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My Background

In 1983, I began studying how database management systems could be 

synthesized from plug-compatible components.  First journal paper on this 

subject appeared in ACM Transactions on Databases, December 1995

Topic Mainstream Date

Components ( “Aspects” ) 1989 (1997)

Domain-Specific Software Architectures 1993

Product-Lines 1998

Automation/Generation ??
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Introduction

Central problems in software engineering stem from:

• easy to understand complaints about software quality, 
performance, reliability, maintainability, evolvability, …

Software quality is a function of:

• quality of application design

designs improve with experience

design is difficult — build several times to get it “right”

• quality of the programming staff

Answers to both are highly variable. So…

• how can we do better?

• how can we better exploit previous systems, 
experiences?

software is written by hand
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The Future (and this Tutorial)

The future of software development lies in standardization 
and automated production of well-understood software 

• major improvements in quality, reliability, 
performance…

• technology based on: 

Principled engineering approach that standardizes:

• expert-approved designs (programming problems)

• expert-approved implementations 
(programming solutions)

• component compositions define target systems

In this way, we improve key factors of software quality:

• using “expert” designs, “expert” implementations

Domain-Specific Component Technologies

I n t r o d u c t i o n
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Key Features of Vision

Scale of “component” encapsulation/reuse is critical:

Using LSR components is key; challenge is how?

Tutorial answers following questions:
• what is a large-scale component or building-block for a 

domain of applications?
• how are component-based product-line architectures defined?
• how can complex, efficient, and extensible applications be 

constructed from components?

We review answers distilled from experiences and prototype 
generators:

• tools that assemble families of systems from expert-designed & 
expert-implemented components for well-understood domains

SSR small scale reuse algorithm, function reuse

MSR medium scale reuse suites of related functions
(classes)

LSR large scale reuse suites of related classes
(subsystems, frameworks)
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So What?

Product-Line Architectures (PLAs)

• producing family of applications requires definition of a PLA; 
component-based generators are exemplars to study

Domain Modeling / Software Modeling

• how do you model a family of applications? 
state-of-art modeling/programming paradigm

Software Reuse
• component-based generators are success stories; 

reveal secrets of success

Relevance to Research

• Aspect Oriented Programming (AOP), Microsoft’s IP 
Intensions, Collaboration-Based Design, Perry’s Light 
Semantics, …

Relevance to Practice
• ideas of tutorial are being used in industry;

Microsoft’s COM is a special case of this technology

I n t r o d u c t i o n
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Organization of Tutorial

Sequence of short lectures (with question/answer periods):

Lecture / Period Length

Introduction to GenVoca 40 min

Mixin-Layer Implementations of Refinements 50 min

Design Rule Checking 40 min

Recap & Open Discussion

Expanded

Tutorial

Domain Modeling Methodology 40 min

Metaprogram Implementations of Refinements 40 min

Architectural Connectors as Refinements 30 min

Design Wizards and Automatic Selection of Components 30 min

Qualification: rich subject area that
requires familiarity with many topics!
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GenVoca

Name given to a general theory and principles for software 
“legos”:

• ideas have surfaced (i.e., rediscovered, reimplemented) 
in many different contexts

• goal of tutorial is to avoid reinvention of these ideas

• name is a merging of the names “Genesis” and “Avoca” 
(the first two systems built on these principles) 

GenVoca exposes fundamental role of domain modeling 
in large scale reuse, PLAs, and generation:

• what is domain modeling (reference architectures)? 

• what is relationship to large scale reuse?

idea of components that export and
import standardized interfaces taken

to its logical conclusion

I n t r o d u c t i o n
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A Domain Modeling Thought Experiment

code for
system A

code for
system B
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Rich Set of Lessons Learned

Ad Hoc Software Designs/Decompositions

• don’t work for component-based generators

• consequence of conventional 1-of-kind system designs

• not suitable for assembling product-lines economically

Large Scale Software Reuse

• is a consequence of premeditated design;
standardization of recurring “shapes” within a domain

programming abstractions and implementations are 
standardized

• components must be designed to be interoperable and 
composable

components will not have these properties otherwise

I n t r o d u c t i o n
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Lessons Learned (Continued)

Domain Modeling

• is retrospective study of a family of systems

• differs from application modeling (i.e. point designs)

• process of standardizing well-understood domain

• parametric model or blue-print of a PLA

Component-based Generators

• can significantly increase productivity 

• especially if all required components are available

Explain GenVoca from first principles

• goes beyond OO concepts

• OO is medium scale, not large scale

Resist Interpretation!!

Look at syntax now, semantics later!!
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Background on Hierarchical Software

Virtual machines (Dijkstra 1968)

• design each level of a hierarchical system independently

• each level defines a virtual machine

all operations on level i+1 defined in terms of 
operations on level i

Refresh using OO ideas:

• define interface as objects, classes, and methods

• hierarchical design is set of:

object oriented virtual machines (OOVM)

one OOVM for each level

I n t r o d u c t i o n
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Background

Object model (or object-oriented virtual machine) is set of 
classes and their interrelationships

Use ER-like notation:

GenVoca not dependent on specific OO notation
(choose your own …)

BA

C
b-ca-c

object model R

D

E

object model S

d-e
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Hierarchical Design

Layer, component, “aspect” is:

• a consistent refinement (mapping or transformation) 
between virtual machines

• large scale — simultaneous and consistent refinement of 
multiple classes, objects, and methods

level n

level i+1

level i

level 0

A B

C
b-ca-c

D

E

d-e

level i OOVM

level i+1 OOVM

S

R
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What is New?

Large scale components are layers or aspects
• are encapsulated suites of interrelated classes 

or fragments of related classes

• are new: larger units of abstraction and encapsulation
(see next lecture on Mixin-Layers)

How is large scale reuse achieved?

• standardize fundamental abstractions, OOVMs of a 
well-understood domain

• layers export & import standardized interfaces

• layers are designed to be plug-compatible, 
interchangeable, interoperable

          latter two points are trademarks of GenVoca designs

• new: contrary to traditional library/reuse paradigms

More difficult to achieve:

• substantial step beyond design of OOVMs

• key to component-based software generation/synthesis
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The GenVoca Model

Component (layer, aspect) is fundamental unit of large 
scale software construction

• interface of component is an object model 

(multiple classes, relationships)

• component w exports OOVM interface S

All components that export the same interface (OOVM) 
belong to a realm

• realm is a library of plug-compatible, interoperable, and 
interchangeable components

• OOVM S and R define realms S and R

S  =  {  y, z, w  }

R  =  { g[ x:S ], h[ x:S ], i[ x:S ]  }

• note: components may be parameterized

I n t r o d u c t i o n
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Components with Parameters

Consider g[ x:S ] : R

• g exports interface R; g imports interface S

• g translates operations and objects of R to S;
translation called a refinement

• parameter x:S means that translation doesn’t depend on 
a specific implementation of S

A B

C
b-ca-c

D

E

d-e

S

R

g
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Applications and Type Equations

An application/subsystem is named composition of 
components called a type equation:

S  =  {  y, z, w  }

R  =  { g[ x:S ], h[ x:S ], i[ x:S ] }

app1 = g[ y ];

app2 = g[ w ];

app3 = h[ w ];

• modeling applications as equations is hallmark of 
parameterized programming (Goguen 1986)

now possible to precisely
define family of applications 

that can be built

I n t r o d u c t i o n
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Interpretation

Interpretation critical! 

