we needed to add xak.jar to the bootstrapping JARs to compose XAK

files representing HTML documents and ant build scripts.

Third, we needed to refine JAR files. In particular, the bootstrapping JAR file

for composer. Remember that this JAR contains a version of composer that under-

stands how to compose a predefined set of artifacts (Jak files, Bali files, etc.). If

composer is to compose new artifact types (such as XAK files), composer’s boot-

strapping JAR must be refined to add this capability before it can compose APL

features.

3.5. A Case Study on Feature Oriented Refactoring 49

Composer was designed so that new artifact-composing tools could be added

easily. For each artifact type, two Java class files are placed in a subdirectory

(called Unit) of the composer tool. These class files contain information that tell

composer how to invoke a tool to compose artifacts of a specific type. For exam-

ple, there is a pair of files that tell composer how to compose Jak files using the

mixin tool; there is another pair of files that tells composer how to compose Bali

grammar files using the balicomposer tool, etc. To support XAK file composition,

two additional class files had to be added to the Unit directory to tell composer

how to compose XAK files.

All three changes could be made by refining ATS/lib using jarcomposer. We

chose to modify mixin and jampack directly as its changes were permanent, while

adding xak.jar and its modification of composer.jar in ATS/lib were optional. We

accomplished the last two changes (adding xak.jar and refining composer.jar) by

refining ATS/lib. The general problem is as follows: lib is itself an AHEAD module

that contains bootstrapping JARs:

lib = {composer.jar, mixin.jar, ...}

A refinement of lib includes new JAR files plus a refinement of the composer.jar to

tell composer how to compose new file types using the new JAR files. For example,

the refinement to lib that adds XAK is:

libxak = {composer.jarxak, xak.jar}

where composer.jarxak contains the Unit file extensions of composer that calls

XAK. To produce a refined lib (denoted libnew below), we compose libxak with

lib:

libnew = libxak • lib =
= {composer.jarxak•composer.jar, xak.jar, mixin.jar, ...} (7)

The key to this bootstrapping step is the ability to compose JAR files. By adding

a jarcomposer to the bootstrapping JARs, we can use the unrefined lib to evaluate

(7), and in principle can now add any number of new artifact composition tools to

AHEAD.

Our jarcomposer is simple: it unjars the base JAR file and refinement JARs into

distinct directories. It then uses the composer bootstrapping JAR to compose these

directories, forming their union. The contents of the resulting directory are then

50 Chapter 3. SPL need Endogenous Transformations

Figure 3.12: Customized HTML Documentation

placed into a new JAR file. In (7), this JAR file (i.e., libnew/composer.jar) be-

comes the refined composer bootstrapping JAR. At this point, libnew can compose

an enlarged set of artifact types (e.g., XAK artifacts), thus allowing ATS features

to be composed.

3.5.7 Step 4: Synthesizing APL-Specific Programs

Once ATSbin′ and APL were developed, it was a simple matter to define, synthe-

size, and build different programs of ATS. Over one hundred different versions are

possible (see Figure 3.9). For example, a version K that contained the core and

guidsl tools is specified and built by:

ATSKsrc = guidsl • core (8)

ATSKbin = antBuild(ATSKsrc) (9)

In the synthesis of ATSKsrc, makefiles and HTML documents of core were re-

fined, and the code and document files for guidsl were added to core. Figure 3.12

displays part of the synthesized index.html document of ATSK , which shows a

document index for all the tools of core (composer, jampack, mixin, unmixin, and

jak2java) and the guidsl tool (red dotted box). That is, only documents for tools

that are present in ATSKsrc are listed; no other tool documents are included. This

customization is the result of refactoring ATS. The evaluation of (8) and (9) is

accomplished using the tools in ATSbin.

3.5.8 Lessons Learned and Future Tool Support

We encountered many problems during the refactoring of ATS. Most were not

related with ATS, but with the decomposition process itself, and these problems

3.5. A Case Study on Feature Oriented Refactoring 51

apply to the refactoring of programs in general. Solutions to these problems and

tool support to simplify future refactoring tasks are discussed below.

Lessons Learned

The greatest challenge in feature refactoring is understanding the original program.

When a program grows beyond a few thousand lines of code, it becomes hard to un-

derstand what artifacts are impacted by individual features and what dependencies

exist among features. Refactoring adds architectural knowledge to a design that

was never documented or that was lost. Minimal knowledge of the program and

its structure is essential, and we had such knowledge prior to refactoring ATS (i.e.,

we knew approximately the ATS directory structure and organization of makefiles

and documents).

Dependencies among Features. Dependencies among features are not always

evident. For example, the bctools feature requires the mmatrix feature; we discov-

ered this requirement when bctools failed to compile without mmatrix. Once we

recognized this relationship, we remembered it by adding a cross-tree constraint

to our feature model (Figure 3.10). Discovering such dependencies and updating

feature models is a manual process that we feel could largely be automated.

Error Exposure. Feature refactoring may expose existing errors. For instance,

the documentation for the cpp tools was not referenced by the ATS documentation

home page and consequently was not accessible. (A link to the documentation

of all tools should appear in the home page). We detected this error during the

creation of the cpp feature, as we knew the home page document had to be refined,

but was not.

Program Extensions. AHEAD and GenVoca are generalizations of object-

oriented frameworks [BCS00]. Extending a framework involves adding new classes

and extending hook methods that are defined in abstract classes of a framework.

While frameworks have been developed primarily for code, AHEAD generalizes

this idea to frameworks to non-code artifacts as well. That is, there are variation

points in documents of all types, and document extensions are made at these points.

It is well-known that manually extending frameworks is error prone, and could be

substantially helped by tools that guide users in how to properly extend frameworks

[FHLS97]. The same ideas apply to non-code documents as well.

52 Chapter 3. SPL need Endogenous Transformations

The lack of documentation or tool support for adding tools to ATS hampered

our abilities to feature refactor ATS. Extending ATS has historically been ad hoc,

where variations arise due to different programmers following different procedures.

We now know that a new tool would (i) add source files, (ii) add one or more doc-

ument pages that are linked with existing documentation at predefined points, (iii)

add new build documents that are linked to existing build script at predefined lo-

cations, and (iv) regression tests must appear in a designated directory. A standard

procedure for extending ATS would have significantly helped us in refactoring be-

cause we would have known exactly where changes would be made (as opposed to

discovering these places later when ant builds fail or when synthesized documen-

tation is found to be erroneous).

Accidental Complexities (Grandmas Teeth). Accidental complexity lies at the

heart of many problems in software engineering [Bro87]. It is unnecessary and ar-

bitrary complexity that obscures the similarity of designs, patterns, and processes

that could otherwise be unified. Years ago, we were building different tools for

the same language (e.g., pretty-printers, composers, translators), and discovered

the process by which each tool was designed and created was unique. Odd details

whose only rationale was that was the way we did it distinguished different tools.

Called Grandmas teeth, meaning a gross lack of alignment in an otherwise iden-

tical design, was an indicator of accidental complexity. By standardizing designs

(which reduces complexity), we were able to significantly simplify the design and

synthesis of tool suites [BLS03], and make the process of design and implementa-

tion more rigorous, structured, repeatable, and streamlined.

Our refactoring of ATS exposed other forms of Grandmas teeth that we were

unaware of. Makefiles passed parameters to other makefiles, but the same para-

meter was given different names in different places. Classpaths were defined in

different makefiles in different manners. The place where makefiles are altered

to add build scripts for similar tools varied significantly. The removal of acciden-

tal complexity and the alignment of similar concepts would solve this, and would

substantially simplify program refactoring.

Generality of Experiences. We believe that there is nothing special about ATS

or our procedure to refactor it. (Although ATS is unusual in that it is bootstrapped,

this made it harder to refactor. Few applications require bootstrapping). The in-

cremental way in which we refactored features from ATS is analogous to aspect

3.5. A Case Study on Feature Oriented Refactoring 53

mining and refactoring (see Section 3.5.9), and is not unusual. Further, although

the dependencies among features were minimal, the basic approach in Section 3.5.4

would be our starting point for future refactorings.

Even though our work is preliminary, we believe that it is possible to feature

refactor an application with minimal knowledge of its structure. That we had re-

gression tests per feature helped substantially in validating our efforts. Tool support

(discussed in the next section) would help greatly in a refactoring process.

Future Tool Support

A Tool for Initial Refactoring. We learned from ATS that when a feature en-

capsulates one or more tools, most artifacts of a feature are new files. Only spe-

cific artifacts (makefile gateways, documentation home pages, etc.) are refined. A

simple tool could be created to partition the files of a composite feature (i.e., direc-

tory) into a pair of directories (representing the contents of different features), thus

simplifying an important step in feature refactoring. A more complex tool could

provide some heuristics to automate feature refactoring. However, this tool would

require further research.

Artifact-Specific Refactoring Tools. ATS currently has tools for refactoring

Java/Jak source classes [LBL06]. Exactly the same kind of tool would be needed

for refactoring XML (e.g., XAK) artifacts into base and refinement files. Other

artifact-specific tools would be needed for refactoring other documents (e.g., Word

files, JPEG images).

Safe Composition Tools. A recently added set of tools to the ATS arsenal are

those that support safe composition [BT06]. Safe composition is the guarantee that

programs composed from features are absent of references to undefined elements

(such as classes, methods, and variables). Existing safe composition tools are tar-

geted to Java and Jak source files. However, the same concept holds for other

artifact types. XML and HTML define elements that can be subsequently refer-

enced. We want to synthesize documents of all types that are devoid of references

to undefined elements, including cross-references to elements of documents in dif-

ferent types. Safe composition tools could also be useful in detecting unreferenced

elements or benign references. A benign reference is a reference to a non-existent

file, but no error is reported. ant makefiles allow benign references in fileset de-

finitions: if a listed file in a fileset is not present, ant does not complain. Benign

54 Chapter 3. SPL need Endogenous Transformations

references and unreferenced elements suggest (i) they are no longer needed and

should be removed, (ii) they are not linked to other elements (the topic of Error

Exposure of the previous section), or (iii) they belong to other features. In general,

we believe that a tremendous amount of automated support for feature refactoring

could be provided by detecting unused element definitions or benign references.

There are some prototype applications for the future tool support presented in

this section13. So far, there is a win32 prototype application for initial refactoring of

artifacts into layers. Current work is focusing on the automation of this extraction

instead of manual. As well, there is a prototype eclipse plugin tool for refactoring

of XML artifacts using XAK tooling.

3.5.9 Related Work

Three SPL adoption models have been proposed, namely, extractive, reactive, and

proactive [CK02]. ATS refactoring exemplified the extractive approach which

“reuses one or more existing software products for the product lines initial base-

line”. Few experiences have been published on the extractive approach for SPLs.

In [CD03], re-engineering techniques are used to obtain an SPL from already avail-

able programs. The Unix diff command is used to extract differences among arti-

facts. Pairs of files are compared to obtain the lines matched, lines inserted, lines

deleted and lines replaced. These hints are then used to ascertain common abstrac-

tions, and to group artifacts with a shared common structure, code and functional-

ity. Similar concerns are addressed in [BCK03] where the focus is on abstraction

elicitation in SPLs; the approach looks for cut-copy-paste clones within distinct

pieces of code that can be moved into an abstract superclass. Diff -like facilities are

also used for this purpose.

These efforts aim at improving reuse, modularity and legibility of the software

artifacts. By contrast, feature refactoring is not only concerned about reuse but on

engineering a system for variability. Moreover, and unlike prior research, our work

underlines the importance and necessity of refactoring and encapsulating multiple

representations of programs in features. Our work can be seen as an instance of a

general approach to feature-oriented refactoring of legacy programs [LBL06].

Features can use aspects to implement program refinements. Feature refac-

toring is thus related to aspect mining and refactoring [vDMM03, LHB06, LH06,

Mea01, ZJ04], which strives to surface hidden concerns, much like our goal to

13This is largely thanks to the term-projects of two masters students at the University of Texas at
Austin: Yi Li and Jasraj U. Dange

3.6. Contributions 55

strive to surface particular features [HK01]. We see three distinctions between our

work and aspect refactoring. First is the scale on which we are refactoring: ATS

features encapsulate tools or groups of tools; very few pieces of simple advice (i.e.,

refinements of designated variation points) are used. Second, we are largely refac-

toring artifacts other than Java code. And third, while aspect-based approaches

rely on labeling methods and inferring other labels via program analysis [RM02],

the approach described in this work relies on regression tests and build scripts to

surface features. Through failures in a build process, the missing pieces are identi-

fied and moved to the appropriate feature. This is more akin with SPLs where the

production process (basically supported through build scripts) plays a major role.

Feature refactoring includes three main activities, namely, feature identifica-

tion, feature refactoring as such (a.k.a., decomposition or extraction), and refactor-

ing validation. In our approach, the first two are mainly manual whereas regression

tests are used to validate the result and, if a build fails, to guide refactoring. A

more intensive use of regression tests are presented in [MH02]. First, test cases are

grouped to identify feature implementation. Clustering and textual pattern analysis

is conducted to find test-case clusters. A cluster execution serves to locate source

code that implements the feature through the use of code profilers. Once feature

implementation is located, the code is refactored (e.g., global variables are removed

and implicit communication is moved to explicit interfaces) into fine-grained com-

ponents.

3.6 Contributions

The contribution of this chapter was first to argue the need of endogenous trans-

formations in an SPL setting. Among existing approaches, AHEAD was selected

to deal with endogenous transformations. Some specific contributions were then

described: we extended the AHEAD Tool Suite (ATS) with further tooling and we

feature refactored ATS.

Feature refactoring is the process of decomposing a legacy program into a set

of building blocks called features. Each feature implements an increment in pro-

gram functionality; it encapsulates new artifacts (code, documentation, regression

tests, etc.) that it adds to a program, in addition to the changes it makes to existing

artifacts that integrate the new artifacts into a coherent whole. The result of fea-

ture refactoring is a software product line, where different variations of the original

program can be synthesized by composing different features.

56 Chapter 3. SPL need Endogenous Transformations

ATS is the largest program, by almost two orders of magnitude, that we have

feature refactored. ATS consists of 24 different tools expressed in 200 KLOC

Java. We feature refactored ATS so that hundreds of ATS variants (with or without

specific tools) could be synthesized. We expressed the process of refactoring by a

simple mathematical model that relates algebraic factoring to artifact refactoring,

and program synthesis to expression evaluation. Refining and composing XML

documents was critical to our work, and we were able to verify a correct feature

refactoring by successfully executing ATS build scripts and running regression tests

for all synthesized ATS tools. We showed how an integral part of refactoring ATS,

namely its need for bootstrapping, could be explained by refinements. And most

importantly, our work revealed generic problems, solutions, and an entire suite of

tools that could be created to simplify future feature refactoring tasks.

Our work is a valuable case study on the scalability of feature-based multiple-

representations program refactoring and synthesis. We believe our work outlines a

new generation of useful program refactoring tools that can simplify future feature

refactoring efforts.

Parts of the work described in this chapter has been presented before.

1. Feature Refactoring a Multi-Representation Program into a Product Line. S.

Trujillo, D. Batory and O. Diaz. 5th International Conference on Generative

Programming and Component Engineering (GPCE 2006). Portland, Oregon,

USA. October 2006 [TBD06]. Acceptance Rate: 28 % (25+5/88).

2. Supporting Production Strategies as Refinements of the Production Process.

O. Díaz, S. Trujillo and F. I. Anfurrutia. 9th International Software Product

Lines Conference (SPLC 2005). Rennes, France. September 2005 [DTA05].

Acceptance Rate: 23 % (17+3/71).

3. On Refining XML Artifacts. F. I. Anfurrutia, O. Diaz, and S. Trujillo. Draft

under Review. November 2006 [ADT06a].

The first publication describes the ATS feature refactoring case and introduces

XAK partially. The second describes a different subject (introduced in chapter

7) where ATS extensions were used. The third is a draft on XAK specifically.

Chapter 4

SPL need Exogenous

Transformations

“If you are out to describe the truth, leave elegance to the tailor.”

– Albert Einstein.

4.1 Abstract

Chapter 2 introduced Model Driven Development (MDD) where higher-level ab-

stract models are transformed into implementation artifacts. Such transformations

are exogenous transformations that map models expressed in different languages.

Doing so, development shifts from code implementation to modeling.

The previous chapter introduced how endogenous transformations are used to

synthesize SPL programs from features. However, it is not evident how to achieve

such transformations that realize a feature. An alternative is to use exogenous trans-

formations in order to generate endogenous transformations. Doing so, it raises

abstraction level in feature realization.

Specifically, this chapter covers how to generate the realization of a base pro-

gram (i.e., a constant feature for other function features). How to generate these

function features will be described in the next chapter. Overall, this chapter paves

the way for the combination of SPL and MDD together (introduced in the next

chapter).

57

58 Chapter 4. SPL need Exogenous Transformations

Shortly, we will see that our work exposes no specific MDD contributions.

Our MDD contribution (if any) is an approach for modeling Portlets. This chapter

begins with the rationale for exogenous transformations. Model transformations

are then described to go into details of the approach we propose, which is illustrated

with a case study.

4.2 Rationale for Exogenous Transformations

Exogenous transformations are transformations between models expressed using

different languages [MG06b]. Particularly, we are interested in those transforma-

tions that can be used to map from a source model (e.g., language A) to a target

model (e.g., language B).

This scenario is common in MDD where higher-level models (e.g., PIM in

MDA) are transformed into lower-level models (e.g., PSM in MDA), and eventu-

ally into code [OMG03]. Hence, techniques to realize such transformations are

central to MDD.

This need increases when shifting towards an SPL scenario because an SPL

represents not only one, but a number of programs. The key idea is to reuse trans-

formations in building multiple SPL programs. Consequently, significant lever-

age is achieved because the benefits obtained using MDD (e.g., productivity gain)

would not only encompass one, but all the product-line programs.

In this direction, this chapter describes specifically how to generate the real-

ization of a base program (i.e., constant feature). It proposes the use of exogenous

transformations to get the base program implementation (i.e., constant feature re-

alization). Doing so, the realization of the base program is expressed as models

from which implementation is obtained. We begin with a review of model trans-

formations.

4.3 Model Transformations

Model transformations are central of MDD because they turn the use of models

for drawing into a more extensive model-driven usage where implementations are

directly obtained [SK03]. We begin with a review of model, metamodel and trans-

formation concepts.

4.3. Model Transformations 59

Figure 4.1: OMG four-layers stack

4.3.1 Models

“Ceci n’est pas une pipe” is a French sentence painted in simple script on an-

cient Magritte’s painting [Mag29]. It states that “this is not a pipe”, but a drawing

(model) of a pipe. Likewise, “do not take the map for the reality” (sorry for the

lack of proper Chinese characters) is a Chinese proverb by Sun Tse stating the

same idea.

Bézivin uses in MDD parlance the phrase “everything is a model” [Béz05],

which is reminiscent of the 1980s object-orientation (OO) phrase “everything is

an object”, to convey a similar idea where every real object can have a model

counterpart.

Model is a term widely used in several fields with slightly different meanings.

Based on the discussion [Kur05], a model “represents a part of the reality called

the object system and is expressed in a modeling language. A model provides

knowledge for a certain purpose that can be interpreted in terms of the object

system”.

4.3.2 Metamodels

A model is frequently considered an instance conforming a meta-model. Based on

[Kur05], a meta-model “is a model of a modeling language” where the language

is specified.

According to [Béz01], there is a four-layers modeling stack where (see Figure

4.1):

• M0 level is the instance of the model (on the bottom of Figure 4.1). M0

corresponds to the execution of a program (e.g., Java instance).

60 Chapter 4. SPL need Exogenous Transformations

• M1 level corresponds to the definition of the model. M1 is the program’s

definition (e.g., Java program). An undetermined number of M0 executions

may exist for each M1.

• M2 level is the meta-model (e.g., Java grammar). This level states how mod-

els are created.

• M3 level is the meta-meta-model (e.g., the EBNF1). For instance, the UML

meta-model is in M3 level.

4.3.3 Transformations

Based on OMG [OMG03], a model transformation “is the process of converting

one model to another model of the same system”. In general, a model transforma-

tion is the process of automatic generation from a source model to a target model,

according to a transformation definition, which is expressed in a model transfor-

mation language [Kur05].

According to Kurtev [Kur05], there are three types of model transformations:

• Refactoring transformations reorganize a model based on some precisely

defined criteria. The output refactored model is a slightly versioned model.

For instance, this type comprises renaming or other simple refactorings.

• Model-to-model transformations convert one model to another model (i.e.,

translation from a source to a target model). A typical transformation is from

a level of abstraction to another level (lower or higher depends on direction).

Frequently, this transformation is not only unidirectional, but it is possible

for some transformations to be backwards (e.g., from PSM to PIM). Doing

so, the transformation becomes bidirectional.

• Model-to-code transformations convert models into text. This text is usually

a source code fragment not limited to OO languages (e.g., C++ or Java), but

to any sort of text. This capability is broadly available in existing tooling

(a.k.a., code generators [CE00]).

Model transformations can be specified in different languages such as XSL [W3C05],

QVT [OMG05a], ATL [BDJ+03], RubyTL [CMT06], and MISTRAL [Kur05].

The level of automation in transformations ranges from fully automated to manual

1http://en.wikipedia.org/wiki/Extended_Backus-Naur_form

4.4. PMDD: Model Driven Development of Portlets 61

where human intervention is required [CH03, MG06b]. It depends on the domain

at hand, and on the expressivity of the models.

4.4 PMDD: Model Driven Development of Portlets2

Portlet MDD (PMDD) is a model-driven approach that automates portlet imple-

mentation. This section introduces PMDD together with a case study where ex-

ogenous transformations are used in the development of an individual application.

4.4.1 Approaching

Existing tool support to realize model transformations was introduced in section

2.3.6. In general, these approaches provide assorted model, metamodel and trans-

formation representations. The key is to have a language to represent models, a

language to represent metamodels (i.e., models should conform to metamodels),

and a language to represent transformations between models.

The approach we took does not differ from this pattern. Models are repre-

sented in Unified Modeling Language (UML) [OMG05b]. Doing so, modeling

languages should be defined using the Meta Object Facility (MOF) [OMG06].

This choice allows us to serialize model content to the XML Metadata Interchange

(XMI) [OMG05c]. Doing so, models are represented using eXtensible Markup

Language (XML) [W3C06a].

The transformations of models are not described using a specific model trans-

formation language (e.g., QVT: Queries/Views/Transformations [OMG05a]). In-

stead, a general transformation language was selected: eXtensible Scripting Lan-

guage (XSL) [W3C05].

The selection of XSL as the transformation language can be criticized by others

arguing for specific benefits of model transformation languages. However, the se-

lection of XSL was not trivial. XSL is represented using XML. This convenience

enables endogenous and exogenous transformations to be represented and com-

puted equally. Doing so, an input model in XML is transformed to an output XML

using an XSL exogenous transformation, and similarly a base XML is composed

with a refinement XML using XAK endogenous transformations.

Alternatively, it would be possible to use other transformation languages. How-

ever, our results would not change because XSL is only the language to specify the

2The core of this chapter comes from our ICSE 2007 paper [TBD07].

62 Chapter 4. SPL need Exogenous Transformations

Figure 4.2: A 3-Tier Architecture for Portlets

logic of the exogenous transformation.

We begin revisiting Portlets and presenting a case study. The steps of PMDD

approach to develop a Portlet application from models are then detailed.

4.4.2 Revisiting Portlets

A portal is a web page that provides centralized access to a variety of services

[DR04]. An increasing number of these services are not offered by the portal

itself, but by a third-party component called a portlet. Figure 4.2 depicts a 3-tier

architecture for portlets, where an end-user’s MyBrowser accesses the MyPortal

page through HTTP. MyPortal is hosted by Consumer_1 and consists of a layout

aggregating (through SOAP [W3C03]) the Alpha, Beta, and Delta portlets that are

hosted by different producers.

Unlike web services, which offer only business logic methods, portlets ad-

ditionally provide a presentation-oriented web service. Hence, portlets not only

return raw data but also renderable markup (e.g. XHTML) that can be displayed

within a portal page.

Until recently, portlet realization was dependent on the infrastructure of the

producer of portlets (service provider) and the portal consumer (service container).

This changed with the release of the WSRP [OAS03] and the JSR 168 [JCP03].

These standardization efforts foster a COTS market, where portlets can be de-

ployed independently of the platform on which they were developed. Furthermore,

different customers demand different portlets that overlap in functionality. Conse-

quently, techniques for customizing portlets are increasingly sought.

Our experience with portlet implementations is that a sizable fraction of their

code is common. This led us to create an OO framework (using eXo portal plat-

form3) that is realized by 85 classes and 9 KLOC Java. It encapsulates and reuses

logic and infrastructure common to all portlets and provides the base functionality

3Exo Portal Platform. http://www.exoplatform.com/

4.4. PMDD: Model Driven Development of Portlets 63

Figure 4.3: PMDD Process

on top of which application-specific functionality is built. We created a Domain

Specific Language for Portlets (PSL) to define this functionality. A PSL specifica-

tion is represented by several XML documents. Next sections describe how portlets

can be synthesized using PMDD.

