
1

©2002dsbatory

The Finland Tutorials

Don Batory
Department of Computer Sciences

University of Texas at Austin

June 2002
2

©2002dsbatory

My Background

Professor in Computer Sciences
University of Texas at Austin

Research:
extensible software
software product-lines
domain-specific languages
automated software construction

Research goals: build customized software
faster, cheaper, and better

3

©2002dsbatory

Overview

Thesis: simple ideas can streamline the design,
construction, and evolution of complex software in an
elegant way

result: a theory of software design based on generative programming

Very different way to understand and develop software
takes time to appreciate

Goal: create a scientific theory of software design
and implementation – a body of knowledge organized
around principles, expressible by mathematics

4

©2002dsbatory

A Guiding Analogy

Audio recording techniques then and now
1950’s – expensive, “get-it-right-the-1st-time”, hard to change
today’s recordings made in sound studios that “mixin” different
(but simple) sound tracks to create rich artifacts
same for video images (e.g., Titanic)
layering simplifies construction of sophisticated artifacts from
simple artifacts, controls cost, reduces complexity, and improves
product

We are building Y2K+ software using 1950’s tech.
very expensive, hard to change
show how to build software a more modern way

dsb
Note: this entire set of notes is copyrighted by Don Batory
batory@cs.utexas.edu.

5

©2002dsbatory

Ideas are Applicable

Small-to-medium systems

10K – 200K LOC

Special cases are COM, CORBA components

200K+ LOC

6

©2002dsbatory

Overview

First 2 lectures summarize work prior to 2000

review basic ideas
coherent & elegant architectural models
composition validation
automatic programming

Last lecture outlines vista AHEAD

ideas that have radically altered my understanding of my
own work, greatly expanded what is possible
tunnel analogy

7

©2002dsbatory

At Stake...

Next generation software design and
programming technologies

Refinements

aspects
generative programming

(generators)

layers and

hierarchical designsdesign rules
declarative

programming

metamodels

collaboration-based

designs

design wizards

Gen(esis+A)Voca

8

©2002dsbatory

Tutorial Lectures

#1: Refinements and Product-Line Architectures
#2: Design Rules and Design Wizards
#3: Scaling Refinements

Collection of previous talks
50-minute invited presentations (2000-)
20-minute conference presentations (1998-)
some from earlier tutorial (1994-1998)

Ask questions whenever!!

9

©2002dsbatory

1

Refinements and
Product-Line Architectures

Don Batory
University of Texas at Austin
batory@cs.utexas.edu

Lecture 1

1

Lecture 1a: Refinements and
Product-Line Architectures

Don Batory
University of Texas at Austin
batory@cs.utexas.edu

2

This Lecture

About a new kind of modularity for software
• ideal for (product-line) architectures, software synthesis

• introduce ideas through series of short presentations

Ideas are:
• simple, easy to understand, easy to recognize

• deep, hard to understand

• applicable now...

3

So What?

Why do we need a new kind of modularity when we’re
satisfied now...?

Ans: you’re not satisfied!

– add/remove feature from existing application

– COM-DCOM-CORBA components aren’t universal
• show example later where COM modularity is opposite of what we want

4

Historical Perspective

Software design and programming languages influenced
by modularity

• module encapsulates primitive functionality or service that (ideally)
can be reused

Module granularities became progressively larger
• small - function
• medium - class = suites of interrelated functions
• large - package = suites of interrelated classes

5

Granularity vs. Reuse

Benefits of scaled granularity driven by reuse

More a module is used, more valuable it is

Biggerstaff 1994 observed:
– larger the module, more specific its functionality,

less likely to be reused
– scaling modularity seems to defeat the purpose of reuse
– opposite of what we want

6

Solution

Answer is not entire function, class, package

7

Solution

Answer is not entire function, class, package

Lot of independent research today says
solution is a module encapsulates fragments of

– composing modules yields packages of fully-formed classes

functions
classes
packages

class1 class2 class3

module a

module b

module c

8

Contributors to this view…

Different researchers have different variants
(implementations) of this idea

– refinements – Dijkstra, Wirth 68, Neighbors 84, Smith 89
– layers – Dijkstra 68, Batory 84
– collaborations – Reenskaug 92
– traversals – Lieberherr 96
– aspects – Kiczales 97, et al.
– concerns – Ossher-Harrison-Tarr 99
– feature-based product-lines – Kang 90, Gomaa 92

9

Common Idea...

Refinement
– an elaboration or extension of a program (entity) that

introduces a new service, feature, or relationship

Characteristics
– abstract, very general idea
– reusable
– interchangeable
– (largely) defined independently of each other

Illustrate concept in next few slides 10

Tutorial on Refinements

11

Refinements are Interchangable

12

Refinements are Interchangable

13

Refinements are Interchangable

14

Refinements are Interchangable

15

Refinements are Reusable

16

Refinements are Functions

PersonPhoto beanie(PersonPhoto x)

PersonPhoto uncleSam(PersonPhoto x)

PersonPhoto mustache(PersonPhoto x)

PersonPhoto lincolnBeard(PersonPhoto x)

17

Refinement Compositions

Refinement composition == function composition

= lincolnBeard(uncleSam())

18

Large Scale Refinements

called Collaborations (1992)
• simultaneously modify multiple objects/entities
• refinement of single entity is called role

Example: Positions in US Government
• each defines a role

Prez
Vice
Prez

....

19

Composing Refinements

At election-time, collaboration remains constant,
but objects that are refined are different

Prez
Vice
Prez

20

Composing Refinements

At election-time, collaboration remains constant,
but objects that are refined are different

Prez
Vice
Prez

21

Composing Refinements

At election-time, collaboration remains constant,
but objects that are refined are different

Prez
Vice
Prez 22

Composing Refinements

At election-time, collaboration remains constant,
but objects that are refined are different

Prez
Vice
Prez

23

Composing Refinements

Example of dynamic composition of collaborations

Prez
Vice
Prez

24

Other Collaborations

Parent-Child collaboration

Prof-Student collaboration

Parent Child

Prof Student

25

Example

DonSteve AlexKelly Yannis

Prof Student

Prof Student

Parent Child

Parent Child
26

Same Holds for Software!

Highly complex entities and relationships
in software can be synthesized by

composing generic & reusable
refinements

27

Returning to Computer Science

Refinement – an elaboration or extension of a program
that introduces a new service or feature

Prominent characteristic is “cross cutting”
– refinement modifies multiple classes of an application

simultaneously and consistently

“Aspect” is the currently popular term for this effect
– “refinement” was original name
– does not imply particular implementation (as does “aspects”)

28

Connecting the Dots…

Resurrection of age-old design methodology
step-wise refinement

• idea of progressively building programs by adding one detail or
feature at a time

• abandoned because it failed to produce programs of significant size

• reason: use of microscopic refinements required hundreds/thousands
of refinements to produce admittedly small programs

Step-wise refinement is fundamental and
shouldn’t be abandoned

• but it needs to be scaled!

29

Novelty of Current Work

Addresses key limitations:
• scaling refinements – where single refinement impacts multiple classes
• composing a few refinements yields entire application

Consequences:
• inverse relationship between module size and reusability

(which crippled conventional concepts of modules) no longer applies

• software modularity is a topic of wide-spread interest

• leads to talk on product-line architectures…

30

Introduction to Product-Lines

Models of software are too low level

– expose classes, methods, objects as focal point of discourse
in software design and implementation

– difficult (impossible) to
• reason about construction of applications from components
• produce software automatically from high-level specifications

(distance is too great)

31

Product-Line Architectures

Problems become evident in PLAs
– goal: build families of related applications through component

compositions…

With PLAs we want:
– simple specifications of applications
– reason about application implementations using components
– automatically optimize designs given application constraints

32

Can be done...

Provided that components encapsulate implementation of
individual features that can be shared by multiple applications

• app1 has features x,y,z
• app2 has features x,q,r

Focus of discourse is
on FEATURES not CODE

33

Can be done...

Provided that components encapsulate implementation of
individual features that can be shared by multiple applications

• app1 has features x,y,z
• app2 has features x,q,r

Features align better with requirements
• more abstract form of modularity

But refinements are what features are all about...!

Outline a model of software development based on refinements...

Focus of discourse is
on FEATURES not CODE

34

Next Few Slides...

High-level view of application specifications

Abstract model for implementing specifications

Concrete implementation of this model

Relate to Other issues

35

Example:
Domain of Graph Applications

– Simplest way to express family of related
applications is as a grammar

• different members have different sets of features

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...choose one
choose at least one

choose one

36

Example Family Members

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...

37

Now its your turn...

– Easy to imagine a GUI tool that would allow you to specify
any possible combination

• and generate an explanation of your specification

• and identify errors (and suggest corrections) when some
combination of features is not possible

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...

38

That’s easy... but what’s hard?

Mapping to an abstract model of product-lines

Basic ideas:

– programs are values

– functions map input values (programs) to
output values (programs)

– GenVoca Model

39

Programs as Values

Constants:
– f – an application with feature f

– h – an application with feature h

Functions (Refinements)
– i(x) – adds feature i to application x

– j(x) – adds feature j to application x

Key idea:
equating features
with refinements

(constants,
functions)

40

Function Composition

Applications are equations

app1 = i(f)

app2 = j(h)

app3 = i(j(f))

- application with features f and i

- application with features h and j

- your turn...

Given set of “building block” constants and
functions, we can create a family of applications

through function composition

41

Graph Application Domain

Constants:

Functions:

directed
undirected

dfs(x) – depth first search
bfs(x) – breadth first search
cycle(x) – cycle checking
number(x) – vertex numbering
region(x) – connected regions
... 42

Constructing Applications

• graph_app = region(vertex(dfs(directed)))

• order of function composition is dictated order in which
applications are refined....

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...

43

Where we are…

High-level view of application specifications

Abstract model for implementing specifications

Concrete implementation of this model

44

Questions to Answer...

How do we represent programs as constants?

How do we represent refinements as functions?

Note: there are lots of answers.

Here is the simplest...

45

Programs are Constants

Application P is a set (package) of classes

a b c d

class P {
class a { ... } // inner classes
class b { ... }
class c { ... }
class d { ... }

}

P represent P as
a class, not as
a package!

46

Functions?

How do we statically refine classes in OO?

Ans: inheritance

47

Scaling Refinements...