• relates domain features to components

S  =  {  y, // program with feature y
z, // program with feature z
w // program with feature w

}

R  =  { g[ x:S ], // adds feature g to x
h[ x:S ], // adds feature h to x
i[ x:S ] // adds feature i to x

}

So, type equations define programs with known features!

app1 = g[ y ]; // program w. features g,y

app2 = g[ w ]; // program w. features g,w

app3 = h[ w ]; // program w. features h,w

can reason about applications
in terms of their components
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Grammars and Families of Applications

Realms and components define a grammar whose 
sentences (component compositions) are applications

Parameterized component representation:

S  =  {  y, z, w  }

R  =  { g[ x:S ], h[ x:S ], i[ x:S ] }

Grammar representation:

S  :=   y   |   z   |   w 

R  :=  g S  |  h S  |  i S

The set of all sentences defines a language (product-line):

• Parnas family of systems (1976)

• connection with grammars goes further....

I n t r o d u c t i o n
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Symmetric Components

Just as recursion is fundamental to grammars, symmetric 
components are fundamental to GenVoca

• export and import same interface

• composable in virtually arbitrary orders

order of composition affects semantics & performance

• symmetric components of realm W have parameters of 
type W:

W  =  { m[ x:W ], n[ x:W ], p }

W := m W  |  n W  | p  

• examples: 

m[n[p]], n[m[p]], m[m[p]], n[n[p]]

• familiar example: Unix file filters
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Scalability and Component Reuse

Adding a new component to a realm is equivalent to 
adding a new rule to a grammar

• the family of applications enlarges exponentially
(in length of type equation)

• because large families can be built using relatively few 
components, GenVoca models are scalable

Component reuse obvious: different systems/equations 
reference the same component...

application1 = g[ y ];

application2 = g[ w ];

application3 = h[ w ];

• components g and w are reused...

• reuse is common subexpressions, common terms

I n t r o d u c t i o n
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Design Rules and Domain Models

Given realms below, in principle any component of R can 
be composed with any component of S:

S  =  {  y, z, w  }

R  =  { g[ x:S ], h[ x:S ], i[ x:S ]  }

• although equations may be type correct, there are always 
combinations of components that don’t make sense

• domain-specific constraints called design rules preclude 
illegal component combinations

GenVoca domain model is:

• realms of components

• design rules that restrict compositions

• can be expressed as an attribute grammar

See lecture on
Design Rule Checking
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Important Special Case

Microsoft’s Component Object Model (COM)

• components can export and import “standardized” 
interfaces

• applications are compositions of COM components

Differences:

• supports multiple-inheritance among interfaces
(like Java)

• allows components to export multiple standardized 
interfaces, and import components that implement  
multiple interfaces (R and S, R or S)

• very useful indeed, but not critical to our PLA model

COM can be used to create GenVoca product-lines, but 
that isn’t how COM is used today

• most interfaces implemented by a single component
(IExplorer, Windows Media Player)

• different implementations arise from versioning

• generally don’t have the GenVoca plug-and-play

I n t r o d u c t i o n
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Special Case (Cont)

• Key restriction: COM interfaces limited to a single class

we will look at components that have more complicated 
(i.e., multi-class) interfaces. Our components are Java 
packages or Microsoft DLLs that are typed (e.g. have 
interfaces) — concept not present in today’s operating systems 
and programming languages

• Key restriction: COM components are binaries

binaries are NOT the only way refinements can be 
implemented: there are lots of other ways (see next few slides).

In fact, if one limits components only to (COM) binaries, there 
are many domains for which PLAs couldn’t be built — the 
assembled applications would run so slowly that no one would 
ever use them.

This doesn’t mean that PLAs can not be implemented for these 
domains, it simply means that refinements for this domain have 
to be implemented differently …
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Why GenVoca Important?

The simplest “building-blocks” model of software 
construction has components that import and export 
standardized interfaces

• idea that has arisen independently many times

• there common and deep problems of conceptualization 
and implementation that arise in every one of these 
domains/generators and that take years to sort out…

This tutorial allows you to avoid costly reinvention…

System Domain Year
Genesis Database Management 1988
Avoca/x-kernel Network Protocols 1989
Ficus File Systems 1990
Rosetta Database Data Languages 1994
ADAGE Avionics 1994
ASP Audio Signal Processing 1995
JTS Extensible Precompilers 1997
P3 Data Structures 1997
LavaLamp Radio Software 1998
FSATS99 Command-and-Control Simulator 1999
… … …

I n t r o d u c t i o n
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Perspective

GenVoca advocates that the atomic building blocks of 
product-lines are refinements (i.e., mappings between 
standardized virtual machines)

• model doesn’t say how refinements are implemented or 
when refinements are composed

• all that is known is that refinements have parameters and 
can be composed via parameter instantiation

Lack of specificity makes GenVoca general…

Refinements can have vastly different implementations:

• object 
(Java object or COM component)

• template
(mixin-layer)

• metaprogram 
(a program that generates another program)

• rule set of a program transformation system
(transformations of abstract specifications into 
efficient programs through rewrites)
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Perspective (Cont)

In addition to multiple implementations, refinements can 
be composed at different times:

• statically at application compile time (build time)
(for applications whose type equation is fixed)

• dynamically at application execution time
(allows type equations to change during program 
execution)

Look at known GenVoca PLAs:

Refinement Implementation Refinement Composition Time

Static Dynamic

Object Genesis
Ficus

Avoca
LavaLamp

Template JTS
FSATS, 
ADAGE

MetaProgram P3
LavaLamp

ASP

Transformation ? ?

I n t r o d u c t i o n
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Perspective (Cont)

Refinements can have different implementations and can 
be composed at different times, there is yet another 
variability — there are different kinds of refinements!

• Virtual Machine Refinements
imported interface(s) are not visible
consistent with standard notion of “virtual machines”

• Subjective (Extension) Refinements
imported interfaces are visible
enhancing lower-level VMs with more capabilities and 
exporting this enhanced VM — see mixin-layers

• Optimizing Refinements
map less-efficient programs to more efficient programs

note: subjective and optimizing refinements are symmetric

i = 3 + 4 - 5;

sum = 0; // n > 0
for (j=1; j<=n; j++)

sum = sum + j;

i = 2;

j = n+1;
sum = (n*j)/2;
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Perspective (Cont)

How to chose among implementations?
Ans: depends on application requirements

• dynamic for run-time reconfigurations

• static for optimizations
although different technologies have different 
optimization possibilities: 

templates — none (except for C++)
metaprograms — lots (but need language support)
program transformation systems — ∞ (need rule engine)

• ex: don’t use rule-sets when templates or objects suffice

GenVoca offers a single way in which 
to conceptualize a domain and its 

building blocks in a largely 
implementation-independent way

Conceptual economy of GenVoca is a big win …
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intro - 30
 dsbatory

Conclusions — Lessons Learned

• GenVoca takes idea of components exporting and 
importing standardized interfaces to logical conclusion

• refinements are basic building blocks

abstract design entities
implementations are multi-class encapsulations
layers export and import multi-class virtual machine 
interfaces

• standardizing abstractions, their interfaces and 
implementations as plug-compatible components

different than conventional library paradigms

• applications are modeled by equations

parameterized programming

• a variant of COM is an instance of GenVoca

Rest of tutorial will explain GenVoca in more detail
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Mixin-Layer Implementations of Refinements

Understanding GenVoca requires looking at example 
domains where symmetry, scalability, encapsulation, and 
composition issues can be studied carefully.

In this lecture, we examine:

• collaboration based designs (CDBs) as GenVoca 
components

• how to encode and statically compose components

• interesting case studies: 

Graph Algorithm PLA

FSATS99 — Army Fire Support Simulator

Jakarta Tool Suite (JTS) — Extensible Java Compilers
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Collaboration-Based Designs

Fundamental, but not well-known, technique for creating 
reusable OO designs

Collaboration-Based Designs (CDBs) idea:

• define a set of interrelated classes that collaborate to 
implement some “feature” or “aspect” of a program

• each class actually represents an individual role in that 
collaboration

• methods define generic interactions among class/roles

graph node

belongs_to()

linked_to()

node_name()

add_node()

remove_node()

graph_name()

roots()

... ...

connect_to()

Graph
Collaboration:
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Collaboration Based Designs (Cont)

Note the following about CDBs:

• define generic relationships among classes/objects 
playing “roles”

methods, instance variables, etc. that are needed to 
capture the desired relationships 
(in our case, node connectivity of a graph)

CDBs generally aren’t stand-alone; that’s why roles exist

• role is a parameter that must be instantiated

Examples of ‘re’-using Graph-Collaboration:

• map plays role of graph, city corresponds to a node

• communication network is graph; site corresponds to a 
node

whenever one is dealing with “Graph-Collaboration”
these methods will need to be written!