4.4.3 A Case Study: PinkCreek

PinkCreek is a portlet that provides flight reservation capabilities to different por-

tals. Its functionality is roughly: (i) search for flights, (ii) present flight options,

(iii) select flights, and (iv) purchase tickets (appendix A describes the complete

case study).

4.4.4 Big Picture

PMDD is a model-driven approach that provides models and transformations in or-

der to automate portlet implementation. Figure 4.3 represents the transformations

from higher-level models to implementation. It sketches the overall process where

(i) rectangles represent models (those with shady background are input models),

and (ii) directed arrows are transformations (that generate remaining models from

input). Transformations are numbered to denote the sequence to create portlets (see

circles in Figure 4.3). The following sections describe the steps to create PinkCreek

using PMDD.

64 Chapter 4. SPL need Exogenous Transformations

Figure 4.4: SC Diagram Fragment for PinkCreek

Figure 4.5: SC.xml Fragment for PinkCreek

4.4.5 Step 1: Define Portlet Controller

A State Chart (SC) provides a platform independent model for representing the

flow of computations in a portlet [dOTM01, Har87, OMG05b]. Each portlet con-

sists of a sequence of states where each state represents a portlet page. States are

connected by transitions whose handlers either execute some action, render some

view, or both.

Figure 4.4 shows an SC diagram fragment for PinkCreek where each state rep-

resents a step in making a flight reservation. We removed transition details to make

the figure clearer. Existing tools (e.g., IBM Rational Rose, Poseidon) can draw

an SC model in UML notation, and serialize the model to an XMI specification

[OMG05c]. From this XMI specification, a state chart in the W3C SCXML lan-

guage can be obtained [W3C06b]. Figure 4.5 lists a fragment of the PinkCreek

specification.

The SC of a portlet defines its controller; the details of actions and views are

defined elsewhere. So the first step is to define the SC of the portlet’s controller.

The next step is to map an SC specification to a PSL specification.

4.4. PMDD: Model Driven Development of Portlets 65

Figure 4.6: PSLact-sk.xml Skeleton (PSLact−sk) for PinkCreek

Figure 4.7: PSLact-usr.xml User Refinement (�PSLact−usr) for PinkCreek

4.4.6 Step 2: Map SC to PSL

A PSL specification of a portlet consists of three distinct XML documents. One

document (PSLctrl) defines a state machine controller for a portlet. The other two

documents (PSLact, PSLview) define the actions to be performed and the views

to be rendered during the controller execution. The production of each is described

in the following sections.

Step 2.1: Transforming SC to PSLctrl We designed the PSL controller lan-

guage prior to the release of the SCXML standard. As we now use the standard,

we reused our PSL language and framework by writing an XSL transformation

(Tsc2ctrl) that maps a state chart specification SC to a PSL controller document

(PSLctrl):

PSLctrl = Tsc2ctrl(SC) (1)

The PSLctrl document is interpreted by our Portlet framework at portlet execution

time.

Step 2.2: Transforming PSLctrl to PSLact Activities in a state chart are de-

fined as actions to perform and views to render when a transition occurs. An action

skeleton is an interface that defines only the names of action methods. (We will see

66 Chapter 4. SPL need Exogenous Transformations

shortly that there is a corresponding view skeleton that defines the names of view

methods). An action skeleton (PSLact−sk) is derived by a simple analysis of the

PSLctrl document that extracts action names. The transformation (Tctrl2act) im-

plements this derivation:

PSLact−sk = Tctrl2act(PSLctrl) (2)

Figure 4.6 shows a snippet of PSLact−sk skeleton, where the name of action

pinkcreek.LoadAirport was extracted4.

The name of an action is not sufficient: we still need to specify the input

(Params) and output (Results) of each action method. This information is added by

(locally) refining the generated PSLact−sk document. Figure 4.7 shows a snippet

of such a refinement (denoted �PSLact−usr) that extends the pinkcreek.LoadAirport

method name with its input parameters and output result. XAK is the tool we used

to compose an XML file with its refinements (described in section 3.4.2).

Composing the generated action skeleton (PSLact−sk) with its user hand-

written refinement (�PSLact−usr) yields a complete PSL action document (PSLact),

which defines the name, type, and parameters of each action method:

PSLact = �PSLact−usr • PSLact−sk (3)

Step 2.3: Transforming PSLctrl to PSLview An identical procedure is used

to create a PSL view document (PSLview) from the PSL controller document

(PSLctrl). A view skeleton (PSLview−sk) is generated from PSLctrl, and it

is composed with a hand-written refinement (�PSLview−usr) that refines view

methods with their input parameters, to yield the desired view document5:

PSLview−sk = Tctrl2view(PSLctrl) (4)

PSLview = �PSLview−usr • PSLview−sk (5)

At this point, we have a PSL specification for a portlet. However, more platform-

specific implementation details remain to be given6.

4For sake of clarity, this code was simplified. Note that references to xak:modules are omitted on
purpose.

5View methods return no results.
6�PSLact−usrand �PSLview−usr are platform-specific, as the parameters to actions and

views are not platform invariant. Alternatively, some MDD approaches define code in a platform-
independent language and translate code to a platform-specific language [KWB03].

4.4. PMDD: Model Driven Development of Portlets 67

Figure 4.8: LoadAirport.jak for PinkCreek

Figure 4.9: LoadAirport.jak Refinement for PinkCreek

4.4.7 Step 3: from PSL to Implementation

A PSL specification almost completely defines what the interpreter needs to exe-

cute a portlet. What is lacking is (i) business logic of each action method, and (ii)

the logic to draw the layout page of each view method.

Step 3.1: Transforming PSLact to Jak Code Jak(arta) is a superset of the Java

language (described in section 3.4.1), where class and method refinements can be

declared [BSR04]. Jak is the primary language for implementing refinements in

FOP.

PSLact is an XML document that sketches the source code skeleton of a set

of Jak classes: it specifies the signatures of all portlet-specific methods. We can

generate skeletal Jak classes (Jaksk) by a transformation (Tact2jak) of PSLact.

A unique Jak class is generated for each action in PSLact. Also generated are

portlet-specific methods and members that are required by our portlet framework.

Jaksk = Tact2jak(PSLact) (6)

Figure 4.8 shows the derived Jak code for the action pinkcreek.LoadAirport. Note

that extra methods (e.g., execute) that are specific to our portlet framework are

also produced, along with additional data members (not shown). Their generation

simplifies the development of user code provided in the next step.

68 Chapter 4. SPL need Exogenous Transformations

Jak code is generated instead of Java because the actions of the generated meth-

ods must be completed by a programmer. We complete the generated skeleton

(Jaksk) by composing it with a hand-written refinement (�Jakusr) that encapsu-

lates the business logic for each method:

Jakcode = �Jakusr • Jaksk (7)

Figure 4.9 shows the corresponding refinement for Figure 4.8.

Step 3.2: Transforming PSLview to JSP In an analogous manner, JSP code

skeletons (Jspsk) are created from PSLview, one JSP page per view. Each skeleton

is completed by composing it with a hand-written (local) refinement (�Jspusr).

The result is a compilable set of JSP files (Jspcode), one per PSLview view method:

Jspsk = Tview2jsp(PSLview) (8)

Jspcode = �Jspusr • Jspsk (9)

4.4.8 Step 4: Building the Program

A PSL specification together with Jakcode and Jspcode form the raw material of a

Portlet program (Praw). Other artifacts (�Padditional) are needed, such as deploy-

ment descriptors and JAR libraries, to complete a portlet’s source (Psrc). These

artifacts are introductions (i.e., new artifacts that do not refine existing ones). They

are added by composing �Padditional to Praw:

Praw = {PSLctrl, PSLact, PSLview, Jakcode, Jspcode} (10)

Psrc = �Padditional • Praw (11)

Among the artifacts added by �Padditional is an ant makefile [SC04], which builds

the web archive (WAR) of the portlet. Executing the makefile translates Jak files to

Java files, compiles Java files into class files, and creates the portlet web archive

(Pwar) which is deployed into the target portal (see section 7.4.2).

Pwar = antBuild(Psrc) (12)

4.4.9 Recap and Perspective

Our PMDD process for building PinkCreek (and other portlets) is a straightforward

metaprogram (see Figure 4.10). Given all the inputs (i.e., MDD models) that define

4.4. PMDD: Model Driven Development of Portlets 69

Figure 4.10: Metaprograms for PMDD

a portlet (SC, �PSLact−usr, �PSLview−usr, �Jakusr, �Jspusr) the process

automatically generates the portlet’s WAR (Pwar). Model (local) refinements are

expressed as endogenous transformations, and model derivations are exogenous

transformations [MG06b]. Figure 4.10 shows this metaprogram as three functions

(Tmkraw, Traw2war, Tsc2war). (The reason why we used three functions, instead of

one, will become clear in section 5.4). Tsc2war automates significant and tedious

tasks in portlet development. For example, 59 files and 4.250 LOC are derived

from an input of 10 files and 730 LOC.

Of the five inputs that we need to specify, only one (the statechart) is platform-

independent. The remaining are platform-specific, expressing customized business

logic and view logic. Ideally, these remaining inputs should be derived from one

or more PIMs, which would marginally alter the metaprogram of Figure 4.10. Al-

though we do not yet have such PIMs, this does not impact the results of this work.

In general, our situation is symptomatic of a general problem in MDD on how to

express customized business logic in PIMs. It is common to use model escapes

from which code can be specified. Sometimes a generic programming language

is used to express code fragments, from which Java or C# is produced [KWB03].

Creating declarative models for all PMDD inputs seems unlikely.

70 Chapter 4. SPL need Exogenous Transformations

4.5 Contributions

The use of MDD to get an SPL feature exposes a different nature in which models

can be operated: refinement and transformation. Transformations typically involve

a PIM model being converted into a PSM, whereas refinement is the gradual change

of a model to better match the desired system. In general, model derivation refers

to Wirth’s refinement [Wir71] and model refinement to Parnas’ extensions [Par79].

Refer to [Ape07] for a complete discussion.

In this chapter, the term refinement is used with a slightly different meaning

from the previous chapter 3. In FOP context, refinement was used to represent

a refinement function that increments in (feature) functionality [BSR04]. Alter-

natively, in the context of MDD, it is referred to a specification that is gradually

refined into a full-fledged implementation by means of successive concrete steps

that add more concrete details [MG06b]. For sake of clarification, in this work

the latter is denoted as a local refinement. Although both are similar, it is impor-

tant to clarify that each is intended for a different purpose in different contexts.

Refinement is adding feature functionality, whereas local refinement is completing

code (e.g., when skeletal code is completed with user hand-written code). This

difference would become clearer in chapter 6.

This chapter introduced the need for exogenous transformations that SPL de-

mand. As mentioned at the beginning, this chapter provided no specific MDD

contributions. The contribution (if any) in this chapter was an approach to Portlet

Model Driven Development (PMDD) where a sample case Portlet application was

developed, and where some real benefits were reported. PMDD paves the way for

the insights of the next chapter.

Parts of the work described in this chapter has been presented before.

1. Enhancing Decoupling in Portlet Implementation. S. Trujillo, I. Paz and O.

Díaz. 4th International Conference on Web Engineering (ICWE 2004). Mu-

nich, Germany. July 2004 [TPD04]. Acceptance Rate: 12% (25+60/204)7.

2. Feature Oriented Model Driven Development: A Case Study for Portlets.

S. Trujillo, D. Batory and O. Diaz. 29th International Conference on Soft-

ware Engineering (ICSE 2007). Minneapolis, Minnesota, USA. May 2007

[TBD07]. Acceptance Rate: 15% (50/334).

7Our contribution was accepted as poster where 60 research papers were included, as either short
papers or posters.

4.5. Contributions 71

The first publication describes (partially) the domain specific language we used to

specify Portlets (a.k.a., PSL), whereas the second describes the model-driven ap-

proach for developing Portlets (a.k.a., PMMD) using a working example (together

with further content introduced in the next chapter).

72 Chapter 4. SPL need Exogenous Transformations

Chapter 5

Combining Endogenous and

Exogenous Transformations1

“There is hope for people like us.”

– Anonymous.

5.1 Abstract

Model Driven Development (MDD) is an emerging paradigm for software con-

struction that uses models to specify programs, and exogenous model transforma-

tions to synthesize executables. Feature Oriented Programming (FOP) is a par-

adigm for software product lines where programs are synthesized by composing

features using endogenous transformations. Feature Oriented Model Driven De-

velopment (FOMDD) is a blend of FOP and MDD that shows how programs in a

software product line can be synthesized in an MDD way by composing models

from features, and then transforming these models into executables. We present a

case study of FOMDD on a product line of portlets, which are components of web

portals. We reveal mathematical properties (i.e., commuting diagrams) of portlet

synthesis that helped us to validate the correctness of our abstractions, tools, and

specifications, as well as optimize portlet synthesis.

1The core of this chapter comes from our ICSE 2007 paper [TBD07].

73

74 Chapter 5. Combining Endogenous and Exogenous Transformations

5.2 Rationale for Combination

Model Driven Development (MDD) is an emerging paradigm for software devel-

opment that specifies programs in domain-specific languages (DSLs), encourages

greater degrees of automation, and exploits standards [Béz05, BBI+04, KWB03].

MDD uses models to represent a program. A model is written in a DSL that spec-

ifies particular details of a program’s design. As an individual model captures

limited information, a program is often specified by several different models. A

model can be derived from other models by exogenous transformations, and pro-

gram synthesis is the process of transforming high-level models into executables

(which are also models).

Feature Oriented Programming (FOP) is a paradigm for software product lines

where programs are synthesized by composing features [BSR04]. A feature is an

increment of program functionality. It is implemented by refinements that extend

existing artifacts (by means of endogenous transformations), and by introductions

that add new artifacts (code, makefiles, documentation, etc.). When features are

composed, consistent artifacts that define a program are synthesized. A tenet of

FOP is the use of algebraic techniques to specify and manipulate program designs.

Feature Oriented Model Driven Development (FOMDD) is a blend of FOP and

MDD. Models can be refined by composing features (a.k.a., endogenous transfor-

mations that map models expressed in the same DSL [MG06b]), and can be derived

from other models (a.k.a., exogenous transformations that map models written in

different DSLs [MG06b]).

We present a case study of FOMDD that is a product-line of portlets, which

are building blocks of web portals. We explain how we specify a portlet as a set

of models from which we refine and derive an implementation. Combining model

derivation and model refinement in FOMDD exposes a fundamental commuting

relationship; namely, the transformation of a composed model equals the compo-

sition of transformed models. Hence, an executable can be synthesized in very

different ways. Commuting relationships impose stringent properties on our do-

main model and implementation, and have helped us to validate the correctness

of our abstractions, tools, and portlet specifications, as well as optimize portlet

synthesis. We begin revisiting background.

5.3. Revisiting MDD and FOP 75

5.3 Revisiting MDD and FOP

Model Driven Development Program specification in MDD uses one or more

models to define a target program. Ideally, these models are platform indepen-

dent (PIM). Model derivations convert platform independent models to platform

specific models (PSM), where assorted technology bindings are introduced. Pos-

sible results of transforming PIMs can be an executable or an input to an analysis

tool, where both an executable and an analysis-input file are themselves considered

models.

Feature Oriented Programming FOP is a paradigm for creating software prod-

uct lines [BSR04]. Features (a.k.a., feature modules) are the building blocks of

programs. An FOP model of a product line is an algebra that offers a set of oper-

ations, where each operation implements a feature. We write M = {f, h, i, j} to

mean model M has operations or features f , h, i and j. FOP distinguishes features

as constants or functions. Constants represent base programs. Functions represent

program refinements that extend a program that is received as input. The design

of a program is a named expression, e.g.: prog2 = i • j • h. Program prog2 has

features h, j, and i.

Metaprogramming is the concept that program development is a computation.

Batory assert that MDD is a metaprogramming paradigm [Bat06]. That is, mod-

els are values and transformations are functions that map these values. Scripts

that transform models into executables are metaprograms (i.e., programs that ma-

nipulate values that themselves are programs). For example, ant makefiles are

metaprograms; the values of a makefile are files (i.e., programs) and the execution

of a makefile can produce an executable [Fou]. An MDD process can be written

as a makefile (metaprogram) whose input values are DSL specifications (i.e., mod-

els) of target programs, and whose output values are synthesis targets (examples of

such metaprograms in section 4.4). The connection of FOP to metaprogramming

and MDD is simple: FOP treats programs as values, and features are functions that

map values. In section 5.4, we show how FOP and MDD can be integrated. We

briefly recap on our case study.

A Case Study PinkCreek is presented in this chapter as a product-line of portlets

that provides flight reservation capabilities to different portals. PinkCreek con-

76 Chapter 5. Combining Endogenous and Exogenous Transformations

sisted of up to 20 features, yielding hundreds of distinct Portlet products (section

A.3 describes the complete approach).

5.4 Feature Oriented MDD

Portlet MDD (PMDD) was introduced in section 4.4 as a model-driven approach

that automates portlet implementation. The input to our PMDD process is a 5-

tuple < SC, �PSLact−usr, �PSLview−usr, �Jakusr, �Jspusr >, which we

abbreviate as <s, a, v, b, j >. Given a tuple that defines a portlet, the transforma-

tion Tsc2war synthesizes the portlet’s WAR file.

Portlets are like other software applications: there is a family of related portlet

designs and capabilities that we want to create. The designs and capabilities that

differentiate one portlet from another can be explained in terms of features (i.e.,

increments in portlet functionality). Instead of manually creating portlet specifica-

tions (i.e., 5-tuples), we want to synthesize their 5-tuples using FOP.

An FOP model of a portlet domain includes one or more base portlets called

constants, and one or more refinements, called functions, that add functionality to

a portlet (section 5.3). A constant C is a 5-tuple < s, a, v, b, j >. A function is

also a 5-tuple <�s, �a, �v, �b, �j > that defines changes to a base tuple in

terms of:

• refinements to a base state chart (�s)

• refinements to a base action document (�a)

• refinements to a base view document (�v)

• refinements to a base actions business logic (�b)

• refinements to a base jsp page (�j)

Suppose we want to synthesize the 5-tuple <s, a, v, b, j> of a portlet P by starting

with a base portlet C (a constant) and refining it by the features (functions) F1 and

F2. Our portlet specification P is:

P = F2 • F1 • C

= < �s2, �a2, �v2, �b2, �j2 > • < �s1, �a1, �v1, �b1, �j1 > •
< s, a, v, b, j >

= <�s2 • �s1 • s, �a2 • �a1 • a, �v2 • �v1 • v, �b2 • �b1 • b, �j2 • �j1 • j >

P = F2 • F1 • C =< s, a, v, b, j > (13)

5.4. Feature Oriented MDD 77

Figure 5.1: SC Refinement for PinkCreek seating

That is, the 5-tuple of our desired portlet is synthesized by composing the base

state chart with its refinements, the base action document with its refinements, and

so on [BSR04]. In this section, we explain the interesting challenges we faced

in developing portlet features in a model-driven way. It required an extension of

PMDD to cope with product lines.

5.4.1 Developing Feature Constant

A feature constant is developed as a stand-alone portlet (described previously in

section 4.4). It is defined by a 5-tuple and represents a base portlet to which more

features can be added.

5.4.2 Developing Feature Functions

Challenge 1: Model Refinement A model in MDD is a specification of a pro-

gram (or some part or view of a program). Model refinement elaborates a model to

reflect the changes made by adding a feature.

A state chart refinement2 adds new states, new transitions, and refines the ac-

tivities associated with existing states or transitions [Bea02, LXK98, MS03]. For

example, consider a feature seat that extends the PinkCreek portlet to allow pas-

sengers to select their seat after purchasing flight tickets. Figure 5.1 shows how a

new state s6Seating is added by feature seat to handle the seat selection pages, and

how state s5Itinerary is refined by linking it with s6Seating.

2Note that a refinement is based on mixin inheritance. Weber et al. extend statecharts by regular
inheritance [WM98].

78 Chapter 5. Combining Endogenous and Exogenous Transformations

Figure 5.2: The Metaprogram T ′
mkraw

A state chart is defined by an XML document. A refinement of a state chart

can also be defined in an XML document. Doing so, XAK can compose such

documents (similarly to section 3.4.2).

Challenge 2: Transforming Refinements Recall that a function feature is a 5-

tuple of refinements <�s, �a, �v, �b, �j >. Defining the changes to a state

chart is easy. However, defining the remaining artifact refinements is a bit harder.

This section presents the approach that we took to develop feature function 5-

tuples.

Recall from section 4.4 that Praw is the raw material from which we could

build a portlet WAR file. We want to generate a raw material refinement �Fraw

for each feature F that can be added to a base portlet. If we could do so, we could

synthesize the raw material for a target portlet. For example, suppose we want to

synthesize the raw material for portlet P = F2 • F1 • C by composing the raw

material (Craw) for base feature C and the raw material (�F1raw and �F2raw)

of its feature functions F1 and F2. The raw material for portlet P would be:

Praw = �F2raw • �F1raw • Craw

To accomplish this, we had to derive the raw material refinements for each fea-

ture function. More precisely, let feature function F be defined by the 5-tuple

< �s, �a, �v, �b, �j >. We want a transformation T ′
mkraw that maps the

5-tuple of any feature function F to its raw material �Fraw. The details of the

T ′
mkraw process are given next and are virtually identical to the metaprogram of

5.4. Feature Oriented MDD 79

Figure 5.2 that maps a tuple < s, a, v, b, j > to raw materials. Let feature func-

tion F be defined by the tuple:

< �Fsc, �Fact−usr, �Fview−usr, �Fjak−usr, �Fjsp−usr >

We can map F to a �Fraw in the following way. First, we define a new transfor-

mation (T ′
sc2ctrl) that maps a refinement of a state chart (�Fsc) to a refinement or

delta of a PSL controller (�Fctrl):

�Fctrl = T ′
sc2ctrl(�Fsc) (1)

Second, we need other transformations to map �Fctrl to an action skeleton delta

(�Fact−sk) and a view skeleton delta (�Fview−sk):

�Fact−sk = T ′
ctrl2act(�Fctrl) (2)

�Fview−sk = T ′
ctrl2view(�Fctrl) (3)

Third, we composed the action skeleton delta (�Fact−sk) computed above with a

hand-written refinement (�Fact−usr) to yield a complete PSL action delta (�Fact).

The same applies to producing a complete PSL view delta (�Fview) by composing

its skeleton and hand-written refinement:

�Fact = �Fact−usr • �Fact−sk (4)

�Fview = �Fview−usr • �Fview−sk (5)

Given these deltas (�Fact, �Fview), we wrote additional transformations to map

them to their delta Jak and Jsp code skeleton counterparts:

�Fjak−sk = T ′
act2jak(�Fact) (6)

�Fjsp−sk = T ′
view2jsp(�Fview) (7)

and composed them with their code refinements:

�Fjakcode = �Fjak−usr • �Fjak−sk (8)

�Fjspcode = �Fjsp−usr • �Fjsp−sk (9)

The delta raw material that a feature F adds to its base is:

�Fraw = {�Fctrl, �Fact, �Fview, �Fjakcode, �Fjspcode} (10)

80 Chapter 5. Combining Endogenous and Exogenous Transformations

where the components of �Fraw are derived by (1)-(10).

Figure 5.2 shows this process as the metaprogram T′
mkraw. For a typical fea-

ture, the output size is 3-5 times the size of the input. For the seat feature in the

PinkCreek product line, 27 files (755 LOC) are derived from an input of 9 files

and 163 LOC. As in the case of Tmkraw, T ′
mkraw automates significant and tedious

tasks in portlet development.

5.4.3 Program Synthesis

Our PinkCreek product line has 26 features (constants and functions), yielding hun-

dreds of interesting and distinct portlets. A particular portlet program is specified

by an FOP expression that composes a base portlet with zero or more extending

features (seat, checkin, etc.):

PinkCreek1 = seat • base

P inkCreek2 = checkin • seat • base

... // other products

We synthesized portlets by deriving the raw materials of the base and refining fea-

tures, and composing them. Let the 5-tuples for base, seat, and checkin be <>base,

<>seat, <>checkin. The raw material for PinkCreek2 is computed by:

PinkCreekraw = T ′
mkraw(<>checkin) • T ′

mkraw(<>seat) • Tmkraw(<>base) (11)

Given the raw material of a portlet, we invoke the Traw2war transformation of Fig-

ure 4.10 to produce the portlet’s WAR:

PinkCreekwar = Traw2war(PinkCreekraw)

5.5 Commuting Diagrams

Synthesizing portlets by composing raw materials is not the way we originally

planned. Our intent in section 5.4 was to synthesize the 5-tuple of a portlet by

composing the 5-tuples of its base and refining features, such as:

<>PinkCreek2 =<>checkin • <>seat • <>base

And use Tmkraw of Figure 4.10 to derive portlet raw material:

PinkCreek2raw = Tmkraw(<> PinkCreek2) (12)

5.5. Commuting Diagrams 81

Figure 5.3: Alternative Synthesis Path (a) and Commuting Diagram (b)

We now had two different ways to produce the raw materials of a portlet, namely

(11) and (12). That is, a transformation of a composition of 5-tuples (12) equals

the composition of the transformation of each 5-tuple (11):

Tmkraw(<>F1 • <>base) = T ′
mkraw(<>F1) • Tmkraw(<>base) (13)

Figure 5.3a illustrates (13): we synthesized portlets via the path labeled A (11), but

had an alternate path B (12).