When you add a new feature to an existing OO
application, what do you notice?

changes aren’t localized
• many classes are refined
• “cross cuts”

48

Functions

Apply function i() to application P

a b c d
P

a c d
i

class i <x> extends x { // mixins =
class a extends x.a { ... } // parameterized
class c extends x.c { ... } // inheritance
class d extends x.d { ... }

}

49

Mixin-Layers

Nest mixins inside mixins – called mixin-layers

An elegant way to implement collaborations (refinements)
• as we will see later, not the only way...
• there are lots of ways...

class i <x> extends x {
class a extends x.a { ... }
class c extends x.c { ... }
class d extends x.d { ... }

}

inner or nested mixin

outer mixin

50

Summarizing

Functions are implemented as mixins
– take superclass as input and produce

subclass as output

Function composition corresponds to
template composition

j(i(h)) j< i< h > >

51

Where we are…

High-level view of application specifications

Abstract model for implementing specifications

Concrete implementation of this model

52

Graph Domain

Consider application:

app1 = number(dfs(directed))

directed

dfs

number

53

app1

directed graph node

dfs graph node work

number graph node work

54

What If app1 Written By hand?

Wouldn’t have the inheritance hierarchy

– only write bottom-most classes
– these classes can be automatically generated

directed graph node

dfs graph node work

number graph node work

55

Big Picture

Lots of ways to implement refinements:
• objects
• templates
• metaprograms
• rule-sets of program transformation systems...

Lots of success: Product-lines created for
• database systems (1988)
• network protocols (1989)
• data structures (1993)
• avionics (1994)
• extensible Java compilers (1997)
• radio ergonomics (1998)

verification tools (2000)

56

Remaining Topics…

Nontrivial example of these ideas

Future areas of research….

57

A Real Example…

58

FSATS

Fire Support Automated Test System
– command-and-control simulator for Army fire support
– 1st generation system (10 years old)

Problems common to other applications
– difficult to understand, maintain, debug
– new capabilities projected, existing revamped
– design fatigue – don’t want to extend current version

59

Overview of Fire Support

M109 FA Plts

FO

FIST
fire support team

FSE Battalion

FRONT LINE

FSATS is a simulator
where any or all OPFACs
are simulated

OPFACs
(operational
facilities)

60

Vanilla Distributed Application

Set of collaborating objects that work collectively to
process mission

Different types of missions (collaborations):
– WRFFE artillery

– WRFFE mortars

– Adjust-Fire artillery, Adjust-Fire mortars

– about 20 mission types in all, more are projected

OPFAC takes different actions per mission type

Can simultaneously process any number of mission
instances (2 WRFFE-mortars, 3 AF-Arts)

61

Original Implementation

– Was monolithic; each OPFAC is an Ada program that
sends and receives tactical messages

– Received message processed by rules:
– if (conditions1) do-action1;

– if (conditions2) do-action2;

– if (conditions3) do-action3; ...

– Complicated...
– conditions are conjunctions of 5-10 primitives

– 200-1000+ rules per OPFAC
– hard to see what rules would actually apply to given mission
– difficult to write, understand, debug rules

62

Key Goals of Redesign

Disentangle logic of different mission types
• implementation and testing of different missions independent of

existing missions

Reduce conceptual distance from logic specification to
implementation

• trace implementation to requirements

Easy to add new mission types,
experiment with different implementations

63

FSATS Prototype

M109 FA Plts

FO

FIST

FSE Battalion

Idea: each mission type is a refinement
that encapsulates mission-specific
state machine for each participating
OPFAC

AF-Artillery

Advantage: missions
specified and debugged
in isolation of each other

Vanilla

WRFFE-Artillery

64

FO FIST FSE ...
WRFFE-Art

WRFFE-Art()

Mixin-Layer Implementation

WRFFE-Mortar()

FO FIST FSE ...
WRFFE-Mortar

FSATS =

FO FIST FSE ...
Vanilla

Vanilla

65

Perspective

– Each vertical inheritance chain
defines an OPFAC program

• CORBA or DCOM component

– Each mission type
(an FSATS building block)
cuts across OPFAC programs

• layer or refinement

FO FIST FSE ...

FO FIST FSE ...

FO FIST FSE ...

FO FIST FSE

66

Concrete Benefits

Code complexity reduced by factor of 4
Added feature in 3 days
would have taken over a month previously
Regained intellectual control over FSATS design

$2.2M project in 2002 from STRICOM to build next-generation
version of FSATS
More in later lecture...

See “Achieving Extensibility Through Product-Lines
and Domain-Specific Languages: A Case Study”

Int. Conf. Software Reuse, June 2000

67

Future Areas of Research

Automatic Programming
Separation of Concerns

68

Automatic Programming

Ancient problem of program synthesis

Goal: translate declarative specifications on program
use to efficient implementation

Largely abandoned in mid-1980s because techniques
didn’t scale, too complicated

• See Balzer’s paper in Biggerstaff & Perlis Reuse Text

Still an important problem!!

69

Automatic Design of Software

– Remember: applications are represented by
equations!

– Optimizations arise when there are multiple ways to
implement the same feature

• suppose we want an application with features a, b, c
• 3 ways to implement b:

b1(…), b2(…), b3(…)

70

min{ $(),

$(),

$()
}

Equation Optimization

We know one of the following equations best
defines our application:

App = a(b1(c))

a(b2(c))

a(b3(c))

71

Equation Optimization

Intelligently walk the space of all equations
• convert each equation into cost function
• evaluate cost function to assess “efficiency” of design
• having found “best” design, convert equation into software
• analogous to relational query optimization

Refinements “encapsulate” changes to:
• source code
• performance models...

72

Equation Optimization

See “Design Wizards…” IEEE TSE May 2000
• automatically designs software for given domain
• automatically generates this software

Concrete results:
• generated code typically faster than hand-written code
• designs typically as good (sometimes better) than experts

Exciting area for further research…
• more in later lecture...

73

Separation of Concerns

People model applications from different viewpoints:
• requirements, source code, documentation
• formal properties, performance properties,
• PLA conference – one group maintains 9 different views of their

software (process, class-diagram, …)!!

All are concerns
– different dimensions and representations in which to

conceptualize, understand, and build software

74

Relevance to Refinements?

Refinements are very abstract concept
– need not be limited to expressing changes to source code

(which is almost all that we look at today)

When you apply a refinement to an application, you
change the application’s:

• source code, performance properties, documentation,
• formal properties,
• “cross cutting effects”

75

Refinements and Concerns

When we write applications as equations:

app1 = i(j(f))

We could be updating multiple representations –
concerns – simultaneously and

Consistently

76

Visualization of i(j(f))

manual code drc perf
f

manual code drc perf
j

manual code drc perf
i

77

Our Experience

We built distinct tools and specifications for refinements:
• source code
• formal properties
• documentations
• performance properties ...

Had no model that allowed us to relate all the pieces
together into a coherent whole

• now we do...
• may not solve all problems, but it gets us up the curve...

78

Consistency of Refinements

Maintaining the consistency of different
representations/concerns is key

• but this is a collaboration!!

Refinements provide a way to simplify this problem to
the consistency of concerns on a per-feature basis...

Saying
“when modularity grows up...
we’ll be talking about refinements”

More in later lecture ...

79

Conclusions

– Years of work has taught me that refinements are fundamental to
building blocks of software applications

• took me years to realize that programs are values…

– Ideas are important
• raise level of modularity from “code” to “design”
• raise level of programming to the architectural level
• allows us to reason about applications in terms of their features

(as real architects do)
• structured way to automate the development of complex, efficient software
• provides us with a broader view of our universe
• its simple (but it requires you to think differently)

80

81

Lecture 1b:
Heritage of Refinements

refinements are not new, but were
already part of our software design
vocabulary...

82

Background

GenVoca arose circa 1983:
• legos: idea of components that export and import

standardized interfaces taken to logical conclusion

• outgrowth of layered designs
– each layer adds new functionality
– or extends existing functionality

Develop GenVoca ideas from first principles

83

Hierarchical Software

Virtual Machines (Dijkstra 1968)

• design each level of a hierarchical system independently
• virtual machine – operations on level i+1 defined in terms of

operations on level i

Refresh using OO ideas:

• OOVM interface – set of Java interfaces
• hierarchical design = set of OOVMs, 1 per level

84

Object Model Notation

Use E-R like notation (any will do)

A

C

B

a-c b-c

object model R

D

E

object model S

d-e

85

Hierarchical Designs
level n

level i+1

level i

level 0

A B

C
R

a-c b-c

level i+1 OOVM

a layer is a
consistent

refinement or
mapping between

OOVMs

D

E
S

level i OOVM

d-e

86

GenVoca – the early years...

Interface of layer is an OOVM

Realm is set of all layers that implement same OOVM

• plug-compatible, interoperable, interchangeable
• parameterized layers are functions
• non-parameterized layers are constants

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

87

Parameterized Layers

Consider g(x:S) : R

g exports R;
g imports S

g translates operations
and objects of R to S

parameter x may be
implemented by any layer that
implements S

(not quite true, but close)

g

A B

C
R

a-c b-c
because g is of type R

D

E
S

because g has parameter of type S

d-e

88

Mixin-Layer Representations

g(y):R

A B COOVM R

ga gb gcg(x:S):R

yd yey:S

D E
OOVM S

89

Mixin-Layer Representations

yd

ga gb gc

yeydyd

ga gb gc

yeyd

Mixin-Layers

g

y

90

Applications are Equations

Equations model abstraction hierarchies
• type of equation defines interface of resulting application

• app1 = y // implements OOVM S
• app2 = g(w) // implements OOVM R
• app3 = g(z) // implements OOVM R

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

91

Product-Lines and Grammars

Model = realms and layers
Realm/Model representation

Grammar representation:

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

S : y | z | w

R : g S | h S | i R

set of all sentences is a language
or product-line

92

Symmetric Layers

Recursion is fundamental to grammars;
symmetric layers are fundamental to GenVoca

– export and import same OOVM
– composable in virtually arbitrary orders
– composition order affects semantics, performance

A symmetric layer of realm W has
parameter of type W

W = { m(x:W), n(x:W), p }

ex: m(n(p)), n(m(p)), m(m(p)), n(n(p)), ...

93

What does Symmetry mean?

Augments or enriches existing abstractions

– relational DBMS – add transposition, data cube
– relational interface still the same, except it has been

enriched
– think of extending a class with a subclass – same idea

– seemingly infinite number of such enrichments....

