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Achieving Extensibility Through
Product-Lines and Domain-Specific
Languages: A Case Study

DON BATORY, CLAY JOHNSON, BOB MACDONALD, and DALE VON HEEDER
University of Texas at Austin

This is a case study in the use of product-line architectures (PLAs) and domain-specific languages
(DSLs) to design an extensible command-and-control simulator for Army fire support. The reusable
components of our PLA are layers or “aspects” whose addition or removal simultaneously impacts
the source code of multiple objects in multiple, distributed programs. The complexity of our compo-
nent specifications is substantially reduced by using a DSL for defining and refining state machines,
abstractions that are fundamental to simulators. We present preliminary results that show how
our PLA and DSL synergistically produce a more flexible way of implementing state-machine-based
simulators than is possible with a pure Java implementation.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/
Specifications—Methodologies (e.g., object-oriented, structured); D.2.2 [Software Engineering]:
Design Tools and Techniques—Euvolutionary prototyping; State diagrams; D.2.10 [Software
Engineering]: Design—Methodologies and representations; D.2.11 [Software Engineering]l:
Software Architectures—Domain-specfic architectures; Languages; D.2.13 [Software Engineer-
ing]: Reusable Software—Domain engineering; D.2.m [Software Engineering]: Miscellaneous—
Rapid prototyping

General Term: Design

Additional Key Words and Phrases: GenVoca, domain-specific languages, simulation, aspects,
refinements

1. INTRODUCTION

Software evolution is a costly yet unavoidable consequence of a successful appli-
cation. Evolution occurs when new features are added and existing capabilities
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192 . D. Batory et al.

are enhanced. Unfortunately, many applications suffer design fatigue—when
further evolution is difficult and costly because of issues not addressed in the
initial design [Graves 2001]. Creating software that is easily evolvable is a
central problem today in software engineering.

Three of several proposed complementary technologies address software
evolution: object-oriented design patterns, domain-specific languages, and
product-line architectures. Design patterns are techniques for restructuring
and generalizing object-oriented software [Gamma et al. 1995]. Evolution
occurs by applying design patterns to an existing design; the effects of these
changes are borne by programmers who must manually transform an existing
code base to match the updated design. Recent advances indicate that tool
support for automating the applications of patterns is possible [Tokuda and
Batory 1999]. Domain-specific languages (DSLs) raise the level of program-
ming to allow customized applications to be specified compactly in terms of
domain concepts; compilers translate DSL specifications into source code.
Evolution is achieved by modifying DSL specifications [Van Deursen and Klint
1997]. Product-line architectures (PLAs) are designs for families of related
applications; application construction is accomplished by composing reusable
components. Evolution occurs by plugging and unplugging components that en-
capsulate new and enhanced features [Batory 1998; Bosch 1999; Czarnecki and
Eisenecker 1999; Software Engineering Institute 2001; Weiss and Lai 1999].
Among PLA models, the GenVoca model is distinguished by an integration
of ideas from aspect-oriented programming [Kiczales et al. 1997], parameter-
ized programming [Goguen 1986], and program-construction by refinement
[Baxter 1992].

This paper presents a case study in the use of GenVoca PLAs and DSLs
to create an extensible command-and-control simulator for Army fire sup-
port. (Design patterns were also used, but they played a minor role.) We
discovered that components of distributed simulations are not conventional
DCOM and CORBA components, but rather are layers or “aspects” whose
addition or removal simultaneously impacts the source code of multiple, dis-
tributed programs. Further, we found that writing our components in a general-
purpose programming language (Java) resulted in complex code that ob-
scured a relatively simple, state-machine-based design. By extending Java
with domain-specific abstractions (in our case, state-machines), our compo-
nent specifications were more readily understood by domain experts, knowl-
edge engineers, and application programmers. Thus, this case study is inter-
esting not only because of the novelties introduced by PLAs and DSLs, but
also because of their integration: using only one technology would have been
inadequate.

We begin by explaining the ideas and terminology of fire support. We review
an existing simulator, called FSATS, and motivate its redesign. We present
a GenVoca PLA for creating extensible fire-support simulators and introduce
an extension to the Java language for defining and refining state-machines.
Finally, based on simple measures of program complexity, we show how PLAs
and DSLs individually simplify simulators, but only their combination provides
practical extensibility.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.
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Fig. 1. OPFAC command hierarchy.

2. BACKGROUND

2.1 The Domain of Fire Support

Fire support is a command-and-control application that includes the detection
of targets, assignment of weapons to attack the target, and coordination of the
actual attack. The entities engaged in this process, called operational facilities
(OPFACs), are soldier-operated (not machine-automated) command posts that
exchange tactical (theater-of-war) messages.

Forward observers (FO) are OPFACs that are stationed at intervals across
the frontline of a battlefield (Figure 1). They are one of several kinds of sensors
responsible for detecting potential targets. A hierarchy of fire support elements
(FSE) is responsible for directing requests from FOs to the most appropriate
weapon system to handle the attack. FOs report to their fire support team
(FIST); a FIST reports to a battalion FSE, a battalion FSE reports to a brigade
FSE, and so on. Each FSE typically has one or more supporting command
posts (CPs) with different weapon systems. For example, a battalion FSE
might be supported by a field artillery command post (FACP); a FIST might be
supported a mortar command post, and so on. In general, higher echelon FSEs
are supported by higher echelon CPs with more powerful and/or longer range
weapon systems.

FOs, FISTSs, and other FSEs are responsible for evaluating a target. An eval-
uation may result in (a) assigning the target to be attacked by a supporting
weapon, (b) elevating the target to the next higher echelon FSE for evalua-
tion, or (c) denial—choosing not to attack the target. CPs are responsible for
assigning targets to the best weapon or combination of weapons under their
command. Once weapon(s) are assigned, messages are exchanged with the mis-
sion originator (usually an FO) to coordinate the completion of the mission. The
particular message sequence depends on the target and weapon. It is still gen-
erally the case that all messages are relayed along the chain of CPs and FSEs
that were involved in initiating the mission, although newer systems permit
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messages to be exchanged directly between the weapon and observer. The mes-
sage sequence for a particular mission is referred to as the mission thread.
In general, an OPFAC can participate in any number of mission threads at
one time.

A mission thread is an instance of a mission type. There are well over twenty
mission types, including:

e when-ready-fire-for-effect-mortars (WRFFE-mortars)—a mortar CP is as-
signed to shoot at a target as soon as possible,

e when-ready-fire-for-effect-artillery (WRFFE-artillery)—one or more artillery
CPs are assigned to shoot at a target as soon as possible,

e time-on-target-artillery (TOT-artillery)—field artillery are requested to fire
at a target so that all rounds land at the specified location at the specified
time, and

e when-ready-adjust-mortars (WRAdjust-mortars)—a forward observer knows
only approximately the location of the enemy and requests single rounds to be
fired with the observer sending corrections between rounds until the target
is hit, at which point it becomes a WRFFE-mortar mission.

Each OPFAC (FO, FIST, FSE, etc.) performs different actions for each mission
type. For example, the actions taken by an FO for a TOT-mortar mission are
different than those for a WRFFE-artillery mission.

Clearly, the above description of fire support is highly simplified, for ex-
ample, the actions taken by specific OPFACs in a mission thread and the
translation of messages into formats for tactical transmission were omitted.
These details, however, are not needed to understand the contributions of this
paper.

2.1.1 FSATS. Simulation plays a key role in U.S. Army testing and train-
ing. It avoids costs of mobilizing live forces, provides repeatability in testing,
and allows force-on-force combat training without the liability. Simulation has
been used to model virtual environments, weapons effects, outcome adjudica-
tion, and as computational resources increase, the fidelity has been refined to
entity-level simulators.

Fire support is one of a number of domains that has been modernized by digi-
tal Command, Control, Communications, Computer, and Intelligence (C4I) sys-
tems that automate battlefield mission processing. AFATDS (Advanced Field
Artillery Tactical Data System) is arguably the most sophisticated C4I system in
existence, and provides the software backbone (message transmission, process-
ing, etc.) for fire support for the Army [Magnavox 1999]. FSATS (Fire Support
Automated Test System) is a system for testing AFATDS and other fire-support
C4I systems. FSATS collects digital message traffic from command and con-
trol communication networks, interprets these messages, and stores them in
a database for later analysis. FSATS can simulate any or all OPFACs used in
AFATDS[FSATS 1999]. The subject of a test can be overall system performance,
individual OPFAC performance, or system operator performance. Thus, FSATS
is used both in training Army personnel in fire support and debugging/testing
AFATDS.
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Fig. 2. Rule sets vs. mission threads.

2.1.2 The Current FSATS Implementation. FSATS has been under devel-
opment for almost ten years. It is typical of the systems mentioned in our in-
troductory paragraph: it began with a clean design but as its capabilities were
extended, limitations of that design became increasingly troublesome.

The implementation is a combination of decision rules encoded in database
tables, a set of “common actions” written as Ada procedures, and a decision
rule interpreter, also in Ada. One set of rules is associated with each pair of
an OPFAC type and a message type. When a tactical message is received by an
OPFAC, the appropriate rule set is selected by the interpreter and each rule in
the set is sequentially evaluated until one succeeds, at which point the action for
that rule is executed and processing of that message terminates. There are from
200 to 1000 rules associated with each OPFAC type, divided among the various
input message types. Each rule consists of a predicate, which is a conjunction
of guards, and an action which is an index to a sequence of state and message
common actions. Predicates typically contain five to ten guards (terms). The
processing of rule sets is optimized, so that predicates can assume the failure
of all previous predicates. Common actions range from simple (copy the target
number field from the input to the output message) to complex (determining
whether there exists a supporting OPFAC of type mortar which is capable of
shooting the target indicated by the current message).

There are now obvious drawbacks to this design/implementation. While rule
sets are used to express OPFAC behavior, OPFAC behavior is routinely under-
stood and analyzed in terms of mission threads. Figure 2 illustrates a mission
thread, the horizontal execution path, that associates various rules spanning
multiple OPFAC programs. This complicates the knowledge acquisition and
engineering process to derive from an analysis of multiple mission threads the
rules as they apply at each OPFAC. Conversely, it obfuscates analyzing and de-
bugging system behavior where rules for multiple mission threads are merged
into monolithic sets within each OPFAC program.

The contrast of the vertical nature of rule sets versus the horizontal or “cross-
cutting” nature of mission threads in Figure 2 illustrates an encapsulation di-
chotomy that is not unique to FSATS [Batory and O’Malley 1992; Kiczales et al.
1997; Reenskaug et al. 1992]. In general, conventional OO approaches explore
use cases (threads) for specification and analysis of system behavior. However,
the concept of a use case is transient in a design process that identifies behav-
ior (rules) with the actors (OPFACs) rather than the actions (missions). This
trade-off is seemingly unavoidable given the need to produce objects that com-
bine behaviors to react to a variety of situations. In FSATS, the transformation
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of mission threads into rule sets yields autonomous OPFACs at an increased
cost to analysis and maintenance.

As FSATS evolved, rule sets quickly became large and unwieldy. Moreover,
different missions might use the same message type at an OPFAC for slightly
different purposes. Simpler rules that once sufficed often had to be factored to
disambiguate their applicability to newer, more specialized missions. In worse
cases, large subsets of rules had to be duplicated, resulting in a dramatic in-
crease in rules and interactions. Moreover, the relationship between rules of
different OPFACs, and the missions to which they applied, was lost. Modify-
ing OPFAC rules became perilous without laborious analysis to rediscover and
reassess those dependencies. The combinatorial effect of rule set interactions
made analysis increasingly difficult and time-consuming.

FSATS management realized that the current implementation was not sus-
tainable in the long term, and a new approach was sought. FSATS would con-
tinue to evolve through the addition of new mission types and by varying the
behavior of an OPFAC or mission to accommodate doctrinal differences over
time or between different branches of the military. Thus, the clear need for
extensible simulators was envisioned. The primary goals of a redesign were to:

* disentangle the logic implementing different mission types to make imple-
mentation and testing of a mission independent of existing missions,

e reduce the “conceptual distance” from logic specification to its implemen-
tation so that implementations are easily traced back to requirements and
verified, and

¢ allow convenient switching of mission implementations to accommodate re-
quirements from different users and to experiment with new approaches.

2.2 GenVoca

The technology chosen to address problems identified in the first-generation
FSATS simulator was a GenVoca PLA implemented using the Jakarta Tool
Suite (JTS) [Batory et al. 1998]. In this section, we motivate and explain basic
ideas of GenVoca and one of its implementation techniques. It is beyond the
scope of this paper to review design methodologies (i.e., how to apply GenVoca
concepts) or to explain domains simpler than FSATS to elaborate the approach
that we have taken. Interested readers should consult [Smaragdakis and
Batory 2002], [Batory et al. 1995], and [Lopez-Herrejon and Batory 2001].

2.2.1 Motivation. Today’s models of software are too low-level, exposing
classes, methods, and objects as the focal point of discourse in software design
and implementation. This makes it difficult, if not impossible, to reason about
software architectures (a.k.a. component-based designs), to have simple, ele-
gant, and easy to understand specifications of applications, and to be able to
create and critique software designs automatically, given a set of high-level
requirements.

Simple specifications that are amenable to automated reasoning, code gener-
ation, and analysis, are indeed possible provided that the focus of discourse can
be shifted to components that encapsulate the implementation of individual and
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largely orthogonal features that can be shared by multiple applications.! The
intuitive rationale for this shift is evident in discussions about software prod-
ucts: architects don’t speak about their products in terms of code modules, but
instead explain their products in terms of features offered to clients. That is, the
focus of discourse is on features and not on source code. GenVoca aims to raise
the level of abstraction of understanding software from code modules (or code-
encapsulation technologies) to features (or feature-encapsulation technologies).

2.2.2 Features and Refinements. At its core, GenVoca is a design
methodology for creating product-lines and building architecturally-extensible
software—software that is extensible via component additions and removals.
GenVoca is a scalable outgrowth of an old and practitioner-ignored methodology
called step-wise refinement, which advocates that efficient programs can be cre-
ated by revealing implementation details in a progressive manner. Traditional
work on step-wise refinement focussed on microscopic program refinements
(e.g., x+0 = x), for which one had to apply hundreds or thousands of refine-
ments to yield admittedly small programs. While the approach is fundamental,
and industrial infrastructures are on the horizon [Baxter 1992; Simonyi 1995],
GenVoca extends step-wise refinement by scaling refinements to a component
or layer (i.e., multi-class-modularization) granularity, so that each refinement
adds a feature to a program, and composing a few refinements yields an entire
application.

The critical shift to understand software in this manner is to recognize that
programs are values, and that refinements are functions that add features
to programs. Consider the following constants (parameterless functions) that
represent programs with different features:

0 //program with feature f
g0 //program with feature g
A refinement is a function that takes a program as input and produces a refined
(or feature-augmented) program as output:
i(x) //adds feature i to program x
j(x) //adds feature j to program x
It follows that a multi-featured application is specified by an equation that is
a named composition of functions, and that different equations define a family
of applications, such as:
appl = i(£f()); //appl has features i and f
app2 = j(g0); //app2 has features j and g
app3 = i(j(£()); //app3 has features i, j, and f

Thus, by casually inspecting an equation, one can readily determine features
of an application.