M i x i n - L a y e r  I m p l e m e n t a t i o n  o f  R e f i n e m e n t s

mixin-layers - 4
 dsbatory

Collaboration Based Designs (Cont)

Problem with CDBs:

• not that well understood …

• known implementation techniques were not scalable 
(e.g., parameter instantiations of exponential length)

• no idea how they were related to component-based 
designs or refinements…

Let’s address these points first by examining how static 
refinements can be expressed in OO…
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OO Components

How are static refinements expressed in OO?

• refinement of a class adds new data members, new 
methods, and/or overrides existing methods

• a GenVoca or large-scale refinement adds new data 
members, methods, etc. simultaneously to several 
classes

note: there can be any number of “horizontal” or “collaboration” relationships 

among subclasses — here we show only inheritance relationships

class

subclass

expressed
as a subclass

class

subclass

class

subclass

class

subclassla
ye

r
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Insights

Ever add a new feature to an existing application?

• changes aren’t localized!

• multiple classes of an application must be updated 

• if feature is removed, updates must be simultaneously 
removed from all classes

A “feature” or “aspect” can be expressed as a CBD:

• consists of a number of collaborating classes/roles

• roles of a collaboration must be bound to classes of the 
actual application itself

accomplished via parameter instantiation

a layer defines a collaboration; 
layer instantiation defines role/class bindings!

class

subclass

class

subclass

class

subclassla
ye

r

application
classes
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Composition Insights

When CBDs (GenVoca components) are composed, a 
forest of inheritance hierarchies is created that gets 
progressively broader and deeper!

L1

L2

L3

L4

note: Li+1 inherits all the classes from Li, recursively. Thus, the above instance of L4 
has a total of 5 classes, each the terminals of their refinement chains.

M i x i n - L a y e r  I m p l e m e n t a t i o n  o f  R e f i n e m e n t s

mixin-layers - 8
 dsbatory

Composition Insights (Cont)

The classes that are instantiated by an application are the 
terminals of these refinement chains

• nonterminal classes define intermediate derivations of 
application classes

• in our example, “generated” application consists of 5 
classes (shaded in black); the white classes are 
“intermediate” derivations of the black classes

L1

L2

L3

L4
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1st Idea: Mixins

How can we encode refinements in OO languages?

Mixin is a class whose superclass is specified via a 
parameter

Can express mixin M as Java “template” with parameter S

class M <AnyClass S> extends S { ... } 

• note: “mixin” means something different in C++, CLOS 
literature, so beware! We use Bracha’s definition…

M

S
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2nd Idea: Nested (Inner) Classes

Nested (inner) classes behave (e.g., access control, 
scoping) like regular class members

class OuterParent { class Inner { ... } }

class OuterChild extends OuterParent { }

• no OuterChild.Inner explicitly defined, but it does 
exist … Inner is inherited from OuterParent

Nested classes emulate package encapsulation

• representation allows “packages” to appear as nodes in 
inheritance hierarchies

OuterParent

Inner

OuterChild

Inner
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Combining Ideas = Mixin-Layers

Experience has shown that:

• different collaborations use the same names for roles

• classes with same role names refine each other when 
their collaborations are composed

Express as a mixin-layer M with parameter S:

class M <AnyClass S> extends S {

class role1 extends S.role1 { ... }

class role2 extends S.role2 { ... }

...

class rolen extends S.rolen { ... }

}

Buy where do realms fit in?

role1 role2 rolen
...

role1 role2 rolen
...

S

M
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Realms

Remember: realms have interfaces that components export 
and import

• so component M[x:I]:E expressed as:

interface E { ... } // export interf.

interface I { ... } // import interf.

class M<I x> extends x implements E {

class role1 extends x.role1 { ... }

class role2 extends x.role2 { ... }

...

class rolen extends x.rolen { ... }

}

// above is “standard” mixin-layer pattern
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Connection to GenVoca

Straightforward connection to type equations:

// type equation notation

Application = L4[ L3[ L2[ L1 ] ] ];

// extended-Java notation

class Application extends L4< L3< L2< L1 >>>;

If we followed same derivation, except that objects are 
being refined, not classes, you’ll discover that OO 
frameworks are dynamic counterparts to Mixin-Layers

// type equation notation

Application = L4[ L3[ L2[ L1 ] ] ];

// extended-Java notation

Application = 
new L4( new L3( new L2( new L1())));

• OO framework implements a realm of components,
refinements…
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Case Study: Graph Algorithm PLA

Look at a simple domain for which a PLA can be created

• to reinforce ideas just presented

• see “complex” example afterward (and in Appendix)

Domain: programs that implement different graph 
algorithms over directed and undirected graphs

• product line programs described by a “feature” menu:

• example programs of product-line:

ex1 — vertex numbering using a depth-first search on an 
undirected graph
ex2 — vertex numbering and cycle checking using a 
breadth-first search on a directed graph

graph search graph

algorithm algorithm type

depth-first

breadth-first

directed graph

undirected graph

vertex numbering
cycle checking

...

choose one
or more

choose one choose one
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GenVoca Model

Define a realm G of components that implement each 
individual “feature”:

G = { undirected, // undirect graph

directed, // directed graph

dft[x:G], // depth-first

bft[x:G], // breadth-first

cycle[x:G], // cycle checking

number[x:G], // vertex number

...

}

Composition restrictions (i.e. “choose one”, ordering) 
realized by design rules (discussed in next lecture)

Compositions (from previous page):

ex1 = number[ dft[ undirected ] ]

ex2 = number[ cycle[ bft[ directed ] ] ]
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Implementation as Mixin-Layers

directed and undirected encapsulate two classes Graph 
and Vertex

• methods support vertex addition and removal from 
graphs; no traversals

dft and bft encapsulate a pair of refinements of Graph 
and Vertex, and add new abstract class WorkSpace.

• traversal methods (GraphSearch, VertexSearch) added 
to Graph, Vertex with a WorkSpace object as parameter

• WorkSpace object has 3 abstract methods: init_vertex, 
preVisitAction, postVisitAction

Graph Vertex

directed

Graph Vertex

dft

WorkSpace
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Implementation (Cont)

cycle and number encapsulate refinements of Graph and 
Vertex (by adding algorithm-specific methods — ex: 
vertexNumber) and define a subclass of WorkSpace 
with appropriate init, pre-, post-action methods)

Example: ex1 = number[ dft[ undirected ] ]

Graph Vertex

number

NmbrWork

WorkSpace

Graph Vertex

undirected

Graph Vertex

dft

WorkSpace

Graph Vertex

number

NmbrWork
instantiate
these
bottom
classes
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Recap

Graph Domain illustrates the ability to:

• application of product-line defined by features it offers

• implement each feature as a mixin-layer

each layer encapsulates multiple classes

many domains have more complex features (e.g., features within features) — 

handled in a simple, parametric way rather than decomposing these features into 

a composition of layers…

• easy to implement in C++ and mixin-extended versions 
of Java

see JTS example in Appendix of this lecture

• define product-line app as a composition of mixin-layers

see “Object-Oriented Frameworks and Product-Lines”, SPLC1, 2000.