Experience: very common in all domains...
– should be easy to see…
– “creeping featurisms”

94

Mixin-Layer Composition: i(i(x))

A B COOVM R

A B COOVM R

ia ib ici(x:R):R

ia ib ici(x:R):R

95

Symmetric Layers

ia ib ic

ia ib icia ib ic

Mixin-Layers
i

i

96

Scalability

Adding a new layer (function, constant) to a
realm (model) is equivalent to adding a new rule
to a grammar

• family of applications enlarges exponentially
(in the length of the equation)

• because huge families can be built using relatively few
layers (refinements), GenVoca models are scalable...

97

Important Special Cases – COM

Microsoft’s Component Object Model (COM)
• components export and import “standardized” interfaces
• applications are compositions of COM components

Differences are vanishing slowly
• .Net now supports inheritance among COM components

» not true “refinement” yet
• COM components are single (binary) class that exports multiple

interfaces
– note: not (yet) critical to class of applications we’ve seen

• previously not much plug-and-play
– only one implementation of interfaces typically
– e.g., windows media player

• Microsoft’s Open Information Model 1998 98

Important Special Cases – Aspects
Aspects implement refinements

• implement cross-cuts

We’ve implemented the Graph Product Line using
AspectJ

• AspectJ is flagship tool for
Aspect-Oriented Programming (AOP)

• here’s how we expressed class refinement

• note: this is on-going work with Roberto Lopez-Herrejon

99

Aspects (Cont)
AspectJ has two cross-cut implementations

• “static” and “dynamic”

refines class C {

int newVar;

void newmeth() {...}

}

refinement

public aspect aspectName {

int C.newVar;

void C.newMethod() {...}

}

static AspectJ Cross-Cut 100

Aspects (Cont)

Refining methods references super

refines class C {

void myMethod(int z) {

// before code

super.myMethod(z+2);

// after code
}

}

method
refinement

101

Dynamic Cross-Cuts of AspectJ

public aspect aspectName {

pointcut override_method(C c, int z):
target(c) && args(z) &&
call(void C.myMethod(int));

void around(C c, int z): override_method(c, z) {
// before code
proceed(c, z + 2); // roughly = to super
// after code

}

}

target
of refinement

how to refine

102

Aspects (Cont)

Equation X = A(B(C)) is AspectJ call:

Composition order not fully defined
• can linearize order by “dominates” declaration

Aspects can’t add classes that can be subsequently
refined...

• simple work-around

> ajc C B A (order doesn’t matter)

103

Summary of Special Cases

aspects
mixin-layers
COM components
…

are implementations
of refinementsall

not all aspects can be implemented as mixin-layers
not all mixin-layers can be implemented by aspects
not all COM can be implemented by aspects

they are all refinement implementation techniques
that have their advantages, disadvantages

104

And Let’s Not Forget...

Lots of other work and viewpoints on
refinements

• Doug Smith (Kestrel)
• Jim Neighbor’s Draco

» program optimizations

• Ira Baxter’s Design Maintenance (CACM’92)
• ...

105

Recap Heritage

Rich (largely forgotten) history of software design
related to refinements

• layers, collaborations are examples of refinements
• equations model hierarchical systems

• models of refinements are grammars
• set of all sentences = language = product-line

• symmetric layers export and import the same type
= recursion in grammars

• special cases reduce to traditional component models
(e.g. COM, CORBA) and nontraditional models (aspects)

1

Lecture 2: Design Rules and
Design Wizards

Don Batory
Department of Computer Sciences
University of Texas at Austin

2

Three Fundamental Topics

Object-Oriented Frameworks and Product-Lines
further insight into power of layers by relating to OO frameworks

Composition Validation – not all eqns are valid
impossible for users to debug generated code
need automated help to validate compositions
design rules (composition constraints) are an answer...

Automatic Programming – generation of efficient
programs from declarative specs

largely abandoned problem now in renaissance
equation optimization
design wizards technology is an answer...

3

Lecture 2a: Object-Oriented
Frameworks and Product-Lines

Cultural Enrichment…

4

Introduction
OO Framework is a set of abstract classes
that encapsulate common algorithms of a
family of applications

certain methods left unspecified (abstract)

a framework is a “code template” – key details are
missing

framework instance provides these details, by
supplying concrete class for each abstract class

5

Frameworks (Continued)

framework with
3 abstract classes

framework instance

another framework
instance

each instance defines another member of an application family
6

Houston... we have a problem...
Delineation between abstract and reusable code
from instance-specific code is arbitrary

concrete classes of different framework instances can have
much in common – e.g., replicate with maintenance
problems.

abstract classes can have variations – leads to a proliferation
of frameworks (with maintenance problems)

Practical problem:
IBM’s San Francisco Project has seen this happen

7

Key Problem...
Product-lines with optional features are not
handled well by frameworks

over-featuring – a lot of not-entirely general functionality
may be in abstract classes
replication of code in framework instances

Our contribution:
create a Product-Line of frameworks
assemble both abstract and concrete classes of frameworks
from primitive and reusable layers
eliminate the problem of arbitrary delineation of abstract
from concrete

8

Illustration
Recall a fundamental “law” of OO – a class can
be decomposed into a linear inheritance chain of
simpler classes

E

C

D=

A

always pull a
complex class
apart and express
as compositions of
simpler classes

B

9

Collaborations
Scale “law” to multi-class collaborations

E1 E3E2 D1 D3D2=

C1 C3C2

B1 B3B2

A1 A3A2

app:

pulling classes apart on basis of features that they implement
10

Collaborations
Each collaboration is a “layer” or “feature”

D1 D3D2

C1 C3C2

B1 B3B2

A1 A3A2

feature D

feature C

feature B

feature A

app = D(C(B(A)))

11

Solution to Framework Problem
Look how frameworks are interpreted here –
abstract above horizonal line, concrete below

D1 D3D2

C1 C3C2

B1 B3B2

A1 A3A2

feature D

feature C

feature B

feature A

x1 x2 x3=

y1 y2 y3=

our design framework
12

Placing Line is arbitrary!

D1 D3D2

C1 C3C2

B1 B3B2

A1 A3A2

feature D

feature C

feature B

feature A

x1 x2 x3=

y1 y2 y3=

our design framework

13

Placing Line is arbitrary!

D1 D3D2

C1 C3C2

B1 B3B2

A1 A3A2

feature D

feature C

feature B

feature A x1 x2 x3=

y1 y2 y3=

our design framework
14

Placing Line is arbitrary!

D1 D3D2

C1 C3C2

B1 B3B2

A1 A3A2

feature D

feature C

feature B

feature A

x1 x2 x3=

y1 y2 y3=

our design framework

15

Placing Line is arbitrary!

D1 D3D2

C1 C3C2

B1 B3B2

A1 A3A2

feature D

feature C

feature B

feature A

x1 x2 x3=

y1 y2 y3=

our design framework
16

In the Paper...
Show that collaborations are building blocks of:

abstract classes of frameworks

concrete classes of framework instances

Abstract/concrete line always drawn horizontally
because framework, instance always implements an integral
number of “features”

if they weren’t integral, then every framework instance
would have the same code (to fill in the part of the feature
that was missing)

17

Example
Graph Product Line Domain

different applications implement different graph
traversal algorithms/applications

our building blocks:

undirected -- undirected graph
directed -- directed graph
dft(x) -- depth-first traversal
bft(x) -- breadth-first traversal
number(x) -- vertex numbering
cycle(x) -- cycle checking

18

Product-Line
derives from different compositions

app1 = number(dft(undirected))

app2 = cycle(bft(directed))

app3 = cycle(dft(directed))

app4 = number(cycle(dft(directed)))

...

19

Frameworks
A framework is an (inner) expression

Framework is expression

Instances are expressions with same inner
expression

frame1 = dft(directed)

app4 = number(cycle(frame1))
app1 = number(frame1)

20

Code Replication in Frameworks
Framework #1:

Framework#1 instances

frame1 = dft(directed)

inst11 = number(frame1)
inst12 = cycle(frame1)
inst13 = number(cycle (frame1))

21

Framework Proliferation
Framework #2:

note: replicated code (dft)

frame1 = dft(directed)
frame2 = dft(undirected)

22

In the Paper...
We demonstrate freedom to mix-and-match
optional features using collaborations

Building blocks of abstract classes of frameworks
as well as the concrete classes of framework
instances can be synthesized from primitive and
reusable collaborations

Show corresponding framework – where ever the
“line” is drawn – leads to problems outlined
earlier

23

Conclusions
Frameworks seem ideal for PLA because they
encapsulate reusable code in abstract classes

fail miserably in common case of optional features

Reason: frameworks based on inflexible design
where relationship between common and
application-specific code is fixed

using layers provides a more flexible solution

24

Lecture 2b:
Design Rule Checking

how to validate compositions of
refinements automatically

25

Introduction
Fundamental problem: not all syntactically
correct equations are semantically correct

code can still be generated!

and maybe code will still compile!

and maybe code will appear to run for a while!

impossible for users to determine what went
wrong!

26

Introduction
Absolute necessity to validate compositions
automatically

not all features are compatible
selection of a feature may enable others, disable others

Design Rules are domain-specific constraints that
identify illegal compositions

Design Rule Checking (DRC) is process of
automatically applying design rules

27

But wait!!
What’s wrong with normal type checking?
Assign types to constants, functions?

Ensure that all equations are type correct...

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

28

Type Checking Not Sufficient!!
Recall relationship between grammars/sentences
and product-lines/equations

Type checking corresponds to syntax checking
just because your Java program is syntactically correct
doesn’t mean that it is semantically correct
we need MORE than syntax checking!

Validation of compositions additionally requires
testing semantic constraints

that’s what DRC is all about

29

Overview
DRC is no different than semantic checking
performed by compilers

not all syntactically correct Java programs are semantically
correct...
solution: use attribute grammars to define constraints

Same here: GenVoca model is a grammar

design rules are grammar attributes
DRC algorithms propagate attribute values up and down
parse (equation) trees and evaluate constraint predicates

30

Motivating Example: P3
Generator of container data structures (CDS)

Extended Java to have embedded
domain-specific language (DSL) for CDS

declarative specs that treat containers as database relations

container implementations are composition of P3 components

31

P3 Model
ds = { bintree(x:ds) // binary tree

dlist(x:ds) // unordered list
odlist(x:ds) // ordered list
avail(x:ds) // free-list manager
array(x:mem) // sequential storage
malloc(x:mem) // random storage
inbetween(x:ds) // common delete code
markdelete(x:ds) // logical delete elements
... // many more

}

mem ={ transient // in-memory storage
persistent // memory-mapped

}
32

Data Structures are Equations

container

cursor

elements

container_eqn =

33

Data Structures are Equations

container

malloc

x3
x13

x7x23

odlist()container_eqn = bintree()

cursor

elements

composition
superimposes
data structures

34

Perspective: Cleaveland’s Talk

35

Construction by Refinement
Simultaneous refinement of multiple types

data fieldselement type

container type name

next, prior

first, last

odlist

root

left, right

bintree

36

P3 Specifications extend Java
Containers

empcont is generated container class of emp instances

odlist(age, malloc()) defines its implementation

Cursors
few is a generated cursor class over empcont containers

instances retrieve specified container elements

container empcont<emp> using odlist(age, malloc(transient));

cursor few(empcont e) where dept() = “Computer Science”

orderby -age;

37

In Principle...
Providing declarative, relational database-like
specifications for:

containers and customized container implementations
retrieval (SQL select, update, delete) statements
greatly simplifies data structure programming

And P3 does the hard work:

performs query optimization
generates efficient code...