1Griss [2000] defines a feature as a product characteristic that users and customers view as impor-
tant in describing and distinguishing members of a product-line.
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Note that there is a subtle but important confluence of ideas in this model: a
function represents both a feature and its implementation. Thus, there can be
different functions that offer different implementations of the same feature:

k(%) //adds feature k (with implementation;) to x
ko(x) //adds feature k (with implementationy) to x

So when an application requires the use of feature k, it becomes a problem of
equation optimization to determine which implementation of k would be the
best (e.g., provide the best performance).? It is possible to automatically design
software (i.e., produce an equation that optimizes some qualitative criteria)
given a set of declarative constraints for a target application. An example of
this kind of automated reasoning is presented in Batory et al. [2000].

As a practical matter, refinements typically cannot transform arbitrary pro-
grams. Rather, the input to refinements (functions) must satisfy a type—a set
of constraints that are both syntactic and semantic in nature. A typical syn-
tactic constraint is that a program must implement a set of well-defined Java
interfaces; a typical semantic constraint is that the implementation of these
interfaces satisfy certain behavioral properties. Thus, it is common that not
all combinations of features (or their implementations) are correct [Kang et al.
1990]. A model for expressing program types and algorithms that can automat-
ically and efficiently validate equations has been developed and is part of the
Jakarta Tool Suite [Batory and Geraci 1997].

2.2.3 Mixin-Layer Implementation. There are many ways in which to im-
plement refinements, ranging from dynamically composing objects to statically-
composed meta-programs (i.e., programs that generate other programs) [Batory
et al. 1998] and rule-sets of program transformation systems [Neighbors 1997].
One of the simplest is to use templates called mixin-layers. In the following, we
use the term component to denote a mixin-layer implementation of a refinement.

A GenVoca component typically encapsulates multiple classes. Figure 3a
depicts component X with four classes A-D. Any number of relationships can
exist among these classes; Figure 3a shows only inheritance relationships.
That is, B and C are subclasses of A, while D has no inheritance relationship
with A-C.

The concept of refinement is an integral part of object-orientation. In par-
ticular, a subclass is a refinement of its superclass: it adds new data members,
methods, and/or overrides existing methods. A GenVoca refinement scales in-
heritance to simultaneously refine multiple classes.? Figure 3b depicts a com-
ponent Y that encapsulates three refining classes (4, B, and D) and an additional
class (E). Note that the refining classes (A, B, D) do not have their superclasses

2Technically, different equations represent different programs. Equation optimization is over the
space of semantically equivalent programs. This is identical to relational query optimization: a
query is initially represented by a relational algebra expression, and this expression is optimized.
Each expression represents a different, but semantically equivalent, query-evaluation program as
the original expression.

3There are other kinds of refinements beyond those discussed in this paper. An example is an
optimizing refinement, which maps an inefficient program to an efficient program [Neighbors 1997].
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Fig. 3. GenVoca components and their composition.

specified; this enables them to be “plugged” underneath their yet-to-be-
determined superclasses.*

In our model, where refinements are functions, we would write the composi-
tion of Y with X as Y(X). When dealing with template implementations, however,
the convention is to use a slightly different syntax, Y<X>. Thus, there is a trivial
correspondence between model equations and their implementing mixin-layer
template expressions.

Given this correspondence, Figure 3c shows the result of Y<X>. (The classes
of Y are outlined in darker ovals to distinguish them from classes of X). Note
that the obvious thing happens to classes A, B, and D of component X—they are
refined by classes in Y, as expected. That is, a linear inheritance refinement
chain is created, with the original definition (from X) at the top of the chain,
and the most recent refinement (from Y) at the bottom. As more components
are composed, the inheritance hierarchies that are produced get progressively
broader (as new classes are added) and deeper (as existing classes are refined).
As a rule, only the bottom-most class of a refinement chain is instantiated and
subclassed to form other distinct chains. (These are indicated by the shaded
classes of Figure 3c). The reason is that these classes contain all of the “features”
or “aspects” that were added by higher classes in the chain. These higher classes
simply represent intermediate derivations of the bottom class [Batory et al.
1998; Findler and Flatt 1998; Smaragdakis and Batory 1998]. A consequence of
instantiating the “bottom-most” class of a chain is that refinement relationships
take precedence over typical subclassing relationships. That is, if class A in
component X is refined, it is the most refined version of A that is the superclass
of B. This precedence relationship can be seen in Figure 3c.

Representation. A GenVoca component/refinement is encoded in JTS as
a class with nested classes. A representation of component X of Figure 3a is
shown below, where $TEqn.A denotes the most refined version of class A (e.g.,

4More accurately, a refinement of class A is a subclass of A with name A. Normally, subclasses
must have names distinct from their superclass, but not so here. The idea is to graft on as many
refinements to a class as necessary—forming a linear “refinement” chain—to synthesize the actual
version of A that is to be used. Subclasses with names distinct from their superclass define entirely
new classes (such as B and C above), which can subsequently be refined.
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classes X.B and X.C in Figure 3a have $TEqn. A as their superclass). We use the
Java technique of defining properties via empty interfaces; interface F is used
to indicate the type of component X:

interface F { } // empty

class X implements F {
class A {...}
class B extends $TEqn.A {...}
class C extends $TEqn.A {...}
class D {...}

}

Components like Y that encapsulate refinements are expressed as mixins—
classes whose superclass is specified via a parameter. A representation of Y is
a mixin-layer [Findler and Flatt 1998; Smaragdakis and Batory 1998, 2002],
where Y’s parameter s can be instantiated by any component that is of type F:

classY <Fs > extends s implements F {
class A extends s.A {...}
class B extends s.B{...}
class D extends s.D {...}
classE{...}

}

In the parlance of the model of Section 2.2.2, X is a value of type F, and Y is a
function with a parameter s of type F that returns a refined program of type F.
The composition of Y with X, depicted in Figure 3c, is expressed by:

class MyExample extends Y<X>;

where $TEqn is replaced by MyExample in the instantiated bodies of X and Y.
Readers familiar with earlier descriptions of the GenVoca model will recognize
that F corresponds to a realm interface,’ X and Y are components of realm F,
and MyExample is a type equation [Batory and O’Malley 1992]. Extensibility is
achieved by adding and removing mixin-layers from applications; product-line
applications are defined by different compositions of mixin-layers.

2.2.4 Perspective. Stepwise refinement originated in the late-1960 writ-
ings of Wirth and Dijkstra. The key to its modernization lies in scaling
the effects of individual refinements, to which there are many contributors.
Neighbors [1989] first described the architectural organization of mapping
from abstract to concrete languages in DRACO, where the mappings between

5Technically, a realm interface would not be empty, but would specify class interfaces and their
methods. That is, a realm interface would include nested interfaces of the classes that a component
of that realm should implement. Thus, nested class A of Y would extend s. A as above, but also might
implement F. IA, a particular nested interface of F. Java (and current JTS extensions of Java) do not
enforce that class interfaces be implemented when interface declarations are nested [Smaragdakis
and Batory 1998]. On going research aims to correct this situation [Cardone and Lin 2001].
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a higher (more abstract) language representation of a program to a lower
(more implementation-oriented) representation can be seen as large-scale re-
finements. Parameterized programming, which provides the conceptual infras-
tructure for early models on parametric components, was advanced by Goguen
[1986]. The earliest use of plug-compatible layers (i.e., large-scale refinements)
for creating product families and extensible applications originated in the mid-
to-late 1980s in the work of Batory and O’Malley [1992]. Feature descriptions of
applications and product-lines originated in the early 1990s with Kang’s [1990]
FODA (Feature Oriented Domain Analysis) and Gomaa’s EDLC (Evolutionary
Domain Life Cycle) [Gomaa et al. 1992] models. Collaborations, as object-
oriented representations of refinements, were discussed by Reenskaug in 1992
[Reenskaug et al. 1992]. Kiczales’s notion of aspects with “cross-cutting” effects
clarified the general need for feature encapsulations [Kiczales et al. 1997]. Re-
cent work on multi-dimensional separation of concerns examines a more flexible
way of identifying and composing features in existing software [Tarr et al. 1999].

It is also worth noting the trade-off between the large-scale refinements of
GenVoca and generic small-scale (or microscopic) refinements (x+0 = x) that
are more commonly found in the literature (e.g., [Rich and Waters 1992]).

The traditional argument for small-scale refinements is that a relatively
small number of generic small-scale refinements can generate a larger num-
ber of large-scale refinements. Additionally, large-scale refinements tend to be
applicable less often, because they tend to make more assumptions about the
application context. (That is, the refinement Y of the Figure 3 is applicable less
often than a “sub-refinement” that only specializes A, because Y requires the
presence of B and C.) Where the case for traditional small-scale refinements
breaks down is precisely when doing domain-specific development; the genera-
tion argument fails because hardly any of the generic transforms are of interest
in a restricted domain, and the contextual assumptions argument breaks down
because the domain provides the required context.

Domain-specific small-scale refinements can indeed be used to address the
above-cited deficiencies. But, as we mentioned earlier, enormous numbers of
domain-specific small-scale refinements must be applied to produce admittedly
small programs. Scaling refinements, as we are doing, provides a more practical
way to develop complex, domain-specific software artifacts. The tools are sim-
pler, and the concepts are closer to main-stream programming methodologies
(e.g., OO collaborations, as we will see in the next section).

3. THE IMPLEMENTATION

The GenVoca-FSATS design was implemented using the Jakarta Tool Suite
(JTS) [Batory et al. 1998], a set of Java-based tools for creating product-line ar-
chitectures and compilers for extensible Java languages. The following sections
outline the essential concepts of our JTS implementation.

3.1 A Design for an Extensible Fire-Support Simulator

The Design. The key idea behind the GenVoca-FSATS design is the en-
capsulation of individual mission types as components. That is, the central
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Fig. 4. OPFAC inheritance refinement hierarchy.

variabilities in FSATS throughout its history (and projected future) lie in the
addition, enhancement, and removal of mission types. By encapsulating mis-
sion types as components, evolution of FSATS is greatly simplified.

We noted earlier, that every mission type has a “cross-cutting effect”, be-
cause the addition or removal of a mission type impacts multiple OPFAC pro-
grams. A mission type is an example of a common kind of refinement called a
collaboration—a set of objects that work collectively to achieve a certain goal
[Reenskaug et al. 1992; Smaragdakis and Batory 1998; Van Hilst and Notkin
1996]. Collaborations have the desirable property that they can be defined
largely in isolation from other collaborations, thereby simplifying application
design. In the case of FSATS, a mission is a collaboration of objects (OPFACs)
that work cooperatively to prosecute a particular mission. The actions taken
by each OPFAC are defined by a protocol (state machine) that it follows to
do its part in processing a mission thread. Different OPFACs follow different
protocols for different mission types.

An extensible, component-based design for FSATS follows directly from these
observations. One component (Vanilla) defines an initial OPFAC class hier-
archy and routines for sending and receiving messages, routing messages to
appropriate missions, reading simulation scripts, and so forth. Figure 4 depicts
the Vanilla component encapsulating multiple classes, one per OPFAC type.
The OPFACs that are defined in Vanilla do not know how to react to external
stimuli. Such reactions are encapsulated in mission components.

Each mission component encapsulates protocols (expressed as state ma-
chines) that are added to each OPFAC that could participate in a thread
of this mission type. Composing a mission component with Vanilla extends
each OPFAC with knowledge of how to react to particular external stimuli
and how to coordinate its response with other OPFACs. For example, when
the WRFFE-artillery component is added, a forward observer now has a pro-
tocol that tells it how to react when it sees an enemy tank—it creates a
WRFFE-artillery message which it relays to its FIST. The FIST commander, in
turn, follows his WRFFE-artillery protocol to forward this message to his battal-
ion FSE, and so on. Figure 4 depicts the WRFFE-artillery component encapsu-
lating multiple classes, again one per OPFAC type. Each enclosed class encap-
sulates a protocol which is added to its appropriate OPFAC class. Component
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composition is accomplished via inheritance, and is shown by dark vertical
lines between class ovals in Figure 4. The same holds for other mission compo-
nents (e.g., TOT-artillery). Note that the classes that are instantiated are the
bottom-most classes of these linear inheritance chains, because they embody all
the protocols/features that have been grafted onto each OPFAC. Readers will
recognize this is an example of the GenVoca paradigm of Section 2.2, where
components are mixin-layers.
The GenVoca-FSATS design has distinct advantages:

e it is mission-type extensible (i.e., it is comparatively easy to add new mission
types to an existing GenVoca-FSATS simulator),’

¢ each mission type is defined largely independently of others, thereby reducing
the difficulties of specification, coding, and debugging, and

* understandability is improved: OPFAC behavior is routinely understood and
analyzed as mission threads. Mission-type components directly capture this
simplicity, avoiding the complications of knowledge acquisition and engineer-
ing of rule sets.

Implementation. There are over twenty different mixin-layer components
in GenVoca-FSATS, all of which are composed now to form a “fully-loaded”
simulator. There are individual components for each mission type, just like
Figure 4. However, there is no monolithic Vanilla component. We discovered
that Vanilla could be decomposed into ten largely independent layers (totalling
97 classes) that deal with different aspects of the FSATS infrastructure. For
example, there are distinct components for:

¢ OPFACs reading from simulation scripts,
¢ OPFAC communication with local and remote processes,

¢ OPFAC proxies (objects that are used to evaluate whether OPFAC comman-
ders are supported by desired weapons platforms),

¢ different weapon OPFACs (e.g., distinct components for mortar, artillery,
etc.), and

¢ GUI displays for graphical depiction of ongoing simulations.

Packaging these capabilities as distinct components, simplifies both specifi-
cations (because no extraneous details need to be included), and debugging (as
components can largely be debugged in isolation). An important feature of our
design is that all OPFACs are coded as threads executing within a single Java
process. An “RMI adaptor” component transforms this design into a distributed
program where each OPFAC thread executes in its own process at a different
site [Batory et al. 1999]. The advantage here is that it is substantially easier to
debug layers and mission threads within a single process than to debug remote

6Although a product-line of different FSATS simulators is possible; presently the emphasis of
FSATS is on mission type extensibility. It is worth noting, however, that exponentially-large
product-lines of FSATS simulators could be synthesized—i.e., if there are m mission components,
there can be up to 2 distinct compositions/simulators.
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executions. Furthermore, the adaptor is included in an FSATS design only when
distributed simulations are needed.

Perspective. It is worth comparing our notion of components with those
that are common in today’s software industry. Event-based distributed archi-
tectures, where DCOM and CORBA components communicate via message ex-
changes, is likely to be a dominant architectural paradigm of the future [Taylor
1999]. The original design of FSATS is a classic example: OPFAC programs
are distributed DCOM/CORBA “components” that exchange messages. Yet the
“components” common to distributed architectures are orthogonal to the compo-
nents in the GenVoca-FSATS design. (This is depicted below in Figure 5 where
each vertical inheritance chain corresponds to an OPFAC that is a CORBA
or DCOM class, whereas an FSATS mission type is depicted by a horizon-
tal slice through all OPFACs). That is, our components (layers) encapsulate
fragments of many OPFACs, instead of encapsulating an individual OPFAC.
(This is typical of approaches based on collaboration-based or “aspect-based”
designs).

Event-based architectures are clearly extensible by their ability to add and
remove component instances (e.g., adding and removing OPFACs from a simu-
lation). This is (OPFAC) object population extensibility, which FSATS definitely
requires. But FSATS also needs feature extensibility—OPFAC programs must
be mission-type extensible. While these distinctions seem obvious in hind-sight,
they were not so, prior to our work. FSATS clearly differentiates them.