Now let’s look at a more complex domain…
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Case Study: FSATS99

FSATS (Fire Support Automated Test System)

• command-and-control simulator for Army fire support

• first-generation system (9 years to build)

• difficult to understand & maintain current code base

• difficult to debug

• new capabilities are projected, old capabilities revamped

• implementation team wants to expand capabilities, 
but not current version

• beginnings of a product-line (but no PLA yet)

Upcoming topics:

• explain domain of fire support

• quickly review current implementation of FSATS

• review component-based redesign (FSATS99) to see 
how mixin-layers were used to build an FSATS99 PLA
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Domain of Fire Support

Battlefield layout:

Forward
Observer (FO)

Fire Support
Team (FIST)

Brigade
Fire Support Element
(FSE)

Artillery

Front Line

enemy
tank

OPFAC (operational facility — command post)
command hierarchy
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Vanilla Distributed Application

Set of collaborating objects that work collectively toward 
achieving a given mission

All sorts of different kinds of mission types:

• when-ready-fire-for-effect (WRFFE) - mortars

• when-ready-fire-for-effect - artillery

• adjust-fire (AF) - mortars

• adjust-fire - artillery

• about 20 mission types in all; 
more mission types projected in future

For each mission type, each OPFAC (e.g., FO, FIST, 
FSE, …) takes different actions

• actions are coordinated with-respect to particular 
mission

An OPFAC can be simultaneously processing any number 
of mission instances

• e.g., 2 WRFFE-mortars, 3 AF-artillery, etc.
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Current Implementation

Is monolithic; each OPFAC is an Ada program that sends 
and receives tactical messages

When a message is received, it (and the current state of the 
OPFAC) is processed by a sequence of rules:

if (conditions1) do-action1;

if (conditions2) do-action2;

if (conditions3) do-action3; ...

Rules encode conditions (5-10 primitives) to fire actions 
for one or more missions

• 200-1000+ rules per OPFAC

• difficult to write, understand, debug rules

• hard to see what rules apply to given mission

• typical example of non-extensible system; started out 
small and understandable, but didn’t stay that way
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FSATS99

Re-engineering FSATS to be a GenVoca PLA

• key idea: each Mission Type is a collaboration

• actions of each OPFAC is defined by a protocol 
(state machine) that it follows to do its part in processing 
an instance of a mission type

Forward
Observer (FO)

Fire Support
Team (FIST)

Brigade
Fire Support Element
(FSE)

Artillery
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FSATS99 (Cont)

Each OPFAC may play a role in different mission types

• for each mission type, it has a protocol to follow to 
process instances of that type

thus, new code is added to process a mission 
(whenever a new mission type is added to FSATS99)

Most refined OPFAC classes “understand” capabilities 
and responsibilities of all mission types — 
only bottom classes are instantiated!

vanilla
OPFACS

…

WRFFE-mtr

WRFFE-art

AF-mtr

AF-art

…

…

…

…
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Advantages of Layered Design

Mission complexity is encapsulated in one spot — the 
layer definition

Mission types can be debugged separately, in isolation 
from each other

• substantially simplifies mission development 
(over current version of FSATS)

• using common OO design techniques to define 
collaborations (layers) — e.g., state machines — it is 
much easier to determine if all possibilities are 
accounted for

New mission types can be added/removed from FSATS99 
through component composition/reconfiguration

• extensible, creates PLA for FSATS simulators
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Introspection

Could we have built FSATS99 in a different way, using 
standard OO techniques?

• ans: maybe, but generally no.

Insights:

• OO design methodologies look for objects, classes, and 
their relationships; GenVoca seeks the fundamental 
refinements in a domain — find them first, choose their 
implementation later

• OO design methodologies direct you toward the design 
of the most refined classes of an application, and do not 
expose the intermediate derivation classes. That is, an 
application is one big collaboration, instead of a 
composition of smaller reusable collaborations

• want a higher-level ability to specify applications as type 
equations, rather than writing code. We want to program 
at the architectural level, not code level.
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GenVoca Again

FSATS99 PLA model has single realm; all components 
refine basic OPFAC abstraction

F = { vanilla, // basic opfacs

wrffe-common[F], // shared by wrffe

wrffe-mtr[F],

wrffe-art[F],

af-common[F], // shared by af

af-art[F],

af-mrt[F], 

…

}

Compositions yield FSATS simulator. Ex:

fsats101 = 
wrffe-mtr[ af-art[ 

wrffe-common[ af-common[ 
vanilla ] ] ] ];
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Big Picture

Graph Algorithm PLA, FSATS99, JTS aren’t isolated 
examples. Similar GenVoca architectures exist for:

• avionics (ADAGE)

• database systems (Genesis)

• network protocols (Ensemble)

• …

Graph PLA, FSATS99, JTS components are mixin-layer 
(template-based representations) of refinements.

Remember, there are lots of other representations!
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Conclusions — Lessons Learned

• collaboration-based designs correspond to GenVoca 
layers or aspects; compositions of CBDs correspond to 
GenVoca type equations

 connection with important and under-appreciated OO
design technique

• a mixin-layer is a template-based construct that 
implements a GenVoca refinement

novel mixture of parameterized inheritance and nested
 classes;

mixin-layers provide scalable implementions of 
collaboration-based designs

• case studies: FSATS99, JTS (appendix)

nontrivial examples of scalable PLAs using mixin-layers
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Appendix: JTS Case Study

JTS (Jakarta Tool Suite)

• compiler tool suite to create extensible Java languages

• motivation: need tool suite to help write domain-specific 
languages and domain-specific extensions to host 
programming languages

// ex #1 - metaprogramming addition to Java

AST_Exp x = exp{ q > z }exp;  // ast constructors

AST_Stm s = stm{ if (x.alpha()) foo();
else bar(); }stm;

// ex #2 - type equations to extend Java

class Application extends L4< L3< L2< L1 >>>;

• want a product-line of Java dialects where
each optional feature encapsulated as a component;
don’t want to build monolithic precompilers, as there 
would be an exponential number of them

• particular dialect specified by composition of 
components of desired features
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How JTS Works

Programs are represented as parse trees (syntax trees)

• parse trees are infinitely extensible

Microsoft IP’s “Intentions”

• add AST nodes with domain-specific semantics

ex: AST constructors, type equations

• at reduction time, intention nodes are replaced with their 
Java (or host language) implementations

ex: replace code constructors, type equations with their pure 
Java counterparts

Domain
Specific
Program

Lexer
and

Parser AST

Transform
Program

Java
Program

Jak Preprocessor
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Bali

How are lexers, parsers, and transform programs created?

• ans: Bali tool

Bali is a GenVoca generator of (Java) preprocessors

• assembles variants of Jak (extensible Java) from 
components

• components encapsulate primitive Java extensions

ex: AST constructors
hygienic macros
P3 data structure generators
layer definition and composition
etc.

A Bali component is an ordered pair (syntax, semantics)

• syntax — grammar extensions to Java

• semantics — meaning given to grammar extensions
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Bali Syntax

Are extended, annotated BNF grammars

• extended with repetitions (see POPART)

StatementList : ( Statement )+
;

ArgumentList : Argument ( ‘,’ Argument )*
;

• annotated by class to instantiate when production is 
recognized (e.g., see POPART)

SelectionStmt

: IF ‘(’ Expr ‘)’ Statement :: IfStm
| SWITCH ‘(’ Expr ‘)’ Block :: SwitchStm
;

from grammar, can infer constructors:

IfStm( token, token, AST_Exp, token, AST_Stm )

SwitchStm( token, token, AST_Exp, token, AST_Blk )
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Inheritance Hierarchies

Can be deduced from grammar specifications:

Grammar specifications used for:

• defining host grammar (e.g. Java)

• defining additional rules, lexical tokens for grammar 
extensions

Rule1 : pattern1 :: C1
| Rule2
;

Rule1

C1 Rule2

C2 C3

Rule2 : pattern2 :: C2
| pattern3 :: C3
;
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Bali Grammar Specifications

What can be generated automatically:

• lexical analyzer

• parser — now using JavaCC

• inheritance hierarchy and AST classes

• class constructors, unparsing, tree editing methods

// bali spec

lexical 
patterns

%% 

grammar rules

Jakarta grammar
- 150 tokens
- 350 productions
- 740 lines
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What Can’t be Generated?