38

P3 (Cont)
Generates HUGE libraries

dwarfs any standard container structure library

create useful structures not found in any library
with n data structure layers

4 different memory layouts (rand/seq, trans/persist)

2(2+n) different structures (ignoring key parameters)

>> 2(2+n) different structures with key parameters

bintree(bintree(bintree(malloc(transient))))

key A key B key C

39

Efficient too!
Dlist Bstree Rbtree Hash

JDK 82.3 N/A N/A 8.2

CAL 117.4 19.4 17.3 13.5

JGL 116.9 N/A N/A 8.1

Pizza 99.2 N/A N/A 8.7

P3 74.9 13.8 12.8 7.9

See: Batory, Thomas, and Sirkin. Reengineering a
Complex Application Using a Scalable Data Structure
Compiler. ACM SIGSOFT 1994.

40

Need for DRC
Typical equations reference from 5 – 15 layers

earlier examples were simplified

Too elaborate to validate by inspection
even I can’t remember them and I wrote these layers!

Some layers have obscure rules for their use
look at an example...

41

Example Design Rules
inbetween(x:ds) encapsulates:

algorithms shared by all data structures
(bintree, dlist, ...)

positioning of cursor after element is deleted

Correct usage requires
one copy in eqn with 1+ data structures AND

precedes all such data structures in equation

42

Example P3 Design Rules

Such rules should not be borne by programmers
too easy to forget and be misapplied

Want rules to be tested automatically

correct = ... inbetween(... dlist(bintree(...)))

incorrect = ... dlist(... inbetween(bintree(...)))

43

Software Architecture Results
Perry’s Inscape (1989) is environment for
managing evolution of software

light semantics: obligations and consistency checking
components have pre-, post-conditions, obligations

bank loan example

Obligations are conditions that must be satisfied
by system that uses the component

beyond type checking – requires “action-at-a-distance”
– predicates nonlocally satisfied
propagated to enclosing module where they are eventually
satisfied by some postcondition 44

Inscape (Cont)
Full-fledged verification not attempted

primitive predicates declared
(but informally defined)

pre-, post-, obligations expressed using primitives

practical and powerful form of “shallow”
consistency checking using pattern matching and
simple deductions

45

DRC: Adapt Inscape to Layers
DRC models state of equation design

not states of system execution

system

design before refinement

state = no-loops

attribute value

system’

design after refinement

state = has-loops

refinement

46

DRC: Adapt Inscape to Layers
Preconditions and obligations of layer K are
satisfied “at-a-distance” by layers either (far)
below K or (far) above K

constraints typically not satisfied by adjacent layers
(c.f. Goguen, Tracz, Sitaraman)

properties exported to “higher” layers not the same as
those exported to “lower” layers

leads to 2 kinds of design rules

47

#1: Preconditions
for layer usage

X

K

post: A = v

pre: A == v

postconditions
propagated
downwards

48

#2: Prerestrictions
Preconditions for parameter instantiation

corresponds to Inscape obligations

K

X

pre: A == v

post: A = v

postrestrictions
propagated
upwards

49

DRC Basics
Layers have:

DRC involves:
top-down propagation of postconditions
and testing of layer preconditions
bottom-up propagation of postrestrictions
and testing of layer parameter prerestrictions

Basically very simple....

K

preconditions

postconditions prerestrictions

postrestrictions

50

DRC Attributes and Predicates
3-value logic: attribute represents property whose
value is:

asserted

negated

no information

Predicates are conjunctions:
A ^ B properties A and B are asserted

¬Α ^ B property A is negated, B asserted

51

Condition Propagation Operator
Postconditions, existing conditions
specified by simple predicates

Predicate composition operator ⊕
Existing is ¬Α ^ B

Post is A

Post ⊕ Existing = conditions after composition

(A) ⊕ (¬Α ^ B) = (A ^ B)

52

Condition Testing
Layer can be used if precondition P is
satisfied

E is existing condition
test: E ⇒ P

Example:
E = ¬Α ^ B
P = ¬Α
E ⇒ P is satisfied
implemented easily by property lists...

53

Top-Down DRC

A

B

C

postcondition-A

postcondition-B

postcondition-C

S

top -- initial conditions for composition S

⊕ top = top’

⊕ top’ = top”

⊕ top” = top’”

postconditions
propagated by ⊕

top ⇒ precondition-A

top’ ⇒ precondition-B

top” ⇒ precondition-B

preconditions
tested by ⇒

simple recursive
algorithm for
top-down DRC

54

Is Composition Valid?

R

pre: A ^ B

S
post: A

T
post: B

A^B

Yes

R

pre: A ^ B

S
post: A

T
post: B

A^B

Yes

55

Is Composition Valid?

R

pre: A ^ B

T
post: B

U
post: A ^ ¬ B

R

pre: A ^ B

T
post: B

U
post: A ^ ¬ B

A^B

Yes

A^¬B

No
56

Is Composition Valid?

Simple recursive algorithm
for top-down propagation of
conditions and testing
preconditions

Experience: all domains
we’ve seen are like this

Simple predicates
Simple inferences
Don’t need nuclear-
powered theorem provers

R

pre: A ^ B

T
post: B

U
post: A ^ ¬ B

S
post: A

A^B

OK

57

Bottom-Up DRC

A

B

C

postrestriction-A

postrestriction-B

postrestriction-C

set of required properties of application
⇑

prerestriction-B
⇑

prerestriction-A
⇑

same set of
operators as
before ⊕, ⇒

simple recursive
algorithm for
bottom-up DRC

S

⊕ bot = mid

⊕ mid

= bot

58

Is Composition Valid?

I

pre: A ^ B

H

post: B

F

post: A ^ ¬ B

G

post: C

A^ ¬ B^ C

No

H

pre: A ^ B

I

post: A ^ ¬ B

F

post: B

G

post: C

A^ B^ C

Yes

59

Attribute Grammars
McAllester observed attribute grammars unify
realms, attributes, DRC algorithms

realms of layers are grammars

states of program design modeled by attributes

postconditions are inherited attributes
(values determined by ancestors above)

postrestrictions are synthesized attributes
(values determined by descendants below)

60

Implementation Notes
Straightforward implementation – 1500 loc

DRC algorithm is efficient: O(mn)
m = # of attributes
n = # of layers

Domain

Genesis (databases)

FSATS

P3 (data structure)

#Realms

9

1

3

#Layers

52

25

50

#Attributes

14

41

7

61

Design Rule File for P3
properties = {

logical_key "a logical-key-ordered layer"
retrieval "a retrieval layer"
inbetween "a layer needed for element deletion"
mark_delete "a layer that marks elements deleted”

}

Here are layer signatures and design rules.

bintree(ds) : ds {
assert above { retrieval logical_key }
require above { inbetween }

}

array(mem) : ds {
require above { mark_delete } // mark-delete layer required above array

assert above { retrieval } // assert array is retrieval layer
assert below { retrieval } // to all descendents and ancestors

}

signature

design rules

62

Big Picture – DRC Composition

bintree(ds) : ds {
assert above { retrieval logical_key }
require above { inbetween }

}

array(mem) : ds {
require above { mark_delete }

assert above { retrieval }
assert below { retrieval }

}

Composition algorithms
specific to DRC representations

bintree-array(mem) : ds {
assert above { retrieval logical_key }
require above { inbetween,

mark_delete }
assert below { retrieval }

}

DRC for bintree(array(x)):

63

Suggesting Error Corrections

Besides detecting errors, DRC
algorithms can suggest repairs

precondition ceilings of
Inscape

Error located in between
X and Y

Similar technique for
prerestrictions

X

Y

post: ¬ A

pre: A

precondition error!
post: A

Zadd Z

64

Example
Want container that stores elements onto a binary tree
whose nodes are stored sequentially in transient memory.
1st try:

DRC response:

first = top2ds(bintree(array(transient)))

precondition errors:
an inbetween layer is expected between top2ds and bintree
a mark_delete layer is expected between top2ds and array

prerestriction error:
top2ds expects a subsystem with a qualification layer

inbetween

mark_delete

qualification

65

Example (Cont)
Clumsy fix:

DRC response

Correct equation – swap qualify and bintree

second = top2ds(inbetween(bintree(qualify(
mark-delete(array(transient))))))

precondition error:
a retrieval layer (bintree) not expected above qualify

third = top2ds(inbetween(qualify(bintree(
mark-delete(array(transient))))))

66

Insights
DRC directs users to modify eqn to the “nearest”
correct eqn in space of all eqns

generally is what you want

Why isn’t DRC a challenging problem in
program verification?

solution unlikely to be automatable, forget about efficiency

Inscape work and our own have observed
problem is straightforward
solution is automatable AND efficient! but WHY?

67

Reason #1
#1: Shallow consistency checking goes long way

Most design errors are shallow

conjecture: all errors at layer/refinement composition level
are shallow

Remaining errors must be dealt with by layer
(refinement) implementers

68

Reasons #2, #3
#2: Modeling states of program design
(not execution) vastly reduces number of
properties to examine

#3: GenVoca is a methodology for creating
reusable designs as refinements

it really works well

69

The Key
What makes OO designs so powerful and
attractive?

Ans: ability to manage and control software
complexity

Standardization is a powerful way of
managing and controlling software
complexity in product-lines

70

The Key (Cont)
Standardization makes problems tractable that
would otherwise be very difficult

ex: composing COTS components
(Garlan’s Architectural Mismatch paper)

composition is simple in GenVoca

standardization seems to limit the ways in which
refinements can constrain each other’s behavior

makes DRC tractable

historical perspective... (eigenvectors)

71

Additional Insights
Understanding software in terms of
implementation-independent refinements:

enhances power of DRC

DRC tells you whether two refinements (features) can be
composed regardless of how they are implemented

ex: bintree(encrypt(...)) may be correct
ex: encrypt(bintree(...)) is never correct

design rules define the compatibility of features

if it was harder, architects couldn’t design, people couldn’t
program... 72

Recap of DRC
Fundamental problem in architectures is
consistency of component compositions

Simple, automatic, and efficient algorithms for
validating consistency of GenVoca equations

GenVoca models are grammars
design rules are attributes of this grammar

express semantic compositional constraints

DRC worked well in every domain we’ve encountered...