3.2 A Domain-Specific Language for State Machines

We discovered that OPFAC rule sets were largely representations of state ma-
chines. We found that expressing OPFAC actions as state machines was a sub-
stantial improvement over rules; they are much easier to explain and under-
stand, and require very little background to comprehend. A major goal of the
redesign was to minimize the “conceptual distance” between architectural ab-
stractions and their implementation. The problem we faced is that encodings of
state machines are obscure, and given the situation that our specifications often
refined previously created machines, expressing state machines in pure Java
code was unattractive. To eliminate these problems, we used JTS to extend Java
with a domain-specific language for declaring and refining state machines, so
that our informal state machines (nodes, edges, etc.) had a direct expression as

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.



Product-Lines and Domain-Specific Languages . 205

(a) @ t1:=booltest() @

t3: true

t2: booltest()

stop

(b)state_machine exampleJavasSM {

event delivery receive message(M m); (1)
on error { error(-1,m); } (2)
otherwise default { ignore message(m); } (3)
states start, one, stop:; (4)
edge tl : start -> one (5)

conditions !booltest ()
do { /* tl1 action */ }

edge t2 : start -> stop
conditions booltest ()
do { /* t2 action */ }

edge t3 : one -> stop
conditions true
do { /* t3 action */ }

// methods and data members from here on... (6)

boolean booltest() { ... }
exampleJavasM() { current state = start; }

Fig. 6. JavaSM state machine specification.

a formal, compilable document. This extended version of Java is called JavaSM,
and took us a bit more than a week to code into JTS.

Initial Declarations. A central idea of JavaSM is that a state machine
specification translates into the definition of a single class. There is a generated
variable (current_state) whose value indicates the current state of the protocol
(i.e., state-machine-class instance). When a message is received by an OPFAC,
a designated method is invoked with this message as an argument; depending
on the state of the protocol, different transitions occur. Figure 6a shows a simple
state machine with three states and three transitions. When a message arrives
in the start state, if method booltest() is true, the state advances to stop;
otherwise the next state is one.
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Fig. 7. Refining state machines.

Our model of FSATS required boolean conditions that triggered a transition
to be arbitrary Java expressions with no side-effects, and the actions performed
by a transition, to be arbitrary Java statements. Figure 6b shows a JavaSM
specification of Figure 6a. (1) defines the name and formal parameters of the
void method that delivers a message to the state machine. In the case that
actions have corrupted the current state, (2) defines the code that is to be ex-
ecuted upon error discovery. When a message is received and no transition is
activated, (3) defines the code that is to be executed (in this case, ignore the
message). The three states in Figure 6a are declared in (4). Edges are declared
in (5): each edge has a name, start state, end state, transition condition, and
transition action. Java data member declarations and methods are introduced
after edge declarations (6). When the specification of Figure 6b is translated,
the class exampleJavaSM is generated. Additional capabilities of JavaSM are
discussed in Batory et al. [1998].

Refinement Declarations. State machines can be progressively refined
in a layered manner. A refinement is the addition of states, edges, data mem-
bers, and methods to an existing machine. A common situation in FSATS is
illustrated in Figure 7. Protocols for missions of the same general type (e.g.,
WRFFE) share the same protocol fragment for initialization (Figure 7a). A par-
ticular mission type (e.g, WRFFE-artillery) grafts on states and edges that are
specific to it (Figure 7b). Additional missions contribute their own states and
edges (Figure 7c), thus allowing complex state machines to be built in a step-
wise manner.

The original state machine and each refinement are expressed as separate
JavaSM specifications that are encapsulated in distinct layers. When these
layers are composed, their JavaSM specifications are translated into a Java
class hierarchy. Figure 7d shows this hierarchy: the root class was generated
from the JavaSM specification of Figure 7a; its immediate subclass was gen-
erated from the JavaSM refinement specification of Figure 7b; the terminal
subclass was generated from the JavaSM refinement specification of Figure 7c.
Figure 8 sketches a JavaSM specification of this refinement chain.

Inheritance (i.e., class refinement) plays a central role in this implementa-
tion. All the states and edges in Figure 7a are inherited by the machine refine-
ments of Figure 7b, and these states, edges, and so forth, are inherited by the
machine refinements of Figure 7c. The machine that is executed, is created by
instantiating the bottom-most class of the refinement chain of Figure 7d. Read-
ers will again recognize this an example of the GenVoca paradigm of Section 2.2.
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state machine original {
states one, two, three;

edge a : one -> two ...
edge b : one -> three ...

}

state machine first refines original
states four;

edge ¢ : one -> four ...
edge d : four -> three...
edge e : two -> three ...
edge £ : two -> two ...

}

state machine second refines first {
states five;

edge g : two-> five ...
edge h : five -> three ...

Fig. 8. A JavaSM refinement hierarchy.

Perspective. Domain-specific languages for state machines are common
(e.g., Berry and Gonthier 1992; Ellsberger et al. 1997; Harel 1987; Harel and
Gery 1996; Neighbors 1997). Our way of expressing state machines—as states
with enter and exit methods, edges with conditions and actions—is an elemen-
tary subset of Harel’s Statecharts [Harel 1987; Harel and Gery 1996] and SDL
extended finite state machines [Ellsberger et al. 1997]. The notion of refinement
in Statecharts is the ability to explode individual nodes into complex state ma-
chines. This is very different than the notion of refinement explored in this
paper. Our work is closer to the refinement of extended finite state machines in
SDL where a process class (which encodes a state machine) can be refined via
subclassing (i.e., new states and edges are added to extend the parent machine’s
capabilities). While the idea of state machine refinements is not new, it is new
in the context of a DSL-addition to a general-purpose programming language
(Java), and it is fundamental in the context of component-based development
of FSATS simulators.

4. PRELIMINARY RESULTS

Our preliminary findings are encouraging—the objectives of the redesign were
met by the GenVoca-FSATs design:

e it is now possible to specify, add, verify, and test a mission type independent
of other mission types (because a version of FSATS can be created with a
single mission),
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e it is now possible to remove and replace mission types to accommodate vary-
ing user requirements, and

e JavaSM allows a direct implementation of a specification, thereby reducing
the “conceptual distance” between specification and implementation.

As is common in re-engineering projects, detailed statistics on the effort
involved in the original implementation are not available. However, we can
make some rough comparisons. From our experience with the original FSATS
simulator, we estimate the time to add a mission to be about 1 month. A similar
addition to GenVoca-FSATS, including one iteration to identify and correct an
initial misunderstanding of the protocols for that mission, was accomplished in
about 3 days.

To evaluate the redesign in a less anecdotal fashion, we collected statistics on
program complexity. We used simple measures of class complexity: the number
of methods (nmeth), the number of lines of code (nloc), and the number of to-
kens/symbols (nsymb) per class. (We originally used other metrics [Chidamber
and Kemerer 1991], but found they provided no further insights.) Because of our
use of JTS, we have access to both component-specification code (i.e., layered
JavaSM code written by FSATS engineers), and generated non-layered pure-
Java code (which approximates code that would have been written by hand).
By using metrics to compare pure-Java code vs. JavaSM code, and layered vs.
non-layered code, we can quantitatively evaluate the impact of layering and
JavaSM on reducing program complexity, a key goal of our redesign.

Complexity of Non-Layered Java Code. Consider a non-layered design
of FSATS. Suppose all of our class refinement chains were “squashed” into
single classes; these would be the classes that would be written by hand if
a non-layered design were used. Consider the FSATS class hierarchy that is
rooted by class MissionImpl; this class encapsulates methods and an encoding
of a state machine that is shared by all OPFACS. (In our prototype, we imple-
mented different variants of WRFFE missions.) Class FoMission, a subclass of
MissionImpl, encapsulates the additional methods and the Java-equivalent of
state machine edges/states that define the actions that are specific to a Forward
Observer. Other subclasses of MissionImpl encapsulate additions that are spe-
cific to other OPFACs. The “Pure Java” columns of Table I present complexity
statistics of the FoMission and MissionImpl classes. Note that our statistics
for subclasses, by definition, must be no less than those of their superclasses
(because the complexity of superclasses is inherited).

One observation is immediately apparent: the number of methods (117) in
MissionImpl is huge. Different encoding techniques for state machines might
reduce the number, but the complexity would be shifted elsewhere (e.g., methods
would become more complicated). Because our prototype only deals with
WRFFE missions, we must expect that the number of methods in MissionImpl
will increase, as more mission types are added. Consider the following: there
are 30 methods in class MissionImpl alone that are used in WRFFE missions.
When we add a WRFFE mission that is specialized for a particular weapon
system (e.g., mortar), another 10 methods are added. Since WRFFE is repre-
sentative of mission complexity, as more mission types are added with their
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Table I. Statistics for Non-Layered Implementation of Class FoMission

209

Pure Java JavaSM
Class Name nmeth nloc nsymb nmeth nloc nsymb
MissionImpl 117 461 3452 54 133 1445
FoMission 119 490 3737 56 143 1615

weapon specializations, it is not inconceivable that MissionImpl will have sev-
eral hundred methods. Clearly, such a class would be both incomprehensible
and unmaintainable.”

Now consider the effects of using JavaSM. The “JavaSM” columns of Table I
show corresponding statistics, where state exit and enter declarations and edge
declarations are treated as (equivalent in complexity to) method declarations.
We call such declarations method-equivalents. Comparing the corresponding
columns in Table I, we see that coding in JavaSM reduces software complexity
by a factor of 2. That is, the number of method-equivalents is reduced by a factor
of 2 (from 119 to 56), the number of lines of code is reduced by a factor of 3 (from
490 to 143), and the number of symbols is reduced by a factor of 2 (from 3737
to 1615). However, the problem that we noted in the pure-Java implementation
remains. Namely, the generic WRFFE mission contributes over 10 method-
equivalents to MissionImpl alone; when WRFFE is specialized for a particular
weapon system (e.g., mortar), another 3 method-equivalents are added. While
this is substantially better than its non-layered pure-Java equivalent, it is not
inconceivable that MissionImpl will have over a hundred method-equivalents
in the future. While the JavaSM DSL indeed simplifies specifications, it only
delays the onset of design fatigue. Non-layered designs of FSATS may be difficult
to scale and ultimately hard to maintain, even if the JavaSM DSL is used.

Complexity of Layered Java Code. Now consider a layered design im-
plemented in pure Java. The “Inherited Complexity” columns of Table II show
the inheritance-cumulative statistics for each class of the MissionImpl and
FoMission refinement chains. The rows where MissionImpl and FoMission data
are listed in bold represent classes that are the terminals of their respec-
tive refinement chains. These rows correspond to the rows in Table I. The
“Isolated Complexity” columns of Table II show complexity statistics for in-
dividual classes of Table II (i.e., we are measuring class complexity, and not
including the complexity of superclasses). Note that most classes are rather
simple. The MissionAnyL.MissionImpl class, for example, is the most complex,
with 43 methods. (This class encapsulates “infrastructure” methods used by all
missions.) Table IT indicates that layering disentangles the logic of different
features of the FoMission and MissionImpl classes into units that are small
enough to be comprehensible and manageable by programmers. For example,

It would be expected that programmers would introduce some other modularity, thereby decom-
posing a class with hundreds of methods into multiple classes with smaller numbers of methods.
While this would indeed work, it would complicate the “white-board”-to-implementation mapping
(which is what we want to avoid) and there would be no guarantee that the resulting design would
be mission-type extensible.
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Table II. Statistics for a Layered Java Implementation of Class FoMission

Inherited Complexity Isolated Complexity
Class Name nmeth nloc nsymb || nmeth nloc nsymb
MissionL.MissionImpl 9 25 209 9 25 209
ProxyL.MissionImpl 11 30 261 2 5 52
MissionAnyL.MissionImpl 51 179 1431 43 149 1170
MissionWrffel.MissionImpl 83 314 2342 35 135 911
MissionWrffeMortarL.MissionImpl 93 358 2677 13 44 335
MissionWrffeArtyL.MissionImpl 109 425 3187 19 67 510
MissionWrffeMirsL.Missionimpl 117 461 3452 11 36 265
BasicL.FoMission 117 461 3468 0 0 16
MissionWrffeMortarL.FoMission 117 468 3547 4 7 79
MissionWrffeArtyL.FoMission 119 484 3687 7 16 140
MissionWrffeMIrs.FoMission 119 490 3737 3 6 50

Table III. Statistics on a Layered JavaSM Implementation of Class FoMission

Inherited Complexity Isolated Complexity
Class Name nmeth nloc nsymb || nmeth nloc nsymb
MissionL.MissionImpl 8 20 169 8 20 169
ProxyL.MissionImpl 10 25 221 2 5 52
MissionAnyL.MissionImpl 34 90 877 24 65 656
MissionWrffeL.MissionImpl 45 115 1132 11 25 255
MissionWrffeMortarL.MissionImpl 48 121 1231 3 6 99
MissionWrffeArtyL.MissionImpl 52 129 1383 4 8 152
MissionWrffeMirsL.Missionimpl 54 133 1445 2 4 62
BasicL.FoMission 54 133 1461 0 0 16
MissionWrffeMortarL.FoMission 54 136 1518 2 3 57
MissionWrffeArtyL.FoMission 55 140 1586 3 4 68
MissionWrffeMIrs.FoMission 56 143 1615 2 3 29

instead of having to understand a class with 117 methods, the largest lay-
ered subclass has 43 methods; instead of 461 lines of code there are 149 lines,
and so on.

To gauge the impact of a layered design in JavaSM, consider the “Inher-
ited Complexity” columns of Table III that show statistics for MissionImpl and
FoMission refinement chains written in JavaSM. The “Isolated Complexity”
columns of Table III show corresponding statistics for individual classes. They
show that layered JavaSM specifications are indeed compact: instead of a class
with 43 methods there are 24 method-equivalents, instead of 149 lines of code
there are 65 lines, and so on. Thus, a combination of domain-specific languages
and layered designs greatly reduces program complexity.

Our use of the “Isolated Complexity” metric as the indicator of class complex-
ity requires some discussion. It is indeed the case that the “true” complexity
of a class is somehow related to the total complexity of its superclasses plus
the additional complexity of the class itself. So it could be argued that the
“Inherited Complexity” metric might be a better measure of the actual diffi-
culty of understanding a given layer. This is not the case for FSATS. Typically
FSATS layers simply invoke methods of their superclass, much in the same
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way that COM and CORBA components invoke methods of server interfaces.
Implementation details are hidden behind such interfaces, thereby making it
easy for programmers to invoke server methods without having to know how
servers are implemented. The same holds for layers in FSATS. The only dif-
ference here, is that a few methods of each FSATS class override (i.e., extend)
previously defined methods, thereby requiring programmers to know more of
the “guts” of superclass implementation. But for FSATs (and other genera-
tors that we have built), this additional implementation knowledge is minimal.
Further, there may be layers in superclass implementations that provide in-
frastructure that programmers of mission-layers do not need to be aware of at
all; they are simply methods that are private to that layer. For these reasons,
we believe that “Isolated Complexity” is closer to the true complexity of a class
than “Inherited Complexity.”

The reduction in program complexity is a key goal of our project; these tables
support the observations of FSATS engineers: the mapping between a “white-
board” design of FSATS protocols and an implementation, is both direct and
invertible with layered JavaSM specifications. That is, writing components in
JavaSM matches the informal designs that domain experts use; it requires
fewer mental transformations from design to implementation, which simplifies
maintenance and extensibility, and makes for a much less error-prone product.
In contrast, mapping from the original FSATS implementation back to the
design was not possible due to the lack of an association of any particular rule
or set of rules with a specific mission.