Type checking, reduction, and optimization methods

• AST node specific

• hand code as subclasses to Bali-generated classes

• Bali generates a mixin layer that encapsulates all 
generated AST classes

• separate mixin-layer encapsulates the hand-coded 
subclasses of each class defined in a Bali-grammar file

AstNode

IfStm’ SwitchStm’

IfStm SwitchStm

Bali kernel class

Bali generated classes

Hand-coded subclasses
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Relationship to GenVoca/Mixin-Layers

Notes:

• terminals of refinement chains are the classes that are 
instantiated

• type equation to scale:

Jak = AST[ Teqn[ Java[ Generated[ kernel ] ] ] ];

• inheritance hierarchy not drawn to scale: 500+ classes,
some mixin layers have over 100 classes each

kernel

Generated

Java

AST

Teqn

A
S

T
Te

qn
Ja

va
G

en
er

at
ed

ke
rn

el
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GenVoca Again

JTS PLA model for Java dialects has 2 realms:

K = { kernel }

J = { java1_0[K], // Java 1.0

java1_1[J], // Java 1.1 ext to 1.0

AST[J], // metaprogramming

gscope[J], // hygienic macros

layerdef[J], // layer definitions

Teqn[J], // type equations
…

}

Compositions yield a Java dialect. Ex:

JavaPlusPlus = 
Teqn[ layerdef[ 

AST[ java1_1[ java1_0[ 
kernel ] ] ] ];
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Design Rule Checking

Not all syntactically correct combinations of GenVoca 
components are semantically correct. Some components 
work only in the presence (or absence) of other 
components

• fundamental problem: impossible for generator users to 
debug generated code; need automated help to debug 
component compositions

• design rules are domain-specific constraints that specify 
illegal configurations of components. Design rule 
checking (DRC) is the process of (automatically) 
applying design rules

In this lecture, we present:

• a model of DRC based on attribute grammars

• has been used in every GenVoca PLA

• relate DRC to research on software architectures
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Motivating Example: P3

Generator for container data structures

• relies on two realms containing 50 components:

ds  = { bintree[ ds ],      // binary tree
        dlist[ ds ],        // unordered list

 odlist[ ds ],       // ordered list
        avail[ ds ],        // free list manager
        array[ mem ],       // sequential storage
        malloc[ mem ],      // random storage

inbetween[ ds ],    // common delete code
        … }

mem = { transient,          // in memory storage
persistent,         // memory mapped

      }

Data structures are modeled by type equations

• reference 5 to 15 components

• too elaborate to validate by inspection

• some components have obscure rules for their use
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Example P3 Design Rule

inbetween component encapsulates:

• algorithms shared by many data structure components 
(e.g., bintree and dlist)

• deals with positioning of cursor after element is deleted

• details complex, hidden from user

Correct usage of inbetween requires:

• one copy in TE that has 1+ data structure components &

• precede all such components in equation

   right = …inbetween[ … dlist[ bintree[ … ]]];

wrong = … dlist[ inbetween[ bintree[ … ]]];

Such rules should not be borne by programmers

• too easy to forget and be misapplied

want rules tested automatically 
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Results from Software Architectures

Perry’s Inscape (1989) is environment for managing 
evolution of software systems:

• novel aspects: obligations and consistency checking
light semantics

Components have pre-, post-conditions, and obligations

                           bank loan example

• obligations are conditions that must be satisfied by 
system that uses the component

• require “action-at-a-distance” — nonlocally satisfied

• propagated to enclosing modules where they are 
eventually satisfied by some postcondition

Full-fledged verification not attempted

• primitive predicates declared (but informally defined)

• pre-, post-, obligations expressed in terms of primitives

• practical & powerful form of “shallow” consistency 
checking using pattern matching and simple deductions
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Design Rule Checking

Adapt and generalize Inscape consistency checking to 
DRC by exploiting the semantics of GenVoca layers

(1) DRC models states of system (TE) design 

• not states of system execution

• model states / properties of system design by assigning 
values to attributes

• exploit refinement interpretation of layers

system system’
refinement

state = no-loops state = has-loops

attribute value

design before refinement design after refinement
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DRC Basics

(2) Preconditions and obligations of component K are 
satisfied “at-a-distance” by components that lie either:

• (far) beneath K or

• (far) above K

constraints typically not satisfied by adjacent 
components (c.f. Goguen, Tracz, Sitaraman references)

Properties exported to “higher” layers generally not the 
same as properties exported to “lower” layers

Leads to 2 kinds of design rules:

•  #1: preconditions for component usage

K

X
post:   A = v  

pre:    A == v
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DRC Basics (Continued)

• #2: preconditions for parameter instantiation

new names: preconditions     called    prerestrictions

                   postconditions   called    postrestrictions

note: prerestrictions correspond to Inscape obligations

K

X
post:   A = v  

pre:    A == v
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DRC Basics (Continued)

Components have:

Design rule checking involves:

• top-down propagation of postconditions and testing 
component preconditions

• bottom-up propagation of postrestrictions and testing of 
parameter prerestrictions

In following, we assume no restriction on complexity of 
predicates, but will later show that very simple predicates 
suffice for P3 (and other domains as well).

K

preconditions

postconditions prerestrictions

postrestrictions
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Top-Down DRC

Components have preconditions and postconditions

• postconditions propagated by ⊕  operator

• conditions tested by ⇒  operator

A

B

C

S
top    ⇒     precondition-A

postcondition-A

top’    ⇒    precondition-B

postcondition-B 

top”    ⇒    precondition-C

postcondition-C ⊕   top”

⊕   top   =  top’

⊕   top’  =  top”

top     --     initial conditions for composition S
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A Twist…

Consider component with multiple parameters: A[x,y]

• gives rise to trees (dags)

• twist: each parameter has its own postcondition

i.e., conditions for parameter x may be different for those 
of y in A[x,y]

• example: the realm of a parameter could be expressed as 
a postcondition; realms for x and y could be different

A

precondition-A

postcondition-Ax postcondition-Ay

x y
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Top-Down Algorithm

simple recursive algorithm for top-down 
propagation of conditions and testing 

component preconditions

A

B

C D

top

post-A ⊕ top = top-A

post-By ⊕  top-A

post-C ⊕  top-Bx 

post-Bx ⊕  top-A 

post-D ⊕  top-By

= top-Bx = top-By
x y
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Bottom-Up DRC

Conditions must also be propagated upwards...