73

Assignment
Try example problem in back of notes!!

74

Lecture 2c: Design Wizards

Resurrecting

Automatic

Programming

75

Automatic Programming
Holy grail of Software Engineering,
Artificial Intelligence

Engineer Declarative
Specification
of Application

generator

Efficient
Application

76

Perspective
Domain-specific generators like P3 will be
common

specify application by declaratively listing required features
no code to write!

A user of this technology is confronted with:

generator, well-stocked library of layers, features
papers, results demonstrate power of approach
benchmarks on how much better it is than hand-written
code...

But...

77

Problems Arise Quickly...
What to do next...?
How to solve my problems?

need help in selecting features/layers

need expert guidance in application design

generators don’t help us here...

also problems inherent in software design anyway

78

Fundamental Problems
Designers generally don’t have full knowledge
of application’s use

P3 – will know queries (from cursor declarations),
but not frequency of execution

need to guess at actual workload

Even if workload is known, can be challenging
to infer efficient design

example...

79

Guess the Best Data Structure!

Easy if workload is simple:

access elements that satisfy query: N = = value

Hard for slightly more complex workloads:

20,000 elements
3000 elements inserted/deleted per period
N = = value1 && A = = value2 : 2000 times per period
all elements retrieved in S order : 60 times per period
what data structure would be best?

80

Manual Solutions Costly
Cycle:

requires lots of sophisticated programmer support
very costly
few cycles ever performed

“if it isn’t broke, don’t fix it...”

collect
statistics

optimize
design

rewrite
application

81

Future Solution: Automation
Automate steps and close loop

program monitors itself
program initiates self-evaluation, self-optimization
program initiates self-regeneration

Design Wizard is tool that performs this
optimization

self-adaptive software

82

Optimization of Equations
We express application design and
implementation as an equation:

application = a(b(c))

How to deduce an efficient equation for a given
workload?

knowledge typically not present in domain models
not same as “design rules”
want rules for optimization, not rules for correctness

83

Relational Query Optimization
Classic example of automatic programming:

declarative query is mapped to an expression
each expression represents a unique program
expression is optimized using rewrite rules
efficient program generated from expression

SQL
select

statement
parser

inefficient
relational
algebra

expression

rule-based
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

we want to do the same
for other software domains

84

Use Same Paradigm In Other Domains!
P3 is a case study

space of all equations given by P3 model + design rules
must additional information:

develop cost model that estimates efficiency of design
(equation) for given workload
rewrite rules tell us WHEN to use particular layers/features

search space for equation that is the cheapest

odlist(x) ⇒ bintree(x)
; replace ordered doubly-linked list with bintree

; if both random and ordered key access are needed

85

Perspective: Baxter’s Talk

© Semantic Designs 2002 16

Transformation Systems
Stepwise Semiautomatic Conversion of Specs to Programs

Spec

transformations preserve specification semantics!

Transform
EngineTransforms

Metaprograms
Viewer

Software
Engineer“Automatic Programming” Engine

fS
f1

t1 t2

fk
fG

tk-1 tk

fk-1

tk-2

...

fS
Prog

fG

Fg = Tk(… T3(T2(T1(Fs)) …)

My “rewrite rules” are on the above equation
F’g = Tk(… T3(T0(Fs)) …)

T2(T1(x)) ⇒ T0(x)

86

Perspective
Proposing a theory of software architecture
design based on large scale refinements

If application designs truly are equations, we
should be able to optimize them

If we can optimize equations, we can achieve a
level of automatic programming

87

Upcoming Slides
Show how automatic programming is possible

Design Wizard for P3

P3 Workload Specifications
Cost Model
Space of P3 Equations
Automatic Optimization of Equations
Automatic Critique
Conclusions

88

P3 Workload Specification
Data structure optimization well-studied

relational DB optimization
late ‘70s and early ‘80s research

Workload characterized by:

type and cardinality of element attributes
frequency of each cursor & container operation

89

P3 Workload Specification
cardinality = 10000;

element = {
ID TYPE CARDINALITY
#---

name String 10000;
age int 60;

}

workload = {
CATEGORY FREQUENCY
#---

insertion 300;
deletion 300;
ret orderby name 100;
ret where name == “Don” && age > 20 orderby age 200;

}

Equation = odlist(age, malloc());
starting equation

90

Performance Model
Given equation E and workload W:
how do we compute cost(E,W)?

assign a “rank” to evaluate equations

Ans: create a performance model for each layer
foreach layer L, we have performance model Lp

given equation

E = X(Y(Z))

we compose its performance model

Ep = Xp (Yp (Zp))

91

Big Picture
Following slides:

illustrate traditional approach to performance
modeling in databases, data structures

different domains have their own approach,
techniques for performance modeling which would
require their own adaptation to this organization

case study to show how to compose performance
models in domain of data structures

92

Performance Model
Follows classical database research

sum of costs of processing each cursor, container operation
times frequency of execution

now how to compute I(E), D(E), ... ?

93

Performance Model (Cont)
Computed per equation E

What is insertionCost(...) per layer? 94

Aspect Performance Model
Elementary analysis of each data structure

cost equation for each operation
c is a layer-specific constant

Now, how to find a good equation E??

95

Space of P3 Equations
P3 layers characterized by 3 kinds of attributes:

properties – classify layers/features

signatures – specify realm membership, parameters

design rules – composition constraints

Design Rule File (previously shown) specifies all
of this

96

Design Rule File (again)
properties = {

logical_key "a logical-key-ordered layer"
retrieval "a retrieval layer"
inbetween "a layer needed for element deletion"
mark_delete "a layer that marks elements deleted”

}

Here are layer signatures and design rules.

bintree(ds) : ds {
assert above { retrieval logical_key }
require above { inbetween }

}

array(mem) : ds {
require above { mark_delete } // mark-delete layer required above array

assert above { retrieval } // assert array is retrieval layer
assert below { retrieval } // to all descendents and ancestors

}

97

Space of P3 Equations
Graph G = { V, A }

V is set of valid equations that can be composed with
given layers

A is set of arcs – connects equation x with y if there
is a rewrite rule that transforms x into y

So what are the rewrite rules?

98

Rewrite Rules
Derived from analysis of personal use

we analyzed our own thought patterns to deduce equational
rewrite rules for the P3 model

When rewrite is attempted:

resulting equation had to be valid

cost of resulting equation was unchanged or lowered

if both hold, result is kept

greedy search heuristic …

99

Example Rules
Some rewrites about element attributes

if element attribute A is listed as an order-by key in the
workload specification, then try to insert a logical_key layer
(e.g., rbtree or ordered-list) with A as its key

else

try to replace the logical_key layer with A as its key with a
more efficient logical_key layer

Note: we use design rule file to identify layers
that assert logical_key property

100

Another Rewrite Rule
If element attribute A is used in an equality
retrieval predicate (e.g., A == ‘Don’) then try
to insert a hash_key layer with A as its key

else

if there already exists such a layer, try to substitute
it with a more efficient hash_key layer

101

Optimization
Run to fix-point

foreach element attribute A {
apply each “attribute growth” rewrite for A

}

apply each “non-attribute growth” rewrite
apply each “shrink” rewrite

Guarantees finding a local minimum

No guarantees for global minimum
general problem is NP-hard 102

P3 Workload Specification
cardinality = 10000;

element = {
ID TYPE CARDINALITY
#---

name String 10000;
age int 60;

}

workload = {
CATEGORY FREQUENCY
#---

insertion 300;
deletion 300;
ret orderby name 100;
ret where name == “Don” && age > 20 orderby age 200;

}

Equation = odlist(age, malloc());

103

Original Equation is: odlist(age, malloc())
cost = 19593

Equation P3 Wizard recommends is :
hashcmp(name, hash(name,5000, odlist(name, malloc())))

cost = 1606

Projected improvement: 1119%

Reasons why we choose this type equation:

hashcmp: field name is hashed because it will be faster to
compare the values of two string fields when they are hashed.

hash: A hash data structure with hash key name is used because
11% of the operations involve equality retrieval on name.

odlist: A doubly linked list ordered by name is used because
many retrievals will be ordered by name.

Critique

104

Analysis
Original container implementation inefficient

store elements on list in age order

Suggested design:
fast access to elements via name using hashing
elements stored on list in name order
using hashcmp where predicates like name=“Don” are
replaced with hash_of_name=hash(“Don”) ^ name=“Don”
speeds up searches

Suggested design is not immediately obvious
tedious to implement by hand
easy for P3 to do it

105

Big Picture
Equation synthesis is precursor to
self-adaptive software

wizards will be critical in “closing” the loop that will
help automate certain forms of software maintenance

Not all users of generators will be
domain-experts

wizards will help avoid blunders, find better
implementations of target systems automatically

106

Conclusions
First example of Design Wizard

can be generalized to other domains
typically uncommon – most domains have only one
implementation of a feature, so there’s little to optimize
in principle, it always arises when there are multiple
implementations of a feature

substantial improvement over previous work
(ex. SETL, AP5, Mitoma’s Optimizer)

107

Perspective: Baxter’s Talk
I disagree!
Counter examples

Relational optimizers
Data Structure Design
Wizard

Why?
possible to find abstraction
level for specifications that
can be implemented
automatically –
collaborations/features
level at which architects
reason

© Semantic Designs 2002 15

Fully Automatic Programming? NO!

• Problems:
– Impossible to find abstraction level for specifications

that can always be implemented automatically
(Gödels incompleteness theorem)

– Unsuitable notation to describe problem
(who implements the AP engine for “my” problem domain?)

– Limited control over performance of implementation
(why does the ∈ -test on sets need linear time in the size of the set?)
(why doesn’t yacc produce COBOL code?)