5. CONCLUSIONS

Extensibility is the property that simple changes to the design of a software
artifact require a proportionally simple effort to modify its source code. Extensi-
bility is a result of premeditated engineering, whereby anticipated variabilities
in a domain are made simple by design. Two complementary technologies are
emerging that make extensibility possible: product-line architectures (PLAs)
and domain-specific languages (DSLs). Product-lines rely on components to en-
capsulate the implementation of basic features or “aspects” that are common
to applications in a domain; applications are extensible through the addition
and removal of components. Domain-specific languages enable applications to
be programmed in domain abstractions, thereby allowing compact, clear, and
machine-processable specifications to replace detailed and abstruse code. Ex-
tensibility is achieved through the evolution of specifications.

FSATS is a simulator for Army fire support and is representative of a com-
plex domain of distributed command-and-control applications. The original im-
plementation of FSATS had reached a state of design fatigue, where antici-
pated changes/enhancements to its capabilities would be expensive to realize.
We undertook the task of redesigning FSATS so that its inherent and pro-
jected variabilities—that of adding new mission types—would be easy to intro-
duce. Another important goal was to minimize the “conceptual distance” from
“white-board” designs of domain experts to actual program specifications; be-
cause of the complexity of fire-support, the specifications had to closely match
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these designs to make the next-generation FSATS source understandable and
maintainable.

We achieved the goals of extensibility and understandability through an in-
tegration of PLA and DSL technologies. We used a GenVoca PLA to express the
building blocks of fire support simulators as layers or refinements, whose addi-
tion or removal simultaneously impacts the source code of multiple, distributed
programs. But a layered design was insufficient, because our components could
not be easily written in pure Java. The reason is that the code expressing state
machine abstractions was so low-level that it would be difficult to read and
maintain. We addressed this problem by extending the Java language with a
domain-specific language, to express state machines and their refinements, and
wrote our components in this extended language. Preliminary findings confirm
that our component specifications are substantially simplified; “white-board”
designs of domain experts have direct and invertible expressions in our speci-
fications. Thus, we believe that the combination of PLAs and DSLs is essential
in creating extensible fire support simulators.

While fire support is admittedly a domain with specific and unusual require-
ments, there is nothing domain-specific about the need for PLAs, DSLs, and
their benefits. In this regard, FSATS is not unusual; it is a classical example
of the many domains where both technologies naturally complement each other
to produce a result that is better than either technology could deliver in isola-
tion. Research on PLA and DSL technologies should focus on infrastructures
(such as IP [Simonyi 1995] and JTS [Batory et al. 1998]) that support their
integration; research on PLA and DSL methodologies must be more cognizant
that synergy is not only possible, but desirable.
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A “refinement” is a functionality addition to a software project that can affect multiple dispersed
implementation entities (functions, classes, etc.). In this paper, we examine large-scale refinements
in terms of a fundamental object-oriented technique called collaboration-based design. We explain
how collaborations can be expressed in existing programming languages or be supported with
new language constructs (which we have implemented as extensions to the Java language). We
present a specific expression of large-scale refinements called mizin layers, and demonstrate how
it overcomes the scalability difficulties that plagued prior work. We also show how we used mixin
layers as the primary implementation technique for building an extensible Java compiler, JTS.
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1. INTRODUCTION

The history of software design and programming languages intimately evolves around
the concept of modularity. Modules encapsulate primitive functionality or services
that, ideally, can be reused in the construction of many applications. The gran-
ularity of modules has evolved from small scale, to medium scale, and now to
large-scale: that is, from functions, to abstract data types or classes (i.e., suites of
interrelated functions), and now more commonly to components or packages (i.e.,
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suites of interrelated classes). The benefit of increased module scale is that of
economics—applications are easier to build from fewer and larger parts—and de-
sign simplicity—applications are easier to comprehend when modules encapsulate,
and thus hide, irrelevant implementation details.

The benefits of scaled modularity, however, are driven by reuse. The more a
module is reused, the more valuable it becomes. But there is an ironic twist: the
larger the module, the more specific its use and functionality, and this, in turn,
reduces the likelihood that other applications will need its exact capabilities. In
other words, it seems that reuse opportunities become fewer as a module becomes
larger: scaling modularity seems to defeat the purpose of reuse, and this is exactly
the opposite of what we want [Biggerstaff 1994].

The solution to this problem lies in a very different concept of modularity, where
neither entire functions, entire classes, or entire packages are the answer. Instead,
the unit of modularity that we seek encapsulates fragments of multiple classes,
which in turn encapsulate fragments of multiple functions. An extensive body of
research has shown that such units are indeed the reusable building blocks of large-
scale modules: composing sets of class fragments yields a package of fully-formed
classes. This recognition has become particularly clear in the area of software
product-lines, where the goal is to construct large families of related applications
from primitive and reusable components. The components that made this possible
encapsulated fragments of classes.

We use the term refinement (also in [Batory and Geraci 1997]) for any such unit
of functionality in a software system. A refinement is a functionality addition to a
program that introduces a conceptually new service, capability, or feature, and may
affect multiple implementation entities. Various researchers have offered different
descriptions, implementations, and names to fairly analogous concepts over the
years, including layers [Batory et al. 1988], collaborations [Reenskaug et al. 1992],
subjects [Ossher and Harrison 1992; Tarr et al. 1999] and aspects [Kiczales et al.
1997]. Parnas’s classic work [1979] has offered much of the software engineering
context for these approaches.!

We believe that a prominent characteristic of successful refinement technologies is
scalability. Implementing microscopic refinements (i.e., refinements that dealt with
code fragments at the expression level) has not produced great software engineering
advances in the past and is unlikely to do so in the future. The novelty of current
research strikes at the core problem—that of scaling the unit of refinement from a

IThe definition of “refinement” that seems closest to our intended meaning is “the act of making
improvement by introducing subtleties or distinctions” (Merriam-Webster’s Dictionary). Formal
approaches to programming use the term “refinement” to denote the elaboration of a program by
adding more implementation detail until a fully concrete implementation is reached. The set of
behaviors (i.e., the legal variable assignments) of a “refined” program is a subset of the behaviors
of the original “unrefined” program. This appears to be different from our use of the term. Our
“refinements” follow the dictionary definition by adding “subtleties or distinctions” at the design
level. At the implementation level, however, a refinement can yield dramatic changes: both the
exported functionality (semantics of operations) and the exported interface (signatures of opera-
tions) may change. Thus, unlike the use of “refinement” in formal approaches to programming,
the set of allowed behaviors of our “refined” program might not be a subset of the behaviors of
the “unrefined” program.
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microscopic scale to large scale, where a single refinement alters multiple classes of
an application. A large-scale refinement exhibits “cross-cutting”—multiple classes
must be updated simultaneously and consistently. Thus, composing a few large
scale refinements yields an entire application. This means that the inverse relation-
ship between module size and reusability that has crippled conventional concepts
no longer applies, and a fresh look at software modularity has become a topic of
wide-spread interest,.

This paper is about modular implementations of large-scale refinements and the
development of families of related applications through refinement. In particu-
lar, we show that a fundamental object-oriented concept, called collaboration-based
designs, is in fact how large-scale refinements are expressed in object-oriented mod-
els. We begin by explaining the core ideas of collaboration-based design and how
they are related to large-scale refinements. We then show how these ideas can
be expressed in existing programming languages, or supported with new language
constructs (which we have implemented as extensions of the Java language). In
particular, we introduce a specific expression of large-scale refinements called mizin
layers, and demonstrate how it extends and overcomes problems of prior work on
the refinement-based designs of VanHilst and Notkin [1996b; 1996¢; 1996a; 1997]
and application frameworks [Johnson and Foote 1988]. Mixin layers implementa-
tions are discussed, but our paper intends to convince the reader that one should
implement programs using mixin layers, not that one is merely able to do so. Better
implementations than the ones we propose may be possible, or languages other than
the ones we examine may offer more complete support for mixin layers. In either
case, this would be independent from our main argument which is one of desirability
of application development through mixin layers. As a practical validation, we show
how we used mixin layers as the primary implementation technique in a medium-
size project: the JTS tool suite for implementing domain-specific languages. Our
experience shows that the mechanism is versatile and can handle refinements of
substantial size.

2. BACKGROUND: COLLABORATION BASED DESIGNS

Collaboration-based or role-based designs have been the subject of many papers
[Cunningham and Beck 1989; Helm et al. 1990; Holland 1992; Reenskaug et al. 1992;
VanHilst and Notkin 1996b]. The concept may have originated with Reenskaug, et
al. [1992] but the ideas have been used in various forms, often without being named
(e.g., [Batory et al. 1988]). A good introduction to collaboration-based design can
be found in the presentation of the OORAM approach [Reenskaug et al. 1992]. A
detailed treatment of collaboration-based designs, together with a discussion of how
to derive them from use-case scenarios [Rumbaugh 1994] can be found in VanHilst’s
Ph.D. dissertation [1997].

2.1 Collaborations and Roles

In an object-oriented design, objects are encapsulated entities but are rarely self-
sufficient. Although an object is fully responsible for maintaining the data it encap-
sulates, it needs to cooperate with other objects to complete a task. An interesting
way to encode object interdependencies is through collaborations. A collaboration
is a set of objects and a protocol (i.e., a set of allowed behaviors) that determines
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how these objects interact. The part of an object enforcing the protocol that a
collaboration prescribes is called the object’s role in the collaboration. Objects of
an application generally participate in multiple collaborations simultaneously and,
thus, may encode several distinct roles. Each collaboration, in turn, is a collection
of roles, and represents relationships across corresponding objects. Essentially, a
role isolates the part of an object that is relevant to a collaboration from the rest
of the object. Different objects can participate in a collaboration, as long as they
support the required roles.

In collaboration-based design, the objective is to express an application as a
composition of largely independently-definable collaborations. Viewed in terms of
design modularity, collaboration-based design acknowledges that a unit of function-
ality (module) is neither a whole object nor a part of it, but can cross-cut several
different objects. If a collaboration is reasonably independent of other collabora-
tions (i.e., a good approximation of an ideal module) the benefits are great. First,
the collaboration can be reused in a variety of circumstances where the same func-
tionality is needed, by just mapping its roles to the right objects. Second, any
changes in the encapsulated functionality will only affect the collaboration and will
not propagate throughout the whole application.

In abstract terms, a collaboration is a view of an object-oriented design from the
perspective of a single concern, service, or feature. For instance, a collaboration can
be used to express a producer-consumer relationship between two communicating
objects. Clearly, this collaboration prescribes roles for (at least) two objects and
there is a well-defined “protocol” for their interactions. Interestingly, the same col-
laboration could be instantiated more than once in a single object-oriented design,
with the same objects playing different roles in every instantiation. In the example
of the producer-consumer collaboration, a single object could be both a producer
(from the perspective of one collaboration) and a consumer (from the perspective
of another).

Figure 1 depicts the overlay of objects and collaborations in an abstract appli-
cation involving three different objects (OA, OB, OC), each supporting multiple
roles. Object OB, for example, encapsulates four distinct roles: B1, B2, B3, and
B4. Four different collaborations (c1, ¢2, ¢8, c¢4) capture distinct aspects of the
application’s functionality. Each collaboration prescribes roles to certain objects.
For example, collaboration ¢2 contains two distinct roles, A2 and B2, which are
assumed by distinct objects (namely OA and OB). An object does not need to play
a role in every collaboration—for instance, ¢2 does not affect object OC.

Collaborations can be composed dynamically at application run-time or statically
at application compile-time. In this paper, we examine the static composition of
collaborations, where roles that are played by an object are uniquely determined
by its class. For instance, in Figure 1, all three objects must belong to different
classes (since they all support different sets of roles). The work described in this
paper can be generalized to dynamic compositions of collaborations.

From a broader perspective, a collaboration is a large-scale refinement. Again,
a refinement elaborates a program to extend its functionality or to add imple-
mentation details. A refinement is large scale if it modifies multiple classes of an
application. For example, when collaboration ¢/ is (statically) added to the pro-
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Fig. 1. Example collaboration decomposition. Ovals represent collaborations, rectangles represent
objects, their intersections represent roles.

gram of Figure 1, the classes for objects OA, OB, and OC' are updated consistently
and simultaneously so that the “feature” or “service” defined by ¢/ is appropriately
implemented. Thus, composing collaborations is an example of refinement, where
a simple program is progressively elaborated into a more complex one. Collabora-
tions are large-scale and reusable refinements—they can be used in the construction
of many programs.

2.2  An Example

As a running example that illustrates important points of our discussion, we con-
sider a graph traversal application that was examined initially by Holland [1992]
and subsequently by VanHilst and Notkin [1996b]. Doing so affords not only a
historical perspective on the development of collaboration-based designs, but also a
perspective on the contribution of this work. The application defines three different
operations (algorithms) on an undirected graph, all based on depth-first traversal:
Vertex Numbering numbers all nodes in the graph in depth-first order, Cycle Check-
ing examines whether the graph is cyclic, and Connected Regions classifies graph
nodes into connected graph regions. That is, a client of this application can in-
stantiate a graph and separately invoke algorithms that perform vertex numbering,
cycle checking, and/or find connected regions on a graph. The application itself has
three distinct classes: Graph, Vertex, and Workspace. The Graph class describes
a container of nodes with the usual graph properties. Each node is an instance of
the Vertez class. Finally, the Workspace class includes the application part that is
specific to each graph operation. For example, the Workspace object for a Vertex
Numbering operation holds the value of the last number assigned to a vertex as
well as the methods to update this number.

In decomposing this application into collaborations, we need to capture distinct
aspects as separate collaborations. A decomposition of this kind is straightforward
and results in five distinct collaborations.

One collaboration (Undirected Graph) encapsulates properties of an undirected
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_Object Classes
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Fig. 2. Collaboration decomposition of the example application domain: A depth-first traversal
of an undirected graph is specialized to yield three different graph operations. Ovals represent
collaborations, rectangles represent classes.

graph. This is clearly an independent aspect of the application—the problem could
very well be defined for directed graphs, for trees, etc.

Another collaboration (Depth First Traversal) encapsulates the specifics of depth-
first traversals and provides a clean interface for extending traversals. That is, at
appropriate moments during a traversal (the first time a node is visited, when an
edge is followed, and when a subtree rooted at a node is completely processed)
control is transferred to specialization methods that can obtain information from
the traversal collaboration and supply information to it. Consider the Vertex Num-
bering operation as a refinement of a depth-first traversal. Numbering is realized
by specializing the action when visiting a node for the first time during a traversal.
The action assigns a number to the node and increases the count of visited nodes.

Using this approach, each of the three graph operations can be seen as a refine-
ment of a depth-first traversal and each can be expressed by a single collaboration.
Figure 2 is reproduced from [VanHilst and Notkin 1996b] and presents the collabo-
rations and classes of our example application domain. The intersection of a class
and a collaboration in Figure 2 represents the role prescribed for that class by the
collaboration. A role encodes the part of an object that is specific to a collaboration.
For instance, the role of a Graph object in the “Undirected Graph” collaboration
supports storing and retrieving a set of vertices. The role of the same object in the
“Depth First Traversal” collaboration implements a part of the depth-first traversal
algorithm. (In particular, it contains a method that initially marks all vertices of a
graph not-visited and then calls the method for depth-first traversal on each graph
vertex object.)

The goal of a collaboration-based design is to encapsulate within a collaboration
all dependencies between classes that are specific to a particular service or feature.
In this way, collaborations themselves have no outside dependencies and can be
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reused in a variety of circumstances. The “Undirected Graph” collaboration, for
instance, encodes the properties of an undirected graph (pertaining to the Graph
and Vertex classes, as well as the interactions between objects of the two). Thus,
it can be reused in any application that deals with undirected graphs. Ideally, if we
could define an “interface” to a collaboration, we should also be able to easily replace
one collaboration with another that exports the same interface. For instance, it
would be straightforward to replace the “Undirected Graph” collaboration with one
representing a directed graph, assuming that both collaborations exported the same
interface.