FOMDD explicitly combines model refinement and model derivation. Our re-

search exposed a fundamental relationship between the two, which is expressed

in Figure 5.3b as a commuting diagram [Pie91], where M0, M1, D0, D1 are do-

mains and �M :M0 → M1, �D :D0 → D1 and f : (M0∪ M 1) (D0∪ D1) are

functions satisfying:

f • �M = �D • f (14)

In PMDD, we encountered instances of these domains: M0 ∈M0, M1 ∈M1,

D0 ∈D0 and D1 ∈ D1. We refined model M0 by �M to produce model M1.

Function or transformation f derived model D1 from M1. Alternatively, we could

derive model D0 from M0 using function f, and then refine D0 by �D (that cor-

responds to �M) to produce D1. An operator f’ maps function �M to function

�D. The general relationship is:

f(�M •M0) = f ′(�M) • f(M0) (15)

where (13) is a PMDD instance of (15) which in our case states that the trans-

formation of a composed model equals the composition of transformed models.

Note that no special restrictions are placed on models and features by commuting

diagrams, except that (15) must hold.

82 Chapter 5. Combining Endogenous and Exogenous Transformations

The reason why (13) holds is because functions Tmkraw and T ′
mkraw are mor-

phisms (i.e., structure preserving mappings [Pie91]). Formally proving structure

preservation is difficult, as it requires a formalization of the input and output do-

mains, a formalization of the properties to be preserved, and a faithful implemen-

tation of this formalization, each step of which is a non-trivial undertaking. An

alternative approach is to validate each instance of a transformation. For example,

Narayanan and Karsai [NK06] presented an algorithm to validate that the transla-

tion between two different state chart representations preserves each state, transi-

tion, and activity (and no additional states, transitions, and activities are added).

This is accomplished by maintaining an internal mapping between input and out-

put representations and validating that there is a 1-1 correspondence between in-

put/output states, transitions, and activities.

We took a different approach by computing the results in both directions (paths

A and B) and used a source equivalence diff to test for equality. (Source equivalence

is syntactic equivalence with two relaxations: it allows permutations of members

when member ordering is not significant and it allows white space to differ when

white space is unimportant). We added this extra computation as an option to our

metaprograms to validate (13).

We soon discovered that there are many other commuting diagrams/relationships

in PinkCreek. For example, state charts can be refined and then mapped to PSL

controllers, or a PSL controller can be derived from a state chart and then refined:

Tsc2ctrl(�Fsc • Bsc) = T ′
sc2ctrl(�Fsc) • Tsc2ctrl(Bsc) (16)

where BSC is a base state chart and �FSC is a state chart refinement of feature

F. These relationships helped us validate individual transformations of Figure 4.10

and Figure 5.2.

5.5.1 Experience

Initially, our tools did not satisfy (13). That is, synthesizing portlet raw material

via paths A and B yielded different results. Upon closer inspection, we discovered

errors in both our tools and portlet specifications. Such errors were not exposed

until we synthesized raw materials via path B.

We soon realized the significance of commuting diagrams/relationships. While

checking validity increases build times (more in section 5.5.2), we obtain assur-

ances on the correctness of our PMDD abstractions, our portlet specifications,

5.6. Related Work 83

Figure 5.4: PinkCreek Build Time Alternatives

and our tools. (13) defines stringent properties that our models, tools, and spec-

ifications must satisfy, and without these diagrams, we were unaware that these

constraints existed. Our results are general: their benefits will hold in the develop-

ment of tools, models, and specifications for other domains using FOMDD, as they

too will have commuting diagrams like Figure 5.3b. More on this in section 5.6.

5.5.2 Optimization

Figure 5.3a offers two ways in which portlet raw materials can be synthesized: ei-

ther build raw materials via path A or via path B. Figure 5.4 shows experimental

results of synthesizing portlets via each path. The A line indicates the cost of tra-

versing path A, which includes the cost of transforming 5-tuples to raw materials.

Tuple transformations only have to be computed once, as raw materials of model

refinements are portlet invariant. This offers a very useful optimization: raw mate-

rials are computed once and can be composed. The A-T line shows the reduction

in cost by this optimization. Note that the A-T path is 2-3 times faster than path B

(indicated by line B). The A line confirms our intuition: without raw material opti-

mization, composing models and transforming (path B) is substantially faster than

composing transformed models (path A). If we validate compositions by building

both ways (A+B-T), build times increase, but this is a one-time cost.

5.6 Related Work

Model derivation and model refinement are common in FOMDD. We expressed

derivations by exogenous transformations (mappings of models written in differ-

84 Chapter 5. Combining Endogenous and Exogenous Transformations

ent DSLs) and refinements by endogenous transformations (mappings of models

written in the same DSL). We explicitly represent MDD processes as functional

metaprograms (where programs are values and transformations are functions that

map programs); this idea is latent in the MDD community. We took an additional

step forward by merging MDD ideas with those of FOP, which itself has a long

history of development [BCRW00, Bea02, BSR04, Bat05, Bat06]. A complimen-

tary view which describes MDD and FOP as an object-oriented metaprogramming

paradigm is given in [Bat06].

Horizontal and vertical transformations are also common in MDD [MG06b].

Horizontal transformations map source and target models at the same level of ab-

straction (e.g., refactoring), while vertical transformations map models that reside

at different levels of abstraction (PIM to PSM mappings). We have clearly used

both kinds of transformations in PinkCreek, but we found no advantage in making

horizontal and vertical distinctions in our work.

Much of the tooling effort in MDD today is focused on UML models. What

is generally lacking are tools to express refinements of UML models, on which

FOMDD relies. Building such tools is the subject of future work (see section

8.3.2).

Kurtev uses XML transformations to develop XML applications [KvdB05].

The design of web applications includes not only functionality but also content,

navigation and presentation issues. This calls for a model-based approach (e.g.

W2000 [BGP00], WebML [CFM02], UWE [NA02] or OO-HMethod [PGIP01])

from which web applications are derived [PM00]. However, we are unaware of

MDD approaches for building portlets.

Merging MDD and product lines is not new [AFM05, BdOB06, CA05b, CA05a,

DSvGB03, GBLC05, Gea04, SNW05], we know of few examples that explicitly

use features in MDD. One is BoldStroke: a product-line written in several millions

lines of C++ for supporting a family of mission computing avionics for military

aircraft. Gray used MDD to express maintenance tasks on BoldStroke [Gea04].

Adding a feature required both updating BoldStroke’s model and code base. Al-

though build optimizations were used (e.g., delaying the updates of the code base),

no commuting relationships were found (although we believe that they exist). Ad-

ditionally, MDD can be used with other paradigms. Kulkarni combined MDD with

AOP (Aspect Oriented Programming) [KR03].

Proving properties of large programs remains a difficult challenge. The pro-

grams used in PMDD (javac, XSLT, ATS) may be on a scale that is appropriate for

5.7. Contributions 85

the Verified Software Grand Challenge of Hoare, Misra, and Shankar [Lea], which

seeks scalable technologies for program verification.

We believe commuting diagrams are common in FOMDD. In the construction

of the AHEAD Tool Suite, customized parsers were built by first composing a base

grammar with its refinements, and then using JavaCC to derive a parser [BSR04].

This is comparable to path B in Figure 5.3a. A counterpart to path A would be to

compose a base parser with its refinements. Unfortunately, JavaCC translates only

complete grammars into complete parsers (not grammar refinements into parser

refinements), so path A could not be evaluated [Bat07a].

Commuting diagrams are fundamental to category theory (CT) [Pie91], which

is a general mathematical theory of structures and of systems of structures (see sec-

tion 6.4.5). A benefit of FOMDD is that it is mathematically based, and this makes

connections with category theory easier to recognize. PinkCreek has provided us

with an invaluable example that has enabled us to unify the ideas of FOMDD pro-

gram synthesis and CT. An exposition of these ideas is the subject of forthcoming

work [Bat07a].

5.7 Contributions

MDD and FOP are complementary paradigms. MDD derives models and FOP

refines models. Metaprogramming unifies models with values; transformations

and compositions are functions. This unification of FOP and MDD, here called

FOMDD, offers a powerful paradigm for creating product lines using MDD tech-

nology.

We presented a case study of FOMDD that created a product line of portlets.

We showed how the MDD production of a portlet is a synthesis metaprogram that

transforms a multi-model specification of a portlet into a web archive file. We ex-

pressed variations in portlet functionality as features, and synthesized portlet spec-

ifications by composing features. Our work exposed a fundamental relationship

between model derivation and model refinement, which we expressed as a com-

muting diagram/relationship. We exploited this relationship (the transformation of

a composition of models equals the composition of transformed models) to val-

idate the correctness of our domain abstractions, tools, and portlet specifications

at a cost of longer synthesis times. The relationship could also be used to reduce

synthesis times if validation is not an issue.

While the portlet domain admittedly has specific and unusual requirements,

86 Chapter 5. Combining Endogenous and Exogenous Transformations

there is nothing domain-specific about the need for MDD and FOP and their ben-

efits. In this regard, PMDD is not unusual; it is an example of many domains

where both technologies naturally complement each other to produce a result that

is better than either could deliver in isolation. FOMDD offers a fresh perspective

in program and product-line synthesis where mathematical properties (in addition

to engineering feats) guide a principled design of complex systems. Research on

MDD and FOP should focus on infrastructures that support their integration (next

chapter), and researchers should be cognizant that their synergy is not only possi-

ble, but desirable.

The work of this chapter is accepted for publication in the paper:

1. Feature Oriented Model Driven Development: A Case Study for Portlets.

S. Trujillo, D. Batory and O. Diaz. 29th International Conference on Soft-

ware Engineering (ICSE 2007). Minneapolis, Minnesota, USA. May 2007

[TBD07]. Acceptance Rate: 15% (50/334).

Chapter 6

Generative Metaprogramming

for Synthesis Process

“Freedom is not worth having if it does not include the freedom to make mistakes.”

– Mahatma Gandhi.

6.1 Abstract

Software product-line synthesis defines a process to synthesize individual pro-

grams. The previous chapter combines the use of composition and derivation to

realize synthesis. Our work exposed a fundamental relationship between model

composition and derivation: commuting diagrams. This was symptomatic of an

important structure behind our metaprograms that drive the synthesis process. Our

work explores these ideas in relationship to product-line synthesis. This work de-

scribes a way to synthesize metaprograms, which when executed, will synthesize

a target program of a product-line. Specifically, we elaborate on the generation of

metaprograms from abstract specifications. We use commuting diagrams to gener-

ate a metaprogram from which our target program can be ultimately synthesized.

A case study is used to illustrate the GeneRative metaprOgramming for Variable

structurE (GROVE) approach.

87

88 Chapter 6. Generative Metaprogramming for Synthesis Process

6.2 Rationale for Generation

Software product-line synthesis drives the process to synthesize individual pro-

grams1. These processes were initially developed using hand-crafted scripting.

A typical script to realize a synthesis path consists of around 500 LOC of batch

processes that use 300 LOC of ant makefiles and 2 KLOC of Java code, taking

around 4 person/day to complete. A small change in the synthesis process (e.g., in

order to modify the synthesis path) involves significant effort to modify the script.

Overall, this implies time-consuming, repetitive and cumbersome tasks. Our in-

tention is to accelerate the development of synthesis metaprograms by generating

them from abstract specifications (i.e., MDD is used to generate FOMDD metapro-

grams). Doing so, the changes in the synthesis process are modified in the abstract

specification level instead of in the implementation.

6.2.1 From Scripting to Generation

Our metaprograms have been developed so far as scripts (i.e., a specific script was

created for each individual program of the product-line). Commuting relationships

expose the nature of synthesis. We realize that our metaprograms are not mono-

lithic code blocks, but consist of well-known primitive operations (e.g., composi-

tion or derivation). We believe this structured nature not only holds in our case, but

in general.

Metaprogramming is the concept that program synthesis is a computation.

Specifically, we study the primitives that form such metaprograms. These prim-

itives form the architecture of metaprograms [Bat07b]. Our aim is a generative

approach to metaprogramming.

To attain this, we explore (i) the primitive operations that form synthesis, (ii)

the abstract specification that can be used to represent synthesis, and (iii) the gen-

eration of metaprograms from specifications. These are the ideas behind the Gen-

eRative metaprOgramming for Variable structurE (GROVE) approach. GROVE

demands a new generation of models and tools. This support could eventually

foster to widespread metaprogramming use in synthesis.

6.2. Rationale for Generation 89

Figure 6.1: Simple Primitives

6.2.2 Synthesis Primitives

A metaprogram consists of basic primitives. The intention is not only to analyze the

primitives used for synthesis, but to study them in order to generate a metaprogram.

We begin introducing an initial subset of primitives.

A Composition primitive is used to synthesize programs in Feature Oriented

Programming (see section 3.3). This primitive composes a base artifact with re-

finements to increment its functionality [BSR04]. Figure 6.1a sketches the com-

position where nodes represent models m0 (initial) and m1 (initial extended). The

edge represents a composition operation compose with model refinement �m01

(extending initial). Note that m1 is synthesized as a result of composition. The

expression for this primitive operation is2: m1 = �m01.compose(m0).

A Derivation primitive is used to obtain an implementation from abstract models

in Model Driven Development. This primitive derives models from other models

(see section 4.3). Figure 6.1b shows an example of a derivation primitive where

nodes represent models m0 (source) and i0 (target). The edge represents a deriva-

tion operation derive. Note that i0 is synthesized as a result of the derivation. The

expression for this primitive operation is: i0 = m0.derive().

Composition and Derivation. Our previous chapter combined the use of com-

position and derivation in synthesis. In general, models can be refined by compos-

ing features (a.k.a., endogenous transformations that map models expressed in the

1Synthesis is commonly understood to be an integration of two or more pre-existing elements
which results in a new creation (from http://en.wikipedia.org/wiki/Synthesis).

2Although we write the composition of A and B as A.compose(B), it can be represented alter-
natively as expression A • B.

90 Chapter 6. Generative Metaprogramming for Synthesis Process

same language [MG06b]), and can be derived from other models (a.k.a., exogenous

transformations that map models written in different languages [MG06b]).

Figure 6.1c shows an example of this combination. Nodes represent mod-

els where m0 is an input and its remaining (m1, i0 , i1) are synthesized. Edges

represent composition operations (e.g., red edge compose is a composition with

refinement �m01) or derivation operations (e.g., blue edge derive is a model

transformation)3. Figure 6.1c is actually a pushout of Figure 6.1a and Figure 6.1b

[Fia05, Pie91].

This exposed a fundamental relationship: the composition of transformed mod-

els (1) equals the transformation of a composed model (2). This implies that there

are two alternative paths to synthesize i1.

i1 = (�m01.derive′()).compose (m0.derive()) (1)

i1 = (�m01.compose(m0)).derive() (2)

When i1 is the same through (1) and (2), commuting holds. This means that com-

position and derivation operations preserve the structure (see section 5.5).

Other Primitives. The primitives introduced so far are aimed to product-line

synthesis where composition and derivation are used. However, this set is clearly

open to new primitives such as weaving of aspects [ALS06], refactoring of fea-

tures [LBL06, TBD06], interactions of features [LBN05], harvesting of models

[RGvD06], and others. These are different implementation edges. Refer to [Bat07b]

for an exploratory study.

6.2.3 Synthesis Geometries

The introduced primitives are not used in isolation, but are combined in metapro-

gram synthesis. Doing so, synthesis is not a monolithic code block, but comprises

simple primitives to yield a complex metaprogram, which has structure4. By struc-

ture, we mean what are the primitives that form synthesis and how these primi-

tives are connected. The combination of primitives forms a complex structure of

3Note that a new edge d′ appears. This edge represents a different derive’ from edge �m01 to
edge �i01. Remember d was from node to node previously. This d’ is a model refinement-to-model
refinement transformation that enables commuting diagrams.

4The structure of something is how the parts of it relate to each other, how it is put together, and
how they are connected (from http://en.wikipedia.org/wiki/Structure).

6.2. Rationale for Generation 91

Figure 6.2: Geometries

metaprograms (a.k.a., architectural metaprogramming [Bat07b]). Specifically, we

analyze the geometry that depicts a synthesis metaprogram5.

This work uses PinkCreek case study, which is a product-line of portlets (see

appendix A), to generalize on the synthesis geometries. PinkCreek was developed

using a model-driven approach for Portlets (a.k.a., PMDD introduced in section

4.4), which specifies a portlet as a set of models from which its implementation can

be derived6. Figure 6.2a shows PMDD synthesis geometry where the upper-most

node represents a statechart model msc. The nodes on the bottom are implemen-

tation artifacts: mjak represents a Jak class and mjsp a JSP page. The nodes in

between are Portlet Specific Language (see section 4.4) models: mctrl defines the

portlet controller, mact contains the portlet actions, and mview specifies the portlet

views. Edges represent model transformations (e.g., derivesc2ctrl is a derivation

from msc to mctrl) and compositions (e.g., �mact−usr).

However, Figure 6.2a shows only the derivation geometry, without the compo-

sition (i.e., the model-driven synthesis is sketched, but not the product-line synthe-

sis). Figure 6.2b introduces the composition dimension for PinkCreek synthesis

where the geometry of Figure 6.2a is enlarged with a set of edges. Each edge

5Geometry arose as the field of knowledge dealing with spatial relationships (from
http://en.wikipedia.org/wiki/Geometry).

6Figure 4.10 shows the complete synthesis metaprograms to derive a PinkCreek base fea-
ture. The notation of this figure adjusted to the notation introduced in this chapter is
as follows: mctrl = msc .derivesc2ctrl(), mact−sk = mctrl .derivectrl2act(), mact =
�mact−usr .compose(mact−sk), and so on (where each m represents a different model, derive
denotes derivation and compose is composition).

92 Chapter 6. Generative Metaprogramming for Synthesis Process

represents a refinement of a node (e.g., �msc). Doing so, Figure 6.2b shows the

geometry of the synthesis metaprogram where derivation and composition are com-

bined together. This example shows only two features: one constant with the base

nodes and one function extending base with edges (i.e., a constant feature consists

of initial base nodes, a function feature consists of edges extending initial nodes to

target nodes, and result consists of target nodes).

Figure 6.2c shows how to traverse a geometry to generate a synthesis metapro-

gram. The study of these geometries paves the way to the generation of synthesis

metaprograms.

6.3 Generative Metaprogramming

Generative Programming is the process to generate programs [CE00]7. Our work

goes one step farther. Starting from a synthesis geometry specification, GROVE

generates a synthesis metaprogram, which is used to generate a program. We name

this process Generative Metaprogramming8.

The product-line synthesis is not aimed to build one individual application, but

a number of them. This demands a change in the engineering processes where

a distinction between domain and application engineering process is introduced.

Domain engineering (a.k.a., core asset development) determines the commonality

and the variability of the SPL, whereas application engineering (a.k.a., product

development) synthesizes individual applications from the SPL.

This work does not focus on the development of the product-line9. Conversely,

our work concentrates on how to synthesize individual programs out of a product-

line. Therefore, domain engineering described next is restricted to the process of

defining the geometry of metaprograms, and application engineering to the synthe-

sis of individual metaprograms. GROVE thus consists of two major activities.

First, the geometry specification is defined for the domain of the application.

Figure 6.2b shows the synthesis geometry for PinkCreek (details explained shortly

in section 6.3.1).

Second, starting from this geometry, a specific metaprogram can be specified

by its synthesis path (i.e., how to traverse the geometry space). Figure 6.2c shows

7Generative programming uses automated source code creation through code generators to im-
prove programmer productivity (from http://en.wikipedia.org/wiki/Generative_programming).

8This is related to multi-stage programming [TS00].
9We consider that the SPL has been already built using existing approaches [BSR04, CN01] (see

appendix A for a complete approach).

6.3. Generative Metaprogramming 93

the synthesis path for a PinkCreek program of two features (more details in section

6.3.2).

6.3.1 Geometry Specification

Substructures A synthesis geometry is basically formed by two substructures:

base and refinement synthesis substructures.

Base synthesis substructure contains the set of primitives from which the im-

plementation of a base program is derived. It represents derivation synthesis with-

out composition. Figure 6.3a shows this where nodes represent different models

and edges represent derivations and local compositions.

Refinement synthesis substructure represents the refinement of a base synthe-

sis substructure in order to realize a feature (i.e., the synthesis a feature realizes).

Figure 6.4a shows this situation where a node represents a model that can be com-

posed with an edge representing a model refinement. The result of composition

yields another node representing a model. Hence, the edges represent model (or

code) refinements and edge-to-edge transformations represent model (or code) re-

finement transformations. To simplify this representation, edges are represented as

nodes, and edge-to-edge transformations as edges. Figure 6.4b shows this simpli-

fication of Figure 6.4a.

Base synthesis substructure corresponds to constant features, whereas refine-

ment synthesis substructure corresponds to features that extend base (i.e., refine-

ment substructures are repeatable). The point to stress is that synthesis geometry

of Figure 6.2b can be generated combining base and refinement synthesis substruc-

tures together. To specify the geometry, a graphical language is needed.

Specification There are currently several graphical specification languages (e.g.,

SVG10). Graph eXchange Language (GXL) was selected to depict graphical struc-

tures because it provides a meta-model, language, and tool support [Sou, HWS00].

GXL enables to specify both substructures from which the synthesis geometry is

formed.

GXL metamodel is designed to specify directed graphs [HWS00]. Figure 6.3b

shows a fragment of the GXL code that specifies the base synthesis substructure

of Figure 6.3a. This code is actually the representation of a model conforming

the GXL metamodel. This figure was sketched using existing tool support [Sou,

10SVG (Scalable Vector Graphics). http://www.w3.org/Graphics/SVG/

94 Chapter 6. Generative Metaprogramming for Synthesis Process

Figure 6.3: Base Synthesis Substructure Specification

Figure 6.4: Refinement Synthesis Substructure Specification

HWS00]. This tool produces the snippet of Figure 6.3b, which lists a fragment of

code with two nodes and one edge connecting both nodes. Nodes specify models

msc and mctrl, and edge specifies derivation primitive dsc2ctrl. In general, this

code fragment represents the expression mctrl = msc .dsc2ctrl().

The elements of Figure 6.3b require additionally the specification of some at-

tributes (e.g., name, type, primitive, whether is derived from other, etc). Nodes

and edges have slightly different attributes. The attribute nodeType determines the

type of a node. The attribute isDerived states whether a node is derived from other

node. The attribute operatorType determines the primitive of an edge. This allows

6.3. Generative Metaprogramming 95

Figure 6.5: Generated Code Fragments

later to specify how to handle (edge) operations over (node) elements. This ex-

tra information of the specification would be required later to generate geometry

implementation.

Likewise, Figure 6.4c shows partially the code snippet of a refinement synthesis

substructure. This code fragment represents the expression �mctrl = �msc .d′sc2ctrl().
The specification is similar to Figure 6.3b, but note that types of nodes are not mod-

els, but model refinements, and the edge is a transformation between such model

refinements. This specification differs from the base synthesis substructure because

the actual way to operate it also differs.

Transforming from Specification to Implementation The next goal is to create

an implementation to handle each element of the geometry (i.e., node or edge).

This implementation is the result of a model transformation from the specification

of the two substructures.

The result of the transformation is a set of Java classes that realize the geometry

and give semantics to the primitive operations. The generated classes represent

(i) the objects contained in the substructures (for each node a class is generated),

and (ii) the substructures that form the geometry (for each substructure a class is

generated).

96 Chapter 6. Generative Metaprogramming for Synthesis Process

First, a Java class is created for each node in the geometry. These classes rep-

resent nodes that are used later on by metaprograms. Some nodes are inputs and

others are derived (those that depend on the input from another model). Figure

6.5b shows a snippet where an example for an input is shown. ScObject class en-

capsulates the synthesis functionality for models of type msc. As this is an input

model, the functionality is reduced to create a handle for this file. Note that our

framework provides a default implementation for the constructor (ObjectImpl in

Figure 6.5b). The way to construct derived nodes is by creating constructors in

their respective classes. Figure 6.5c shows an example for a derived class. CtrlOb-

ject class encapsulates the synthesis functionality for mctrl. Note that a constructor

is used to derive mctrl from msc. Currently, this constructor invokes an ant target

that performs the actual transformation and should be defined elsewhere (described

shortly). As composition is always similar, all node classes are composable (e.g.,

mctrl can be composed with �mctrl). We provide a default implementation for

composition (ObjectImpl in Figure 6.5b). Similarly, each node element has a cor-

responding class.

Second, a Java class is created for each substructure that form the geome-

try (see Figure 6.5a). Actually, two classes are created for base and refinement

substructures. These classes contain the objects that form each substructure. Fig-

ure 6.5a shows a snippet where an example for BaseSubstructure is shown. This

substructure contains references to its constituent parts (ScObject, CtrlObject, and

so on). The substructure classes contain also one method for each edge of the

substructure (d_sc2ctrl, d_ctrl2actsk, and so on) that enables to construct derived

nodes. Additionally, as the composition of substructures is always similar, all

substructure classes are composable to yield complex synthesis geometries. We

provide a default implementation for this (FeatureImpl in Figure 6.5a). In gen-

eral, base substructure contains model objects and model transformation methods,

whereas refinement substructure contains model refinement objects and their trans-

formation methods.