• Solution:
– Use highly configurable semi-automatic engine

108

Conclusions
Self-adaptive software is important topic

adding more automation to generative programming

attempt to have software maintain itself

we’ve shown relationship of self-adaptive software to
generators and equation-rewriting technologies

start on a promising line of research

1

Lecture #3:
Scaling Refinements

Don Batory
Dept of Computer Sciences

University of Texas at Austin

2

Lecture 3a:
The AHEAD Model

Don Batory
Dept of Computer Sciences

University of Texas at Austin

3

Requests from Yesterday…

Want to see real examples

Want to see future directions
this is how we are building FSATS
how we now view the world of software…
(significantly altered my understanding of my own work…)
first presentation of these ideas outside Austin

Want to see architectural models

Want to see tools… 4

State of Art

Emphasis on application synthesis using
refinements focuses largely on generation of:

source code
individual programs
a GenVoca eqn = source code for single application

Code synthesis alone inadequate for building
complex systems of today and those of tomorrow

scale to multiple programs
systems are program suites – client-servers, MS Office
scale to multiple representations
code, makefiles, documentation, performance models,…

5

Scaling Refinements &
Generators

Challenge is not HOW
lots of ad hoc ways to do this
challenge do so in principled manner, so that generators are
not ad hoc collection of tools and a patch work of techniques

Generators are technological proof
that software in a domain has been simplified to point that its
development can be automated

Don’t want complexity to shift from systems that
are generated, to generators themselves

controlling the complexity of generators, like the systems
they produce, is a fundamental problem 6

This Lecture

Presents two fundamental results on
refinement scalability and modularity:

AHEAD – Algebraic Hierarchical Equations for
Application Design

architectural model and tool suite for scaling refinements
to multiple representations, programs

AHEAD tool demonstration

Scaling Refinements to Product Families
scaling to multiple programs

7

Preliminaries

core problems that motivate a
generalization of GenVoca

8

#1: Code Representation

Engineers, Programmers: this is weird...

f
a b c d

h
a b c d

j
a b c da b c d

Always
instantiate
bottom-most
classes; never
intermediaries

9

#1: Code Representation

What engineers want is this:

a b c d

Generate only
bottom-most
classes; never
intermediaries

Flatten refinement
hierarchies!

10

How to express that a single refinement
modifies (cross-cuts) multiple programs

briefly….

#2: Scale to Refinements to
Multiple Programs

p1 p2 p3 p4h

p1 p2 p3 p4j p1 p2 p3 p4

p1 p2 p3 p4f

11

#2: Scale Refinements to
Multiple Programs

More complicated than this…

“Origami” is an extension of GenVoca
that solves this problem

Talk about later if time…
AHEAD subsumes Origami

12

Architects use multiple models to design systems

fact: no single representation is adequate to capture all
information about a design

can’t express everything in Java

fact: different documents/artifacts capture different information
or concerns

manuals, code, makefiles, performance models, etc.
each is expressed in its own DSL (HTML, XML, Java, DRC…)

Generate non-code representations... but how?

#3: Non-Code Representations

13

.html.java

Recall Insight

Each program representation captures
different information, and written in a DSL

.drc.class .xml

program

14

Recall Insight

When a feature is added to a program, all of its
representations may be modified

recent Ph.D. by Jeff Gray @ Vanderbilt

manual code drc perf

manual code drc perf

f

h

j manual code drc perf

15

We’ve done this before...

Design Wizards
from an equation, we compose:

design rules (to verify compositions)
performance models (to evaluate compositions)
code (to generate compositions)

JTS
from an equation, we compose:

grammar files (to generate parser)
layers (to generate code for preprocessor)

But how to compose non-code representations?
what are principles that can guide us? 16

Example: Makefiles

Instructions to build parts of a system

When we synthesize code for a system,
we also have to synthesize a makefile for it

Sounds good, but...
what is a refinement of a makefile?
how do we compose makefile refinements?

17

Makefile

mymake

main

compile A
compile B
compile C

common

compile X
compile Y
compile Z

clean

delete *.classdepends

18

Makefile Refinements

mymake

main

compile A
compile B
compile C

common

compile X
compile Y
compile Z

clean

delete *.classdepends

base
foocompile D compile E

delete *.ser

barcompile Q

Question: what is a general paradigm for refining
non-code artifact types?

19

<project myMake>
<target main depends=“common”>

<compile A>
<compile B>
<compile C>

</target>
<target common>

<compile X>
<compile Y>
<compile Z>

</task>
...

</project>

Makefiles

class myMake {
static void main
{ ...

}
static void common
{ ...

}
...

}

are Classes!

20

<project myMake>
<target main depends=“common”>

<compile A/>
<compile B/>
<compile C/>

</target>
<target common>

<compile X/>
<compile Y/>
<compile Z/>

</target>
...

</project>

Makefile Refinement

<subproject myMake>
<target main>

<super main/>
<compile D/>

</target>

<target common>
<super common/>
<compile E/>

</target>
...

</subproject>

is Inheritance!

21

Foo (Base)

<project myMake>
<target main depends=“common”>

<compile A/>
<compile B/>
<compile C/>
<compile D/>

</target>
<target common>

<compile X/>
<compile Y/>
<compile Z/>
<compile E/>

</target>
...

</project>

added
as result
of composition

note: we’re flattening
refinement hierarchies,
like previous slide...

22

Guiding Principle

For structuring and refining non-code artifacts

create analog in OO representation

express refinements in terms of inheritance
(could be more sophisticated, but OK for first pass)

composition flattens inheritance/refinement hierarchies

Principle of Artifact Uniformity
treat all artifacts equally, as objects or classes
refine non-code representations same as code representations

23

Big Picture

Most artifacts today (HTML, XML, etc.) have or can have
a class structure and thus are object-based

Not object-oriented – there is no inheritance
relationship among files

what’s missing are inheritance (refinement) operators for
non-code artifacts
should be able to refine any kind of artifact

Requires tools to add inheritance (refinement)
relationships among file types

not all (e.g. MS Word)
24

#3: Unification

What is an elegant model that unifies and
generalizes these ideas?

GenVoca
squash refinement chains
refine multiple programs (Origami)
refine multiple representations
Principle of Artifact Uniformity

25

Core Ideas

AHEAD
Algebraic Hierarchical Equations

for Artifact Design

26

Equations

Every mature science and engineering discipline
is driven by equations except software design

we can change this...
consider GenVoca constants...

f
a b c d

f = { a, b, c, d }
constant f is
a set of constants

27

Equations (Cont)

GenVoca functions are sets too!

h
a b c d

h = { a, b, c, d }
function h is
a set of
functions

28

Equations (Cont)

Composition is governed by equations!

Pairwise composition by name
exactly same rules as mixin-layer/inheritance composition

h ° f = { a, b, c, d } ° { a, b, c, d }

= { a°a, b°b, c°c, d°d }

Note:
shift in
notation
h(f) = h°f

29

Equation Semantics

h ° f = { a, b, c, d } ° { a, b, c, d }

= { a°a, b°b, c°c, d°d }

f
a b c d

h
a b c d

Every expression
defines an artifact

to build.

30

AHEAD Terminology

Set is a collective of units

Unit is a:
constant
function

Model is another name for a collective

31

Scalability Through Recursion

Any constant, function may be a collective

f
a b c d

h
a b c d

a
x y

a
x y

32

Expressed Mathematically

h ° f = { a°a, b°b, c°c, d°d }

= { { x, y }°{ x, y } , b°b, c°c, d°d }

= { { x°x, y°y } , b°b, c°c, d°d }

f
b c d

h
b c d

=
x

x

y

y

33

What Equation Hierarchies Mean

∆prog1 ∆prog2 ∆prog3 ∆progn

∆repm∆rep1 ∆repm∆rep1... ...

function function function function

function function function function

Composing refinements composes all their representations

refinementfunction

34

Scalability

Treat all levels of abstraction the same
yields powerful algebra for application specification

Nest programs arbitrarily deep
sets of programs

distributed system (FSATS)
sets of sets of programs

system of systems

Nest representations arbitrarily deep
code libraries
document libraries
etc

All represented by hierarchical equations

35

Scalability (Cont)

There are LOTS of other operators,
besides °, for collectives and units

Collective, unit are objects
manipulated by a rich set of methods
each method is a tool of IDE

Rich algebra associated with collectives

36

More Generally

Expressing mathematically what OO languages
do now for refining code

GenVoca eqn = code representation of one program
AHEAD eqn = multiple representations of multiple programs

Advance:
equations work for all representations
equations scale…
by imposing uniformity, we control the complexity of
generators, and systems they generate

37

Important – Simplifies Tools!

Generator Scalability
don’t have one big generator
use simple artifact-specific generators coordinated
by a composer that submits equations to them

h°g°f

composer
tool

h1°g1°f1

h2°g2°f2

h3°g3°f3

Code generator

Drc generator

Man generator
Engineer

code

drc

man

38

How to Implement AHEAD?

39

Code = { X.jak, Y.jak }

Htm = { W.htm, Z.htm } X.jak W.htmY.jak Z.htm

Collective = Directory!

A = { Code, R.drc, Htm }

Code
R.drc

Htm

A

A refinement, and all of its representations, is a directory

40

Composition

feature composition = directory composition
produces directory isomorphic to inputs

X.jak = X.jak ° X.jak

X.jak W.htmY.jak Z.htm

Code

R.drc
Htm

A

°

X.jak W.htmY.jak Z.htm

Code

R.drc
Htm

B

=

X.jak W.htmY.jak Z.htm

Code

R.drc
Htm

C

41

Tools built using JTS

42

Composer Tool

Composes Features
takes equation as command-line input
internally, recursively expands equations
creates composite feature directory
invokes artifact-specific-composition tools

feature 1

feature 2

feature 3

composer
composite

feature

43

Artifact Composition Tools

Most interesting are .jak tools (next slides)

For non-.jak files:
XC – composes .html files
VM – composes velocity files

to produce ant build.xml makefiles
Equation – composing equation files
DRC – composing .drc files

Soon to appear tools:
Grammar composing tools (to bootstrap JTS)
MSC – composing message sequence charts
... 44

Code Files are .jak Files

Constant Function

aspect A;

import java.util.*;

class myClass {
...
int counter;

int getCounter() {...}

public myClass() {...}
}

aspect B;

import foo.bar;

refines myClass {
...
int counter2;

int getCounter2() {...}

void anotherMethod() {...}
}

45

.jak Files have Embedded DSLs

Constant Function

aspect A;

import java.util.*;

state_machine example {
...
states s1, s2, s3;

edge e1: s1 -> s2 ...;

edge e2: s2 -> s3 ...;

public example() {...}
}

aspect B;

import foo.bar;

refines state_machine example {

states s4;

edge e3: s3 -> s4 ...;

void anotherMethod() {...}
}

46

.jak Tools

Composer invokes .jak-specific tools to
compose .jak specifications

two tools now: jampack and mixin
jak2java translates .jak to .java

A.jak
(from feature 1)