Of course, simple interface conformance does not guarantee composition
correctness—the application writer must ensure that the algorithms used (for ex-
ample, the depth-first traversal) are still applicable after the change. The algo-
rithms presented by Holland [1992] for this example are, in fact, general enough
to be applicable to a directed graph. If, however, a more efficient, specialized-for-
undirected-graphs algorithm was used (as is, for instance, possible for the Cycle
Checking operation) the change would yield incorrect results. [Smaragdakis 1999;
Smaragdakis and Batory 1998; Batory and Geraci 1997] discuss in detail the issue
of ensuring that collaborations are actually interchangeable.

Although we have focussed on a single application that supports all three graph
operations, it is easy to see how variants of this application could be created (e.g., by
omitting some operations or adding new operations), where each variant would be
described by the use of different collaborations. This very fact makes collaboration-
based designs ideal for describing product-line architectures, that is, designs for
families of related applications. As we will see, collaborations define the building
blocks for application families, compositions of these building blocks yields different
product-line members.

3. IMPLEMENTING COLLABORATION-BASED DESIGNS WITH MIXIN LAYERS
3.1 Mixin Classes and Mixin Layers

A refinement of an object-oriented class is encapsulated by a subclass: a subclass
can add new methods and data members, as well as override existing methods of its
superclass. Thus, inheritance is a built-in mechanism for statically refining classes
in object-oriented languages. The challenge is to scale inheritance from refining
individual classes to expressing the large-scale refinements of collaboration-based
designs.

A solution is to build on an existing object-oriented construct called a mixin.
Mixins are similar to classes but with some added flexibility, as described shortly.
Unfortunately, mixins alone are not sufficient to express large-scale refinements—
they suffer from only being able to refine a single class at a time and not a collection
of cooperating classes. To address this, we introduce mizin-layers: a scaled-up form
of mixins that can contain multiple smaller mixins.

3.1.1 Introduction to Mizins. The term mizin class (or just “mixin”) has been
overloaded to mean several specific programming techniques and a general mecha-
nism that they all approximate. Mixins were originally explored in the context of
the Lisp language with object-systems like Flavors [Moon 1986] and CLOS [Kiczales
et al. 1991]. They were defined as classes that allow their superclass to be deter-
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mined by linearization of multiple inheritance. In C++, the term has been used to
describe classes in a particular (multiple) inheritance arrangement: as superclasses
of a single class that themselves have a common virtual base class (see [Stroustrup
1997], p.402). Both of these mechanisms are approximations of a general concept
described by Bracha and Cook [1990], and here we use “mixin” in this general sense.

The main idea of mixins is simple: in object-oriented languages, a superclass
can be defined without specifying its subclasses. This property is not, however,
symmetric: when a subclass is defined, it must have a specific superclass. Mixins
(also commonly known as abstract subclasses [Bracha and Cook 1990]) represent
a mechanism for specifying classes that eventually inherit from a superclass. This
superclass, however, is not specified at the site of the mixin’s definition. Thus a
single mixin can be instantiated with different superclasses yielding widely varying
classes. This property makes them appropriate for defining uniform incremental
extensions for a multitude of classes. When a mixin is instantiated with one of
these classes as a superclass, it produces a class incremented with the additional
behavior.

Mixins can be implemented using parameterized inheritance: it is a class whose
superclass is specified by a parameter. Using C++ syntax we can write a mixin as:

template <class Super> class Mixin : public Super {
... /* mixin body */

};

Mixins are flexible and can be applied in many circumstances without modifica-
tion. To give an example, consider a mixin implementing operation counting for
a graph. Operation counting means keeping track of how many nodes and edges
have been visited during the execution of a graph algorithm. (This simple example
is one of the non-algorithmic refinements to algorithm functionality discussed in
[Weihe 1997].) This mixin could have the form:?

template <class Graph> class Counting: public Graph {
int nodes_visited, edges_visited;
public:
Counting() : Graph() { nodes_visited = edges_visited = 0; }

node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}

edge succ_edge (edge e) {
edges_visited++;
return Graph::succ_edge(e);

}

2We use C++ syntax for most of the examples of this section, in the belief that concrete syntax
clarifies, rather than obscures, our ideas. To facilitate readers with limited C++ expertise, we
avoid several cryptic idioms or shorthands (for instance, constructor initializer lists are replaced
by assignments, we do not use the “struct” keyword to declare classes, etc.).
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// example method that displays the cost of an algorithm in
// terms of nodes visited and edges traversed
void report_cost () {
cout << "The algorithm visited " << nodes_visited <<
" nodes and traversed " << edges_visited <<
" edges\n";
}
... // other methods using this information may exist

};

By expressing operation counting as a mixin we ensure that it is applicable to
many classes that have the same interface (i.e., many different kinds of graphs).
Clearly, the implicit assumption is that classes, like Dgraph and Ugraph, have been
designed so that they export similar interfaces. By standardizing certain aspects
of the design, like the method interfaces for different kinds of graphs, we gain the
ability to create mixin classes that can be reused in different occasions.®> We can,
for instance, use two different compositions:

typedef Counting < Ugraph > CountedUgraph;

and

typedef Counting < Dgraph > CountedDgraph;
to define a counted undirected graph type and a counted directed graph type. (We
omit parameters to the graph classes for simplicity.) Note that the behavior of
the composition is exactly what one would expect: any methods not affecting the
counting process are exported (inherited from the graph classes). The methods
that do need to increase the counts are “wrapped” in the mixin.

3.1.2  Mizin Layers. To implement entire collaborations as components we need
to use mixins that encapsulate other mixins. We call the encapsulated mixin classes
inner mizrins, and the mixin that encapsulates them the outer mixin. Inner mix-
ins can be inherited, just like any member variables or methods of a class. An
outer mixin is called a mizin layer when the parameter (superclass) of the outer
mizin encapsulates all parameters (superclasses) of inner mizins.* This is illus-
trated in Figure 3. ThisMixinLayer is a mixin that refines (through inheritance)
SuperMixinLayer. SuperMixinLayer encapsulates three classes: FirstClass,
SecondClass, and ThirdClass. ThisMixinLayer also encapsulates three inner
classes. Two of them are mixins that refine the corresponding classes of
SuperMixinLayer, while the third is an entirely new class.

Note that inheritance works at two different levels. First, a layer can inherit inner
classes from the layer above it (for instance, ThirdClass in Figure 3). Second,

3Stated another way, a mixin defines a refinement of a class, but this refinement is not meaningful
for every possible class. Standardized interfaces is a way to type or restrict the set of classes
that a mixin can meaningfully refine. C++ syntax, in this regard, is unsatisfactory because C++
templates have untyped parameters. Languages like Pizza [Odersky and Wadler 1997] or GJ
[Bracha et al. 1998] offer a better mechanism, where class parameters are typed by the interfaces
that they implement. Unfortunately, Pizza and GJ do not support parameterized inheritance.
4Inner mixins can themselves be mixin layers.
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Fig. 3. Mixin layers schematically.

the inner mixins inherit member variables, methods, or other classes from their
superclass.

3.1.3 Mizin Layers in Various OO Languages. The mixin layer concept is quite
general and is not tied to any particular language idiom. Many flavors of the
concept, however, can be expressed via specific programming language idioms: as
stand-alone language constructs, as a combination of C++ nested classes and pa-
rameterized inheritance, as a combination of CLOS class-metaobjects and mixins,
etc. We examine some of these different realizations next. The introduction of
technical detail is necessary at this point as it helps us demonstrate concretely, in
Section 3.2 , the advantages of mixin layers for implementing collaboration-based
designs.

C++. We would like to support mixin layers in C++ using the same lan-
guage mechanisms as those used for mixin classes. To do this, we can standard-
ize the names used for inner class implementations (make them the same for all
layers). This yields an elegant form of mixin layers that can be expressed using
common C++ features. For instance, using C++ parameterized inheritance and
nested classes, we can express ThisMixinLayer as a mixin layer (see again Figure
3) with two inner mixins (FirstClass and SecondClass) and one additional class
(FourthClass):

template <class LayerSuper>
class ThisMixinLayer: public LayerSuper {

public:
class FirstClass : public LayerSuper::FirstClass { ... };
class SecondClass : public LayerSuper::SecondClass { ... };
class FourthClass { ...}
s

The above code fragment represents the form of mizin layers that we use in the
examples of this section. Note that specifying a parameter for the outermost mixin
automatically determines the parameters of all inner mixins. Composing mixin
layers to form concrete classes is now as simple as composing mixin classes. If we
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have four mixin layers (Layerl, Layer2, Layer3, Layer4), we can compose them
as:
Layer4 < Layer3 < Layer2 < Layerl > > >

where “<...>” is the C++ operator for template instantiation. Note that Layer1
has to be a concrete class (i.e., not a mixin class). Alternatively we can have a class
with empty inner classes that is the root of all compositions. (A third alternative
is to use a fizpoint construction and instantiate the topmost layer with the result
of the entire composition. This pattern has several desirable properties and is
analyzed further in Chapter 3 of [Smaragdakis 1999].)

In the above code fragment we mapped the main elements of the mixin layer
definition to specific implementation techniques. We used nested classes to imple-
ment class encapsulation. We also used parameterized inheritance to implement
mixins. However, there are very different ways of encoding the same concept in
other languages.

CLOS (and other reflective languages). We can encode mixin layers in
CLOS [Kiczales et al. 1991] (and other reflective systems) by simulating their main
elements using reflection (classes as first-class entities). Due to lack of space, we
elide the implementation specifics. A discussion can be found in [Smaragdakis and
Batory 1998] and [Smaragdakis 1999]. CLOS mixin layers are not semantically
equivalent to C++ mixin layers (for instance, there is no default class data hiding:
class members are by default accessible from other code in CLOS). Nevertheless,
the two versions of mixin layers are just different flavors of the same idea.

Our ideas are applicable to other reflective languages. Smalltalk, in particular,
has been a traditional test-bed for mixins, both for researchers (e.g., [Bracha and
Griswold 1996; Mezini 1997; Steyaert et al. 1993]) and for practitioners [Montlick
1996]. A straightforward (but awkward) way to implement mixins in Smalltalk
is as class-functors; that is, mixins can be functions that take a superclass as a
parameter and return a new subclass.

Java. The Java language is an obvious next candidate for mixin layers. Java
has no support for mixins and it is unlikely that the core language will include
mixins in the near future. As will be described in Section 4, we extended the Java
language with constructs that capture mixins and mixin layers explicitly. In this
effort we used our JTS set of tools [Batory et al. 1998] for creating compilers for
domain-specific languages. The system supports mixins and mixin layers through
parameterized inheritance and class nesting, in much the same way as in C++.°
Additionally, the fundamental building blocks of JTS itself were expressed as mixin
layers, resulting in an elegant bootstrapped implementation. More on JTS in Sec-
tion 4 .

Adding mixins to Java is also the topic of other active research [Agesen et al. 1997;
Flatt et al. 1998] (although such work is almost certain to remain in the research
domain). The work of [Flatt et al. 1998] presented a semantics for mixins in Java.
This is particularly interesting from a theoretical standpoint as it addresses issues

5The Java 1.1 additions to the language [Sun Microsystems 1997] support nested classes and
interfaces (actually both “nested” classes as in C++ and member classes—where nesting has
access control implications). Nested classes can be inherited just like any other members of a
class.
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of mixin integration in a type-safe framework. As we saw, mixins can be expressed
in C++ using parameterized inheritance. There have been several recent proposals
for adding parameterization/genericity to Java [Agesen et al. 1997; Odersky and
Wadler 1997; Bracha et al. 1998; Myers et al. 1997; Thorup 1997], but only the first
[Agesen et al. 1997] supports parameterized inheritance and, hence, can express
mixin layers.

It is interesting to examine the technical issues involved in supporting mixins
in Java genericity mechanisms. Three of these mechanisms [Odersky and Wadler
1997; Bracha et al. 1998; Thorup 1997] are based on a homogeneous model of trans-
formation: the same code is used for different instantiations of generics. This is
not applicable in the case of parameterized inheritance—different instantiations of
mixins are not subclasses of the same class (see [Agesen et al. 1997] for more de-
tails). Additionally, there may be conceptual difficulties in adding parameterized
inheritance capabilities: the genericity approach of [Thorup 1997] is based on vir-
tual types. Parameterized inheritance can be approximated with virtual types by
employing virtual superclasses [Madsen and Mgller-Pedersen 1989], but this is not
part of the design of [Thorup 1997].

The approaches of Myers et al. [1997] and Agesen et al. [1997] are conceptually
similar from a language design standpoint. Even though parameterized implemen-
tations do not directly correspond to types in the language (in the terminology
of [Cardelli and Wegner 1985] they correspond to type operators), parameters can
be explicitly constrained. This approach, combined with a heterogeneous model
of transformation (i.e., one where different instantiations of generics yield separate
entities) is easily amenable to adding parameterized inheritance capabilities, as was
demonstrated in [Agesen et al. 1997].

3.2 Implementing Collaboration-Based Designs

Given the mixin layer concept, we can now express collaboration-based designs
directly at the implementation level. We show how mixin layers can be used to
perform the task and examine how it compares to two previous approaches. One is
the straightforward implementation technique of application frameworks [Johnson
and Foote 1988] using just objects and inheritance. The other is the technique of
VanHilst and Notkin that employs C++ mixins to express individual roles.

3.2.1 Using Mixin Layers. A collaboration can be expressed by a mixin layer.
The roles played by different objects are expressed as nested classes inside the mixin
layer. The general pattern is:

template <class CollabSuper>
class CollabThis : public CollabSuper {

public:
class FirstRole : public CollabSuper::FirstRole { ... };
class SecondRole : public CollabSuper::SecondRole { ... };
class ThirdRole : public CollabSuper::ThirdRole { ... };
. // more roles

s

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, December 2001.



Mixin Layers . 13

Again, mixin layers are composed by instantiating a layer with another as its
parameter. This produces two classes that are linked as a parent-child pair in
the inheritance hierarchy. For four mixin layers, Collabl, Collab2, Collab3,
FinalCollab of the above form, we can define a class T that expresses the final
product of the composition as:

typedef Collabl < Collab2 < Collab3 < FinalCollab > > > T ;
or (alternatively):

class T : public Collabl < Collab2 < Collab3 < FinalCollab > > >
{ /* empty body */ };

In this paper, we consider these two forms to be equivalent.®

The individual classes that the original design describes are members (nested
classes) of the above components. Thus, T::FirstRole defines the application
class FirstRole, etc. Note that classes that do not participate in a certain collab-
oration can be inherited from collaborations above (we subsequently use the term
“collaboration” for the mixin layer representing a collaboration when no confusion
can result). Thus, class T: :FirstRole is defined even if Collab1 (the bottom-most
mixin layer in the inheritance hierarchy) prescribes no role for it.

Example. Consider the graph traversal application of Section 2.2. Each collab-
oration is represented as a mixin layer. Vertexr Numbering, for example, prescribes
roles for objects of two different classes: Vertex and Workspace. Its implementation
has the form:

template <class CollabSuper>

class NUMBER : public CollabSuper {

public:
class Workspace : public CollabSuper: :Workspace {
... // Workspace role methods
s

class Vertex : public CollabSuper::Vertex {
... // Vertex role methods
I

s

Note how the actual application classes are nested inside the mixin layer. For
instance, the roles for the Vertexr and Workspace classes of Figure 1 correspond
to NUMBER: : Vertex and NUMBER: : Workspace, respectively. Since roles are encap-
sulated, there is no possibility of name conflict. Moreover, we rely on the stan-
dardization of role names. In this example the names Workspace, Vertex, and
Graph are used for roles in all collaborations. Note how this is used in the above
code fragment: Any class generated by this template defines roles that inherit from
classes Workspace and Vertex in its superclass (CollabSuper).