As a result of these transformations, we obtain a class per node (with object

functionality) where edge functionality is included and a class per each substruc-

ture (containing object references and edge methods). All these generated classes

are later used by the actual synthesis metaprograms. This is the reason why we

choose this way to represent metaprograms.

6.3. Generative Metaprogramming 97

Figure 6.6: Path Specification Example

Tool Support is required for the domain engineer to specify the synthesis geom-

etry. GROVE Tool Suite (GTS) is a set of tools we created to support GROVE.

First, the synthesis geometry is specified using Graph eXchange Language (GXL).

Existing tools can be used by the domain engineer to draw the required geometry

[Sou]. Second, the synthesis geometry specification needs to be transformed into

the implementation code, which is used later on by the metaprogram. Thus, a code

generator has been created (a.k.a., GTS geometry generator). Third, the semantics

of some primitives needs to be specified completely (e.g., we use ant to specify

how to handle the transformation). This is introduced by GTS primitive handler.

6.3.2 Path Generation

Specification A synthesis path represents how to synthesize a program traversing

a geometry by means of composition and derivation. The fundamental idea is

that the synthesis geometry should be specified before drawing the synthesis path.

Figure 6.2c shows the path for a PinkCreek program where the geometry sketches

two features. To specify this synthesis path, a specification is necessary to deal not

only with feature composition, but as well with model derivation.

Existing specifications for program synthesis (e.g., AHEAD equation) do not

consider other primitives but composition. An equation only specifies the set of

features that distinguishes the program [BSR04]. Figure 6.6a shows an example of

this where features are listed in composition order. This would produce a synthesis

geometry of one base substructure for base feature and one refinement substructure

for seat feature. The expression is as follows seat.compose (base). However, it

lacks the derivation direction.

Hence, equation should be enhanced to introduce such extra information. Do-

ing so, it introduces other primitives besides feature composition where compo-

98 Chapter 6. Generative Metaprogramming for Synthesis Process

Figure 6.7: Synthesis Path Metaprogram Example

sition and derivation can be used together. Figure 6.6b shows an example where

dsc2ctrl derivation primitive is introduced after composition. Although this exam-

ple is simple, it enables the equation to deal with derivation as well. The expression

is as follows (seat.compose (base)).derivesc2ctrl().

Figure 6.6c is a similar example where the equation differs. The expression is

as follows (seat.derive′sc2ctrl()).compose (base.derivesc2ctrl())11. The product

synthesized via Figure 6.6b and 6.6c is the same (remind commuting diagrams).

However, the synthesis time is different (remind section 5.5.2).

Transforming from Specification to Implementation The final goal is to syn-

thesize a metaprogram (i.e., specifying how the geometry is traversed to get a

metaprogram). This is obtained from the synthesis path specification as the result

of applying a model transformation where the path specification is the input and the

metaprogram implementation is the output. This transformation creates a specific

metaprogram for each synthesis path in order to synthesize an end program.

As we define previously the objects to handle the geometry of synthesis, the

transformation is straightforward. For each feature in the synthesis path, an object

is created in the metaprogram. Then, the synthesis path is traversed as follows. For

11Figure 6.6c is simplified and d′
sc2ctrl is omitted. Refer to the previous sections for further details.

6.3. Generative Metaprogramming 99

Figure 6.8: Big Picture

each feature composition edge, a feature composition is called. For each derivation

edge, a derivation is invoked.

Consider a geometry of 4 features: base, seat, checkin and assistance. Figure

6.7a shows this geometry and one synthesis path that traverses such geometry to

synthesize a metaprogram. From such path specification, a Java class implement-

ing the metaprogram is derived as follows. First, one substructure object per feature

is created. Second, the horizontal path is traversed (i.e., feature substructures are

composed). Then, the vertical path is traversed (i.e., derivations are applied to the

resulting substructure to derive implementation artifacts). Figure 6.7b lists a frag-

ment of this code. This resulting metaprogram is directly executable to synthesize

an end-program.

Tool Support is required by the application engineer to specify program syn-

thesis. We create specifically tooling to support the generation of synthesis path

metaprograms from a synthesis geometry. First, the features of the program are

selected using existing GUI tools to select features (see section 3.4.3). Second,

from the feature selection, we can plot the whole synthesis geometry from which

the user could select a synthesis path (see Figure 6.2b). This path is then translated

to a Java executable metaprogram. Another tool is needed to generate such exe-

cutable metaprogram from which the program is synthesized finally. Our tooling

also invokes the suitable metaprogram.

6.3.3 Recap and Perspective

So far, we describe how to generate synthesis implementation from a specification

where GROVE is illustrated with our case study: PinkCreek.

100 Chapter 6. Generative Metaprogramming for Synthesis Process

Figure 6.9: Generative Metaprogramming Process

First, PinkCreek’s synthesis geometry is specified (see Figure 6.8a). Actually,

base and refinement synthesis substructures are specified (base corresponds to 6.3

and refinement corresponds to 6.4). Model-to-code transformations are used to

transform from this synthesis specification to the Java classes implementing that

geometry (classes are similar to Figure 6.5). Doing so, synthesis geometry classes

are available to be used later on by each metaprogram class (traversing a synthesis

path).

Second, the aim is to generate PinkCreek’s programs (see Figure 6.8b). Specif-

ically, we generate those synthesis metaprograms from which programs are synthe-

sized. We start by selecting the program features (creating an equation). Doing so,

the geometry of Figure 6.7a is rendered. A synthesis path specifies then how to tra-

verse such geometry (e.g., Figure 6.7a is an example of such traversal). From the

synthesis path, a synthesis metaprogram code is derived using the model-to-code

transformation we created (see 6.7b). This metaprogram code uses the geometry

classes created previously. Hence, the execution of this metaprogram leads to the

synthesis of the program.

Process Figure 6.9 depicts the process to generate metaprograms that eventually

synthesize programs. A number of challenges are addressed in this work to turn

this figure from an envision into a reality. This process is analogous to the SQL

process where (i) a synthesis path statement is specified, from this input (ii) the

parser generates (iii) some inefficient path, then (iv) the efficiency of this path is

evaluated by the optimizer, eventually (v) obtaining an efficient path, which is (vi)

the input to the meta-code generator. The output of this process is (vii) the synthesis

metaprogram code that is directly executable to synthesize a program.

6.4. Future Work 101

Figure 6.10: PinkCreek Optimization

Benefits GROVE automates significant and tedious tasks in synthesis metapro-

gramming. The benefit of this approach is that it is no longer necessary to cre-

ate/modify the implementation of the synthesis metaprogram, but its specification

(i.e., the way to specify synthesis is not coding, but drawing a graphical specifi-

cation using existing tools). Our approach reduces the development time of syn-

thesis metaprograms and facilitates their evolution. For our PinkCreek example,

33 Java classes and 1.188 LOC are derived from an input of two substructure files

and 498 LOC. Likewise, synthesis path metaprograms are not coded, but derived

from path specifications. For a typical metaprogram of 5 features, specified by an

equation of 18 LOC, our tools produce an output metaprogram of 210 LOC. This

metaprogram uses the 33 geometry classes generated before. The number of LOC

increases proportionally with the number of features: 380 LOC for 10 features

(equation specification of 23 LOC); 550 LOC for 15; 720 LOC for 20; and 822

LOC for 23 (equation specification of 36 LOC). These figures pose a remarkable

improvement from our previous scripts (see section 6.2.1).

6.4 Future Work

6.4.1 Multiple Paths

Multiple paths are possible while traversing a geometry design space to generate a

synthesis metaprogram. Section 5.5.2 describes only two possible paths. However,

additional paths exist. Figure 6.10 illustrates this situation where further paths are

102 Chapter 6. Generative Metaprogramming for Synthesis Process

shown for PinkCreek synthesis. Figure 6.10a shows partially the synthesis. This

geometry can be traversed by multiple synthesis paths to yield the same product

(see Figure 6.10b).

Each synthesis path implies a different cost. A number of rules are required

to optimize cost. These rules would be based on different optimization criteria

(e.g., build-time, program size or quality). Under each criteria, one or more opti-

mized path appears. This shortest path between two points is known as geodesic

[Bat07a]12.

In our process of Figure 6.9, the optimizer would take the synthesis path se-

lected by the user as input and would return a geodesic. To turn this vision into a

reality we created tools to measure the cost of traversing each edge of the geometry.

We have measured the cost of operation time and the program size. However, we

do not yet solve the optimization problem for synthesis. An alternative is the use

of rules to find the geodesic. Synthesis optimization is a matter for future work.

6.4.2 Multiple Dimensions

The set of primitives presented so far configure a space of synthesis design (similar

to composition design [Bat07a]). In general, this space consists of multiple dimen-

sions. Thus, the synthesis geometry becomes more complex. So far, we come up

with two types of dimensions: space and time.

Space and Origami Multidimensions in space arise when there are orthogonal

feature models. Origami deals with these complex relationships among orthogonal

features by using matrices [BLS03]. An Origami matrix is a n-dimensional matrix

where each dimension is formed by a set of features and its cells are the feature

modules that implement the functionality at the intersection of their coordinates in

the n-dimensions. The benefit of Origami is that represents largely linear specifi-

cations of systems that have potentially exponential complexity. For the purpose

of this work, note that Origami poses multiple space dimensions to be considered.

Figure 6.11a shows an example with a simple 2x2 matrix. Figure 6.11b sketches

the synthesis geometry for this matrix (i.e., translates Origami matrix into synthesis

geometry representation). The geometry becomes more complicated as the num-

ber of dimensions increase. Figure 6.11c shows a 2x2x2 matrix (i.e., a cube) and

12A geodesic can be regarded also as the shortest spanning graph between an input set of points
and an output set of points. Its resolution is not straightforward. According to Batory, it involves
solving the Directed Steiner-Tree problem, which is NP-hard [Bat07a, CCC+99].

6.4. Future Work 103

Figure 6.11: Origami Multi-dimensions

Figure 6.11d sketches its geometry. Note that these examples only use composi-

tion, but not derivation. These figures illustrate how the geometry explodes with

the number of dimensions.

The representation of multiple dimensions exposes some limitations of our

work. It is not evident how to draw these synthesis structures even for small di-

mensions, and it is almost impossible to depict out the commuting diagrams for

n-matrices. Future work might address a generalization of an Origami matrix, that

allows complex, multi-dimensional commuting diagrams to be expressed. Building

multi-dimensional matrices is, actually, rather easy [Tak06]. In this future scenario,

derivation should be represented using Origami as well.

Time and Evolution The geometrical spaces presented so far represent a static

view of the synthesis metaprogram geometry. However, as any software, a synthe-

sis metaprogram also evolves over time towards a dynamic geometry. Remarkably,

this evolution forces to consider also multiple time dimensions. This is closely

related to the variability of synthesis introduced in the next chapter.

6.4.3 Multiple Artifacts

The primitives presented in section 6.2.2 are applied to individual artifacts. How-

ever, operations frequently involve more than one artifact. This is the case of com-

position where multiple artifacts are simultaneously composed á la AHEAD (see

section 3.3). A feature in AHEAD is implemented by multiple artifacts: introduc-

tions add new artifacts and refinements extend existing artifacts. Such artifacts can

104 Chapter 6. Generative Metaprogramming for Synthesis Process

Figure 6.12: Feature Composition

have multiple representations (e.g., code, makefiles, documentation, etc.).

Figure 6.12a shows an example of a simultaneous composition of multiple ar-

tifacts. Coarse-grained nodes M0 and M1 represent a set of artifacts (M0 con-

tains m01, m02, and m03; M1 contains m11, m12, and m13). Likewise, edge

�M consists of a set of artifacts (�m1,�m2 ,�m3) to refine the set of arti-

facts a node comprises. Note that M1 is synthesized as a result of a composition:

M1 = �M.compose (M0).

In general, coarse-grained nodes and edges contain the realization of a feature.

Some features are base or constants (e.g., node M0), some features are increments

in functionality or functions (e.g., edge �M), and a composition of features is a

program (e.g., M1).

Similarly to composition, derivation comprises frequently multiple artifacts.

Figure 6.12b shows an example of a derivation of multiple artifacts.

6.4.4 Multiple Product Lines

Synthesis is typically scoped to an individual product-line. However, in certain

contexts synthesis of multiple product-lines may be desirable. Consider an exam-

ple where different Portlets are combined together to synthesize a Portal. Although

this setting is unlikely nowadays in SPL, it is common in service-oriented architec-

tures.

Future work should address how to automate synthesis involving external product-

lines. More to the point, this would impact on the geometries we presented before.

Consequently, the architecture metaprogramming should also consider the service-

6.4. Future Work 105

Figure 6.13: Simple Category

oriented architectures [Bat07b, Tea07].

6.4.5 Category Theory

Structure is a recurring issue in computer sciences [Gog91], and also fundamen-

tal in software product-lines. This work raises the issue of a structural theory

for product-line metaprogram synthesis. The final aim is to have a strong the-

ory behind, an algebra describing this theory, and eventually some programming

language with metaprogramming primitives. We discuss the need for a structural

theory.

Category Theory (CT) is a general mathematical theory of structures and of

systems of structures. In mathematics, CT deals in an abstract way with mathemat-

ical structures and relationships between them. CT offers a way to (i) reason about

structure, and mappings that preserve structure; (ii) abstract away from details; and

(iii) automation (constructive methods exist for many useful categorical structures)

[Eas98].

A category is a directed graph with special properties. Nodes are called objects

and edges are arrows. An arrow drawn from object X to object Y is a function

with X as its domain and Y as its codomain. Arrows compose like functions, and

arrow (function) composition is associative. In addition, there are identity arrows

(identity functions) for each object, indicated by loops. Figure 6.13 shows a base

category where object P0 has two arrows: A linking to P1 and B to P2. An identity

function links the objects itself (P0).

According to [Bat07a], a product line is a category: Figure 6.13 shows a cat-

egory of programs (P i). Each object P i is a domain with one element (the i-th

program). Arrows (e.g., A, B, ...) are total functions that compose like func-

tions. Commuting diagrams are fundamental to CT [Fia05, Pie91], which was pro-

posed recently as a theory to support program synthesis [Bat07a, TBD07], where

106 Chapter 6. Generative Metaprogramming for Synthesis Process

CT is represented in an applied way that links with our work. Our case study

PinkCreek provided an invaluable case study that enabled to unify the ideas of syn-

thesis metaprograms and CT [TBD07, Tru07]. However, further work is needed to

study how relevant CT is to product synthesis.

Present work is not far from this vision. Our geometries resemble to CT repre-

sentations. Base synthesis substructure specification resembles actually a category

in CT. Furthermore, refinement synthesis substructure resembles to the concept of

functor13. We also encounter pushouts in our geometries.

CT imposes some constraints on our work that enable us to validate the correct-

ness of our abstractions, tools, and specification. We found errors because of the

constraints imposed by CT. Specifically, the commuting diagrams force us to fix

transformations and compositions to commute (e.g., derivations should consider

order of elements to preserve the order of compositions).

There are many results on CT that may not be applicable to Pinkcreek (specif-

ically) and FOMDD (in general). A clear example is adjoints [Pie91]. We believe

that there could be lots of results in CT that are useless to us. Nonetheless, the

study of these issues is the subject of future work.

6.5 Related Work

Feature Oriented Model Driven Development (FOMDD) is a blend of FOP and

MDD where the structure of features imposed by AHEAD is translated to MDD.

GROVE is a model to support the generation of synthesis in FOMDD.

FOMDA stands for Feature Oriented Model Driven Architecture. Although the

name is close to FOMDD, the issue addressed by FOMDA is different. FOMDA

aims to specify the flow of transformations in MDA using a feature model [BdOB06].

Doing so, features are not used to denote increments in program functionality, but

also model transformations.

AHEAD is an algebraic model for feature composition that structures SPL arti-

facts for composition (see section 3.3). Inspired by AHEAD, GROVE is focused on

the geometry of synthesis metaprograms where the aim is the generative metapro-

gramming using geometry specification. GROVE aims to introduce a structural

model for SPL synthesis. Actually, GROVE introduces an algebraic representa-

13In category theory, a functor is a special type of mapping between categories.
Functors can be thought of as morphisms in the category of small categories (from
http://en.wikipedia.org/wiki/Functor).

6.6. Contributions 107

tion, even though further work is needed to assess the mathematical implications

of this representation.

The basic ideas behind model driven development pushed us to abstract the

synthesis process. Actually, we first implemented those classes that later we at-

tempted to model in order to generate them. Essentially, GROVE applies model-

driven ideas to the generation of synthesis metaprograms.

Intentional programming is a collection of concepts which enable software

source code to reflect the precise information, called an intention, which program-

mers have in mind when conceiving their work. Those intentions are actually ab-

stractions [Sim96, SCC06]. Similarly, GROVE introduces geometry abstraction

that enables the generation of code.

Increasingly complex systems require novel approaches where analogies with

biological phenomena could be useful to inspire them (e.g., the study of structural

biology to inspire GROVE geometries) [MB01].

The geometries presented in this work are far from the "perception-representation-

action loops" (a.k.a., Design Animism) presented by Laurel in her OOPSLA Keynote

[Lau06]. Nonetheless, we believe the exploration of this aesthetic conception is

worth with regard to GROVE geometries.

Synthesis is also known as product production [McG04]. Production planning

defines how programs are built. It provides the strategical vision of the production

process [CM02]. GROVE specifically concentrates on the synthesis process of this

managerial plan.

6.6 Contributions

This chapter described ideas to synthesize metaprograms, which when executed,

will synthesize a target program of a product-line. Specifically, we elaborated on

the generation of metaprograms from abstract specifications. To attain this, we pre-

sented the GeneRative metaprOgramming for Variable structurE (GROVE) as an

approach (i) to specify a synthesis geometry, (ii) from which a synthesis path can

be specified (iii) in order to generate the code of a synthesis metaprogram. The ex-

ecution of such metaprogram code synthesizes a target program of a product-line.

So far, the geometries allow a limited number of primitives mainly for composition

and derivation.

GROVE called for a companion set of tools. GROVE Tool Suite (GTS) sup-

ports the generative approach for synthesis metaprogramming. GTS is realized

108 Chapter 6. Generative Metaprogramming for Synthesis Process

by 26 classes and 4 KLOC Java. We implemented also 3 model transformations

(two for synthesis substructures and one for synthesis path) realized by 600 LOC

of XSL code. GTS encapsulates and reuses logic and infrastructure common to

generative metaprogramming and provides the base functionality on top of which

metaprogram-specific functionality is built.

Evolution introduces the time dimension into the synthesis. Models are fre-

quently updated after their generation (e.g., to fix possible errors). This affects the

whole synthesis (i.e., a new operation is performed afterwards). The issue is how

to keep track of these updates at model level, and how to propagate those changes

back to the model. Another issue is whether model validation and debugging would

affect synthesis. To study the relationships of these ideas to CT is also worth.

GROVE introduces an initial set of primitives for synthesis. Future work

should address a specific GROVE algebraic model. Considering Origami multi-

dimensional models could be a starting point [BLS03, Tak06]. Synthesis is also

subject to variability to accommodate different strategies during program synthesis

(see next chapter). The study of this variability in synthesis should be considered

similarly to [DTA05]. These issues are on our agenda for future work.

Chapter 7

Variability on the Production

Process1

“It is not the strongest of the species that survive, nor the most intelligent, but the

one most responsive to change.”

– Charles Darwin.

7.1 Abstract

Software product-line synthesis defines the process to produce individual products.

The promotion of a clear separation between artifact construction and artifact syn-

thesis for product production is one of the hallmarks of software product lines.

This work rests on the assumption that the mechanisms for producing products

considerably quicker, cheaper or at a higher quality, rest not only on the artifacts

but on the production process itself. This leads to promoting production processes

as first-class artifacts, and as such are liable to vary when accommodating distinct

features. Production process variability and its role to support either product fea-

tures or production strategies are analyzed. As a proof of concept, the AHEAD Tool

1The core of this chapter comes from our SPLC 2005 paper [DTA05]. We adjust some terms to
better fit the terminology used throughout this thesis. The text mostly sticks to the original published
version. However, as this work was produced before previous chapters, some footnotes are added for
clarification.

109

110 Chapter 7. Variability on the Production Process

Suite is used to support a sample application where features require variations on

the production process.

7.2 Rationale for Production Variability

Software Product Lines (SPL) are defined as “a set of software-intensive systems,

sharing a common, managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a common set

of core assets in a prescribed way” [CN01]. In this chapter, we focus on “the

prescribed manner” in which products are synthesized: the production plan.

A production plan is “a description of how core assets are to be used to develop

a product in a product line” [CM02]. Among the distinct concerns involved in a

production plan, this chapter focuses on the production process which specifies

how to use the production plan to synthesize the end-product [BF93, CM02]. As

stated in [McG04] “product production has not received the attention that software

architecture or programming languages have”. It is often so tightly coupled to the

techniques used to create the product pieces that both are indistinguishable. For ex-

ample, integrated development environments (e.g., JDeveloper) make it seamless

by automatically creating a build script for the project or system under develop-

ment so that the programmer can be unaware of the synthesis process that leads to

the end-product.

Indeed, production processes have been traditionally considered as mere scripts.

They are created by the same programmers that also developed other reusable ar-

tifacts. In a traditional setting, such scripts are often kludged together. They are

by people who would rather be writing source code than developing a production

process. Such scripts are notorious for their poor or misleading documentation

[Cre03], which was thought to be consumed by other core asset developers.

An SPL changes this situation by explicitly distinguishing between core-asset

developers and product developers where the latter are involved in intertwining the

core assets to obtain the end-product. This distinction not only reinforces a sepa-

ration of concerns between programming and production, but explains the prepon-

derant and strategic role that production has in SPL. That is, there is a growing ev-

idence that the mechanisms for producing products considerably quicker, cheaper

or at a higher quality, rest not only on the components but on the production process

itself. Despite this observation, most approaches just support a textual description

of the production process [CDM02], where variability or requirements specific to

7.3. Revisiting AHEAD 111

the production process are almost overlooked.

Based on these observations, we strive to turn production processes into first-

class artifacts. Specifically, the main contribution of this work rests on observing

how the explicit and separate specification of the production process accounts for

variations at both the product and process level. To this end, this work distinguishes

between product features and process features. By product features we mean those

that characterize the product as such, whereas process features refer to variations

on the associated synthesis process. Hence, two end-products can share the same

product features but being produced along distinct production process standards.

We show some evidence of how this process variability impacts both the mod-

ifiability (i.e., variability along time) and the configurability (i.e., variability in the

product space) of SPL. To this end, these ideas are supported for AHEAD [BSR04],

a methodology for SPL based on step-wise refinement. So far, the companion tool

suite, AHEAD Tool Suite [Bata], (i) hides the process into the integrated develop-

ment environment, and (ii) excludes build scripts from refinement. Hence, the up-

grades include, (i) an explicit representation of the synthesis process that AHEAD

implicitly conducts, and (ii) a refinement operator for production processes. These

processes are specified using ant [Fou], a popular scripting language in the Java

world.

7.3 Revisiting AHEAD

Step-wise refinement (SWR) is a paradigm for developing a complex program from

a simple program by incrementally adding details [Dij76]. AHEAD is a design

methodology for creating application families and architecturally extensible soft-

ware (i.e., software that is customizable via module additions [BO92]). It follows

traditional SWR with one major difference: instead of composing thousands of

microscopic program refinements, AHEAD scales refinements so that each adds a

whole feature to a program, being a feature a “product characteristic that is used

in distinguishing programs within a family of related programs” [BSR04]. Hence,

a final program (i.e., a product) is characterized as a sequence of refinements (i.e.,

features) applied to the core artifacts.

This approach is supported by the AHEAD Tool Suite (ATS) [BSR04] where

refinements to realize a feature are packaged into a layer. Broadly speaking, the

base layer comprises the core artifacts, where other layers provide the refinements

that permit enhancing the core artifacts with a specific feature (see section 3.3).

112 Chapter 7. Variability on the Production Process

7.3.1 Production Process in AHEAD

From the perspective of the production process, it is important to distinguish be-

tween:

• the build process2, which specifies the construction process for the set of

artifacts included within a layer. This is specified as ant files in ATS. This

would correspond to the “product-build process” in Chastek’s terminology

[CM02].

• the synthesis process3, which specifies how layers are composed to syn-

thesize the end-product. This is hard-coded in ATS. This is referred to as

“product-specific plan” in Chastek’s parlance [CM02].

Unfortunately, ATS does not consider yet XML artifacts4. Since the processes are

XML documents5, production processes are not refined as such. A layer always

overrides the build.xml file of a previous layer so that the build.xml of the last layer

is the only one that endures.

This implies that layers should be aware of how to compose the whole set of

artifacts down in the refinement hierarchy. This could be a main stumbling block to

achieve a loose coupling among layers, and leads to increasingly complex build.xml

files as the layer hierarchy grows.