A.jak
(from feature 3)

A.jak
(from feature 2)

jampack
or mixin

A.jak
(composed)

step #1

jak2java A.java

step #2

47

jampack

Flattens refinement hierarchies
takes equation of refinement hierarchy (.jak equation) as
input, produces single spec as output
basically macro expansion with a twist...

class top {
int a;
void foo() {...}

}

refines class top {
int b;
int bar() {...}

}

class top {
int a;
int b;
void foo() {...}
int bar() {...}

}

°

48

jampack (Cont)

jampack may not be composition tool of choice
look at typical debugging cycle
problem: manual propagation of changes
reason: jampack doesn’t preserve boundaries of features

A.jak
(from feature 1)

A.jak
(from feature 2)

A.jak
(from feature 3)

jampack A.jak
(composed)

jak2java A.java

translate
debug
update

compose

propagate

49

mixin

Preserves refinement hierarchy as inheritance
hierarchy

class top {
int a;
void foo() {...}

}

refines class top {
int b;
int bar() {...}

}

SoUrCe “c:\...A\top.jak”

abstract class top$$A {
int a;
void foo() {...}

}

SoUrCe “c:\...B\mid.jak”

public class top extends top$$A {
int b;
int bar() {...}

}

°

50

unmixin

Edit, debug composed A.jak files
unmixin propagates changes back to constitute
feature files automatically

A.jak
(composed)

jak2java A.java

translate
debug
update

A.jak
(from feature 1)

A.jak
(from feature 2)

A.jak
(from feature 3)

unmixin

propagate

51

Recap of Code Tools

feature 1

feature 2

feature 3

composer
composite

feature

jak2java A.java

A.jak
(from feature 1)

A.jak
(from feature 2)

A.jak
(from feature 3)

jampack
or mixin

A.jak
(composed)

unmixin
52

Tool Demo

53

ModelExplorer

Enables “exploration” of collective via

directory hierarchy ala MS file Explorer

relational-like query
where hierarchy is stored in a database
suitable for querying via XQuery

eventually will be able to invoke composer(s)

54

ModelExplorer

FSATS
model
has
~30
units
most
are

collectives

55

ModelExplorer

56

Composer

Build using equation file:

Runs ant makefile to produce FSATS prototype

> composer --equation=FS.equation --logging=info

FS.equation composes 21 refinements in FSATs model

generates code, drc files, makefiles + other representations..

57

FSATS Prototype

58

Lecture 3b:
Scaling Refinements
To Product-Families

Don Batory
Dept. of Computer Sciences
University of Texas at Austin

59

Raise Two Questions

State of the art: GenVoca models customize
individual programs

set of all such programs is a product-line

Larger scale: Product-family is an integrated
suite of programs, each with different capabilities

MS Office (Excel, Word, Access, ...)

Question #1: Do GenVoca refinements scale
to product-families?
product-line of product-families?

60

Question #2

Features (refinements) are building
blocks of classes, packages

class1 class2 class3

feature b

feature c

feature a cross
cuts

•Question #2: What are building blocks of features?

compositions of features yields packages of fully formed classes

61

Ans: Facets

Composition of facets
yields sets of fully
formed features

Not figure on last slide
turned on its side:
facet != classes

Do facets exist?...

f1 f2 f3

facet x

facet y

facet z

62

Yes!

Integrated Development Environment (IDE)
product-family of tools to write, debug, document programs
our variant: Java language extensibility

compiler formatter edit debugger

Java

Sm

In principle, features scale to multiple programs!

63

Should be Simple...

Fill in this form and IDE tools are generated

64

Surprise! Not That Simple!

Features are no longer atomic

features composed from more elementary features (gluons)

gluons are structured and composed in very regular ways
giving rise to composite features and facets

Model of gluons & facets shows that software
has an elegant mathematical structure

simpler designs
powerful models of code generation (product-families)
illustrating example: IDE generator

65

This Talk

New results on GenVoca refinement modularity,
scalability

Generalization of GenVoca
1st indication of significant generalization of basic model

Sophisticated example of Multi-Dimensional
Separation of Concerns

Tarr, Ossher IBM
idea that modularity can be understood through
multi-dimensional hyperspaces of units
slices of hyperspace are modules (such as aspects)

66

An Example

that motivates gluons
and facets

67

Jakarta Tool Suite (JTS) Overview

JTS is a suite of compiler-compiler tools

to create extensible-versions of Java language
product-line of Java dialects using GenVoca models

Current dialect Jak extends Java with state
machines and templates

but why extend Java????

68

But Why Extend Java?

Ans: here’s a state machine….

Do you want to write….

start one

stop

t1

t3
t2

69

in Pure Java … or
class example {

final static int start = 1000;
final static int one = 1001;
final static int stop = 1002; int current_state;

// getState method
public String getState() {

if (current_state == start) return "start";
if (current_state == one) return "one";
if (current_state == stop) return "stop";
System.err.println("unrecognizable state "
+ current_state);
System.exit(1);
return /* should never get here */ null;

}
// methods for state one

void one_branches(M m) {
if (t3_test(m))

{ t3_action(m); stop_enter(m); return; }
; one_otherwise(m);

}
void one_enter(M m) { current_state = one; }
void one_exit(M m) { }
void one_otherwise(M m) { otherwise_Default(m); }

// otherwise_Default Method
void otherwise_Default(M m) { ignore_message(m); }
public void receive_message(M m) {

if (current_state == start) {
start_exit(m); start_branches(m); return; }

if (current_state == one) {
one_exit(m); one_branches(m); return; }

if (current_state == stop) {
stop_exit(m); stop_branches(m); return; }

error(-1, m);
}

// methods for state start
void start_branches(M m) {

if (t1_test(m))
{ t1_action(m); one_enter(m); return; }

if (t2_test(m))
{ t2_action(m); stop_enter(m); return; }

; start_otherwise(m);
}
void start_enter(M m) { current_state = start; }
void start_exit(M m) { }
void start_otherwise(M m) { otherwise_Default(m); }

// methods for state stop
void stop_branches(M m) {

; stop_otherwise(m);
}
void stop_enter(M m) { current_state = stop; }
void stop_exit(M m) { }
void stop_otherwise(M m) { otherwise_Default(m); }

// methods for edge t1
void t1_action(M m) { }
boolean t1_test(M m) { return !booltest(); }

// methods for edge t2
void t2_action(M m) { }
boolean t2_test(M m) { return booltest(); }

// methods for edge t3
void t3_action(M m) { }
boolean t3_test(M m) { return true; }

//
boolean booltest() { }

example() { current_state = start; }
}

70

Jak = Java + State Machine DSL

state_machine example {
event_delivery receive_message(M m);
no_transition { error(-1, m); }
otherwise_default { ignore_message(m); }

states start, one, stop;

edge t1 : start -> one
conditions !booltest() do { /* t1 action */ }

edge t2 : start -> stop
conditions booltest() do { /* t2 action */ }

edge t3 : one -> stop
conditions true do { /* t3 action */ }

//
boolean booltest() { ... }
example() { current_state = start; }

}

Error exits

State decls

Edge decls

Constructor,
methods

71

Jak (Continued)

DSL-extended Java simplifies programming
perform analyses (e.g., reachability) impossible to do in
pure Java program
programs are about ½ the size of pure-Java
easier to understand, maintain, extend

Similar benefits of template-extensions of Java

Conclusion – we want to program in

DSL-extended Java languages...

72

So...

We need tools (IDEs) for extended Java
languages...

Use JTS to build such tools

Look at how Jak is built...
Jak is a preprocessor
translates extended-Java programs to pure-Java programs

73

Jak is a Preprocessor

Jak
program

Parser

extended-Java
parse tree

Reduction
pure-Java
parse tree

Print

Java
program

Jak

74

JTS Model - Library

Set of “feature” extensions to the Java language

Compose them to produce required dialect
Example...

Java Template Sm
. . .

base language

language extensions

J = { Java, Template, Sm, ... }

75

Architecture of Jak

Jak = Sm o

Sm

Order
in which
Template
and Sm
features

composed
does not
matter

Java

Java

Template

Template o

76

Architecture of Jak

Jak = Template o

Template

Java

Java

Sm

Sm o

ordering
constraints
specified

as
design
rules

77

IDE Problem

Today, we are writing extended-Java programs
built FSATS using state-machine/template extended Java

Want JavaDoc-like HTML documents for
extended-Java programs

Can’t use JavaDoc directly
because it only understands pure Java programs

Need language-extensible version of JavaDoc
Jedi (Java Extensible DocumentatIon) 78

JavaDoc / Jedi

Jak
program

Parser

extended-Java
parse tree

Harvester Doclet

HTML
page

JavaDoc / Jedi

Comment
Repository

79

Jedi Model and Equation

Has own model
elements are 1-1 correspondence with J model

Jedi defined by equations

D = { JavaDoc, TmplDoc, SmDoc, }

Jedi = TmplDoc o SmDoc o JavaDoc

= SmDoc o TmplDoc o JavaDoc

Order
in which
Template
and Sm
features

composed
does not
matter

80

IDE Model using Tool Features

Each const, function is feature of IDE tools
Different equations are different tools
Design rules govern legal compositions of features

IDE_Model = { parse, reduce, print,
harvest, doclet, ... }

Jak = print o reduce o parse

Jedi = doclet o harvest o parse
...

81

Wait!

We have different equations for each tool!

How do we prove their equivalence?

Jak = Sm o Template o Java // using language features

Jedi = SmDoc o TmplDoc o JavaDoc // using lang. features

= print o reduce o parse // using tool features

= doclet o harvest o parse // using tool features

82

Relating Different
GenVoca Models

in search of gluons...

83

Feature Orthogonality

Language, tool features are orthogonal

We can understand modularity of Jak
and Jedi in terms of matrices

rows are language features
columns are tool features
entries denote modules that implement a tool
feature for a particular language feature

84

Jedi Matrix

Each entry is a module that implements a
“feature of a feature”
Composition of these modules implements Jedi

TparseTharvestTdocletTmpl

SparseSharvestSdocletSm

JparseJharvestJdocletJava

ParseHarvestDoclet

85

Gluons and Facets

Row is language feature, implemented by
composition of gluons in that row
Columns are facets – cross-cut each row

matrix
entries
are called
gluonsTparseTharvestTdocletTmpl

SparseSharvestSdocletSm

JparseJharvestJdocletJava

ParseHarvestDoclet

86

TparseTharvestTdocletTmpl

SparseSharvestSdocletSm

JparseJharvestJdocletJava

ParseHarvestDoclet

Gluons and Facets

Column is a tool feature, implemented by
composition of gluons in that column
Rows are facets – cross-cut each column

87

Jak Matrix

Note absent modules
Composition of these modules implements Jak

TparseTreduce-Tmpl

SparseSreduce-Sm

JparseJreduceJprintJava

ParseReducePrint

88

What is a Gluon?