6There are differences, but these are a consequence of C++ policies and are not important for
our discussion (they are discussed together with other C++ specific issues in [Smaragdakis 1999],
Chapter 3).
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Other collaborations of our Section 2.2 design are similarly represented as mixin
layers. Thus, we have a DFT and a UGRAPH component that capture the Depth-First
Traversal and Undirected Graph collaborations respectively. For instance, methods
in the Vertex class of the DFT mixin layer include visitDepthFirst and isVisited
(with implementations as suggested by their names). Similarly, methods in the
Vertex class of UGRAPH include addNeighbor, firstNeighbor, and nextNeighbor,
essentially implementing a graph as an adjacency list.

To implement default work methods for the depth-first traversal, we use an extra
mixin layer, called DEFAULTW. The DEFAULTW mixin layer provides the methods for
the Graph and Vertex classes that can be overridden by any graph algorithm (e.g.,
Vertex Numbering) used in a composition.

template <class CollabSuper>
class DEFAULTW : public CollabSuper {

public:
class Vertex : public CollabSuper::Vertex {
protected:
bool workIsDone( CollabSuper: :Workspacex ) {return 0;}
void preWork( CollabSuper: :Workspace* ) {
void postWork( CollabSuper: :Workspace* ) {

void edgeWork( Vertex*, CollabSuper::Workspacex )  {}
s

class Graph : public CollabSuper::Graph {

protected:

void regionWork( Vertex*, CollabSuper::Workspace* ) {}

void initWork( CollabSuper::Workspace* ) {3

bool finishWork( CollabSuper: :Workspacex ) {return 0;}
s

};

The introduction of DEFAULTW (as a component separate from DFT) is an im-
plementation detail, borrowed from the VanHilst and Notkin implementation of
this example [1996b]. Its purpose is to avoid dynamic binding and enable multiple
algorithms to be composed as separate refinements of more than one DFT compo-
nent. This topic is discussed in detail during the comparison of mixin layers and
application frameworks (Section 3.2.2).

With the collaboration entities of the original design represented as distinct mixin
layers, it is easy to produce an entire application by composing collaborations. In
fact, the mixin layers defined can be used to implement a product-line: a family
of related applications. Different compositions of layers yield different products
(members) of the family. In our example, the building blocks are the undirected
graph, depth first traversal, etc. collaborations. We show the collaborations that
are composed to build the vertex numbering graph application in Figure 4. We
will soon explain what this composition means but first let us see how the different
classes are related. The final implementation classes are members of the product
of the composition, NumberC (e.g., NumberC: : Graph is the concrete graph class).
Figure 5 shows the mixin layers and their member classes, which represent roles, as
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typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC;

Fig. 4. A composition implementing the vertex numbering operation
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Fig. 5. Mixin-layers (ovals) and role-members (rectangles inside ovals) in the composition. Every
component inherits from the one above it. Shaded role-members are those contained in the
collaboration, unshaded are inherited. Arrows show inheritance relationships drawn from subclass
to superclass.

they are actually composed. Each component inherits from the one above it. That
is, DFT inherits role-members from NUMBER, which inherits from DEFAULTW, which
inherits from UGRAPH. At the same time, DFT: : Graph inherits methods and variables
from NUMBER: :Graph, which inherits from DEFAULTW: : Graph, which inherits from
UGRAPH: : Graph. This double level of inheritance is what makes the mixin-layer
approach so powerful. For instance, even though NUMBER does not specify a Graph
member, it inherits one from DEFAULTW. The simplicity that this design affords
becomes apparent in the following sections, when we compare it with alternatives.

The interpretation of the composition in Figure 4 is straightforward. It expresses
the development of a vertex numbering application as a series of refinements. One
begins with the UGRAPH mixin layer that implements an undirected graph. Next,
default classes and methods that are common to all graph traversal algorithms are
added by the mixin layer DEFAULTW. Then the algorithms and data members that
are specific for vertex numbering are introduced by the NUMBER mixin layer. These
algorithms, by themselves, are insufficient for performing vertex numbering because
they rely on graph search algorithms which have yet to be added. Finally, the graph
search algorithms—in this case, depth first search—are grafted on by the DFT mixin
layer thereby completing the specification and implementation of this application.

Thus, every mixin layer except UGRAPH is implemented in terms of the ones above
it. For instance, DFT is implemented in terms of methods supplied by NUMBER,
DEFAULTW, and UGRAPH. An actual code fragment from the visitDepthFirst method
implementation in DFT: : Vertex is the following:
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(Vertex*)firstNeighbor(); v != NULL;
(Vertex*)nextNeighbor () )

for (v
v

{
edgeWork (v, workspace);
v->visitDepthFirst (workspace);

3

The firstNeighbor,nextNeighbor, and edgeWork methods are not implemented
by the DFT component. Instead they are inherited from components above it in the
composition. firstNeighbor and nextNeighbor are implemented in the UGRAPH
component (as they encode the iteration over nodes of a graph). edgeWork is a
traversal refinement and (in this case) is implemented by the NUMBER component.

We can now see how mixin layers are both reusable and interchangeable. The
DFT component of Figures 4 and 5 is oblivious to the implementations of methods
in components above it. Instead, DFT only knows the interface of the methods
it expects from its parent. Thus, the code above represents a skeleton expressed
in terms of abstract operations firstNeighbor, nextNeighbor, and edgeWork.
Changing the implementation of these operations merely requires the swapping of
mixin layers. For instance, we can create an application (CycleC) that checks for
cycles in a graph by replacing the NUMBER component with CYCLE:

typedef DFT < CYCLE < DEFAULTW < UGRAPH > > > CycleC;

The results of compositions (CycleC above and NumberC in Figure 4) can be
used by a client program as follows: First, an instance of the nested Graph class
(NumberC: :Graph or CycleC: :Graph) needs to be created. Then, Vertex objects
are added and connected in the graph (the Graph role in mixin-layer UGRAPH de-
fines methods addVertex and addEdge for this purpose). After the creation of the
graph is complete, calling method depthFirst on it executes the appropriate graph
algorithm.

Mixin layers are the building blocks of a graph application product-line. Each
mixin layer is a reusable component and different members (i.e., products) of the
family can be created by using different compositions of mixin layers. Note that
no direct editing of the component is necessary and multiple copies of the same
component can co-exist in the same composition. For instance, we could combine
two graph algorithms by using two instances of the DFT mixin layer (in the same
inheritance hierarchy), refined to perform a different operation each time:

class NumberC : public DFT < NUMBER < DEFAULTW < UGRAPH > > > {};
class CycleC : public DFT < CYCLE < NumberC > > {};

Both algorithms can be invoked, depending on whether we access the depth-first
traversal through a NumberC or a CycleC reference:

CycleC: :Graph *graph_c = new CycleC::Graph();
NumberC: :Graph *graph_n = graph_c;

Now a call to graph_c->depth_first invokes the cycle checking algorithm, while
a call to graph_n->depth_first calls the vertex numbering algorithm. (Alterna-

tively, we can qualify method names directly, e.g.,
graph_c->NumberC: :Graph: :depth_first(...) .)
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As another example, the design may change to accommodate a different under-
lying model. For instance, operations could now be performed on directed graphs.
The corresponding update (DGRAPH replaces UGRAPH) to the composition is straight-
forward (assuming that the algorithms are still valid for directed graphs as is the
case with Holland’s original implementation of this example [1992]):

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC;

Again, note that the interchangeability property is a result of the independence
of collaborations.” A single UGRAPH collaboration completely incorporates all parts
of an application that relate to maintaining an undirected graph (although these
parts span several different classes). The collaboration communicates with the rest
of the application through a well-defined and usually narrow interface.

For this and other similar examples, the reusability and interchangeability of
mixin layers solves the library scalability problem [Batory et al. 1993; Biggerstaff
1994]: there are n features and often more than n! valid combinations (because
composition order matters and feature replication is possible [Batory and O’Malley
1992]). Hard-coding all different combinations leads to libraries of exponential size:
the addition of a single feature can double the size of a library. Instead, we would
like to have a collection of building blocks and compose them appropriately to derive
the desired combination. In this way, the size of the library grows linearly in the
number of features it can express (instead of exponentially, or super-exponentially).

Multiple Collaborations in a Single Design. An interesting question is
whether mixin layers can be used to express collaboration-based designs where a
single collaboration is instantiated more than once with the same class playing
different roles in each instantiation. The answer is positive, and the desired result
can be effected using adaptor mixin layers. Adaptor layers add no implementation
but adapt a class so that it can play a pre-defined role. That is, adaptor layers
contain classes with empty bodies that are used to “redirect” the inheritance chain
so that predefined classes can play the required roles.

Consider the case of a producer-consumer collaboration, which was briefly dis-
cussed in Section 2.1. Our example is from the domain of compilers. A parser in a
compiler can be viewed as a consumer of tokens produced by a lexical analyzer. At
the same time, however, a parser is a producer of abstract syntax trees (consumed,
for instance, by an optimizer). We can reuse the same producer-consumer collab-
oration to express both of these relationships. The reason for wanting to provide
a reusable implementation of the producer-consumer functionality is that it could
be quite complex. For instance, the buffer for produced-consumed items may be
guarded by a semaphore, multiple consumers could exist, etc. The mixin layer
implementing this collaboration takes Item as a parameter, describing the type of
elements produced or consumed:

"By “independence” we mean that collaborations are composable because they conform to a par-
ticular design—all collaborations use Graph, Vertex, and Workspace classes with standardized
methods. Given this standardization, the interchangeability—or independence—of these collabo-
rations is achieved.
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template <class CollabSuper, class Item>
class PRODCONS : public CollabSuper {

public:
class Producer : public CollabSuper: :Producer {
void produce(Item item) { ... }

// The functionality of producing Items is defined here
... // other Producer role methods

};

class Consumer : public CollabSuper: :Consumer {
Item consume() { ... }
// The functionality of consuming Items is defined here
... // other Consumer role methods
s
3

That is, PRODCONS adds the generic “produce” functionality to the Producer class
and adds generic “consumer” functionality to the Consumer class.

Now we can use two simple adaptors to make a single class (Parser) be both
a producer and a consumer in two different collaborations. The first adaptor
(PRODADAPT) expresses the facts that a producer is also going to be a consumer
(the actual consumer functionality is to be added later) and that the Optimizer
class inherits the existing consumer functionality. This adaptor is shown below:

template <class CollabSuper>
class PRODADAPT : public CollabSuper {

public:
class Consumer : public CollabSuper: :Producer {};
class Optimizer : public CollabSuper::Consumer {};
class Producer {};
3

The second adaptor (CONSADAPT) is similar:

template <class CollabSuper>
class CONSADAPT : public CollabSuper {

public:
class Lexer : public CollabSuper::Producer {};
class Parser : public CollabSuper::Consumer {};
s

Now a single composition can contain two copies of the PRODCONS mixin layer,
appropriately adapted. For instance:

typedef COMPILER < CONSADAPT < PRODCONS <
PRODADAPT < PRODCONS < ..., Tree> >, Token > > >
CompilerApp;

In the above, the COMPILER mixin layer is assumed to contain the functionality
of a compiler that defines three classes, Lexer, Parser, and Optimizer. These
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Fig. 6. The desired inheritance hierarchy has a Parser inheriting functionality both from a con-
sumer class (a Parser is a consumer of tokens) and a producer class (a Parser is a producer of
trees).
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Fig. 7. By using adaptor layers (dotted rectangles), one can emulate the inheritance hierarchy
of Figure 6, using only pre-defined mixin layers (solid rectangles). Since a single mixin layer
(PRODCONS) is instantiated twice, adaptors help determine which class will play which role every
time.

classes use the functionality supplied by the producer-consumer mixin layer. For
instance, there may be a parse method in COMPILER: : Parser that repeatedly calls
the consume and produce methods. To better illustrate the role of adaptors, Figures
6 and 7 show the desired inheritance hierarchy for this example, as well as the way
that adaptors are used to enable emulating this hierarchy using only predefined
mixin layers. Note that each of the layers participating in the above composition
appears as a rectangle in Figure 7.
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3.2.2  Comparison to Application Frameworks. In object-oriented programming,
an abstract class cannot be instantiated (i.e., it cannot be used to create objects)
but is only used to capture the commonalities of other classes. These classes inherit
the common interface and functionality of the abstract class. An object-oriented ap-
plication framework (or just framework) consists of a suite of interrelated abstract
classes that embodies an abstract design for software in a family of related systems
[Johnson and Foote 1988]. Each major component of the system is represented
by an abstract class. These classes contain dynamically bound methods (virtual
in C++), so that the framework user can add functionality by creating subclasses
and overriding the appropriate methods. Thus, frameworks have the advantage of
allowing reuse at a granularity larger than a single abstract class. But frameworks
have the disadvantage that using them means manually making the client classes
inherit from framework classes. Thus, the framework classes cannot easily be in-
terchanged (with a different, similar framework) and the client classes cannot be
reused in a different context—they are hard-wired to the framework.

In a white-box framework, users specify system-specific functionality by adding
methods to the framework’s classes. Each method must adhere to the internal
conventions of the classes. Thus, using white-box frameworks is difficult, because
it requires knowledge of their implementation details. In a black-box framewortk,
the system-specific functionality is provided by a set of classes. These classes must
adhere only to the proper ezternal interface. Thus, using black-box frameworks
is easier, because it does not require knowledge of their implementation details.
Using black-box frameworks is further simplified when they include a library of
pre-written functionality that can be used as-is with the framework.

Frameworks can be used to implement collaboration-based designs, but the
amount of flexibility and modularity they can afford is far from optimal. The
reason is that frameworks allow the reuse of abstract classes but have no way of
specifying collections of concrete classes that can be used at will (i.e., either in-
cluded or not and in any order) to build an application ([Batory et al. 2000]).
Intuitively, frameworks allow reusing the skeleton of an implementation but not
the individual pieces that are built from the skeleton. This can be seen through
a simple combinatorics argument. Consider a set of four features, A, B, C, and
D that can be combined arbitrarily to yield complete applications. For simplicity,
assume that feature A is always first, and that no feature repetition is allowed.
Then a framework may encode feature combination AB, thus allowing the user to
program combinations ABCD and ABDC. Nevertheless, these combinations must
be coded separately (i.e., they cannot use any common code other than their com-
mon prefix, AB). The reason is that each instantiation of the framework creates a
separate inheritance hierarchy and reusing a combination is possible only if one can
inherit from one of its (intermediate or final) classes—only common prefixes are
reusable. In our four-feature example, combinations that have no common prefix
with the framework (for instance, ACD) simply cannot take advantage of it and
have to be coded separately. This amounts to exponential redundancy for complex
domains.

In the general case, assume a simple cost model that assigns one cost unit to
each re-implementation of a feature. If feature order matters but no repetitions

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, December 2001.



Mixin Layers . 21

are possible, the cost of implementing all possible combinations using frameworks

is equal to the number of combinations (each combination of length k differs by

one feature from its prefix of length k& — 1). Thus, for n features, the total cost
n

for implementing all combinations using frameworks is Z ﬁ (This number
is derived by considering the sum of the feature conlibilnations of length k, for
each k from 1 to n.) In contrast, the cost of using mixin layers for the same
implementation is equal to n—each component is implemented once and can be
combined in arbitrarily many ways. With mixin layers, even compositions with no
common prefixes share component implementations.