Turning production processes into first-class artifacts makes production processes

liable to be refined as any other artifact. This permits to account for both product

features and process features. By product features we mean those that character-

ize the product as such (i.e., impact on the build process), whereas process features

refer to variations on the associated synthesis process.

It is worth noting that product features commonly impact the build process

(i.e., the process adds a new artifact to build the end-product). By contrast, process

features influence the synthesis process (i.e., the process that indicates how feature

layers are composed).

2In the published version [DTA05], the build process was named intra-layer production process
to denote that this process builds the artifacts within a layer.

3In the published version [DTA05], the synthesis process was named inter-layer production
process to denote that this process synthesizes (composes) layers.

4At the time of writing our SPLC’05 paper [DTA05], ATS did not support the refinement of XML
artifacts. Indeed, this was the reason behind the creation of XAK (see section 3.4.2).

5ATS names it ModelExplorer.xml, but it plays the same role than build.xml in traditional Java
projects.

7.4. A Case Study for Production 113

7.3.2 ATS Upgrades

Different upgrades were conducted into ATS to accommodate variability into the

production process, namely

• build processes are currently specified as ant files. A layer currently over-

rides the build.xml file of the previous layer so that the build.xml of the last

layer is the only one that prevails. This problem is solved by using XAK

(see section 3.4.2). Doing so, the refinement operator has been extended to

handle extensions of ant files. This enables to apply refinements also to ant

files.

• synthesis process is hard-coded into ATS. This synthesis process is made

explicit likewise, and hence, subject to refinement.

The next sections illustrate the advantage of bringing refinement to the build and

synthesis processes realm through a running example.

7.4 A Case Study for Production

PinkCreek is the case study introduced in previous chapters. It is roughly a product-

line of portlets that provide flight reservation capabilities to different portals. Broadly

speaking, a layer comprises the set of artifacts that realize a given feature (see ap-

pendix A). This might include a build process. Being in a Java setting, ant is used

to specify this process; the so-called, build.xml file [SC04].

7.4.1 Ant Makefile Process

Ant is a Java-based tool for scripting build processes. Scripts are specified using

XML syntax: <project> is the root element whose main child is <target>. A target

describes a unit of enactment in the build process. This unit can be an aggregate of

atomic tasks such as compile, copy, mkdir and the like. The process itself (i.e., the

control flow between targets) is described through a target’s attribute: “depends”.

A target is enacted as long as the target it depends on, has already been enacted.

This provides a backward-style description of the process flow. Data sharing be-

tween targets is achieved through the external file directory.

114 Chapter 7. Variability on the Production Process

Figure 7.1: Base Build Process

7.4.2 The Build Process

Figure 7.1 shows partially a snippet of the specification of a specific build process

for the base layer6. The synthesis process includes the following steps:

1. compile the Java classes into byte codes,

2. package the artifacts (classes, libraries, pages, resources, etc) into a WAR

file,

3. deploy the web application into a container.

The use of ant for specifying build processes is not new. After all, Java program-

mers have been using ant as a scripting language for years. However, instead of

burying it into the integrated development environment, we make it explicit as any

other artifact. This enables ant scripts to be refined.

7.5 Variability on the Build Process

Previous section describes the base build process of PinkCreek. This process might

then be refined to account for distinct product-features. The example introduces

two features which imply a refinement in the build process, namely

6Space limitations prevent us from giving the complete build.xml files. Some targets
are collapsed or omitted and variables are defined in external properties files (<property
file=”build.properties”/>).

7.5. Variability on the Build Process 115

Figure 7.2: Refinement for Product Feature Tomcat.

• the container feature. The variants include Tomcat7 and JBoss8. By default,

there is no base web container9,

• the locales feature. The alternatives are EN (English), es_ES (Spanish in

Spain), and eu_ES (Basque in Spain). The base locale is EN.

One possible layer composition is expression: es_ES(Tomcat(base)).

7.5.1 Base Build Process

The base build process is contained in the base layer together with other artifacts,

whereas the other layers contain either refinements on existing artifacts or new

artifacts. The important point to note is that both Tomcat and es_ES features imply

the refinement of the synthesis process as well. That is, deploying PinkCreek in

Tomcat requires to refine the build.xml accordingly.

116 Chapter 7. Variability on the Production Process

Figure 7.3: Refinement for Product Feature es_ES.

7.5.2 Refinement Build Process

AHEAD does not provide a way to refine XML artifacts10. However, Batory et

al. state the Principle of Uniformity whereby “when introducing a new artifact

(type), the tasks to be done are (1) to support inheritance relationships between

instances and (2) to implement a refinement operation that realizes mixin inher-

itance” [BSR04]. This principle is realized by XAK for the refinement of XML

artifacts. Likewise, this is realized for build.xml artifacts as follows. Inheritance

is supported by building on the uniqueness of the name (i.e., name attribute within

<xak:module>) within a given project (i.e., a given document). Basically, the

project maps to the notion of class, and the target corresponds to a method (though

XAK allows other modularization). This permits to re-interpret inheritance for ant

artifacts by introducing the following tags:

1. <xak:refines> which denotes a refinement (a kind of “is_a”),

2. <xak:extends> which denotes to extend a given element (e.g., <target>)

within a document (e.g., <project>),

3. <xak:super/> which is the counterpart of the “super” constructor found in

object-oriented programming languages.

Hence a <xak:refines> can refine a <project> by introducing a new <target>, ex-

tending a previously existing <target> (calling <xak:extends> and <xak:super>)

7http://jakarta.apache.org/tomcat/
8http://www.jboss.org/
9A design rule can be used here to ensure that the final product will have a container.

10This was at the time of this writing. Nowadays, this is not accurate since XML refinement is
supported by XAK into AHEAD (see section 3.4.2). The following text is partially a rewording from
the published version. The syntax used is slightly different to the published version where a previous
version of XAK was described [DTA05]. The original syntax is replaced by the use of XAK to better
fit with section 3.4.2.

7.6. Variability on the Synthesis Process 117

or overriding a <target> (by using <xak:extends> to introduce this target with new

content).

An example is given for the Tomcat feature (see figure 7.2). Feature Tomcat

permits to deploy PinkCreek in the namesake container. This requires the refine-

ment of the build.xml artifact found in the base layer, as follows:

• a new <target> is added to prepare the WAR building (prebuild),

• a new <target> is added to build the WAR (build) specific for Tomcat,

• a new <target> is added to deploy it into the Tomcat container,

• target <target name= “all”> is overridden (i.e., specific syntax is <xak:extends

name= “mTargetAll”>).

Likewise, feature es_ES overrides the English locale of the base build process

to the Spanish locale. The counterpart refinement is shown in figure 7.3. It ex-

tends <target name= “prebuild”> to copy the appropriate resource files. Here the

<xak:super/> constructor is used11.

Both examples illustrate how refinements have been realized for ant artifacts.

Implementation wise, the composition operator for ant is implemented using XAK

(see Section 3.4.2). Hence, when build.xml artifacts are found, the composition

process is governed by the XAK composer to compose ant artifacts.

7.6 Variability on the Synthesis Process

7.6.1 Base Synthesis Process

Previous section focuses on ant artifacts found within a layer. These artifacts de-

scribe the build process to produce a product within a layer. By contrast, this

section focuses on synthesis processes that state how layers themselves should be

composed. This comprises the steps of the synthesis methodology being used. For

AHEAD, these steps include:

1. feature selection. Output: a feature equation (e.g. “es_ES(Tomcat(base))”).

11It is worth noticing that the es_ES refinement requires the container been already selected. This
implies a design rule to regulate how layers are composed.

118 Chapter 7. Variability on the Production Process

Figure 7.4: Base Synthesis Process.

2. feature synthesis (i.e., layer composition in Batory’s parlance). Output: col-

lective of artifacts that support an end-product12.

3. enactment of the build.xml associated with the end-product. Output: end-

product ready to be used.

Figure 7.4 illustrates the targets that realize previous steps (the equation.name

property holds the feature equation):

• compose, which calls the ATS composer,

• compose-build-xml, which supports the composition operator for the build.xml

artifact that ATS lacks13,

• execute-build-xml, which runs the ant script supporting the build process of

the end-product,

• produce, which performs the whole production (using previous targets).

12At the time of this writing, we did not even consider the use of model derivation together with
composition. Nonetheless, currently model derivation is an important part of the synthesis process.
So, it might be subject to variability as well.

13Nowadays, this process is not necessary since XAK is integrated into ATS. However, the code
of this figure sticks to the original published version [DTA05].

7.6. Variability on the Synthesis Process 119

Figure 7.5: Refinement Layers: each accounts for a “process feature”.

Figure 7.6: Refinement for Process Feature versioning.

The enactment of this synthesis process leads to an end-product that exhibits the

process features of the input equation. ATS hard-codes this script.

However, this work rests on the assumption that the mechanisms for producing

products considerably quicker, cheaper or at a higher quality, rest not only on the

artifacts but on the synthesis process itself. From this viewpoint, the synthesis

process can accommodate important production strategies that affect the synthesis

process rather than the characteristics of the final product. These strategies can

affect the product costs, increase product quality, or improve the synthesis process.

7.6.2 Refinement Synthesis Process

Based on this observation, the previous base synthesis process might be refined to

account for distinct “process-features” (see Figure 7.5). The example introduces

120 Chapter 7. Variability on the Production Process

Figure 7.7: Refinement for Process Feature errorHandling.

two features which imply a refinement in this process, namely

• the versioning feature. Consider that security reasons recommend to version

each new delivery of an end-product. This implies that artifacts that conform

the end-product, should have appropriate backups.

• the errorHandling feature. Errors can rise during the production processes.

How these errors are handled is not a characteristic of the product but de-

pends on managerial strategies. Hence, the base synthesis process can be

customized to support distinct strategies depending on the availability of re-

sources or the quality requirements of the customer.

Figure 7.6 shows how the base synthesis process can now be refined to account for

the version feature, namely:

• a new <target name=”versioning”> is added to back up artifacts into the

versioning system. For this purpose, Subversion is used14,

• target <target name= “produce”> is overridden (using <xak:extends>).

The equation versioning(base) leads to a synthesis process that supports the naive

security policy of the organization. As further experience is gained, and stringent

demands are placed, more sophisticated plans can be defined.
14http://subversion.tigris.org/

7.7. Contributions 121

Likewise, figure 7.7 shows the “substitution_eh” policy for error handling:

• a new <taskdef/> is added in order to extend ant targets with try&catch

routines15.

• target <target name= “compose”> is overridden in order to handle possible

errors. The base task “compose” is monitored so that when an error oc-

curs, the last error-free version of the artifacts outputted by “compose” are

taken. This policy might be applicable under stringent time demands or if

debugging programmers are on shortage.

The process feature expression (“substitution_eh(version(base)))”) then strives to

reflect the managerial and strategic decisions that govern the production process.

Making theses strategies explicit facilitates knowledge sharing among the organi-

zation, facilitates customization, eases evolution, and permits to manage resources

for product synthesis in the same way as the product itself.

The latter is shown for the version and errorHandling features: a design rule

is needed to state that the substitution_eh policy requires the version feature to be

in place. The version feature in turn requires a new artifact, namely, subversion.

It is a well-known fact among programmers of complex systems, that setting the

appropriate environment is a key factor for efficient and effective throughput. SPL

are complex systems, and SPL techniques should be used not only to manage the

artifacts of the product itself, but also those artifacts that comprise the environ-

ment/framework where these products are built. These include a large number of

artifacts such a compilers, debugger, monitors or backup systems. Making explicit

the synthesis process facilitates this endeavour.

7.7 Contributions

The clear separation between artifact construction and artifact synthesis is one of

the hallmarks of software product lines. However, little attention has been de-

voted to the production process itself, and how this process might realize important

process strategies.

This work strives to illustrate the benefits of handling production processes as

first-class artifacts, namely (i) it permits to focus on how the product is synthesized

rather than on what the product does. Programmers and assemblers can wide their

15This is achieved using Ant-Contrib (from http://ant-contrib.sourceforge.net/).

122 Chapter 7. Variability on the Production Process

minds to ascertain how features might affect the production process itself so that

scripting is no longer seen as a byproduct of source code writing, and (ii) it extends

variability to the production process.

Using ant for process specification, and AHEAD as the SPL methodology, this

work illustrates this approach for a sample application. Our future work is to in-

crease the evidence of the benefit of this approach by addressing more complex

problems, and to investigate the impact that distinct SPL quality measures have

into the production process.

The previous chapter introduces GROVE (GeneRative metaprOgramming for

Variable structurE). So far, the variability is not address into the generative metapro-

gramming. Future work might study the implications of variability into the synthe-

sis geometry.

The work of this chapter was presented in the paper:

1. Supporting Production Strategies as Refinements of the Production Process.

O. Díaz, S. Trujillo and F. I. Anfurrutia. 9th International Software Product

Lines Conference (SPLC 2005). Rennes, France. September 2005 [DTA05].

Acceptance Rate: 23 % (17+3/71).

Chapter 8

Conclusions

“An expert is a person who has made all the

mistakes that can be made in a very narrow field”

– Niels Bohr.

8.1 Abstract

This dissertation analyzed a combination of Feature Oriented Programming (FOP)

and Model Driven Development (MDD) into Feature Oriented Model Driven De-

velopment (FOMDD) where a non-trivial example for a product line of Portlets

was used throughout to assess the applicability of presented ideas.

This chapter reviews our central results and primary contributions, evaluates

the limitations of this work, and proposes new areas for future research.

8.2 Results and Contributions

There are three strategies to improve software productivity: working faster, work-

ing smarter and avoiding unnecessary work [Boe99]. The latter promises the high-

est payoff and can be achieved by software reuse approaches where FOP and MDD

can be regarded as ways to capitalize on given reuse efforts [Mut02].

We review the concrete contributions of our research in more detail below:

123

124 Chapter 8. Conclusions

• In chapter 3, a valuable case study on the scalability of feature-based multiple-

representations program refactoring and synthesis was presented. ATS is the

largest program, by almost two orders of magnitude, that we have feature

refactored from a program onto a product line. Refining and composing

XML documents was critical to our work, and we were able to verify a cor-

rect feature refactoring by using regression tests. And most importantly, our

work revealed generic problems, solutions, and an entire suite of tools that

could be created to simplify future feature refactoring tasks.

• Chapter 5 combined Feature Oriented Programming and Model Driven De-

velopment. FOMDD (Feature Oriented Model Driven Development) is a

blend of both. The new challenges, such as model refinement to build MDD-

increments, were presented. Additionally, this work exposed properties of

FOMDD synthesis (e.g., commuting diagrams) that ultimately enabled us to

check correctness properties of our models and tools. This experience ex-

posed the nature of synthesis where commuting was simply symptomatic of

fundamental structures that were "behind the scenes".

• Chapter 6 described ideas to synthesize metaprograms, which when exe-

cuted, will synthesize a target program of a product-line. Specifically, we

elaborated on the generation of metaprograms from abstract specifications.

A case study was used to illustrate the GeneRative metaprOgramming for

Variable structurE. GROVE automates significant and tedious tasks in syn-

thesis metaprogramming. The benefit of this approach is that it is no longer

necessary to create/modify the metaprogram implementation, but its specifi-

cation. This reduces considerably the development time of synthesis metapro-

grams and facilitates their evolution.

• Chapter 7 described how variability was considered into the production processes.

Specifically, it enables the refinement of production processes (build and

synthesis process).

• Appendix A detailed a complete case study of Portlets where a software

product line was developed. This chapter explored the key challenges while

facing Portlets from a product-line perspective.

8.2. Results and Contributions 125

8.2.1 Publications

Parts of the results presented in this thesis have been presented and discussed before

on distinct peer-review forums. The distinct publications in which the author of this

thesis was involved are listed below.

Selected Publications

• Feature Oriented Model Driven Development: A Case Study for Portlets.

S. Trujillo, D. Batory and O. Diaz. 29th International Conference on Soft-

ware Engineering (ICSE 2007). Minneapolis, Minnesota, USA. May 2007

[TBD07]. Acceptance Rate: 15% (50/334).

• Turning Portlets into Services: Introducing the Organization Profile. O.

Diaz, S. Trujillo, and S. Perez. 16th International World Wide Web Con-

ference (WWW2007). Banff , Canada. May 2007 [DTP07]. Acceptance

Rate: 14% (110/750).

• Feature Refactoring a Multi-Representation Program into a Product Line. S.

Trujillo, D. Batory and O. Diaz. 5th International Conference on Generative

Programming and Component Engineering (GPCE 2006). Portland, Oregon,

USA. October 2006 [TBD06]. Acceptance Rate: 28 % (25+5/88).

• Supporting Production Strategies as Refinements of the Production Process.

O. Díaz, S. Trujillo and F. I. Anfurrutia. 9th International Software Product

Lines Conference (SPLC 2005). Rennes, France. September 2005 [DTA05].

Acceptance Rate: 23 % (17+3/71).

International Conferences/Workshops

• On the Modularization of Feature Models. D. Benavides, S. Trujillo and P.

Trinidad. 1st EWMT Workshop (jointly with SPLC 2005). Rennes, France.

September 2005 [BTT05].

• Enhancing Decoupling in Portlet Implementation. S. Trujillo, I. Paz and O.

Díaz. 4th International Conference on Web Engineering (ICWE 2004). Mu-

nich, Germany. July 2004 [TPD04]. Acceptance Rate: 12% (25+60/204)1.

1Our contribution was accepted as poster where 60 research papers were included, as either short
papers or posters. This makes a global acceptance rate of 41%.

126 Chapter 8. Conclusions

• User-Facing Web Service Development: a Case for a Product-Line Approach.

O. Díaz, S. Trujillo and I. Azpeitia. VLDB-TES (Workshop). Berlin, Ger-

many. September 2003 [DTA03].

• Moving Co-Branding to the Web: Service-Level Agreement Implications. O.

Díaz and S. Trujillo. PROVE 2003 (Conference). Lugano, Switzerland.

October 2003 [DT03].

Spanish Conferences

• Experience Measuring Maintainability in Software Product Lines. G. Aldekoa,

S. Trujillo, G. Sagardui, O. Díaz. JISBD 2006. Sitges, Spain. October 2006

[ATSD06]. Acceptance Rate: 33 % (40/120).

• A Product-Line Approach to Database Reporting. F. I. Anfurrutia, O. Diaz

and S. Trujillo. JISBD 2005. Granada, Spain. September 2005 [ADT05].

Acceptance Rate: 31 % (29+10/92). This paper was among best 10 confer-

ence papers (it was later published in a journal version [ADT06b]).

Journals

• Una Aproximación de Línea de Producto para la Generación de Informes de

Bases de Datos (spanish version of [ADT05]). F. I. Anfurrutia, O. Diaz and

S. Trujillo. IEEE América Latina Journal 4 (2). April 2006 [ADT06b].

Tutorials

• An Introduction to Software Product Lines. O. Diaz and S. Trujillo. JISBD

2006. Sitges, Spain. October 2006 [DT06].

Drafts under Review

• On Refining XML Artifacts. F. I. Anfurrutia, O. Diaz and S. Trujillo. Draft.

November 2006 [ADT06a].

8.2.2 Research Visits

The aim of this work was to be open, influenced and enriched by distinct research

streams, works, visions and schools. Thus, along this work two research visits

were accomplished. The author was first visiting the informally called Product

8.3. Assessment 127

Line Research Group headed by Prof. Dr. Don Batory at the University of Texas

at Austin (USA) from January to April 2006. Later, a short visit for a week was

done by the end of October 2006. The author was also visiting the department of

Product Line Architectures headed by Dr. Dirk Muthig at the Fraunhofer IESE

at Kaiserslautern (Germany) from July to September 2006. Both visits fostered

discussion and eventually imposed new perspectives on this work that otherwise

would not be reached.

8.3 Assessment

The work presented so far reveals insights combining Software Product Lines and

Model Driven Development in the synthesis of Portlet applications. Although our

work exposed some challenges, a close assessment is necessary to reveal some

limitations of this work and propose some future work.

8.3.1 Limitations

• Portlet Modeling approach: follows an approach to MDD where code gen-

eration is not complete. Although this approach automates cumbersome

tasks, it requires some human intervention (e.g., to complete skeletal gen-

erated code). This is not exceptional, but is common in other approaches.

Nevertheless, future work should address the generation of further code.

This would likely embrace the definition of further models.

• Techniques Generalization: FOMDD is a general paradigm combining

FOP and MDD. As pointed out in chapter 2, there are many techniques for

each of them. So far, we used AHEAD for FOP and XSL for MDD. We also

make some proofs with other MDD engines (e.g., RubyTL [CMT06]). More

work is needed to assert that our approach supports the general use of other

techniques.

• Scope: the ideas presented in this work were used with a product-line of

portlets that we developed. This worked fine so far. However, further case

studies (industrial if possible) are needed to validate our findings. We know

that an ongoing external research work is currently looking for commuting

diagrams with other cases.

To overcome these limitations is subject of future work.

128 Chapter 8. Conclusions

8.3.2 Future Research

Feature Oriented Model Driven Development and Portlets (in general, service-

oriented applications) are still in their infancy. They are promising for the fu-

ture of software construction and offer several interesting directions for future re-

search. Particularly, FOMDD requires further tool support to generalize its adop-

tion to other domains and case studies. To contribute towards those goals, our work

presents an agenda for future research.

• FOMDD Engineering. A centerpiece for practitioners guidance in indus-

trial application are engineering processes. Model Driven Engineering (MDE)

emerged to support the general MDD paradigm for software development

[Ken02]. Software Product Line Engineering provides similar support in

terms of processes. Further work is needed to combine both together into a

common engineering processes similarly to [AFM05].

• FOP-UML. Feature Oriented Programming (FOP) is a product-line para-

digm where artifact composition mechanisms are provided. This work ap-

plies FOP mechanisms to the composition of models (i.e., a base model is

extended with a refinement model). Doing so, composition of artifacts com-

prises also models. However, there is not yet a UML profile to support this.

This is the subject of ongoing work [LH07].

• Theoretical Support. Commuting diagrams revealed a mathematical in-

sight of FOMDD. This suggested that some structural theory was behind.

Category theory was recently proposed as such theory [Bat07a]. Further

work is needed to formally elaborate all the implications of this theory.

• GROVE Algebra. AHEAD is an algebra to represent structure and com-

position of structures in a product-line setting. Likewise, GROVE offers a

structural model to represent synthesis in a product-line setting. GROVE

structure would require an algebra to formalize it. GROVE is closely related

to the ideas behind Architectural Metaprogramming that are promising for

the future [Bat07b].

• FOMDD Refactoring. FOMDD combines two paradigms for the creation

of SPL starting from scratch. This is not the situation in many cases where a

legacy program already exists. Feature Oriented Refactoring is a paradigm

8.3. Assessment 129

to refactor such existing program into a product-line [TBD06], whereas Re-

verse Engineering to Model Driven (a.k.a., harvesting or refactoring) is a par-

adigm to refactor an existing program into a modeling approach [RGvD06].

The challenge is how to combine both together (in the same way as FOMDD

did with FOP and MDD) to yield FOMDD refactoring. We are seeking for

case studies on this subject. We are aware that Freeman is currently working

on a promising case [FB07].

• Portlet Issues. Although Portlets are merely used as a case study in this

work, alone they deserve specific research attention. On the one hand, some

interests are inherent of Portlets (e.g., orchestration [DII05]). On the other

hand, they impose new scenarios for a product-line setting and for a model-

driven setting (e.g., service-orientation). The exploration of the impact of

service-orientation distributed production is the subject of forthcoming work

[Tea07].

• Tool Support. Some tools were implemented to support our ideas (e.g.,

XAK, GROVE Tool Suite, etc). Although we spent a great amount of ef-

fort on them to work, still they require further work to be used by a regular

customer.

130 Chapter 8. Conclusions

Appendix A

Portlet Product Lines: A Case

Study

“Any fool can make history, but it takes a genius to write it.”

– Oscar Wilde.

A.1 Abstract

Families of Portlet applications are steadily emerging to meet the requirements of

different Portal customers. Conference management, ticket reservation, etc, are

services gathered by distinct Portals from assorted Portlets. This scenario offers

a large potential to customize a Portlet for a target Portal where variability issues

should be resolved beforehand. Software Product Lines offer a paradigm to face

this challenge in a cost-effective way. Portlets impose some idiosyncrasies (ex-

posed in this chapter) that make them different from traditional software. Hence, a

number of challenges appear while facing a Product line of Portlets. This work de-

scribes an approach where those issues were exposed. A working example where

a family of Portlets is developed illustrates the product-line approach.

131

132 Appendix A. Portlet Product Lines: A Case Study

A.2 Rationale for Portlet Lines

Most web applications (also Portlets) are conceived in a one-to-one basis nowa-

days. This crafted approach is also found on the early stages of the production

of other items such as engines, cars, planes, etc. However, as the technology ma-

tures and a better comprehension of the domain is obtained, the production process

evolves from single-item production to product lines which are capable of deliver-

ing a whole family of items. This transition has to do with the production benefits

of product lines. Software is not an exception.