Ans: Mixin-Layer

elementary refinement (layer) that implements a
“feature of a feature” or a building-block of a
language/tool feature

GenVoca constant or function

89

Why do Gluons Exist?

Ans: always can decompose composite
constant, function into primitives

Decomposing software is modeled by
decomposing equations

C = F1(F2(... Fn(c) ...))

F(x) = F1’(F2’(... Fn’(x) ...))

90

Applications with Gluons are
Equations
Jedi = TDoclet o THarvest o TParser o

SDoclet o JDoclet o SHarvest o
JHarvest o SParser o JParser

Jak = Print o TReduce o SReduce o
JReduce o TParse o SParse o
JParse

Q: How is this mapping done?
Q: Are they consistent?

A: can’t be answered by inspection

TparseTharvestTdoclet

SparseSharvestSdoclet

JparseJharvestJdoclet

TparseTreduce-

SparseSreduce-

JparseJreduceJprint

91

Questions to Answer

What is a model of gluons that
produces consistent equations
explains facets

How do we use model to build IDE
generators?

That’s next...

92

Origami

a model of gluons and
facets

93

Change Notation

Instead of writing:

We will write:

Where o is composition operator

Eqn = A(B(C(D)))

Eqn = A o B o C o D

94

Model of Gluons and Facets

GenVoca models are 1-dimensional
set of constants and functions

Gluon models are inherently
2-dimensional

or more generally n-dimensional
view them accordingly

95

Origami Matrix

Rows are all language features;
Columns are all tool features;
Gluons are entries

Filling in this matrix is easy, facets

...-............

...-DReduceDDocletDHarvestDParser

...-TReduceTDocletTHarvestTParser

...-SReduceSDocletSHarvestSParser

...JPrintJReduceJDocletJHarvestJParserJava

Sm

Template

DS
...

Parser Harvest Doclet Reduce Print ...

96

Extending the Matrix

New row requires gluons for all columns
New row cross-cuts all column “features”

...-............

...-DReduceDParserDHarvestDDoclet

...-TReduceTParserTHarvestTDoclet

...-SReduceSParserSHarvestSDoclet

...JPrintJReduceJParserJHarvestJDocletJava

Sm

Template

DS

...

Doclet Harvest Parser Reduce Print ...

97

Extending the Matrix

New column requires gluons for all rows
New column cross-cuts all row “features”

...-............

...-DReduceDParserDHarvestDDoclet

...-TReduceTParserTHarvestTDoclet

...-SReduceSParserSHarvestSDoclet

...JPrintJReduceJParserJHarvestJDocletJava

Sm

Template

DS

...

Doclet Harvest Parser Reduce Print ...

98

Origami

Compositions produced by “folding” Matrix:

compose rows by composing corresponding
gluons in each column

compose columns by composing corresponding
gluons in each row

99

...-............

...-DReduceDParserDHarvestDDoclet

...-TReduceTParserTHarvestTDoclet

...-SReduceSParserSHarvestSDoclet

...JPrintJReduceJParserJHarvestJDocletJava

Sm

Template

DS
...

Doclet Harvest Parser Reduce Print ...

Application is Equation

Identify language, tool features to
compose – ex: Jedi

100

Discard Non-Selected Entries

TParserTHarvestTDoclet

SParserSHarvestSDoclet

JParserJHarvestJDocletJava
Sm

Template

Doclet Harvest Parser

101

Fold Rows and Columns

in Design Rule order
Java then { Sm, Templates } in any order
Parser then Harvest then Doclet

TParserTHarvestTDoclet

SParserSHarvestSDoclet

JParserJHarvestJDocletJava
Sm

Template

Doclet Harvest Parser
compose
Java row with
Sm row

102

Fold Rows and Columns

in Design Rule order
Java then { Sm, Templates } in any order
Parser then Harvest then Doclet

TParserTHarvestTDoclet

SParserSHarvestSDoclet

JParserJHarvestJDocletJava

Sm

Template

Doclet Harvest Parser
compose
Parser col with
Harvest col

o o o

103

Fold Rows and Columns

in Design Rule order
Java then { Sm, Templates } in any order
Parser then Harvest then Doclet

TParserTHarvestTDoclet

SParserSHarvestSDoclet

JParserJHarvestJDocletJava

Sm

Template

Doclet Harvest Parser
compose
with Doclet
column

o o oo

o

104

Fold Rows and Columns

in Design Rule order
Java then { Sm, Templates } in any order
Parser then Harvest then Doclet

TParserTHarvestTDoclet

SParserSHarvestSDoclet

JParserJHarvestJDocletJava

Sm

Template

Doclet Harvest Parser
compose
with Template
row

o o oo

oo

o

105

Fold Rows and Columns

in Design Rule order
Java then { Sm, Templates } in any order
Parser then Harvest then Doclet

TParserTHarvestTDoclet

SParserSHarvestSDoclet

JParserJHarvestJDocletJava

Sm

Template

Doclet Harvest Parser
done!

o o oo

oo

o

o

106

To Yield Equation

Other constraints may preclude certain
foldings

but this is the essential idea

Jedi = (TDoclet o THarvest o TParser) o
(SDoclet o JDoclet) o
(SHarvest o JHarvest) o (SParser o JParser)

107

Use Origami to Generate
Language-Extensible IDEs

yields generator for a
product-line of
product-families

108

Recall IDE Generator GUI

109

Origami Matrix

Selected language features trims rows

...-............

...-DReduceDDocletDHarvestDParser

...-TReduceTDocletTHarvestTParser

...-SReduceSDocletSHarvestSParser

...JPrintJReduceJDocletJHarvestJParserJava
Sm

Template
DS

...

Parser Harvest Doclet Reduce Print ...

110

Effect on Matrix

Selected language features trims rows

Easy to determine order of row composition

Template ...-TReduceTDocletTHarvestTParser

...-SReduceSDocletSHarvestSParser

...JPrintJReduceJDocletJHarvestJParserJava
Sm

Parser Harvest Doclet Reduce Print ...

111

Effect on Matrix

Now compose the rows

...-TReduceTDocletTHarvestTParser

...SReduceSDocletSHarvestSParser

...JPrintJReduceJDocletJHarvestJParserJava
Sm

Template

Parser Harvest Doclet Reduce Print ...

o o o o

112

Effect on Matrix

Now compose the rows

...TReduceTDocletTHarvestTParser

...SReduceSDocletSHarvestSParser

...JPrintJReduceJDocletJHarvestJParserJava
Sm

Template

Parser Harvest Doclet Reduce Print ...

o o o o

o o o o

113

Resulting Row

Note its semantics!

Parser = TParser o SParser o JParser

Harvest = THarvest o SHarvest o JHarvest

Doclet = TDoclet o SDoclet o JDoclet

...TReduceTDocletTHarvestTParser

...SReduceSDocletSHarvestSParser

...JPrintJReduceJDocletJHarvestJParserJava
Sm

Template

Parser Harvest Doclet Reduce Print ...

o o o o

o o o o

114

Resulting Row

Is GenVoca model for IDE product-line!
each constant, function is a feature of tool

folding defines an eqn for each feature
and we know equations for each program of
product family!

IDE_Model = { Parser, Harvest, Doclet, Print, Reduce, ... }

Jak = Print o Reduce o Parser

Jedi = Doclet o Harvest o Parser
...

115

IDE Generator is Simple

For each selected tool, evaluate its eqn

And generate the code
for each tool

automatically!

116

Generator of IDE Prod-Line
(Generator of Product-Family)

Engineer h1°g1°f1

h2°g2°f2

h3°g3°f3

generator

generator

generator

Jak

Jedi

...
Origami

generator

117

Implementing Origami in
AHEAD

118

Origami – Idea 1

Need 4 ideas

Equation files (Jak.eqn)
another artifact file type
specifies a single equation

Jak = print ° reduce ° parse

119

Origami – Idea 2

There are LOTS of other operators, besides °,
for collectives and units

One is evaluation Φ
applied to a model, all .eqn files are evaluated

M = { parse, reduce, print, harvest, doclet, Jak.eqn, Jedi.eqn }

Φ(M) generates Jak and Jedi tools

120

Origami – Idea 3

Metamodel is a model whose instances
are models

M = { a, b, c } // model M

MM = { AA, BB, CC, DD } // metamodel
= { { a }, { b }, { c }, { d } }

M = AA ° BB ° CC // eqn defining M

121

Origami – Idea 4

Origami is a metamodel!
recall matrix:

Rows are units of metamodel
collective with an .eqn file for each IDE tool

THarvest

...

...

...

...

...

-............

-DReduceDDocletDHarvestDParser

-TReduceTDocletTParser

-SReduceSDocletSHarvestSParser

JPrintJReduceJDocletJHarvestJParserJava
SM

Tmpl
DS

...

Parser Harvest Doclet Reduce Print ...

122

Origami (Cont)

IDE metamodel

IDEMM = { Java, Sm, Tmpl, DS, ... }

Java = { Parser, Harvest, Doclet, Reduce, ... } // std names
Sm = { Parser, Harvest, Doclet, Reduce, ... }
Tmpl = { Parser, Harvest, Doclet, Reduce, ... }

... Jedi, Jak, ...

Equation
collectives

Jedi = { Jedi.eqn }
Jak = { Jak.eqn }

origami rows

123

Origami (Cont)

Use selected language
features and selected tools
to compose model from
metamodel

M = Tmpl ° Sm ° Java

= { Parser, Harvest, Doclet, Reduce, ...
}

M = Jedi ° Jak °

= {
Jedi.eqn, Jak.eqn }

Φ(M) generates Jak, Jedi tools
124

	The Finland Tutorials
	Lecture 1
	Lecture 1a: Refinements and Product-Line Architectures
	Lecture 1b: Heritage of Refinements

	Lecture 2: Design Rules and Design Wizards
	Lecture 2a: Object-Oriented Frameworks and Product-Lines
	Lecture 2b: Design Rule Checking
	Lecture 2c: Design Wizards

	Lecture 3: Scaling Refinements
	Lecture 3a: The AHEAD Model
	Lecture 3b: Scaling Refinements to Product-Families