Even though our combinatorics argument represents an extreme case, it is reflec-
tive of the inflexibility of frameworks. For instance, optional features are common
in practice and frameworks cannot accommodate them, unless all combinations are
explicitly coded by the user. This is true even for domains where feature composi-
tion order does not matter or features have a specific order in which they must be
used.

Another disadvantage of using frameworks to implement collaboration-based de-
signs comes from the use of dynamically bound methods in frameworks. Even
though the dynamic dispatch cost is sometimes negligible or can be optimized
away, often it imposes a run-time overhead, especially for fine-grained classes and
methods. With mixin layers, this overhead is avoided, as there is little need for
dynamic dispatch. The reason is that mixin layers can be ordered in a composition
so that most of the method calls are to their parent layers.

This reveals a general and important difference between mizin-based programming
and standard object-oriented programming. When a code fragment in a conventional
OO class needs to be generic, it is implemented in terms of dynamically bound
methods. These methods are later overridden in a subclass of the original class,
thus refining it for a specific purpose. With mixin classes, the situation is different.
A method in a mixin class can define generic functionality by calling methods in the
class’s (yet undefined) superclass. That is, generic calls for mixins can be both up-
calls and down-calls in the inheritance hierarchy. Generic up-calls are specialized
statically, when the mixin class’s superclass is set. Generic down-calls provide
the standard OO run-time binding capabilities. Their use can be limited to cases
where the exact version of the method to be called is truly not known until run-
time. In contrast, in application frameworks, dynamic binding is often used just
for modularity reasons (calling functionality without yet having defined it) even if
the target ends up being known statically. This can be eliminated in a mixin-based
approach because we are allowed to add functionality to a mixin class’s superclass.
Refinement of existing functionality is not just a top-down process but involves
composing mixins arbitrarily, often with many different orders being meaningful.

Example. We illustrate the above points with the graph algorithm example
of Section 2.2. The original implementation of this application [Holland 1992] used
a black-box application framework on which the three graph algorithms were im-
plemented. The framework consists of the implementations of the Graph, Vertex,
and Workspace classes for the Undirected Graph and Depth First Traversal col-
laborations. The classes implementing the depth-first traversal have methods like
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preWork, postWork, edgeWork, etc., which are declared to be dynamically bound
(virtual in C++). In this way, any classes inheriting from the framework classes
can refine the traversal functionality by redefining the operation to be performed
the first time a node is visited, when an edge is traversed, etc.

VanHilst and Notkin discussed the framework implementation of this example in
detail [1996b]. Our presentation here merely adapts their observations to our above
discussion of using frameworks to implement collaboration-based designs. A first
observation is that, in the framework implementation, the base classes are fixed
and changing them requires hand-editing (usually copying and editing, which re-
sults in redundant code). For instance, consider applying the same algorithms to a
directed, as opposed to an undirected graph. If both combinations need to be used
in the same application, code replication is necessary. The reason is that the classes
implementing the graph algorithms (e.g., Vertez Numbering) must have a fixed su-
perclass. Hence, two different sets of classes must be introduced, both implementing
the same graph algorithm functionality but having different superclasses.

A second important observation pertains to our earlier discussion of optional
features in an application. In particular, a framework implementation does not
allow more than one refinement to co-exist in the same inheritance hierarchy. Thus,
unlike the mixin layer version of the code in Section 3.2.1, with frameworks we
cannot have a single graph that implements both the Vertex Numbering and the
Cycle Checking operations. The reason is that the dynamic binding of methods in
the classes implementing the depth-first traversal causes the most refined version of
a method to be executed on every invocation. Thus, multiple refinements cannot co-
exist in the same inheritance hierarchy since the bottom-most one in the inheritance
chain always supersedes any others. In contrast, the flexibility of mixin layers allows
us to break the depth-first traversal interface in two (the DEFAULTW and the DFT
component, discussed earlier) so that DFT calls the refined methods in its superclass
(i-e., without needing dynamic binding). In this way, multiple copies of the DFT
component can co-exist and be refined separately. At the same time, obviating
dynamic binding results into a more efficient implementation—dynamic dispatch
incurs higher overhead than calling methods of known classes (although sometimes
it can be optimized by an aggressive compiler).

3.2.3 Comparison to the VanHilst and Notkin Method. The VanHilst and Notkin
approach [1996b; 1996¢c; 1996a; 1997] is another technique that can be used to
map collaboration-based designs into programs. The method employs C++ mixin
classes, which offer the same flexibility advantages over a framework implementa-
tion as the mixin layers approach. Nevertheless, the components represented by
VanHilst and Notkin are small-scale, resulting in complicated specifications of their
interdependencies.

VanHilst and Notkin use mixins in C++ to represent roles. More specifically,
each individual role is mapped to a different mixin and is also parameterized by
any other classes that interact with the given role in its collaboration. For an
example, consider role B4 in Figure 8 (which replicates Figure 1 for easy reference).
This role participates in a collaboration together with two other roles, A4 and C4.
Hence, it needs to be aware of the classes playing the two roles (so that, for instance,
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_Object Classes
Object OA Object OB Object OC
(Clollaboration Rol e Al Rol e Bl Role C1
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Fig. 8. Example collaboration decomposition. Ovals represent collaborations, rectangles represent
objects, their intersections represent roles.

it can call appropriate methods). With the VanHilst and Notkin technique, the role
implementation would be a mixin that is parameterized by these two extra classes:

template <class RoleSuper, class 0A, class 0C>
class B4 : public RoleSuper {
... /* role implementation, using 0A, 0C */

};

Consider that the actual values for parameters 0A, 0C would themselves be the
result of template instantiations, and their parameters also, and so on (up to a
depth equal to the number of collaborations). This makes the VanHilst and Notkin
method complicated even for relatively small examples. In the case of a composition
of n collaborations, each with m roles, the VanHilst and Notkin method can yield
a parameterization expression of length m™. Additionally, the programmer has
to explicitly keep track of the mapping between roles and classes, as well as the
collaborations in which a class participates. For instance, the mixin for role A4
in Figure 1 has to be parameterized with the mixin for role A2—the programmer
cannot ignore the fact that collaboration ¢8 does not specify a role for object OA.
From a software evolution standpoint, local design changes cannot easily be isolated,
since collaborations are not explicitly represented as components. These limitations
make the approach unscalable: various metrics of programmer effort (e.g., length
of composition expressions, parameter bindings that need to be maintained, etc.)
grow exponentially in the number of features supported. (This is the same notion
of scalability as in our earlier discussion of the library scalability problem.)

Conceptually, the scalability problems of the VanHilst and Notkin approach are
due to the small granularity of the entities they represent: each mixin class repre-
sents a single role. Roles, however, have many external dependencies (for instance,
they often depend on many other roles in the same collaboration). To avoid hard-
coding such dependencies, we have to express them as extra parameters to the
mixin class, as in the preceding code fragment. Reusable components should have

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, December 2001.



24 . Y. Smaragdakis and D.Batory

class NumberC: public DFT <NUMBER <DEFAULTW <UGRAPH> > > {};
class CycleC : public DFT < CYCLE < NumberC > > {};

Fig. 9. Our mixin layer implementation of a multiple-collaboration composition. The individual
classes are members of NumberC, CycleC (e.g., NumberC: :Vertex, CycleC: :Graph, etc.).

class Empty {};

class WS : public WorkspaceNumber {};
class WS2 : public WorkspaceCycle {;
class VGraph : public VertexAdj<Empty> {};
class VWork : public VertexDefaultWork<WS,VGraph>  {};
class VNumber : public VertexNumber<WS,VWork> {};
class V : public VertexDFT<WS,VNumber> {};
class VWork2 : public VertexDefaultWork<WsS2,V> {};
class VCycle : public VertexCycle<WS2,VWork2> {};
class V2 : public VertexDFT<WS2,VCycle> {};
class GGraph : public GraphUndirected<V2> {};
class GWork : public GraphDefaultWork<V,WS,GGraph> {};
class Graph : public GraphDFT<V,WS,GWork> {};
class GWork2 : public GraphDefaultWork<V2,WS2,Graph> {};
class GCycle : public GraphCycle<WS2,GWork2> {};
class Graph2 : public GraphDFT<V2,WS2,GCycle> {};

Fig. 10. Same implementation using the VanHilst/Notkin approach. V corresponds to our
NumberC: :Vertex, Graph to NumberC: :Graph, WS to NumberC: :Workspace, etc.

few external dependencies, as made possible by using mixin layers to model collab-
orations.

Example. Consider a composition implementing both the Cycle Checking and
the Vertex Numbering operation on the same graph. Recall that the ability to
compose more than one refinement (or multiple copies of the same refinement) is
an advantage of the mixin-based approach (both ours and the VanHilst and Notkin
method) over frameworks implementations.

The components (mixins) used by VanHilst and Notkin are similar to the inner
classes in our mixin layers, with extra parameters needed to express their depen-
dencies with other roles in the same collaboration. Our specification is shown in
Figure 9 (reproducing a previously presented code fragment). A compact repre-
sentation of a VanHilst and Notkin specification is shown in Figure 10. (A more
readable version of the same code included in [VanHilst and Notkin 1996b] is even
lengthier.)®

Figure 10 makes apparent the complications of the VanHilst/Notkin approach.
Each mixin representing a role can have an arbitrary number of parameters and
can instantiate a parameter of other mixins. In this way, parameterization ex-
pressions of exponential (to the number of collaborations) length can result. To
alleviate this problem, the programmer has to introduce explicitly intermediate
types that encode common sub-expressions. For instance, V is an intermediate
type in Figure 10. Its only purpose is to avoid introducing the sub-expression
VertexDFT<WS, VNumber> three different times (wherever V is used). Of course,

8The object code of both is, as expected, of almost identical size.
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VNumber itself is also just a shorthand for VertexNumber<WS,VWork>. VWork, in
turn, stands for VertexDefaultWork<WS,VGraph>, and so on.” Additional com-
plications arise when specifying a composition: users must know the number and
position of each parameter of a role-component. Both of the above requirements
significantly complicate the implementation and make it error-prone.

Using mixin layers, the exponential blowup of parameterization expressions is
avoided. Every mixin layer only has a single parameter (the layer above it). By
parameterizing a mixin layer A by B, A becomes implicitly parameterized by all the
roles of B. Furthermore, if B does not contain a role for an object that A expects,
it will inherit one from above it. This is the benefit of expressing the collaborations
themselves as classes: they can extend their interface using inheritance.

Another practical advantage of mixin layers is that it encourages consistent nam-
ing for roles. Hence, instead of explicitly giving unique names to role-members,
we have standard names and only distinguish instances by their enclosing mixin
layer. In this way, VertexDFT, GraphDFT, and VertexNumber become DFT: :Vertex,
DFT: :Graph and NUMBER: : Vertex, respectively.

In [1996b], VanHilst and Notkin questioned the scalability of their method. One
of their concerns was that the composition of large numbers of roles “can be confus-
ing even in small examples...” The observations above (length of parameterization
expressions, number of components, consistent naming) show that mixin layers ad-
dress this problem and do scale gracefully, without losing the advantages of the
VanHilst and Notkin implementation.

3.3 Mixin Layers Considerations

We have argued that mixin layers are better for implementing collaboration-based
designs than other alternatives. Nevertheless, mixin layers are certainly not a “sil-
ver bullet”. They are good for in-house development of product-line architectures
for mature domains and require programming language and tool support for specifi-
cation and debugging. These points are analyzed below in more detail, but we note
that they are by no means specific to mixin layers: other competitive techniques
(e.g., application frameworks, or the VanHilst and Notkin method) have similar
restrictions.

— Appropriate Domains for Mizin Layers: Mixin layers are not appropriate for ev-
ery domain. In general, the most suitable domains are mature, well-understood,
amenable to detailed decompositions and elaborations of collaboration-based de-
signs. The domain should be decomposable into largely independent refinements.
Composing such refinements need not result in an increase in the level of abstrac-
tion. Instead, refinements can represent different concerns at the same conceptual
level. (E.g., the addition of more operations on graphs does not alter the abstrac-
tion that we are still dealing with graphs; rather, adding more operations merely
enriches the graph abstraction.) A well-known observation is that, even in strictly
layered domains, like operating systems, the notion of “information module” does

9Some compilers (e.g., MS VC++, g++) internally expand template expressions, even though
the user has explicitly introduced intermediate types. This caused page-long error messages for
incorrect compositions when we experimented with the VanHilst and Notkin method, rendering
debugging impossible.
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not necessarily coincide with the notion of “layer of abstraction”. Modules may
encompass different parts of several layers [Habermann et al. 1976]. Mixin lay-
ers are a kind of “information module” and similar observations apply. Mixin
layers lead to physically layered implementations, which may or may not have a
negative impact on application performance. Mixin layers are implementations
of a standard design imposed on a domain. In-house environments of individual
companies are best to maintain this standard; open collaborative communities
might make such standards difficult to follow. No precise quantification of these
properties can be given, but a designer can usually assess the appropriateness of
our techniques.

—Difficulties in Using Mixin Layers: Good OO designs limit the depth of inheri-
tance hierarchies to a small number (e.g., 3). In contrast, compositions of mixin
layers often leads to long inheritance chains. This can become problematic during
debugging (chasing method calls up an inheritance hierarchy) and generally un-
derstanding where the functionality of a class is located on an inheritance chain.
Another difficulty can be learning the order in which mixin layers can be com-
posed. While this can be ameliorated by good tool support [Batory and Geraci
1997], it is something more that needs to be learned and composition rules need
to be precisely stated.

—Implementation Requirements for Mizin Layers and Interaction with Language

Features: Mixin layers are only as good as the technology to support them. Some
of the proposed implementation techniques have specific technical disadvantages,
especially in conjunction with particular compiler technology. For instance, our
C++ template implementation of mixin layers may result in (binary) code du-
plication if the same layer is used multiple times in a composition. Nevertheless,
no fundamental implementation drawbacks exist in relation to mixin layers. Im-
plementation considerations for the C++ version of mixin layers are described in
[Smaragdakis and Batory 2000].
Several general programming language issues arise in connection with mixin layers
and their compositions. Most of these issues pertain to the interactions of mixin
layers with type systems. Type information can be used to detect errors in a
composition of mixin layers. At the same time, layers are defined in isolation
and the problem of propagating type information between layers is especially
interesting. Since the focus of this paper is not on concrete language solutions,
we point the reader to [Smaragdakis 1999], Chapter 3, where such issues are
analyzed in detail.

4. AN APPLICATION: THE JAKARTA TOOL SUITE

In this section, we discuss an application of mixin layers to a medium-size software
project (about 30K lines of code). The project is the Jakarta Tool Suite (JTS)
[Batory et al. 1998]—a set of language extensibility tools, aimed mainly at the Java
language. We use mixin layers as the building blocks that form different versions of
the Jak tool of JTS. Jak is the modular compiler in JTS. Different versions of Jak
can be created using different combinations of layers. Layers may be responsible
for type-checking, compiling, and/or creating code for a different set of language
constructs. Additionally, layers may be used to add new functionality across a
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large group of existing classes. In this way, the user can design a language by
putting together conceptual language “modules” (i.e., consistent sets of language
constructs) and implement a compiler for this language as a version of Jak com-
posed of the mixin layers corresponding to each language module. Currently avail-
able layers support the base Java language, meta-programming extensions, general
purpose extensions (e.g., syntax macros for Java), a domain-specific language for
data structure programming (P3), etc.