• parameters of components have prerestrictions for 
instantiations to be correct

•  systems instantiate parameters, not components

• exported states (called postrestrictions) propagated 
upwards so that prerestrictions can be tested

c

x

y

z

prerestrictions for c are 
generally not satisfied by the 

component x that 
instantiates its parameter, 
but rather by components 

deep within the system 
rooted by x

w
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Bottom-Up DRC Continued

Every component has postrestrictions, i.e., exported states, 
and prerestrictions for each parameter

• use same operators ⊕  and ⇒  for bottom-up DRC

• simple recursive algorithm for bottom-up DRC

A

B

C
postrestriction-C  =  bot

prerestriction-B

postrestriction-B

prerestriction-A

postrestriction-A

⊕ bot  =  bot’

⊕   bot’

⇑

⇑

top - set of required properties
⇑
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Attribute Grammars 

McAllester observed attribute grammars unify realms, 
attributes, top-down & bottom-up DRC algorithms

• realms of components modeled by grammars

• attributes model program development states

• postconditions are inherited attributes
(values determined by ancestors) 

• postrestrictions are synthesized attributes
(values determined by descendants)

Need to supply definitions & representations for:

• attributes

• predicates

• operators ⊕  and ⇒  

For the P3 and Genesis generators…

Bonus: common  tools (lex, yacc) well-suited 
for implementing design rule checkers
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P3 Attributes

Each attribute models a property that exposes a 
composition constraint

Attributes have restricted values:

• example:

attribute: component_belongs_to_realm_A

attribute value:       assert   (or negate)

• see Batory and Geraci IEEE TSE 1997 paper 
(and  report UTCS TR-94-03 for other values…)

Value Interpretation

any nothing is known about property

assert property is asserted

negate property is negated

inherit attribute value inherited, but is 
otherwise unconstrained
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P3 Predicates

Preconditions & prerestrictions request specific attribute 
values (any, assert, negate), but not how they were 
determined (i.e., inherit)

• only 4 different primitive predicates:

• complex predicates are typically conjunctions of 
primitives, one primitive predicate for each attribute

• encode as vector of predicates indexed by attribute

    P  ≡  P1  ∧   P2  ∧   …  ≡  [  P1,  P2, …  ]

Predicate Interpretation

P-any true     (no constraints)

P-assert attribute has assert value

P-negate attribute has negate value

P-false false  (unsatisfiable)
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Postcondition Propagation Operator ⊕

Component postconditions assert or  negate values, or may 
propagate values

• table below defines the condition propagation operator + 
for a single attribute:

• given P = [ P1, P2, … ]  and  E = [ E1, E2, … ]  

        P ⊕  E   =   [  P1 + E1,  P2 + E2,   …  ]

 component postcondition 
 + existing condition

component postcondition

inherit assert negate

existing
condition

any any assert negate

assert assert assert negate

negate negate assert negate
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Implication Operator ⇒

The implication operator → for a single attribute is:

• given  E = [ E1, E2, … ]   and  P = [ P1, P2, … ]

E  ⇒   P   =    ( E1 →  P1 )  ∧   ( E2 →  P2 )  ∧   …

Existing Condition 
→  Precondition

Precondition

P-any P-assert P-negate P-false

Existing

Condition

assert true true false false

negate true false true false

any true false false false
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Implementation Notes

Straightforward implementation: 1500 lines in lex & yacc

DRC algorithm is efficient:         O(mn)

m = # of attributes, n = # of components

Example domain models:

Some P3 attributes:

Generator (Domain) # of 
Realms

# of 
Components

     # of 
Attributes

Genesis (databases) 9 52 14

JTS (Java precompilers) 1 10 10

P3 (data structures) 2 50 7

attribute property description

logical_deletion “a logical deletion layer”

retrieval “a retrieval layer”

D e s i g n  R u l e  C h e c k i n g

DRC - 20
 dsbatory

Straightforward Specifications

Example component & design rule declaration:

array : ds [ mem ] {

# logical del. layer required above array

precondition    assert   logical_deletion

# assert that array is a retrieval 
# layer to all descendants and ancestors

   
postcondition   assert   retrieval 

postrestriction assert   retrieval

}

name of component
realm of component
realm parameters of component
design rules
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Explanation Based Error Reporting

In addition to detecting errors, we can extend DRC 
algorithms to suggest how to repair a type equation

• precondition ceilings from Inscape:

• error located in between components X and Y

• similar technique for obligations/prerestrictions

X

Y

postcondition:
A = negate

precondition:
A == assert

Z
postcondition
A = assert
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Example

Example: want container implementation that stores 
elements onto a binary tree, whose nodes are stored 
sequentially in transient memory

First attempt at composition:

first = top2ds[ bintree[ array[ transient ]]];

DRC response:

Precondition errors:  

   an inbetween layer is expected between top2ds 
and bintree

   a logical deletion layer is expected between 
top2ds and array

Prerestriction error:

   parameter 1 of top2ds expects a subsystem with
   a qualification layer 
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Explanation Based Error Reporting

Clumsy fix…

second = top2ds[ inbetween[ bintree[ qualify[ 
delflag[ array[ transient ]]]]]];

DRC response:

Precondition error:  

  a retrieval layer (bintree) not expected above 
qualify

Correct type equation — swap qualify with bintree:

third = top2ds[ inbetween[ qualify[ bintree[ 
delflag[ array[ transient ]]]]]];

DRC directs users to modify TE to the 
“nearest” correct TEs in space of all TEs

D e s i g n  R u l e  C h e c k i n g

DRC - 24
 dsbatory

Insights

Why isn’t DRC a challenging problem in program 
verification?

• solution unlikely to be automatable

Inscape work and our work have observed:

• problem is straightforward

• solution automatable and efficient

…  why? … 2 reasons

Reason #1:

• shallow consistency checking goes a very long way

• in general, most logical errors are shallow errors

conjecture: all errors at component composition
level should be shallow

• remaining errors must be dealt with by component 
implementors
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Insights (Cont)

Reason #2: important distinction: 

• Inscape components are functions

• GenVoca components are subsystems

Large applications consist of tens of thousands of lines of 
code

• hundreds or thousands of functions

⇒  hundreds or thousands of primitive predicates

• TEs rarely have more than 50 components

⇒  modest # of primitive predicates in a domain ~10-40

     seems counterintuitive

Why?

• modeling states of development (not execution) reduces 
number of properties to examine

• and GenVoca is a methodology for designing reusable 
components …
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The Key

What makes OO designs so powerful and attractive?

• Ans: ability to manage and control software complexity

Standardization is powerful way of managing and 
controlling software complexity in product-line 
architecture

Standardization makes some problems tractable that 
would otherwise be very difficult

• ex: composing off-the-shelf components

• composition of components is simple in GenVoca

• standardization seems to limit the ways in which 
components can constrain each other’s behavior
⇒  make DRC tractable

Historical perspective…
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Additional Insights

We understand software in terms of implementation-
independent refinements

• enhances power of design rule checking

• DRC tells you whether two refinements (concepts) can 
be composed regardless how they are implemented

ex: bintree[ encrypt[...] ]  may be correct
ex: encrypt[ bintree[...] ]  is always incorrect

• design rules allow you to state whether certain 
combinations of concepts or features (i.e., refinements) 
are possible
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Conclusions — Lessons Learned

• GenVoca domain models (realms + design rules) are 
attribute grammars

can use existing tools (lex, yacc) to express models

• simple, efficient algorithms for DRC

constraints imposed on higher layers (preconditions) 

constraints imposed on lower layers (prerestrictions)

don’t need formal methods, theorem provers

• components that are designed to be interoperable, plug-
compatible, and interchangeable often makes complex 
problems much easier to solve

standardization of programming abstractions is a 
powerful way of controlling the complexity of a product-
line (i.e., family of systems)
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Conceptual Modeling, Databases, and CASE: An Integrated View of
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D. Batory and B.J. Geraci, “Validating Component Compositions and Subjectivity
in GenVoca Generators”, IEEE Transactions on Software Engineering,
February 1997, 67-82.

L. Blaine and A. Goldberg, “DTRE - A Semi-Automatic Transformation System”,
in Constructing Programs from Specifications, Elsevier Science Publishers,
1991.

J.A. Goguen, “Reusing and Interconnecting Software Components”, IEEE
Computer, February 1986.

J. Neighbors, “Draco: A Method for Engineering Reusable Software Components”,
in T.J. Biggerstaff and A. Perlis, eds., Software Reusability, Addison-Wesley/
ACM Press, 1989.

M.D. Katz and D.J. Volper, “Constraint Propagation in Software Libraries of
Transformation Systems”, Int. Journal Software Engineering and Knowledge
Engineering, Vol. 2 #3 (1992), 355-374.

D. McAllester. “Variational Attribute Grammars for Computer Aided Design.”
ADAGE-MIT-94-01. 

M. Moriconi and X. Qian, “Correctness and Composition of Software
Architectures”, ACM SIGSOFT 1994.

D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”,
ACM SIGSOFT Software Engineering Notes, October 1992, 40-52.