Software Product Lines (SPL) present a paradigm to build a family of appli-

cations. The adoption of this paradigm is reported in several case studies for tra-

ditional software [CN01]. Some cases are even reported for web applications (see

section 2.5.2). In general, these experiences reported a number of general and po-

tential benefits, namely, (i) productivity gains, (ii) improved product quality, (iii)

faster time-to-market, and (iv) decreased labour efforts [CN01, Coh01]. However,

as in the real world, it depends on the specific case at hand. The same is applicable

for Portlets.

The web community is maturing to reach the SPL momentum. Indeed, we be-

lieve that the web is more inclined to the SPL paradigm than traditional software.

First, its ubiquitousness makes web applications reach a broader spectrum of cus-

tomers, markets and cultures. While traditional software has a more limited scope,

web applications tend to cope with a more diverse set of stakeholders. The em-

phasis that the web community places on personalization/customization/privacy is

a case in point. SPL techniques enable to face these issues in a cost-effective way.

A second argument is the heterogeneous and quick pace at which web technol-

ogy is evolving. SPL facilitate the coexistence of the same product being delivered

in distinct platforms or developed using distinct technologies (.NET vs J2EE, JSP

vs. ASP, etc). The variability of the SPL paradigm enables to face this heterogene-

ity.

A third argument is the service-orientation which changes not only the way in

which applications are operated, but even the way in which they are constructed.

Typically, services use other services (i.e., several Portlets are involved to satisfy a

Portal). Those issues are to be handled in this setting.

Finally, web applications have been reported to have shorter life cycles than no-

web software [Ove00]. An essential reason for introducing SPL is the reduction of

costs and time-to-market. Once the upfront investment of developing the SPL is

A.3. Product Lines of Portlets 133

done, custom products are developed quicker, cheaper and at higher quality levels.

Specifically, this chapter elaborates on those differences that cause a number

of challenges while facing a Product line of Portlets. To illustrate them, a working

example on the development of a family of Portlets (where those issues are faced)

is used to show the product-line approach.

A.3 Product Lines of Portlets

SPL are defined as "a set of software-intensive systems, sharing a common, man-

aged set of features that satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

way" [CN01]. Previous statement is refactored onto five major issues:

• Products: “a set of software-intensive systems...”. SPL shift the focus from

single software development to SPL development. The development processes

are not intended to build one application, but a number of them.

• Features: “...sharing a common, managed set of features...”. Features are

units (i.e. incrementing application functionality) by which different prod-

ucts can be distinguished and defined within an SPL [BSR04].

• Domain: “...that satisfy the specific needs of a particular market segment

or mission...”. An SPL is created within the scope of a domain. A domain

is “a specialized body of knowledge, an area of expertise, or a collection of

related functionality” [Nor02].

• Core Assets: “...are developed from a common set of core assets...”. A core

asset is "an artifact or resource that is used in the production of more than

one product in a software product line" [CN01].

• Production Plan: “...in a prescribed way”. It states how each product is

produced. The production plan is "a description of how core assets are to

be used to develop a product in a product line and specifies how to use the

production plan to build the end product“ [CM02]. It ties together all the

reusable assets to allow end-product production.

A.3.1 Approaching

SPL development process is not intended to build one application, but a number

of them. This forces a change in the engineering processes where a distinction

134 Appendix A. Portlet Product Lines: A Case Study

Figure A.1: SPL Engineering Process

between domain and application engineering is introduced. In general, domain

engineering (a.k.a., core asset development) determines the commonality and the

variability of the SPL, whereas application engineering (a.k.a., product develop-

ment) produces individual products from the SPL. Doing so, the construction of the

reusable assets and their variability is separated from production of the product-line

applications. Distinct approaches exist to face SPL [CN01]. Figure A.1 sketches

the overall process1:

• Domain Analysis studies the variability of the domain at hand. Frequently,

this study is done in terms of features and represented using a feature model.

• Core Asset Development conceives, designs and implements the core as-

sets. This not only involves the development of domain functionality, but

also defines how core assets should be extended.

• Production Planning defines how individual products are created. In gen-

eral, it involves to set-up a factory capability.

• Product Featuring chooses desired features to differentiate a target product.

Typically, customers start this process with feature selection.

• Product Synthesis assembles core assets to get the raw material (a product

is made up of). Typically, variability realization techniques are used.

• Product Build processes the raw material following the build process (e.g.,

compile, deploy, etc) to yield an end-product.

1Note that this process is a simplified version with the major activities. For a detailed account on
all practices and processes involved, please refer to [CN01].

A.3. Product Lines of Portlets 135

Figure A.2: PinkCreek Screenshot

Impact of Portlet Issues Although the overall process is similar, some particu-

larities appear while developing Portlets. In general, the differences are in (i) how

the domain analysis is performed, (ii) core asset development depends certainly on

the Portlet technology and on the domain at hand, (iii) the variability realization is

similar than in other approaches, except the way to cope with heterogeneous arti-

facts (e.g., XML documents), and (iv) synthesis process is clearly affected by the

distributed nature of Portlets.

A.3.2 A Case Study: PinkCreek

PinkCreek is a product-line to build a family of portlets that provides flight reser-

vation capabilities to different portals2. Its functionality is roughly: (i) search for

flights, (ii) present flight options, (iii) select flights, and (iv) purchase tickets. Fig-

ure A.2 displays a screenshot of PinkCreek Portlet where the initial page showing

a flight search form is rendered inside a Portal.

A.3.3 Domain Analysis

Feature Oriented Domain Analysis (FODA) is a domain engineering methodology

developed by the CMU Software Engineering Institute (SEI) [Kea90]. It focuses

on the SPL development through a structured domain engineering process based

2PinkCreek’s name is well worth a footnote. Many ideas of this thesis benefit from the jogging
on the beautiful shores of Barton creek at Austin, Texas.

136 Appendix A. Portlet Product Lines: A Case Study

on the notion of feature models.

Feature Modeling is a main output of domain engineering. A feature is a "prod-

uct characteristic that is used in distinguishing products within a family of related

products" [BSR04]. PinkCreek consisted of 26 features:
PinkCreek = {

core // portlet base

assistance // this feature allows to get airport assistance (people with accessibility needs)

bulletin // this feature allows to subscribe to a newsletter with offers

checkin // this feature allows check-in capability

commercialbanner // a commercial banner is added (using a picture)

commercialstext // a commercial banner is added (using text)

dbmysql // a mysql dbms is used to access flight information

exojboss // exo platform is on jboss J2EE container

exotomcat // exo platform is on tomcat J2EE container

flightchildren // it enables to pick the number of children

flightclass // it enables to select the flight class

includejavadoc // it includes javadoc of the generated code in the delivered product

includesourcecode // it includes source code in the delivered product

login // it forces users to login before search for flights

meal // it allows to select desired meal (after purchase)

mytrip // it allows a personal place where you can see your trips, ...

onlydirectflights // it allows to restrict search only to direct flights

paymentclick // payment depends on the number of clicks

paymenttransaction // payment depends on the number of complete purchases

quickpurchase // it accelerates the purchase (only 3 steps to purchase)

refundable // it permits the flight to be refundable

reservationcheck // a quick access to reservation info

reservationmodify // modification of reservation

seat // it allows to select flight seat (after purchase)

testmode // it activates a test-mode (to be used only during production time)

weather // check the weather at destination

}

The feature model characterizes the SPL in terms of the supported variability.

Among the distinct variations available in the domain, the SPL domain analyst

should decide which one to provide to the different stakeholders, and the variants

or alternatives to be supported/excluded.

Figure A.3 depicts partially3 a feature model for our sample problem using a

notation similar to [CA05a]. The model organizes features into a composition hi-

erarchy where optionality is annotated. Portlet products are then characterized in

3For simplification, this feature model does not show all features. Dependencies between features
are omitted as well [Ben07] (see section 3.3.1).

A.3. Product Lines of Portlets 137

Figure A.3: PinkCreek Feature Model

terms of features, and the scope of the SPL is given by its feature model. Conse-

quently, an SPL must support variability for those features that tend to differ from

product to product.

A.3.4 Core Asset Development

Platform Creation The domain engineer should be experienced enough to de-

termine the common ground shared by all family products (i.e., the platform). A

platform of an SPL is “the set of software subsystems and interfaces that form a

common structure from which a set of derived products can be efficiently developed

and produced” [ML97]. Its constituent parts are referred to as core assets [CN01].

It may include the architecture, software components, design models, etc. In gen-

eral, any artifact that is liable to be reused [PBvdL06]. The platform is the base on

top of which products are created adding (feature) variability. Shortly, we will see

distinct techniques to realize variability. First, a platform for Portlets is described.

Portlet Platform PinkCreek follows a J2EE architecture [SSJ02], and specifi-

cally a JSR168 [JCP03]. Portlet architecture is based on the model-view-controller

paradigm [KP88]. Besides the architecture, the commonality of the SPL is sup-

ported by the following types of artifacts:

• Model: the business logic of the application (i.e., flight search, flight checkin,

and so on) is implemented by Java class files.

138 Appendix A. Portlet Product Lines: A Case Study

• View: the application is rendered through server pages to interact with the

end-user. Java Server Pages (JSP) are used for this purpose.

• Controller: drives the flow of the application in executing actions and ren-

dering views (see section 4.4 for specific models).

• Deployment descriptors: which configure how the application is to be de-

ployed into a container (web.xml in a J2EE setting, and portlet.xml in JSR168).

• Build Script: which compiles code, packages application artifacts, and de-

ploys them into a WAR4. The ant5 scripting language is used for this pur-

pose.

• Miscellaneous: the application contains other artifacts such as images, CSS

resource files, configuration files, tag libraries, DTD/XML Schemas and JAR

libraries.

These core artifacts realize the base ground on top of which any family product

is built upon. But this is feasible only if these artifacts have been engineered for

variability. Built-in flexibility is the means to ensure reuse. Next sections look at

realizing variability of these assets.

Variability Realization Handling variability in a cost-effective way, implies en-

gineering core artifacts for variability in a planned way. Distinct techniques have

been proposed to achieve variability (see section 3.2.1). We select Feature Oriented

Programming and its realizing model: AHEAD.

Feature Oriented Programming (FOP) is a paradigm of SPL synthesis where

features are the building blocks of products (see section 3.3). Features are units

(i.e., incrementing application functionality) by which different products can be

distinguished and defined within an SPL [BSR04]. In general, an SPL is charac-

terized by the set of features it supports, (e.g., PinkCreek={checkin, seat, core})

whereas a product is obtained as the synthesis of some of those features in the base

or platform of the SPL (e.g., P_A from customerA selection is P_A = seat • core

where • stands for synthesis or composition).

Algebraic Hierarchical Equations for Application Design (AHEAD) is a model

of FOP where each feature implementation (a.k.a., layer) encapsulates the set of

4Portlets applications are packaged into a Web ARchive (WAR) which follows a directory struc-
ture defined in Java Servlet Specification [CY03].

5http://ant.apache.org/

A.3. Product Lines of Portlets 139

Figure A.4: Feature Composition for the Expression refundable•core.

files (a.k.a., artifacts) realizing its functionality [BSR04]. Feature realization is

described as increments to functionality (a.k.a., refinements) that provides the re-

quired feature. The refinement depends on the artifact at hand. It is not the same

the notion of refinement in Java that in XML (see section 3.4.2).

AHEAD provides (i) a general model to represent variability based on incre-

mental development (Step-Wise Refinement [Dij76]) where (ii) a feature is bound

to a set of artifacts; and (iii) a particular variability realization technique repre-

sentation for refinements. Additionally, it describes, (iv) a particular composition

mechanism for such refinements; (v) this composition is polymorphic enabling

multiple and heterogeneous artifact representations; (vi) there are also free tools

available; and all together (vii) allow to build a product automatically starting from

customer selected features.

The set of artifacts that realize a given feature are composed using AHEAD.

In general, there is a base layer (commonality) and some optional features (vari-

ability). For our sample problem, the core feature layer includes different types of

artifacts that set the grounds for the model, view, controller, deployment descriptor,

build script, CSS default style guidelines and so on. Subsequent feature layers pro-

vide the extensions (a.k.a., refinements) that permit enhancing these core artifacts

with a specific feature. Figure A.4 shows this situation where the refundable fea-

ture layer is composed with the core feature layer. However, the core feature layer

should be engineered for variability beforehand. This implies to define extensions

points (i.e., design for variability6).

Feature Realization A layer is the implementation of a feature (in the AHEAD

parlance). Layer composition (denoted by the • operator) implies the composition

6The platform should be engineered for variability (i.e., a class offers methods that may be ex-
tended). Likewise, web artifacts offer modules. The design of the platform states also how the
platform is extended (see section 3.4.2).

140 Appendix A. Portlet Product Lines: A Case Study

Figure A.5: JSP Refinement

of the namesake artifacts found in each layer. Implementation wise, a layer is

a directory. Hence, feature composition is directory composition which, in turn,

implies the composition of the contained artifacts. Figure A.4 shows this situation

where the search.jsp file found in the core layer is later refined by the namesake

file at the refundable layer. Note that feature realization impacts commonly on

more than one artifact (i.e., features are cross-cutting concerns). Hence, a layer

frequently refines/introduces more than one artifact. PinkCreek’s features are no

exception, as shown shortly in table A.1.

Figure A.5 shows the refinement of the search.jsp artifact. This refinement

is done using XAK (see section 3.4.2). Figure A.5a represents the base artifact

(that belongs to the core layer) where some xak:modules for extensions are defined

(real file content is extremely simplified). Figure A.5b represents a refinement

(of the refundable layer) that extends xak:module=”mControls” with further form

controls to cope with the refundable functionality. Figure A.5c shows the result of

composing the base artifacts and the refinements to yield a product.

The realization of one feature involves frequently more than one artifact. If a

feature can be accounted for by introducing bright new artifacts, then adding this

feature is just a question of assembling these artifacts to the platform. This is a

regular case, since a feature commonly implies the refinement of existing artifacts.

Seat is a case in point. The realization of this feature includes (i) adding a new view

to cope with seating reservation (e.g., the seating.jsp artifact); (ii) introducing code

to deal with seating functionality at the back-end (e.g., the Seating.jak artifact);

and (iii) propagating the GUI event to its model counterpart (i.e., enhancing the

controller artifact).

A.3. Product Lines of Portlets 141

A.3.5 Production Planning

Artifacts are engineered for variability in terms of features. The next step is to

define how the product line synthesizes Portlets. To this end, we need to create a

factory.

Setting Up the Factory As industrialization of the automobile manufacturing

process led to increased productivity and higher quality at lower costs, industri-

alization of the software development process is leading to the same advantages

[GS04]. A software factory is defined as “a facility that assembles (not codes)

software applications to conform to a specification following a strict methodol-

ogy”7. In our case, the specification is in term of features, and the methodology is

AHEAD.

We created PinkCreek’s factory to receive as input the selection of features

of the customer, and manufacture as output the Portlet product (a.k.a., production

process). Basically, our factory (i) composes product feature layers using AHEAD

composer, (ii) compiles the resulting composition, (iii) creates a Portlet WAR, and

(iv) deploys it to a given location. This factory is specified using scripts [DTA05]

(see chapter 7).

This Portlet factory has two major particularities: (i) some variability is re-

quired in the very same production process (see chapter 7), and (ii) being the

process distributed makes it dependent from other processes.

A.3.6 Application Engineering

Portlet production is the process to synthesize a customized Portlet. A PinkCreek

product is the output of our factory in the same way that a car is the output of

an assembly line. A given car is characterized by its platform (e.g., Ford Focus

chassis) plus its features (red as the color, gasoline as the engine, etc). Likewise,

our products are characterized by their features (e.g., exoTomcat as the container)

together with the core layer.

This process is conceptualized as an expression [BSR04] where selected fea-

tures (checkin, seat and exoTomcat) are applied to a core: checkin(seat (exoTomcat

(core))). This expression denotes a product which is synthesized by composing

feature exoTomcat with core, then applying the changes by layer seat, and finally

those by checkin (i.e., the product is the accumulation of all these features).

7http://en.wikipedia.org/wiki/Software_factory

142 Appendix A. Portlet Product Lines: A Case Study

Table A.1: PinkCreek Feature Implementation

Hence, the feature oriented programming approach supported by AHEAD is

able to obtain a customized application by simply specifying the features to be ex-

hibited by the product (i.e., the product’s equation expression). AHEAD checks

this expression for compliance against the feature model (i.e., obeying dependen-

cies and cardinalities), and produces a set of artifacts that provide the required

features.

This example illustrates one of the hallmarks of SPL, namely, keeping specifi-

cations of how features affect a product (i.e., supported as refinements in our ap-

proach) separated from the core assets (i.e., the platform). In this way, the program-

mer does not have to know how variants affect the product parts, how to produce

customized parts and how to assemble customized parts into a custom product, as

this knowledge is embedded within the SPL. The outcome is effective reuse as well

as enhanced maintainability which stems from the separation of concerns between

commonality and variability preached by SPL proponents. This separation is or-

thogonal to the distinction among content, navigation and presentation commonly

found in web methodologies.

A.4. Discussion 143

A.3.7 Experience

Features Data. Table A.1 shows the details of each feature layer (note that

empty cells correspond to zero values). It shows the total size in kilobytes (KB),

and the number of files (#). Percentages (%) are also shown for each value. Be-

sides, it details information for 4 types of artifacts (namely, Java source classes,

Jak refinements, XML documents, and XAK refinements). A common pattern is

usually followed where first some Jak extend some model functionality, then some

XAK extend view and controller functionality. Variability implementation cross-

cuts different concerns and artifacts. However, there are exceptions where only

one artifact (within view, model or controller) is extended. The total number of Jak

(104) is higher than the number of Java (15). The difference in terms of Lines Of

Code (LOC) is smaller. The total number of XAK files (166) is similar to XML’s

ones (173). However, note that the LOC of XML (8.248) is considerably higher

than the LOC of XAK (6.644). Note that the LOC rate between Jak and Java is not

aligned with previous studies where refinements represent around 10% [ALS06].

This is presumably altered by the extensive presence of non-code artifacts.

Production Data. Empirical data shows that product synthesis time is around

30 seconds. Note that build time increases with the number of features the product

has. Our factory needs more time to manufacture a product with more features

(confirming our intuition). A PinkCreek product consists approximately of 200

files. In average, products range between 9-11 MB in size.

A.4 Discussion

Portlets idiosyncrasies impose some requirements when building an SPL: (i) vari-

ability of Portlet variants should be handled, (ii) flexibility to both the consumer

and the end-user is to be considered, (iii) availability matters because the built sys-

tem is to be available online, (iv) usually several (and distributed) organizations are

involved during the construction (and operation) process, and (v) reconfiguration

due to frequent updates should be catered for. From a Portlet perspective, these

requirements involve a number of research problems:

• Distinct Stakeholders are typically involved in a service-oriented architec-

ture. Each requires a specific study of organizational variability require-

ments. From a Portlet perspective, it is not the same the variability require-

144 Appendix A. Portlet Product Lines: A Case Study

ments that the Portal demands or what the end-user expects. Hence, a study

of variability in these scenarios is necessary [DTA03].

• Ubiquity. A Portlet can be deployed into distinct locations (a.k.a., Portlet

producers). Doing so, it is necessary to cope with the variability of different

producers (from distinct vendors). Likewise, the online availability is an

issue together with the frequent updates.

• Customization/Personalization/Privacy. SPL offer an innovative way to

resolve these issues in a web setting (also Portlets). Recently, Wang et al.

introduced a case to deal with privacy [WKvdHW06].

• Artifact Heterogeneity. Implementation contains heterogeneous artifacts

(not just traditional code classes). These artifacts can range from code classes

(e.g., Java) to other artifacts such as HTML or JSP pages. Most of the

techniques to manage variability are geared towards code artifacts [BSR04],

and few experiences exist to bring these techniques to non-code artifacts

[LS04, TBD06].

• Standards and Platforms. So far, there was a lack of proper platforms and

approaches due to the novelty of Portlet [TPD04].

Previous issues have a counterpart where some research problems appear in the

SPL universe:

• Distributed Variability. Being distinct stakeholders involved, variability

study is different. Stage configuration is a technique to schedule variabil-

ity decisions in time [CHE04]. Moreover, customers distribution should be

catered for when they are distributed (in space) across different organiza-

tions.

• Production Variability. Different locations (ubiquity) demands usually some

variation in the synthesis (i.e., synthesis process demands some variability

that requires to be addressed). This is achieved by separating the product

from the process itself (see chapter 7).

• Distributed Production. The production of the Portlet takes part of a larger

process for creating a Portal. It is distributed. Hence, issues like consistency

and time in production matter imposing a new challenge in the way the pro-

duction is done. Further work is necessary to deal with them. Likewise,

A.5. Future Work 145

product is delivered and deployed, and reconfiguration is often a require-

ment that needs to be resolved beforehand [LK06].

• Implementation Variability. Variability implementation techniques are not

only restricted to SPL, but to other unplanned situations (e.g., ubiquity, cus-

tomization/personalization, privacy [WKvdHW06]). This spreads the use of

variability realization techniques towards unforeseen domains.

• Heterogeneous Artifact Variability. Specifically, the variability of XML

documents could be resolved by refining them [TBD06]. The idea is to en-

gineer for variability not only code classes, but documents. Doing so, it

enables documents to cope with variability (see section 3.4.2).

A.5 Future Work

Distributed Feature Modeling. In a Portlet setting, customers are distributed

in different portals. Each portal typically requires different variability. The issue

on how to delay (in time) variability decisions is resolved by stage-configurations

[CHE04]. However, in a Portlet scenario decisions should be also distributed in

space (i.e., different decisions should be done by distributed stakeholders that usu-

ally may belong to distinct organizations and portals). The challenge is how to as-

sess the consistency of the feature selection when this process is distributed across

those separated stakeholders. This chapter points this issue for future work.

Distributed Factory. The factory to produce a Portlet takes usually part of a

larger process for creating a Portal. Thus, the factory to create a Portal uses dis-

tributed Portlet factories. In this setting, issues like consistency and production

time need to be considered. This subject imposes new challenges in the way the

production is done. First, the orchestration of production of several product facto-

ries where a clear invocation interface is necessary and some rules to manage the

whole system to get a consistent end-product. As well, production time matters

(i.e., production planning is necessary). Production automation could improve this

issue. These issues are the subject of ongoing research [Tea07]. Likewise, product

is delivered and deployed, and reconfiguration is often a requirement that needs to

be considered [LK06].

146 Appendix A. Portlet Product Lines: A Case Study

A.6 Contributions

The need for customization, the distributed service-oriented architecture and the

existence of mature domains, vindicate a turning point in Portlet development from

individual applications to SPL. The differences mainly stem from variability being

the pivotal notion. This chapter illustrated an approach to an SPL of Portlets (to-

gether with a sample case). In particular, we outlined the major research problems,

and provided some solutions to them in the context of Portlets.

This chapter introduced a new generation of issues either in Portlets and in

SPL that should be catered for by future work. As well, we illustrate the approach

using an academic case study. This limitation should be strengthened using some

industrial case in the future.

SPL introduce the variability dimension to application development, orthogo-

nal to the subject-based dimension that is commonly found in web methodologies

(e.g., content, presentation, navigation). This in turn, rises the issue of cross cuts.

In our experience, the notion of “refinement” is a convenient approach for han-

dling cross cuts in a web setting. The reason is twofold. First, modularization. A

refinement comprises a set of artifacts with the very same aim: the realization of a

given feature variant. Feature evolution is then facilitated. Second, the principle of

uniformity permits a uniform treatment of artifact composition. This is paramount

to face the diversity of artifact types found in web applications.

An extended version of the work presented in this chapter has been accepted

for publication:

1. Turning Portlets into Services: Introducing the Organization Profile. O.

Diaz, S. Trujillo, and S. Perez. 16th International World Wide Web Con-

ference (WWW2007). Banff , Canada. May 2007 [DTP07]. Acceptance

Rate: 14% (110/750).

The knowledge we acquired during this work allowed us to prepare the following

tutorial:

1. An Introduction to Software Product Lines. O. Diaz and S. Trujillo. JISBD

2006 (Spanish Software Engineering Conference). Sitges, Spain. October

2006 [DT06].