D.E. Perry, “The Inscape Environment”, Proc. ICSE 1989, 2-12.

D.E. Perry, “Software Interconnection Models”, Proc. ICSE 1989, 61-69.
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Further Reading (Continued)

D.E. Perry, “The Logic of Propagation in The Inscape Environment”, ACM
SIGSOFT 1989, 114-121.

M. Sitaraman and B. Weide, “Component-Based Software Using RESOLVE”,
ACM Software Engineering Notes, October 1994.

Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin
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W. Tracz, “LILEANNA: A Parameterized Programming Language,” Advances in
Software Reuse: Selected Papers from the Second International Workshop on
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Computer Science Press, March 24-26, 1993. 
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Reading and Reference List

1  Background

1.1  Historical Precedence

McIlroy was among the first to identify the problem of library scalability; the notion
virtual machines is due to Dijkstra, and families of systems is due to Parnas.

D. McIlroy, “Mass Produced Software Components”, Software Engineering: Report
on a Conference by the Nato Science Committee, Oct 1968, P. Naur and B.
Randell, eds. 138-150.

E.W. Dijkstra, “The Structure of THE Multiprogramming System”,
Communications of ACM, May 1968, 341-346.

D.L. Parnas, “Designing Software for Ease of Extension and Contraction”, IEEE
Transactions on Software Engineering, March 1979.

1.2  Parameterized Programming

The concepts of horizontal parameterization (i.e., parameterizing interfaces) and
vertical parameterization (i.e., layering) have been expressed elegantly by Goguen
and Tracz. The certification of parameterized components has been examined in the
RESOLVE project.

J.A. Goguen, “Reusing and Interconnecting Software Components”, IEEE
Computer, February 1986. Also in Prieto-Diaz and Arango text (below).

W. Tracz, “LILEANNA: A Parameterized Programming Language,” Advances in
Software Reuse: Selected Papers from the Second International Workshop on
Software Reusability. Lucca, Italy. R. Prieto-Dìaz and W.B. Frakes, eds. IEEE
Computer Science Press, March 24-26, 1993. 

M. Sitaraman and B. Weide, “Component-Based Software Using RESOLVE”,
ACM Software Engineering Notes, October 1994.
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1.3  Large System Development

References that survey the problems of large system development (and indirectly,
problems that arise in domain modeling) are:

B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the Software Design Process
for Large Systems”, Communications of the ACM, November 1988.

G. Booch, Object Solutions: Managing the Object-Oriented Project, Addison-
Wesley, 1995.

1.4  Object-Oriented Frameworks

GenVoca components encapsulate suites of interrelated classes. So too do object-
oriented frameworks; they are suites of interrelated abstract classes that have multi-
ple concrete class implementations, which describe different implementations of
what we have called “subsystems”. A framework is an OO way of representing a
realm of components; the abstract classes define both the interface of a realm and
code that is common across all components, whereas concrete subclasses provide
component-specific implementations. What frameworks lack are parameterizations
and method wrappers that are needed to express GenVoca compositions (See Sub-
jectivity and Method Wrappers).

R.H. Campbell and N. Islam, “A Technique for Documenting the Framework of an
Object-Oriented System”, IEEE 2nd International Workshop on Object
Orientation in Operating Systems (1992), 288-300.

R.H. Campbell, N. Islam, and P. Madany, “Choices, Frameworks and Refinement”,
Computing Systems, 5(3), 1992.

R.E. Johnson and B. Foote, “Designing Reusable Classes”, Journal of Object-
Oriented Programming, June/July 1988. Also in Prieto-Diaz and Arango text
(below).

R.E. Johnson, “Documenting Frameworks using Patterns”, OOPSLA 1992, 63-76.

R.E. Johnson, “How to Design Frameworks”, Tutorial Notes, 1993.

G.C. Murphy and D. Notkin, “The Interaction Between Static Typing and
Frameworks”, TR 93-09-02, Dept. Computer Science and Engineering,
University of Washington, Seattle, 1993.
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1.5  Role-Based Designs and Mixins

Role-based designs is a design technique that encapsulates features of applications
through a set of classes that perform specific roles. Role-based designs are an
object-oriented design technique that can be used to design GenVoca layers. Imple-
menting role-based designs is through the use of mixins, classes whose superclass
are specified via a parameter. The following papers survey recent work on mixins
and on role-based designs.

G. Bracha and W. Cook, “Mixin-Based Inheritance”, ECOOP/OOPSLA 90, 303-
311.

G. Bracha and D. Griswold, “Extending Smalltalk with Mixins”, Workshop on
Extending Smalltalk at OOPSLA 96. See http://java.sun.com/people/

gbracha/mwp.html.

M. Flatt, S. Krishnamurthi, M. Felleisen, “Classes and Mixins”. ACM Symposium
on Principles of Programming Languages, 1998 (PoPL 98).

R.B. Findler and M. Flatt, “Modular Object-Oriented Programming with Units and
Mixins”, ICFP 98.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J.
Irwin, “Aspect-Oriented Programming”, ECOOP 97, 220-242.

C. Prehofer, “Feature-Oriented Programming: A Fresh Look at Objects”, ECOOP
97, 419-443.

Y. Smaragdakis and D. Batory,  “Implementing Reusable OO Components”,
International Conference on Software Reuse, 1998.

Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin
Layers”, ECOOP 1998. 

M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based
Designs”, JSSST International Symposium on Object Technologies for
Advanced Software, Springer-Verlag, 1996, 22-37.

M. VanHilst and D. Notkin, “Using Role Components to Implement Collaboration-
Based Designs”. OOPSLA 1996.

M. VanHilst and D. Notkin, “Decoupling Change From Design”, ACM SIGSOFT
1996.

M. VanHilst, “Role-Oriented Programming for Software Evolution”, Ph.D.
Dissertation, University of Washington, Computer Science and Engr., 1997.
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1.6  Domain Modeling

A key problem in modeling domains is choosing the right abstractions. The follow-
ing references offer a variety of practical perspectives on this topic. (See also papers
on Frameworks, and Role-based Designs and Mixins).

D. Batory, L. Coglianese, M. Goodwin, and S. Shafer, “Creating Reference
Architectures: An Example From Avionics”, ACM SIGSOFT Symposium on
Software Reusability, Seattle, 1995, 27-37.

H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I. Tavakoli, “A Prototype
Domain Modeling Environment for Reusable Software Architectures”, Third
International Conference on Software Reuse, Rio de Janeiro, November 1-4,
1994, 74-83.

R. Prieto-Diaz and G. Arango (ed.), Domain Analysis and Software Systems
Modeling, IEEE Computer Society Press 1991.

1.7  Software Reuse

Good overviews of the state-of-art results and problems in software reuse are:

P.G. Bassett, Framing Software Reuse, Yourdon Press Computing Series. 1996.

T. Biggerstaff and C. Richter, “Reusability Framework, Assessment and
Directions”, IEEE Software, March 1987.

T. Biggerstaff, “An Assessment and Analysis of Software Reuse”, in Advances in
Computers, Volume 34, Academic Press, 1992.

T. Biggerstaff, “A Perspective on Generative Reuse”, Annals of Software
Engineering, 5 (1998), 169-226.

C. Krueger, “Software Reuse”, ACM Computing Surveys, 24(2), June 1992, 131-
183.

H. Mili, F. Mili, A. Mili, “Reusing Software: Issues and Research Directions”,
IEEE Transactions on Software Engineering, June 1995, 528-562.