Bibliography

[ABM00] C. Atkinson, J. Bayer, and D. Muthig. Component-based Prod-

uct Line Development: the KobrA Approach. In 1st International

Software Product Lines Conference (SPLC 2000), Denver, Col-

orado, USA, August 28-31, pages 289–310, 2000. 12

[ADT05] F. I. Anfurrutia, O. Díaz, and S. Trujillo. A Product-Line Ap-

proach to Database Reporting. In Jornadas de Ingenieria del Soft-

ware y Bases de Datos (JISBD 2005), Granada, Spain, September

14-16, 2005. 126

[ADT06a] F. I. Anfurrutia, O. Díaz, and S. Trujillo. On Refining XML Arti-

facts. In Submitted for Review, November 2006. 37, 38, 56, 126

[ADT06b] F. I. Anfurrutia, O. Díaz, and S. Trujillo. Una Aproximación de

Línea de Producto para la Generación de Informes de Bases de

Datos (A Product-Line Approach to Database Reporting). IEEE

América Latina, 4, April 2006. ISSN: 1548-0992. 126

[AFM05] M. Anastaspoulos, T. Forster, and D. Muthig. Optimizing Model-

Driven Development by Deriving Code Generation Patterns from

Product Line Architectures. In NetObject Days, Erfurt, Germany,

September 19-22, 2005. 22, 23, 84, 128

[AG01] M. Anastasopoulos and C. Gacek. Implementing Product Line

Variabilities. In Symposium on Software Reusability (SSR 2001),

Toronto, Canada, May, pages 109–117, 2001. 13, 28, 31

[AGESR06] O. Avila-Garcia, A. Estévez, E.V. Sanchez, and J.L. Roda. Inte-

grando Modelos de Procesos y Activos Reutilizables en una Her-

ramienta MDA. In Jornadas de Ingenieria del Software y Bases

de Datos (JISBD 2006), Sitges, Spain, October 2-6, 2006. 22

147

148 BIBLIOGRAPHY

[AGM+06] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lu-

cena. Refactoring Product Lines. In 5th International Conference

on Generative Programming and Component Engineering (GPCE

2006), Portland, Oregon, USA, October 24-27, 2006. 46

[ALS06] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: As-

pects and Features in Concert. In 28th International Conference

on Software Engineering (ICSE 2006), Shanghai, China, May 20-

28, 2006. 90, 143

[Ape07] S. Apel. The Role of Features and Aspects in Software Develop-

ment. PhD thesis, School of Computer Sciences, University of

Magdeburg, Germany, March 2007. 32, 70

[ATSD06] G. Aldekoa, S. Trujillo, G. Sagardui, and O. Díaz. Experience

Measuring Maintainability in Software Product Lines. In Jor-

nadas de Ingenieria del Software y Bases de Datos (JISBD 2006),

Sitges, Spain, October 2-6, 2006. 126

[Bas97] P. Bassett. Framing Software Reuse - Lessons from Real World.

Yourdon Press, Prentice Hall, 1997. 29

[Bata] D. Batory. AHEAD Tool Suite.

http://www.cs.utexas.edu/users/schwartz/ATS.html. 13, 31,

34, 35, 40, 111

[Batb] D. Batory. Product-Line Architectures, Invited presentation,

Smalltalk und Java in Industrie and Ausbildung (STJA), Erfurt,

Germany, October 1998. 13

[Bat05] D. Batory. Feature Models, Grammars, and Propositional For-

mulas. In 9th International Software Product Lines Conference

(SPLC 2005), Rennes, France, September 26-29, 2005. 13, 32,

45, 84

[Bat06] D. Batory. Multi-Level Models in Model Driven Development,

Product-Lines, and Metaprogramming. IBM Systems Journal,

45(3), 2006. 22, 75, 84

BIBLIOGRAPHY 149

[Bat07a] D. Batory. From Implementation to Theory in Program Synthe-

sis. In Keynote at Principles of Programming Languages (POPL),

Nice, France, January 17-19, 2007. 85, 102, 105, 128

[Bat07b] D. Batory. Program Refactoring, Program Synthesis, and Model

Driven Development. In Keynote at European Joint Conferences

on Theory and Practice of Software (ETAPS) Compiler Construc-

tion Conference, Braga, Portugal, March 24-April 1, 2007. 88,

90, 91, 105, 128

[BB04] J. Blair and D. Batory. A Comparison of Generative Approaches:

XVCL and GenVoca. Technical report, The University of Texas at

Austin, Department of Computer Sciences, December 2004. 29

[BBdF+06] J. Bézivin, S. Bouzitouna, M. Didonet del Fabro, M.P. Gervais,

F. Jouault, D.S. Kolovos, I. Kurtev, and R.F. Paige. A Canoni-

cal Scheme for Model Composition. In 2nd European Confer-

ence on Model Driven Architecture - Foundations and Applica-

tions (ECMDA-FA 2006), Bilbao, Spain, July 10-13, pages 346–

360, 2006. 17

[BBG05] S. Beydeda, M. Book, and V. Gruhn, editors. Model-Driven Soft-

ware Development. Springer, 2005. 15

[BBI+04] G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B. Selic. The

IBM MDA Manifesto. The MDA Journal, May 2004. 74

[BC90] G. Bracha and W. R. Cook. Mixin-based Inheritance. In Con-

ference on Object-Oriented Programming Systems, Languages,

and Applications / European Conference on Object-Oriented Pro-

gramming (OOPSLA/ECOOP), Ottawa, Canada, October 21-25,

pages 303–311, 1990. 31, 34

[BCK03] R. Buhrdorf, D. Churchett, and C.W. Krueger. Salions Experience

with a Reactive Software Product Line Approach. In 5th Interna-

tional Workshop on Software Product-Family Engineering (PFE

2003), Siena, Italy, November 4-6, 2003. 54

[BCM+04] G. Bockle, P. Clements, J. D. McGregor, D. Muthig, and

K. Schmid. Calculating ROI for Software Product Lines. IEEE

Software, 21(3):23–31, May/June 2004. 10

150 BIBLIOGRAPHY

[BCR05] A. Boronat, J. A. Carsí, and I. Ramos. Automatic Support for

Traceability in a Generic Model Management Framework. In 1st

European Conference on Model Driven Architecture - Founda-

tions and Applications (ECMDA-FA 2005), Nuremberg, Germany,

November 7-10, pages 316–330, 2005. 16, 17

[BCR06] A. Boronat, J.A. Carsí, and I. Ramos. Algebraic Specification of a

Model Transformation Engine. In 9th International Conference on

Fundamental Approaches to Software Engineering (FASE 2006),

Held as Part of the Joint European Conferences on Theory and

Practice of Software (ETAPS 2006), Vienna, Austria, March 27-

28, pages 262–277, 2006. 16

[BCRW00] D. Batory, G. Chen, E. Robertson, and T. Wang. Design Wizards

and Visual Programming Environments for GenVoca Generators.

IEEE Transactions on Software Engineering (TSE), 26(5):441–

452, May 2000. 32, 84

[BCS00] D. Batory, R. Cardone, and Y. Smaragdakis. Object-Oriented

Frameworks and Product-Lines. In 1st International Software

Product Lines Conference (SPLC 2000), Denver, Colorado, USA,

August 28-31, 2000. 51

[BDJ+03] J. Bézivin, G. Dupe, F. Jouault, G. Pitette, and J. E. Rougui.

First Experiments with the ATL Model Transformation Language:

Transforming XSLT into XQuery. In 2nd OOPSLA Workshop on

Generative Techniques in the Context of MDA, Anaheim, Califor-

nia, USA, October 27, 2003. 16, 60

[BdOB06] F.P. Basso, T. Cavalcante de Oliveira, and L. B. Becker. Us-

ing the FOMDA Approach to Support Object-Oriented Real-Time

Systems Development. In 9th IEEE International Symposium

on Object-Oriented Real-Time Distributed Computing (ISORC

2006), Gyeongju, Korea, pages 374–381, April 2006. 84, 106

[BdRPdA05] L. Balzerani, D. di Ruscio, A. Pierantonio, and G. de Angelis. A

Product Line Architecture for Web Applications. In ACM Sympo-

sium on Applied Computing (SAC 2005), Santa Fe, New Mexico,

USA, March 13-17, pages 1689–1693, 2005. 24

BIBLIOGRAPHY 151

[Bea99] J. Bayer and et al. PuLSE: A Methodology to Develop Software

Product Lines. In Symposium on Software Reusability (SSR 1999),

Los Angeles, California, USA, May, pages 122–131, 1999. 12

[Bea02] D. Batory and et al. Achieving Extensibility Through

Product-Lines and Domain-Specific Languages: A Case Study.

ACM Transactions on Software Engineering and Methodology

(TOSEM), 11(2):191–214, April 2002. 77, 84

[Ben07] D. Benavides. On the Automated Analysis of Software Product

Lines using Feature Models. PhD thesis, University of Seville,

Spain, March 2007. 32, 136

[Beu03] D. Beuche. Composition and Construction of Embedded Software

Families. PhD thesis, School of Computer Sciences, University of

Magdeburg, Germany, 2003. 10

[Béz01] J. Bézivin. From Object Composition to Model Transformation

with the MDA. In Technology of Object-Oriented Languages and

Systems (TOOLS USA), Santa Barbara, Califormia, USA, August,

2001. 59

[Béz04] J. Bézivin. In Search of a Basic Principle for Model Driven Engi-

neering. Novatica, (1), June 2004. 15, 24

[Béz05] J. Bézivin. Model Driven Engineering: Principles, Scope, Deploy-

ment, and Applicability. In International Summer School on Gen-

erative and Transformational Techniques in Software Engineering

(GTTSE 2005), Braga, Portugal, July 4-8, 2005. 59, 74

[BF93] S. Bandinelli and A. Fuggetta. Computational Reflection in Soft-

ware Process Modeling: The SLANG Approach. In 15th Inter-

national Conference on Software Engineering (ICSE 1993), Bal-

timore, Maryland, USA, May 17-21, 1993. 110

[BFJ+03] J. Bézivin, N. Farcet, J.M. Jezequel, B. Langlois, and D. Pollet.

Reflective Model-Driven Engineering. In 6th International Con-

ference on The Unified Modeling Language, Modeling Languages

and Applications (UML 2003), San Francisco, California, USA,

October 20-24, 2003. 15

152 BIBLIOGRAPHY

[BGP00] L. Baresi, F. Garzotto, and P. Paolini. From Web Sites to Web

Applications: New Issues for Conceptual Modeling. In Concep-

tual Modeling for E-Business and the Web, ER 2000 Workshops on

Conceptual Modeling Approaches for E-Business and The World

Wide Web, Salt Lake City, Utah, USA, October 9-12, pages 89–

100, 2000. 20, 24, 84

[BJT05] J. Bézivin, F. Jouault, and D. Touzet. An Introduction to the AT-

LAS Model Management Architecture. Technical report, Univer-

sity of Nantes, 2005. Research Report LINA (05-01). 17

[BLS03] D. Batory, J. Liu, and J.N. Sarvela. Refinements and Multi-

Dimensional Separation of Concerns. In 11th ACM Symposium on

Foundations of Software Engineering (SIGSOFT) held jointly with

9th European Software Engineering Conference (ESEC/FSE),

Helsinki, Finland, September 1-5, 2003. 52, 102, 108

[BO92] D. Batory and S. O’Malley. The Design and Implementation

of Hierarchical Software Systems with Reusable Components.

ACM Transactions on Software Engineering and Methodology

(TOSEM), 1(4):355–398, October 1992. 111

[Boe99] B.W. Boehm. Managing Software Productivity and Reuse. IEEE

Computer, 32(9):111–113, 1999. 123

[Bos00] J. Bosch. Design & Use of Software Architectures - Adopting and

Evolving a Product Line Approach. Addison-Wesley, 2000. 8, 13,

30

[BPSP04] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variabil-

ity management with feature models. Science of Computer Pro-

gramming, 53(3):333–352, 2004. 13

[BRCT05] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated Rea-

soning on Feature Models. In 17th International Conference on

Advanced Information Systems Engineering (CAiSE 2005), Porto,

Portugal, June 13-17, volume 3520, pages 491–503, 2005. 32

[Bro87] F.P. Brookes. No Silver Bullet - Essence and Accidents of Soft-

ware Engineering. IEEE Computer, 20(4):10–19, April 1987. 52

BIBLIOGRAPHY 153

[BSR04] D. Batory, J.Neal Sarvela, and A. Rauschmayer. Scaling Step-

Wise Refinement. IEEE Transactions on Software Engineering

(TSE), 30(6):355–371, June 2004. 1, 8, 13, 29, 30, 31, 32, 33, 34,

35, 37, 39, 40, 67, 70, 74, 75, 77, 84, 85, 89, 92, 97, 111, 116,

133, 136, 138, 139, 141, 144

[BSTRC07] D. Benavides, S. Segura, P. Trinidad, and A. Ruíz-Cortés. FAMA:

a Framework for the Automated Analysis of Feature Models. In

1st International Workshop on Variability Modelling of Software-

intensive Systems (VAMOS). Limerick, Ireland, January 16-18,

2007. 32

[BT06] D. Batory and S. Thaker. Towards Safe Composition of

Product Lines. Technical Report TR-06-33, The University

of Texas at Austin, Department of Computer Sciences, 2006.

http://www.cs.utexas.edu/ftp/pub/techreports/index/html/Abstracts.2006.html.

53

[BTT05] D. Benavides, S. Trujillo, and P. Trinidad. On the Modularization

of Feature Models. In 1st European Workshop on Model Trans-

formation (SPLC-EWMT 2005), Rennes, France, September 25,

2005. 39, 125

[CA05a] K. Czarnecki and M. Antkiewicz. Mapping Features to Models:

A Template Approach Based on Superimposed Variants. In 4th

International Conference on Generative Programming and Com-

ponent Engineering (GPCE 2005), Tallinn, Estonia, September 29

- October 1, 2005. 13, 23, 45, 84, 136

[CA05b] K. Czarnecki and M. Antkiewicz. Model-Driven Software

Product-Lines. In 20th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA 2005), San Diego, CA, USA, October 16-20,

2005. 22, 84

[CCC+99] M. Charikar, C. Chekuri, T.Y. Cheung, Z. Dai, A. Goel, S. Guha,

and M. Li. Approximation Algorithms for Directed Steiner Prob-

lems. J. Algorithms, 33(1):73–91, 1999. 102

154 BIBLIOGRAPHY

[CD03] R. Capilla and J. C. Dueñas. Light-weight Product-lines for Evo-

lution and Maintenance of Web Sites. In 7th European Confer-

ence on Software Maintenance and Reengineering (CSMR 2003),

Benevento, Italy, March 26-28, pages 53–62, 2003. 23, 54

[CDM02] G. Chastek, P. Donohoe, and J.D. McGregor. Product Line

Production Planning for the Home Integration System Example.

Technical report, CMU/SEI, September 2002. CMU/SEI-2002-

TN-029. 110

[CE00] K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley, 2000. 8, 11, 12, 13, 60, 92

[CFM02] S. Ceri, P. Fraternali, and M. Matera. Conceptual Modeling

of Data-Intensive Web Applications. IEEE Internet Computing,

6(4):20–30, July/August 2002. 20, 24, 84

[CH03] K. Czarnecki and S. Helsen. Classification of Model Transforma-

tion Approaches. In OOPSLA Workshop on Generative Program-

ming on the Context of MDA, Anaheim, California, USA, October

27, 2003. 61

[CHE04] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged Configura-

tion Using Feature Models. In 3rd International Software Product

Lines Conference (SPLC 2004), Boston, Massachusetts, USA, Au-

gust 30-September 2, 2004. 144, 145

[CK02] P. Clements and C. Krueger. Point/Counterpoint: Being Proac-

tive Pays Off/Eliminating the Adoption Barrier. IEEE Software,

19(4):28–31, July/August 2002. 11, 54

[CM02] G. Chastek and J.D. McGregor. Guidelines for Developing a Prod-

uct Line Production Plan. Technical report, CMU/SEI, June 2002.

CMU/SEI-2002-TR-06. 9, 107, 110, 112, 133

[CMC05] P. Clements, J.D. McGregor, and S.G. Cohen. The Structured In-

tuitive Model for Product Line Economics (SIMPLE). Technical

report, CMU/SEI, 2005. CMU/SEI-2005-TR-003. 10

[CMT06] J. Sánchez Cuadrado, J. García Molina, and M. Menárguez Tor-

tosa. RubyTL: A Practical, Extensible Transformation Language.

BIBLIOGRAPHY 155

In 2nd European Conference on Model Driven Architecture -

Foundations and Applications (ECMDA-FA 2006), Bilbao, Spain,

July 10-13, pages 158–172, 2006. 16, 17, 60, 127

[CN01] P. Clements and L.M. Northrop. Software Product Lines - Prac-

tices and Patterns. Addison-Wesley, 2001. 1, 8, 9, 10, 11, 12, 13,

92, 110, 132, 133, 134, 137

[Coh01] S. Cohen. Predicting when Product Line Investment Pays. In 2nd

Workshop on Software Product Lines: Economics, Architectures,

and Implications held in conjunction with the 23rd International

Conference on Software Engineering (ICSE 2001), Toronto, On-

tario, Canada, May 12-19, 2001. 9, 132

[CPRS04] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. XML-

Based Feature Modelling. In 8th International Conference on

Software Reuse (ICSR 2004), Madrid, Spain, July 5-9, pages 101–

114, 2004. 13

[Cre03] J. Creasman. Enhance Ant with XSL Transformations,

2003. http://www-128.ibm.com/developerworks/xml/library/x-

antxsl/. 110

[CY03] D. Coward and Y. Yoshida. JSR 154, Java Servlet 2.4 Specifica-

tion, 2003. http://www.jcp.org/en/jsr/detail?id=154. 22, 138

[dFBRG06] G. de Fombelle, X. Blanc, L. Rioux, and M.P. Gervais. Find-

ing a Path to Model Consistency. In 2nd European Conference

on Model Driven Architecture - Foundations and Applications

(ECMDA-FA 2006), Bilbao, Spain, July 10-13, pages 101–112,

2006. 17

[DII05] O. Díaz, J. Iturrioz, and A. Irastorza. Improving Portlet Interop-

erability through Deep Annotation. In 14th International Confer-

ence on World Wide Web (WWW 2005), Chiba, Japan, May 10-14,

pages 372–381, 2005. 22, 129

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

32, 111, 139

156 BIBLIOGRAPHY

[Don00] P. Donohoe, editor. Proceedings of the 1st International Software

Product Lines Conference (SPLC 2000), Denver, Colorado, USA,

August 28-31. Kluwer, 2000. ISBN 0-7923-7940-3. 8

[dOTM01] M. C. Ferreira de Oliveira, M. A. Santos Turine, and P. C. Masiero.

A Statechart-Based Model for Hypermedia Applications. ACM

Transactions on Information Systems (TOIS), 19(1):28–52, Janu-

ary 2001. 64

[DR04] O. Díaz and J.J. Rodríguez. Portlets as Web Components: an

Introduction. Journal of Universal Computer Sciences (JUCS),

10(4):454–472, 2004. 18, 20, 21, 62

[DR05] O. Díaz and J.J. Rodriguez. Portlet Syndication: Raising Variabil-

ity Concerns. ACM Transactions on Internet Technology (TOIT),

5(4), November 2005. 24

[DSvGB03] S. Deelstra, M. Sinnema, J. van Gurp, and J. Bosch. Model Driven

Architecture as Approach to Manage Variability in Software Prod-

uct Families. In Workshop on Model Driven Architecture: Foun-

dations and Applications (MDAFA), Enschede, The Netherlands,

June 26-27, 2003. 22, 84

[DT03] O. Díaz and S. Trujillo. Moving Co-Branding to the Web:

Service-Level Agreement Implications. In Processes and Foun-

dations for Virtual Organizations, IFIP TC5/WG5.5 Fourth Work-

ing Conference on Virtual Enterprises (PRO-VE’03), Lugano,

Switzerland, October 29-31, volume 262 of IFIP Conference Pro-

ceedings. Kluwer Academic Publishers, 2003. 126

[DT06] O. Díaz and S. Trujillo. An Introduction to Software Product Lines

(Tutorial). In Jornadas de Ingenieria del Software y Bases de

Datos (JISBD 2006), Sitges, Spain, October 2-6, 2006. 126, 146

[DTA03] O. Díaz, S. Trujillo, and I. Azpeitia. User-Facing Web Service

Development: a Case for a Product-line Approach. In 4th Work-

shop on Technologies for E-Services (TES) held jointly with the

29th International Conference on Very Large Data Bases (VLDB),

Berlin, Germany, September 9-12, 2003. 126, 144

BIBLIOGRAPHY 157

[DTA05] O. Díaz, S. Trujillo, and F. I. Anfurrutia. Supporting Produc-

tion Strategies as Refinements of the Production Process. In 9th

International Software Product Lines Conference (SPLC 2005),

Rennes, France, September 26-29, pages 210–221, 2005. 13, 24,

37, 56, 108, 109, 112, 116, 118, 122, 125, 141

[DTP07] O. Díaz, S. Trujillo, and S. Perez. Turning Portlets into Services:

Introducing the Organization Profile. In 16th International World

Wide Web Conference (WWW2007), Banff, Canada, May 8-12,

November 2007. 125, 146

[DvdHT05] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A Comprehen-

sive Approach for the Development of Modular Software Archi-

tecture Description Languages. ACM Transactions on Software

Engineering and Methodology (TOSEM), 14(2):199–245, 2005.

13

[Eas98] S. Easterbrook. Category Theory for Beginners (An Intro-

duction to Category Theory for Software Engineers). In

Tutorial at 13th IEEE Conference on Automated Software

Engineering (ASE 1998), Honolulu, Hawaii, USA, 1998.

http://www.cs.toronto.edu/ sme/presentations/cat101.pdf. 105

[EBB05] M. Eriksson, J. Börstler, and K. Borg. The PLUSS Approach -

Domain Modeling with Features, Use Cases and Use Case Real-

ization. In 9th International Software Product Lines Conference

(SPLC 2005), Rennes, France, September 26-29, 2005. 12

[Ecl] Eclipse. Eclipse Modeling Framework (EMF).

http://www.eclipse.org/emf/. 16

[FB07] G. Freeman and D. Batory. MDD with XML Domain Specific

Languages: SVG Case Study. In Draft under Preparation, 2007.

129

[FHLS97] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson. Hooking

into Object-Oriented Application Frameworks. In 19th Interna-

tional Conference on Software Engineering (ICSE 1997), Boston,

Massachusetts, USA, May 17-23, 1997. 51

158 BIBLIOGRAPHY

[Fia05] J.L. Fiadeiro. Categories for Software Engineering. Springer,

2005. 90, 105

[Fou] Apache Software Foundation. Apache Ant.

http://www.ant.apache.org/. 75, 111

[Fra03] D.S. Frankel. Model Driven Architecture: Applying MDA to En-

terprise Computing. Wiley, 2003. 15

[GBLC05] B. Gonzalez-Baixauli, M.A. Laguna, and Y. Crespo. Product

Lines, Features, and MDD. In 1st European Workshop on Model

Transformation (SPLC-EWMT’05), Rennes, France, September

25, 2005. 22, 84

[Gea04] J. Gray and et al. Model Driven Program Transformation of a

Large Avionics Framework. In 3rd International Conference on

Generative Programming and Component Engineering (GPCE

2004), Vancouver, Canada, October 24-28, 2004. 23, 84

[GFd98] M.L. Griss, J. Favaro, and M. d’Alessandro. Integrating Feature

Modeling with the RSEB. In 5th International Conference on Soft-

ware Reuse (ICSR 1998), Victoria, BC, Canada, Vancouver, BC,

Canada, 1998. 12

[GMY06] D. Ganesan, D. Muthig, and K. Yoshimura. Predicting Return-

on-Investment for Product Line Generations. In 10th Interna-

tional Software Product Lines Conference (SPLC 2006), Balti-

more, Maryland, USA, August 21-24, 2006. 10, 13

[Gog91] J.A. Goguen. A Categorical Manifesto. Mathematical Structures

in Computer Sciences, 1(1):49–67, 1991. 105

[Gom04] H. Gomaa. Designing Software Product Lines with UML.

Addison-Wesley, 2004. 11, 12, 30

[Gro] Onekin Research Group. XAK Tool for XML Refinement in

AHEAD. http://www.onekin.org/xak. 37

[GS04] J. Greenfield and K. Short. Software Factories: Assembling Ap-

plications with Patterns, Models, Frameworks and Tools. ACM

Press New York, 2004. 16, 141

BIBLIOGRAPHY 159

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems.

Science of Computer Programming, 8(3), 1987. 64

[HK01] J. Hannemann and G. Kiczales. Overcoming the Prevalent De-

composition of Legacy Code. In Workshop on Advanced Sepa-

ration of Concerns held jointly with the 23rd International Con-

ference on Software Engineering (ICSE 2001), Toronto, Ontario,

Canada, May 12-19, 2001. 55

[HR03] D. Herst and E. Roman. Model Driven Development for J2EE

Utilizing a Model Driven Architecture (MDA) - Approach: A Pro-

ductivity Analysis. Technical report, TMC Research Report, 2003.