1.8  Transformation Systems

GenVoca domain models can be implemented by program transformation systems.
Simonyi’s paper describes an innovative approach to the integration of transforma-
tion systems and compilers to create extensible programming languages. Weigert’s
paper describes an impressive transformation system that is being used at Motorola



R e a d i n g  a n d  R e f e r e n c e  L i s t

reading list - 5
 dsbatory

to produce customized software for different radio-products. Griswold’s paper deals
with semantics preserving program transformations. The papers by Roberts, et al
and Tokuda et al describe innovative approaches to creating tools for editing OO
programs by transformations. Pu’s paper is an example of a dynamic generative
generator, and the other papers deal with transformations in the context of “parame-
terized layers” of rewrite rules:

I. Baxter, “Design Maintenance Systems”, CACM April 1992, 73-89.

I. Baxter, “Transformation Systems: Theory, Implementation, and Survey”, Tutorial
Notes, 1996.

T. Biggerstaff, “A Perspective on Generative Reuse”, Annals of Software
Engineering, 5 (1998), 169-226.

L. Blaine and A. Goldberg, “DTRE - A Semi-Automatic Transformation System”,
in Constructing Programs from Specifications, Elsevier Science Publishers,
1991.

W.G. Griswold, “Direct Update of Data Flow Representations for a Meaning-
Preserving Program Restructuring Tool”, ACM SIGSOFT 1993.

J. Neighbors, “Draco: A Method for Engineering Reusable Software Components”,
in T.J. Biggerstaff and A. Perlis, eds., Software Reusability, Addison-Wesley/
ACM Press, 1989.

H. Partsch and R. Steinbruggen, “Program Transformation Systems”, Computing
Surveys, March 1983, 199-236.

C. Pu, H. Massalin, and J. Ioannidis, “The Synthesis Kernel”, Computing Systems,
1(1):11-32, Winter 1988.

D. Roberts, J. Brant, and R. Johnson, “A Refactoring Tool for Smalltalk”,
University of Illinois at Urbana-Champaign, Dept. Computer Sciences, 1997.

C. Simonyi, “The Death of Computer Languages, the Birth of Intentional
Programming”, Microsoft Corporation, Sept 1995. 

D.R. Smith, “KIDS: A Semiautomatic Program Development System”, IEEE
Transactions on Software Engineering, Sept. 1990, 1024-1043.

L. Tokuda and D. Batory, “Evolving Object-Oriented Architectures with
Refactorings”, Automated Software Engineering Conference, October 1999.

T.J. Weigert, J.M. Boyle, T.J. Harmer, “Knowledge-Based Derivation of Programs
from Specifications”, Artificial Intelligence in Automation, World Scientific
Press, 1996.
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1.9  Software Architectures

Software architectures deal with issues of “programming-in-the-large” and building
software systems from components. A variety of popular perspectives are:

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

D. Garlan and M. Shaw, “An Introduction to Software Architecture”, in Advances
in Software Engineering and Knowledge Engineering, Volume I, World
Scientific Publishing Company, 1993.

D. Garlan, et al, “Architectural Mismatch or  Why It’s Hard to Build Systems out of
Existing Parts”, ICSE 1995.

M.M. Gorlick and R.R. Razouk, “Using Weaves for Software Construction and
Analysis”, Proc. ICSE 1991, 23-34.

D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”,
ACM SIGSOFT Software Engineering Notes, October 1992, 40-52.

J. Udell, “Componentware”, BYTE, May 1994.

E. White and J. Purtilo, “Integrating the Heterogeneous Control Properties of
Software Modules”, ACM SIGSOFT 1992.

1.10  Product-Line Architectures

A natural out-growth of research on architectures is product-line architectures. The
idea of building families of applications isn’t new (see Parnas) nor is building fami-
lies of applications from components (that’s GenVoca, Draco). However, some
fresh ideas have begun to surface. You may want to consult the Proceedings of the
1st Software Product-Lines Conference, Denver, Colorado in August 2000.

J. Bosch, “Product-Line Architectures in Industry: A Case Study”, 1999
International Conference on Software Engineering.

Software Engineering Institute, “The Product-Line Practice Initiative”, http://
www.sei.cmu.edu/plp/plp_init.html

D. Batory, “Product-Line Architectures”, Invited presentation, Smalltalk und Java
in Industrie and Ausbildung, Erfurt, Germany, October 1998.

D. Batory, R. Cardone, and Y. Smaragdakis, “Object-Oriented Frameworks and
Product-Lines”, 1st Software Product-Line Conference, Denver, Colorado,
2000.
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1.11  Subjectivity

When modeling families of related applications, objects do not have single inter-
faces. Rather, they are described by families of related interfaces. The interface that
is appropriate for an application is application specific (i.e., subjective). The follow-
ing references give an overview of current thinking on the topic. Also see Role-
Based Designs and Mixins.

D. Batory and B.J. Geraci, “Validating Component Compositions and Subjectivity
in GenVoca Generators”, IEEE Transactions on Software Engineering,
February 1997, 67-82.

W. Harrison and H. Ossher, “Subject-Oriented Programming (A Critique of Pure
Objects)”, OOPSLA 1993, 411-428.

W. Harrison, H. Ossher, R.B. Smith, and D. Ungar, “Subjectivity in Object-Oriented
Systems: Workshop Summary”, Addendum to OOPSLA 1994.

H. Ossher and W. Harrison, “Combination of Inheritance Hierarchies”, Proc.
OOPSLA 1992, 25-40.

H. Ossher, et al., “Subject-Oriented Composition Rules”, OOPSLA 1995, 235-250.

Y. Smaragdakis and D. Batory,  “Implementing Reusable OO Components”,
International Conference on Software Reuse, 1998.

Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin
Layers”, ECOOP 1998. 

M. Van Hilst and D. Notkin, “Using Role Components to Implement Collaboration-
Based Designs”, OOPSLA 1996,  359-369.

M. Van Hilst and D. Notkin, “Using C++ Templates to Implement Role-Based
Designs”, Proc. JSSST Int. Symposium on Object Technologies for Advanced
Software, Springer-Verlag 1996, 22-37. 

M. Van Hilst and D. Notkin, “Decoupling Change from Design”,  SIGSOFT 1996.

1.12  Component Design

The following papers give an overview of techniques on how components can be
implemented. Please refer to the Subjectivity lecture for an overview. (See also
Method Wrappers and Role-based Designs and Mixins).

J.S. Heidemann and G.J. Popek, “File-System Development with Stackable
Layers”, ACM Transactions on Computer Systems, 12(1), 58-89.
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N. Hutchinson and L. Peterson, “The x-kernel: an Architecture for Implementing
Network Protocols”, IEEE Trans. Software Engineering, January 1991.

M. Van Hilst and D. Notkin, in Subjectivity above.

Y. Smaragdakis and D. Batory, in Subjectivity above.

1.13  Method Wrappers

The encapsulation of method wrappings within components is an important part of
the GenVoca model. The following references provide a state-of-the-art look at cur-
rent ideas in method wrappings:

D. Batory, “Subjectivity and GenVoca Generators”, Fourth International
Conference on Software Reuse, Orlando, Florida, April 1996.

D. Batory and Y. Smaragdakis, “Another Look at Architectural Styles and
ADAGE”, Loral FSD Owego T.R. ADAGE-UT-95-02.

S. Danforth and I. Forman, “Reflections on Metaclass Programming in SOM”,
OOPSLA 1994, 440-452.

I.R. Forman, S. Danforth, and H. Madduri, “Composition of Before/After
Metaclasses in SOM”, OOPSLA 1994, 427-439.

P. Graham, ANSI Common Lisp, Prentice Hall, 1995.

J.S. Heidemann and G.J. Popek, “File-System Development with Stackable
Layers”, ACM Transactions on Computer Systems, 12(1), 58-89.

G. Kiczales, J. des Rivieres, and D.G. Bobrow, The Art of the Metaobject Protocol,
MIT Press, 1991.

1.14  Validating Component Compositions

Shallow consistency checking is an important technique used in software architec-
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necker paper gives a very good overview of the goals of layering, software
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