15

[HWS00] R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a Standard

Exchange Format. In 7th Working Conference on Reverse Engi-

neering (WCRE 2000), Brisbane, Australia, November 2000. 93,

94

[IBM] IBM. Rational Software Design.

http://www.ibm.com/software/rational. 16

[JBR98] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software

Development Process. Addison-Wesley, 1998. 16

[JBZZ03] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL: XML-

based Variant Configuration Language. In 25th International Con-

ference on Software Engineering (ICSE 2003), Portland, Oregon,

USA, 3-10 May, pages 810–811, 2003. 13, 23, 29

[JCP03] JCP. JSR 168 Portlet Specification Version 1.0, September 2003.

at http://www.jcp.org/en/jsr/detail?id=168. 19, 21, 22, 62, 137

[JCP06] JCP. JSR 286 Portlet Specification Version 2.0 Early Draft 1, Au-

gust 2006. at http://www.jcp.org/en/jsr/detail?id=286. 22

[Kea90] K. C. Kang and et al. Feature Oriented Domain Analysis Feasabil-

ity Study. Technical Report CMU/SEI-90-TR-21, Software Engi-

neering Institute, November 1990. 8, 12, 30, 135

160 BIBLIOGRAPHY

[Ken02] S. Kent. Model Driven Engineering. In 3rd International Confer-

ence on Integrated Formal Methods (IFM 2002), Turku, Finland,

May 15-18, 2002. 14, 15, 128

[KKL+98] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM:

A Feature-Oriented Reuse Method with Domain-Specific Refer-

ence Architectures. Annals of Software Engineering, 5:143–168,

1998. 12

[KLD02] K. C. Kang, J. Lee, and P. Donohoe. Feature-Oriented Project

Line Engineering. IEEE Software, 19(4):58–65, 2002. 12

[Kle06] A. Kleppe. MCC: A Model Transformation Environment. In

2nd European Conference on Model Driven Architecture - Foun-

dations and Applications (ECMDA-FA 2006), Bilbao, Spain, July

10-13, pages 173–187, 2006. 17

[KMSW00] P. Knauber, D. Muthig, K. Schmid, and T. Widen. Applying Prod-

uct Line Concepts in Small and Medium-Sized Companies. IEEE

Software, 17(5), 2000. 10

[Kon] Mikko Kontio. Architectural Manifesto:

The MDA Adoption Manual. http://www-

128.ibm.com/developerworks/wireless/library/wi-arch17.html.

15

[KP88] G. Krasner and S. Pope. A Cookbook for Using the MVC User

Interface Paradigm in Smalltalk. Journal of Object-Oriented Pro-

gramming, 1(3):26–49, 1988. 137

[KR03] V. Kulkarni and S. Reddy. Separation of Concerns in Model-

Driven Development. IEEE Software, 20(5):64–69, 2003. 84

[Kru02] C. W. Krueger. Variation Management for Software Production

Lines. In 2nd International Software Product Lines (SPLC 2002),

San Diego, California, USA, August 19-22, pages 37–48, 2002. 13

[Kur05] I. Kurtev. Adaptability of Model Transformations. PhD thesis,

University of Twente, The Netherlands, 2005. 15, 59, 60

BIBLIOGRAPHY 161

[KvdB05] I. Kurtev and K. van den Berg. Building Adaptable and Reusable

XML Applications with Model Transformations. In 14th Inter-

national Conference on World Wide Web (WWW 2005), Chiba,

Japan, May 10-14, 2005. 24, 84

[KWB03] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley,

2003. 15, 66, 69, 74

[Lau06] B. Laurel. Designed Animism: Poetics of a New World. In

Keynote at 21st Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2006), Portland, Oregon, USA, October 22-26, 2006.

107

[LB04] J. Liu and D. Batory. Automatic Remodularization and Optimized

Synthesis of Product-Families. In 3rd International Conference

on Generative Programming and Component Engineering (GPCE

2004), Vancouver, Canada, October 24-28, 2004. 32

[LBL06] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactor-

ing of Legacy Applications. In 28th International Conference on

Software Engineering (ICSE 2006), Shanghai, China, May 20-28,

2006. 13, 40, 53, 54, 90

[LBN05] J. Liu, D. Batory, and S. Nedunuri. Modeling Interactions in Fea-

ture Oriented Designs. In International Conference on Feature

Interactions (ICFI 2005), Leicester, United Kingdom, June 28-30,

June 2005. 40, 90

[Lea] G. Leavens and et al. Roadmap for Enhanced Lan-

guages and Methods to Aid Verification. Technical report.

ftp://ftp.cs.iastate.edu/pub/techreports/TR06-21/TR.pdf. 85

[Len06] C. Lengauer. Discussion on AHEAD’s Mathematical Structure.

Personal communication, 2006. 30

[LH06] R.E. Lopez-Herrejon. Understanding Feature Modular-

ity. PhD thesis, The University of Texas at Austin,

162 BIBLIOGRAPHY

Department of Computer Sciences, USA, September 2006.

http://www.cs.utexas.edu/ftp/pub/techreports/tr06-45.pdf. 30, 54

[LH07] R.E. Lopez-Herrejon. Language and UML Support for Features:

Two Research Challenges. In 1st International Workshop on Vari-

ability Modelling of Software-intensive Systems (VAMOS). Limer-

ick, Ireland, January 16-18, 2007. 128

[LHB06] R.E. Lopez-Herrejon and D. Batory. From Crosscutting Concerns

to Product Lines: A Functional Composition Approach. Technical

Report TR-06-24, The University of Texas at Austin, Department

of Computer Sciences, May 2006. 54

[LK06] J. Lee and K. C. Kang. A Feature-Oriented Approach to Develop-

ing Dynamically Reconfigurable Products in Product Line Engi-

neering. In 10th International Software Product Lines Conference

(SPLC 2006), Baltimore, Maryland, USA, August 21-24, 2006. 13,

145

[LS04] S. C. Lee and A. I. Shirani. A Component based Methodology for

Web Application Development. Journal of Systems and Software,

71:177–187, 2004. 144

[LXK98] J. Lee, N.L. Xue, and T.L. Kuei. A Note on State Modeling

through Inheritance. SIGSOFT Soft. Eng. Notes, 23(1):104 – 110,

January 1998. 77

[Mag29] R. Magritte. Painting: The Treachery of Images (from the original:

La Trahison des Images), 1929. 59

[Mat04] M. Matinlassi. Comparison of Software Product Line Architec-

ture Design Methods: COPA, FAST, FORM, KobrA and QADA.

In 26th International Conference on Software Engineering (ICSE

2004), Edinburgh, United Kingdom, 23-28 May, pages 127–136,

2004. 12

[MB01] D.C. Marinescu and L. Bölöni. Biological Metaphors in the De-

sign of Complex Software Systems. Future Generation Computer

Sciences, 17(4):345–360, January 2001. 107

BIBLIOGRAPHY 163

[McG04] J.D. McGregor. Product Production. Journal Object Technology,

3(10):89–98, November/December 2004. 107, 110

[McI68] M.D. McIlroy. Mass Produced Software Components. In NATO

Science Committee, Garmisch, Germany, October 7-11, 1968. 8

[MCL06] B. Mesing, C. Constantinides, and W. Lohmann. Limes: An

Aspect-Oriented Constraint Checking Language. In 2nd European

Conference on Model Driven Architecture - Foundations and Ap-

plications (ECMDA-FA 2006), Bilbao, Spain, July 10-13, pages

299–315, 2006. 17

[Mea01] G. C. Murphy and et al. Separating Features in Source Code: An

Exploratory Study. In 23rd International Conference on Software

Engineering (ICSE 2001), Toronto, Ontario, Canada, May 12-19,

2001. 54

[Mel07] S. Melia. WebSA: Un Metodo de Desarrollo Dirigido por Modelos

de Arquitectura para Aplicaciones Web (in Spanish). PhD thesis,

University of Alicante, Spain, March 2007. 24

[MG06a] S. Melia and J. Gomez. The WebSA Approach: Applying Model

Driven Engineering to Web Applications. Journal of Web Engi-

neering, 5:2, 2006. 24

[MG06b] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation.

Electr. Notes Theor. Comput. Sci., 152:125–142, 2006. 28, 32, 58,

61, 69, 70, 74, 84, 90

[MH02] A. Mehta and G.T. Heineman. Evolving Legacy System Features

into Fine-grained Components. In 22nd International Conference

on Software Engineering (ICSE 2002), Orlando, Florida, USA,

May 19-25, 2002. 55

[ML97] M. Meyer and A. Lehnerd. The Power of Product Platforms. Free

Press, 1997. 137

[MND02] M. Matinlassi, E. Niemelä, and L. Dobrica. Quality-Driven Archi-

tecture Design and Quality Analysis. Technical Report 456, VTT

Publications (Technical Research Center of Finland), 2002. 12

164 BIBLIOGRAPHY

[Mod] Modelbased.net. MDA Tools.

http://www.modelbased.net/mda_tools.html. 17

[MS03] A.T. McNeile and N. Simons. State Machines as Mixins. Journal

of Object Technology, 2(6):85–101, November/December 2003.

77

[Mut02] D. Muthig. A Light-weight Approach Facilitating an Evolutionary

Transition Towards Software Product Lines. PhD thesis, Fraun-

hofer IESE, Germany, 2002. 10, 123

[NA02] N.Koch and A.Kraus. The Expressive Power of UML-based Web

Engineering. In 2nd International Workshop on Web-Oriented

Software Technology (IWWOST02), Malaga, Spain, June 10,

2002. 20, 24, 84

[NK06] A. Narayanan and G. Karsai. Towards Verifying Model Transfor-

mations. In GT-VMT Workshop held as Part of the Joint European

Conferences on Theory and Practice of Software (ETAPS 2006),

Vienna, Austria, March 25-April 2, 2006. 82

[Nor02] L. M. Northrop. SEI’s Software Product Line Tenets. IEEE Soft-

ware, 19(4):32–40, 2002. 8, 133

[OAS03] OASIS. Web Service for Remote Portlets (WSRP) Version 1.0,

2003. http://www.oasis-open.org/commitees/wsrp/. 18, 19, 21, 62

[OAS06a] OASIS. Reference Model for Service Oriented Architecture 1.0.

OASIS Standard, October 2006. http://docs.oasis-open.org/soa-

rm/v1.0/soa-rm.html. 21

[OAS06b] OASIS. Web Service for Remote Portlets Speci-

fication Version 2.0, June 2006. http://www.oasis-

open.org/commitees/tc_home.php?wg_abbrev=wsrp. 22

[OMG] OMG. MDA Success Stories.

http://www.omg.org/mda/products_success.htm. 15

[OMG03] OMG. MDA Guide version 1.0.1. OMG document 2003-06-01,

2003. 14, 16, 24, 58, 60

BIBLIOGRAPHY 165

[OMG05a] OMG. MOF Query/Views/Transformations (QVT) Draft Adopted

specification: OMG document ptc/05-11-01, 2005. 16, 24, 60, 61

[OMG05b] OMG. Unified Modeling Language (UML), version 2.0, 2005.

http://www.uml.org/#UML2.0. 16, 61, 64

[OMG05c] OMG. XML Metadata Interchange (XMI)

Mapping Specification, version 2.1, 2005.

http://www.omg.org/technology/documents/formal/xmi.htm.

16, 61, 64

[OMG06] OMG. MetaObject Facility (MOF) Core Specification version 2.0.

OMG document 2006-01-01, 2006. 16, 61

[Ove00] S. P. Overmyer. What’s Different about Requirements Engineering

for Web Sites? Requirements Engineering, 5(1):62–65, 2000. 132

[Par76] D.L. Parnas. On the Design and Development of Program Fami-

lies. IEEE Transactions on Software Engineering (TSE), 2(1):1–9,

March 1976. 8

[Par79] D.L. Parnas. Designing Software for Ease of Extension and

Contraction. IEEE Transactions on Software Engineering (TSE),

5(2):128–138, 1979. 70

[PBvdL06] K. Pohl, G. Bockle, and F. van der Linden. Software Product Line

Engineering - Foundations, Principles and Techniques. Springer,

2006. 11, 12, 137

[PGIP01] O. Pastor, J. Gómez, E. Insfrán, and V. Pelechano. The OO-

method Approach for Information Systems Modeling: from

Object-Oriented Conceptual Modeling to Automated Program-

ming. Information Systems, 26(7):507–534, 2001. 20, 24, 84

[Pie91] B. Pierce. Basic Category Theory for Computer Scientists. MIT

Press, 1991. 81, 82, 85, 90, 105, 106

[PM00] F. Paterno and C. Mancini. Model-Based Design of Interactive

Applications. ACM Intelligence, 11(4):26–38, December 2000.

20, 84

166 BIBLIOGRAPHY

[Pre97] C. Prehofer. Feature Oriented Programming: A Fresh Look at

Objects. In 11th European Conference on Object-Oriented Pro-

gramming (ECOOP 1997), Jyväskylä, Finland, June 9-13, pages

419–443, 1997. 13

[RGJ04] J. Rumbaugh, G.Booch, and I. Jacobsen. The UML Reference

Manual. Addison-Wesley, 2004. 16

[RGvD06] T. Reus, H. Geers, and A. van Deursen. Harvesting Software Sys-

tems for MDA-Based Reengineering. In 2nd European Confer-

ence on Model Driven Architecture - Foundations and Applica-

tions (ECMDA-FA 2006), Bilbao, Spain, July 10-13, pages 213–

225, 2006. 17, 90, 129

[RJ05] D. C. Rajapackse and S. Jarzabek. An Investigation of Cloning

in Web Applications. In 5th International Conference on Web

Engineering (ICWE 2005), Sydney, Australia, July 27-29, pages

252–262, 2005. 23, 37

[RM02] P. Robillard and G. C. Murphy. Concern Graphs: Finding and De-

scribing Concerns Using Structural Program Dependencies. In

22nd International Conference on Software Engineering (ICSE

2002), Orlando, Florida, USA, May 19-25, 2002. 55

[RW06] A. Rensink and J. Warmer, editors. Model Driven Architec-

ture - Foundations and Applications, 2nd European Conference

on Model Driven Architecture - Foundations and Applications

(ECMDA-FA 2006), Bilbao, Spain, July 10-13, volume 4066 of

Lecture Notes in Computer Science. Springer, 2006. 17

[SAC+79] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and

T.G. Price. Access Path Selection in a Relational Database Sys-

tem. In ACM SIGMOD, Boston, Massachusetts, USA, June, pages

22–34, 1979. 32

[SB02] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented

Implementation Technique for Refinements and Collaboration-

Based Designs. ACM Transactions on Software Engineering and

Methodology (TOSEM), 11(2):215–255, Abril 2002. 34

BIBLIOGRAPHY 167

[SC04] N. Serrano and I. Ciordia. Ant: Automating the Process of

Building Applications. IEEE Software, 21(6):89–91, Novem-

ber/December 2004. 68, 113

[SCC06] C. Simonyi, M. Christerson, and S. Clifford. Intentional Software.

SIGPLAN Not., 41(10):451–464, 2006. 107

[Sch06] D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engi-

neering. IEEE Computer, 39(2):25–31, 2006. 15

[SEI] SEI. Product Line Practice Initiative (PLPI).

http://www.sei.cmu.edu/productlines/. 12

[Sim96] C. Simonyi. Intentional Programming: Innovation in the Legacy

Age, 1996. Presented at IFIP Working group 2.1. Available from

URL http://www.research.microsoft.com/research/ip/. 107

[SK97] J. Sztipanovits and G. Karsai. Model-Integrated Computing. IEEE

Computer, 30(4):110–111, April 1997. 16

[SK03] S. Sendall and W. Kozaczynski. Model Transformation: The Heart

and Soul of Model-Driven Software Development. IEEE Soft-

ware, 20(5):42–45, 2003. 58

[Sma99] Y. Smaragdakis. Implementing Large-Scale Object-Oriented

Components. PhD thesis, The University of Texas at Austin,

Department of Computer Sciences, USA, September 1999.

ftp://ftp.cs.utexas.edu/pub/predator/yannis-thesis.pdf. 30, 31

[SNW05] D. Schmidt, A. Nechypurenko, and E. Wuchner. MDD for Soft-

ware Product-Lines: Fact or Fiction. In Workshop at 8th Interna-

tional Conference on Model Driven Engineering Languages and

Systems (MoDELS 2005), Montego Bay, Jamaica, October 2-7,

2005, 2005. 22, 23, 84

[Sou] Sourceforge.net. GXL (Graph eXchange Language).

http://gxl.sourceforge.net/. 93, 94, 97

[SSJ02] I. Singh, B. Stearns, and M. Johnson. Designing Enterprise Ap-

plications with the J2EE Platform. Addison-Wesley, 2002. 19,

137

168 BIBLIOGRAPHY

[str] Apache Struts. http://struts.apache.org/. 37

[Sun] Sun. JavaServer Faces Technology (JSF).

http://java.sun.com/javaee/javaserverfaces/. 22

[Sys] Pure Systems. Pure::variants tool. http://www.pure-systems.com/.

13, 29

[Tak06] S. Taker. Design and Analysis of Multidimensional Program

Structures. Master’s thesis, The University of Texas at Austin,

Department of Computer Sciences, USA, 2006. 103, 108

[TBD06] S. Trujillo, D. Batory, and O. Díaz. Feature Refactoring a Multi-

Representation Program into a Product Line. In 5th International

Conference on Generative Programming and Component Engi-

neering (GPCE 2006), Portland, Oregon, USA, October 24-27,

2006. 13, 37, 39, 56, 90, 125, 129, 144, 145

[TBD07] S. Trujillo, D. Batory, and O. Díaz. Feature Oriented Model

Driven Development: A Case Study for Portlets. In 29th Inter-

national Conference on Software Engineering (ICSE 2007), Min-

neapolis, Minnesota, USA, May 20-26, 2007. 61, 70, 73, 86, 105,

106, 125

[Tea07] S. Trujillo and et al. Exploring a Distributed Production Setting

for Product Lines. In Draft under Preparation, 2007. 13, 105,

129, 145

[TPD04] S. Trujillo, I. Paz, and O. Díaz. Enhancing Decoupling in Port-

let Implementation. In 4th International Conference on Web En-

gineering (ICWE 2004 Posters), Munich, Germany, July 26-30,

2004. 70, 125, 144

[Tru07] S. Trujillo. Feature Oriented Model Driven Product Lines. PhD

thesis, School of Computer Sciences, University of the Basque

Country, Spain, March 2007. 106

[TS00] W. Taha and T. Sheard. MetaML and Multi-Stage Programming

with Explicit Annotations. Theor. Comput. Sci., 248(1-2):211–

242, 2000. 92

BIBLIOGRAPHY 169

[vdL02] F. van der Linden, editor. 4th International Workshop on Software

Product-Family Engineering (PFE 2001), Bilbao, Spain, October

3-5, 2001, Revised Papers, volume 2290 of Lecture Notes in Com-

puter Science. Springer, 2002. 8

[vDMM03] A. van Deursen, M. Marin, and L. Moonen. Aspect Mining

and Refactoring. In 1st International Workshop on REFactoring:

Achievements, Challenges, Effects (REFACE). University of Wa-

terloo, 2003. 54

[vOvdLKM00] R. C. van Ommering, F. van der Linden, J. Kramer, and J. Magee.

The Koala Component Model for Consumer Electronics Software.

IEEE Computer, 33(3):78–85, 2000. 13

[W3C01] W3C. Web Services Description Language (WSDL) 1.1, 2001.

http://www.w3.org/TR/wsdl. 21

[W3C03] W3C. Simple Object Access Protocol (SOAP) 1.2, 2003.

http://www.w3.org/TR/soap12/. 19, 21, 62

[W3C05] W3C. XSL Transformations (XSLT) Version 2.0, 2005.

http://www.w3.org/TR/xslt20/. 60, 61

[W3C06a] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition),

August 2006. http://www.w3.org/TR/2006/REC-xml-20060816/.

61

[W3C06b] W3C. State Chart XML (SCXML): State Machine Notation for

Control Abstraction, W3C Working Draft 24 January 2006, 2006.

http://www.w3.org/TR/scxml/. 64

[Wir71] N. Wirth. Program Development by Stepwise Refinement. Com-

munications of the ACM, 14(4):221–227, April 1971. 70

[WKvdHW06] Y. Wang, A. Kobsa, A. van der Hoek, and J. White. PLA-based

Runtime Dynamism in Support of Privacy-Enhanced Web Per-

sonalization. In 10th International Software Product Lines Con-

ference (SPLC 2006), Baltimore, Maryland, USA, August 21-24,

2006. 13, 144, 145

170 BIBLIOGRAPHY

[WL99] D.M. Weiss and C.T.R. Lai. Software Product-Line Engineering.

A Family-Based Software Development Process. Addison-Wesley,

1999. 12

[WM98] W. Weber and P. Metz. Reuse of Models and Diagrams of the

UML and Implementation Concepts Regarding Dynamic Model-

ing. In The Unified Modeling Language: Technical Aspects and

Applications, pages 190–203. Physica-Verlag, 1998. 77

[WvdS06] D. Wagelaar and R. van der Straeten. A Comparison of Config-

uration Techniques for Model Transformations. In 2nd European

Conference on Model Driven Architecture - Foundations and Ap-

plications (ECMDA-FA 2006), Bilbao, Spain, July 10-13, pages

331–345, 2006. 17

[ZJ04] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in

Middleware Systems. In 19th Annual ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA 2004), Vancouver, BC, Canada, October

24-28, 2004. 40, 54

Epilogue

The road to doctorate is not an easy one. Being a doctor does not imply to be an

expert, but to sip some initial lessons as training for research in the future. Actually,

this document is not just intended to turn into the end, but is conceived to be the

amazing beginning of the forthcoming future.

To apprehend knowledge was the intention when joining the doctoral program.

However, this experience demonstrated that there are many other personal skills

that a researcher should acquire such as communication, discussion, and abstrac-

tion of ideas. Being this important, the work on this thesis posed some intellectual

challenges that allowed us to have a lot of fun! making this experience unforget-

table.

Acknowledgments

Seldom is any worthy undertaking tackled alone, and this is no exception. Through-

out my work many people have influenced my thoughts, provided assistance, guided

my work, afforded opportunities, and comforted me. Listing them here immortal-

izes their contribution towards my thesis.

First and foremost, my supervisor Oscar must be thanked for investing a great

deal of time in this work from the early stages to the very end. I learned the highest

values of research from him. He also pushed me to attend relevant meetings across

the world, and to visit vanguard research institutions. I would like to express my

deep gratitude to Txema Perez from Mondragon University who put me in contact

with Oscar Diaz.

Onekin is the research group Oscar leads at the University of the Basque Coun-

try. Our group fosters collaborative work among its members as important part

of our daily activity. Hence, parts of this work would not be possible without the

effort of others. Specifically, Iñaki Paz struggled in interminably discussions dur-

ing the early stages of Portlet modeling, Sergio F. Anzuola was always ready to

give a helping hand, Felipe I. Anfurrutia pushed XAK always forward, and Maider

Azanza give many clever pushes towards GROVE and provides invaluable assis-

tance during the review process. I would like to express my gratitude to remaining

members of Onekin: Luis M. Alonso, Iker Azpeitia, Oscar Barrera, Arantza Iras-

torza, Jon Iturrioz, Arturo Jaime, Jon Kortabitarte, Felipe Martin, Sandy Perez and

Juanjo Rodriguez. We shared together many hours of intense work. Oscar was

working hard to keep up with us all the way.

The project was funded by the Spanish Ministry of Education and Science al-

lowing me to concentrate full-time on this work. I benefited immensely from its

financial support to visit the University of Texas at Austin (USA) and the Fraun-

hofer IESE (Germany).

The day I landed at Austin’s Bergstrom Airport to visit Don Batory changed

174 BIBLIOGRAPHY

the course of this work. The accomplishment of this visit was remarkable. The

hard work we did so. I was fortunate for attending his course on Feature Oriented

Programming. I also thank him for reviewing this thesis.

I am very grateful for having the opportunity to get in contact with eminent

people in the field. Part of the results presented in this work are the outcome of

collaborations together with other individuals and research groups, alphabetically,

Gentzane Aldekoa (University of Mondragon), Don Batory (University of Texas at

Austin) and David Benavides (University of Seville). All were fusion from differ-

ent visions and fruits of hard collaborative work where distances were shortened

to accomplish new ideas. Many other pals helped me somehow during this work:

Sven Apel from the University of Magdeburg; Jia Liu, Sahil Taker, and Greg Free-

man from the University of Texas at Austin; Thomas Forster from the Fraunhofer

IESE; and Roberto L. Herrejon from Oxford University.

Despite the demand of this work, there was fortunately life outside of the tower

(Arbide is where we work). This is thanks to many relatives and lacuadri friends

that helped me to distract from the thesis matters.

My family (Almu, Bego and Truji) fostered the grand value of education from
my earliest days, and always encouraged and supported me to improve my educa-
tion. Gracias.

Special affection to Gen. She was there during all the hard times, always pro-

viding encouragement. Now that I have to do the same for her, I wish I can be as

supportive and loving as she was. Eskerrik asko.

As last note for the reviewers and members of the dissertation committee, let

me appreciate your invaluable work beforehand.

Vita

Salvador Trujillo Gonzalez was born in Durango, Spain on May 6th, 1978, the son

of Salvador Trujillo Ruiz (father) and Begoña Gonzalez Alonso (mother). After a

wonderful childhood, he entered the Department of Computer Sciences at the Uni-

versity of Mondragon in 1996, where he received the degree of Technical Engineer

in Computer Sciences (Bachelor of Science) in 1999. He followed his studies in the

same university receiving later the degree of Engineer in Computer Sciences (Mas-

ter of Science) in 2002. This year, he entered the Doctoral School at the University

of the Basque Country where he conducted his doctoral research until 2007.

Salva finds referring to himself in the third person to be weird and hopes no-

body will ever get to read this.

Permanent Address:

San Ignacio, 9C - 2G

ES-48200 Durango, Biscay, Spain

struji@gmail.com

http://www.struji.com

This dissertation was typed by the author.

175

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