The choice of the compiler domain as a large-scale test case for mixin layers is
not arbitrary. Compilers are well-understood, with modern compiler construction
benefiting from years of formal development and stylized design patterns. The
domain of compilers has been used several times in the past in order to demonstrate
modularization mechanisms. Selectively, we mention the wvisitor design pattern
[Gamma et al. 1995], which is commonly described using the example of a compiler
with a class corresponding to each syntactic type that its parser can recognize
(e.g., there is a class for if-statements, a class for declarations, etc.). In this case,
the visitor pattern can be used to add new functionality to all classes, without
distributing this functionality across the classes. Our application of mixin layers
to the compilers domain has very much the same modularization flavor. We use
mixin layers to isolate aspects of the compiler implementation, which can be added
and removed at will. Compared to the visitor pattern, mixin layers offer greater
capabilities—for instance, allowing the addition of state (i.e., member variables) to
existing classes.

Overall, the outcome of applying mixin layers to JTS was very successful. The
flexibility afforded by a layered design is essential in forming compilers for different
language dialects. Additionally, mixin layers helped with the internal organization
of the code, so that changes were easily localized. Additions that could be concep-
tually grouped together (like those reflecting the language changes from Java 1.0
to Java 1.1) were introduced as new mixin layers, without disrupting the existing
design. JTS was thus easier to implement and has become easier to maintain.

We next discuss JTS and the use of mixin layers in its implementation. Section 4.1
offers some essential background in JTS by describing the way parsers are generated
and initial class hierarchies are established based on language syntax. Section 4.2
discusses the actual application of mixin layers in JTS.

4.1 JTS Background: Bali as a Parser Generator

Bali is the JTS tool responsible for putting together compilers. Although Bali is a
component-based tool, in this section we limit our attention to the more conven-
tional grammar-specification aspects of Bali.

The syntax of a language is specified as a Bali grammar, which is an annotated
BNF grammar extended with regular-expression repetitions. Bali transforms a Bali
grammar into a lexical analyzer and parser. For example, two Bali productions are
shown below: one defines StatementList as a sequence of one or more Statements,
and the other defines ArgumentList as a sequence of one or more Arguments sep-
arated by commas.

StatementList : ( Statement )+ ;
ArgumentList : Argument ( ‘,’ Argument )x*;
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// Lexeme definitions
"print" PRINT

ngn PLUS
nen MINUS
e LPAREN
DR RPAREN

"[0-9]%" INTEGER

Wt // production definitions
// start rule is Action

Action : PRINT Expr :: Print
Expr : Expr PLUS Expr :: Plus
| Expr MINUS Expr t: Minus
| MINUS Expr :: UnaryMinus
| LPAREN Expr RPAREN :: Paren
| INTEGER :: Integer

Fig. 11. A Bali Grammar for an Integer Calculator

Repetitions have been used before in the literature [Wirth 1977; Wile 1993; Rea-
soning Systems 1990]. They simplify grammar specifications and allow an efficient
internal representation as a list of trees.

Bali productions are annotated by the class of objects that is to be instantiated
when the production is recognized. For example, consider the Bali specification of
the Jak SelectStmt rule:

SelectStmt
IF ‘(’ Expression ¢)’ Statement ::IfStm
| SWITCH ‘(’ Expression ‘)’ Block ::SwStm

When a parser recognizes an “if” statement (i.e., an IF token, followed by *(¢,
Expression, ‘)’, and Statement), an object of class IfStm is created. Similarly,
when the pattern defining a “switch” statement (a SWITCH token followed by ‘(‘,
Expression, ‘)’ and Block) is recognized, an object of class SwStm is created. As
a program is parsed, the parser instantiates the classes that annotate productions,
and links these objects together to produce the syntax tree of that program.

A Bali grammar specification is a streamlined document. It is a list of the lexical
patterns that define the tokens of the grammar followed by a list of annotated
productions that define the grammar itself. A Bali grammar for an elementary
integer calculator is shown in Figure 11. From this grammar specification, Bali
generates a lexical analyzer and a parser (we use the JavaCC lexer/parser generator
as a backend).

Associating grammar rules with classes allows Bali to do more than generate a
parser. In particular, Bali can deduce an inheritance hierarchy of classes represent-
ing different pieces of syntax. Consider Figure 12, which shows rules Rulel and
Rule2. When an instance of Rulel is parsed, it may be an instance of patternl (an
object of class C1), or an instance of Rule2 (an object of class Rule2). Similarly, an
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Rul el : patternl o a
| Rule2
Rul e2 : pattern2 Q2

| pattern3 1 C3

Fig. 12. Inferring inheritance hierarchies from grammar rules.

instance of Rule2 is either an instance of pattern2 (an object of C2) or an instance
of pattern3 (an object of C3). From this information, the inheritance hierarchy of
Figure 12 is constructed: classes C1 and Rule2 are subclasses of Rulel, and C2 and
C3 are subclasses of Rule2.

Additionally, for each production Bali infers the constructors for syntax tree node
classes. Each parameter of a constructor corresponds to a token or nonterminal of
a pattern.!® For example, the constructor of the IfStm class has the following
signature:

IfStm(Token iftk, Token lp, Expression exp, Token rp, Statement st)

Methods for editing and unparsing nodes are additionally generated.

Although Bali automatically generates an inheritance hierarchy and some meth-
ods for the produced Jak compiler, there are obviously many methods that cannot
be generated automatically. These include type checking, reduction, and optimiza-
tion methods. Such methods are syntax-type-specific; we hand-code these methods
and encapsulate them as a mixin layer that contains subclasses of Bali-generated
classes.

In essence, Bali takes the grammar specification and uses it to produce a skele-
ton for the compiler of the language. The skeleton has the form of a set of classes
organized in an inheritance hierarchy, together with the methods that can be au-
tomatically produced (that is, constructors, editing, and unparsing methods). In
other words, Bali produces an application framework for a compiler. The frame-
work is encapsulated in a mixin layer that occupies the root of all mixin layer
compositions implementing different versions of Jak.

4.2 Bali Components and Mixin Layers in JTS

Apart from its parser generator aspect, Bali is also a tool that synthesizes lan-
guage implementations from components. Bali can create compilers for a family
of languages, depending on the selection of components used as its input. This is
essentially a product-line of language translators, with their common functionality
factored out in reusable components. We use the name Jak for any Bali-generated
compiler. Currently available Bali components support the base Java language,

10The tokens need not be saved. However, Bali-produced precompilers presently save all white
space—including comments—with tokens. In this way, JTS-produced tools that transform
domain-specific programs retain embedded comments. This is useful when debugging programs
with a mixture of generated and hand-written code, and is a necessary feature if transformed
programs are subsequently maintained by hand.
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meta-programming extensions (e.g., code template operators), general purpose ex-
tensions (e.g., syntax macros for Java), a domain-specific language for state ma-
chines [Batory et al. 2000], and more. Compositions of these components define
different variants of Jak (i.e., different members of a product-line of Java dialects):
with/without meta-programming constructs, with/without state machine exten-
sions, with/without data structure extensions, and so on. This is another instance
of the library scalability problem [Batory et al. 1993; Biggerstaff 1994]. We want
to compose the different variants of Jak from components encapsulating orthogonal
units of functionality.

A Bali component has two parts: The first is a Bali grammar file (which contains
the lexical tokens and grammar rules that define the syntax of the host language
or language extension—for extensions that only change the semantics but not the
syntax, this file is absent). The second is a mixin layer encapsulating a collection of
multiple hand-coded classes that contain the reduction, type-checking, etc. methods
for each syntax type defined in that grammar file.

To illustrate how classes are defined and refined in Bali, consider four concrete
Bali components: Java is a component implementing the base Java language, SST
implements code template operators like tree constructors and explicit escapes,'!
GScope supplies scoping support for program generation, and P3 implements a lan-
guage for data structures. The Jak language and compiler can be defined by a
composition of these components. We use the [...] operator to designate compo-
nent composition—for instance, P3[GScope[SST[Java]l]l].

The syntax of a composed language is defined by taking the union of the sets of
production rules in each Bali component grammar. The semantics of a composition
is defined by composing the corresponding mixin layers. Figure 13 depicts the class
hierarchy of the Jak compiler. AstNode belongs to the JTS kernel, and is the root of
all inheritance hierarchies that Bali generates. Using the composition grammar file
(the union of the grammar files for the Java, SST, GScope, and P3 components), Bali
generates a mixin layer that encapsulates the hierarchy of classes that contain tree
node constructors, unparsing, and editing methods. Each remaining mixin layer
then grafts onto this hierarchy its hand-coded classes. These define the reduction,
optimization, and type-checking methods of tree nodes by refining existing classes.
The terminal classes of this hierarchy are those that are instantiated by the generated
compiler.

It is worth noting that Figure 13 is not drawn to scale. Jak consists of over 500
classes. The number of classes that a mixin layer adds to an existing hierarchy
ranges from 5 to 40. Nevertheless, the simplicity and economy of specifying Jak
using component compositions is enormous: to build the Jak compiler, all that
users have to provide to Bali is the equation Jak = P3[GScope[SST[Javalll, and
Bali does the rest. To compose all these classes by hand (as would be required
by Java) would be very slow, extremely tedious, and error prone. Additionally,

1Our code template operators are analogous to the backquote/unquote pair of Lisp operators.
Unlike Lisp, however, multiple operators exist in JTS—one for each syntactic type (e.g., decla-
ration, expression, etc.). Multiple constructors in syntactically rich languages are common (e.g.,
[Weise and Crew 1993], [Chiba 1996]). The main reason has to do with the ease of parsing code
fragments.
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Fig. 13. The Jak Inheritance Hierarchy.

the scalability advantages of mixin layers can easily be demonstrated: when new
extension mechanisms or new base languages are specified as components, a subset
of them can be selected and Bali automatically composes a compiler for the desired
language variant.

4.3 Java Mixin Layers for JTS

In Section 3.1.3, we discussed the applicability of mixin layers in various program-
ming languages. There we explained that Java already supports nested classes
but the language currently specifies no parameterization mechanism. Furthermore,
some of the proposed parameterization mechanisms for Java (e.g., Pizza [Odersky
and Wadler 1997] or Thorup’s virtual types [1997]) do not support parameterized
inheritance. In order to support mixin layers for Bali components in JTS, we im-
plemented our own Java language extensions for parameterization. This section
gives a brief overview of the main language construct.

Our parameterization extensions to Java are geared towards mixin layer devel-
opment (as opposed to general-purpose genericity). Our approach in designing
and implementing these language constructs was motivated by pragmatic and not
conceptual considerations: we needed a layer mechanism to facilitate our own de-
velopment efforts—mnot to supply the best-designed and robust parameterization
mechanism for Java. Therefore, our implementation was straightforward, adopting
a heterogeneous model of transformation: for each instantiation of a mixin layer,
a new Java class is created at the source code level. Thus, our approach resembles
C++ template instantiation and does not take advantage of the facilities for load-
time class adaptation offered by the Java Virtual Machine (see, e.g., the approach
of Agesen et al. [1997] and the work on binary component adaptation [Keller and
Holzle 1998]). Nevertheless, in our context our approach is not necessarily at a
disadvantage. Mixin layers in Bali component compositions are never reused in the
same application (i.e., a single Jak compiler uses at most one instance of a mixin
layer). Therefore, code bloat (redundancy in generated classes) is not a problem.
At the same time, our straightforward approach made for an easier implementation
which contributed to the faster development of JTS.

The implementation of our Java extensions for mixin layer support occurred con-
currently with the development of JTS. In fact, an early version of JTS was used to
implement the first version of our Java mixin layers. The Java mixin layers were, in
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turn, used to evolve and further develop JTS, resulting in a bootstrapped implemen-
tation. (Actually, this is not the only reason why JTS is based on a bootstrapped
implementation. Another reason is that the meta-programming capabilities added
to Java have been used in the code that implements JTS itself. The entire JTS
system is compiled using a basic version of the Jak compiler, composed of only a
few layers that specify the basic Java language, code template operators, syntax
macros, etc.)

The syntax of mixin layers is straightforward and resembles their C++ counter-
parts. Two new keywords are introduced: layer and realm. The layer keyword
is analogous to class but defines a mixin layer (i.e., an outer class that may be
parameterized with respect to its superclass). The realm keyword is used to specify
interface conformance for mixin layers, in analogy to the Java implements keyword.
Finally, the [...] operator is used to specify layer composition. The (slightly sim-
plified) general form of a layer definition is shown below, with the terminal symbols
appearing in bold for clarity:

layer_definition :
layer layer_name (param_list) realm realm_name [super]
{ declaration_list }

The syntax for non-terminals in the above definition is straightforward.
param_list is a list of type parameters for the mixin layer. If the parameter
list contains layers, the parameterization can be constrained by specifying the ex-
pected realm of these layers. The optional super construct designates an extends
clause (in much the same way as for regular Java classes). The contents of a mixin
layer can only be Java type declarations.

The actual details of our implementation are not important. We consider of
much greater importance the general approach that this implementation represents.
What we did in JTS is an example of a domain-specific languages approach to
software construction. In the course of creating a medium-size software project, we
recognized that mixin layers would facilitate our task significantly. That is, we saw
an opportunity for improving our implementation through extra language support.
It then proved cost-effective to add the extra linguistic constructs that were needed
(i-e., mixin layers), in the course of implementing the original project (i.e., JTS).

It is our belief that the domain-specific language approach to software construc-
tion is a promising way to building better software. The designer of a software
application can (and should) be thinking about language constructs that can have
a significant impact in the application’s efficiency, maintainability, or reusability.
Often such constructs can be readily identified, but they are not available in the
implementation language of choice. With the advent of language extensibility tools,
as well as extensible/reflective programming languages, supplying special-purpose
(or domain-specific) language support may be the right approach in fighting soft-
ware complexity. JTS itself is a tool aiming at facilitating the implementation of
domain-specific languages and language extensions. The use of mixin layers in the
implementation of JTS is a vivid demonstration of the same paradigm that JTS
promotes.
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5. RELATED WORK

There is an enormous wealth of research in the area of component-based software
construction and code modularization. Here we selectively discuss some approaches
that are related to our work but have not been described previously in this paper.

5.1 GenVoca

GenVoca is a layered design and implementation methodology, mainly applied to
application generators (i.e., compilers for domain-specific programming languages).
GenVoca advocates that a domain be decomposed in terms of largely-orthogonal
features which are implemented as layers. Applications in the domain can be syn-
thesized by composing layers; layer composition is performed by a generator. The
name “GenVoca” was derived from the first two generators that exhibited these
principles: Genesis (extensible database systems) [Batory 1987; Batory et al. 1988]
and Avoca (network protocols) [O’Malley and Peterson 1992]. GenVoca genera-
tors for other domains include: data manipulation languages [Villarreal 1994], dis-
tributed file systems [Heidemann and Popek 1994], host-at-sea buoy systems [Weiss
1990], and real-time avionics software [Coglianese and Szymanski 1993]. Mixin lay-
ers were originally inspired by the GenVoca model and are now an essential part
of its arsenal of implementation techniques. Although we have not attempted full
implementations, our experience suggests that mixin layers can be used to obtain
many of the same benefits as full GenVoca generators for the above domains. That
is, much of the benefit of GenVoca generators is due to the layering technology and
not to the use of compiler techniques.

5.2 Modules in High-Level Languages

High-level languages often provide modules (a.k.a. packages or namespaces) as
fundamental abstractions. Representative approaches include Ada packages [In-
ternational Organization for Standardization 1995]—which is a prototypical mod-
ularization scheme for block structured languages, ML [Milner et al. 1990]—which
provides a very powerful module system based on polymorphic types, Java packages,
and C++ namespaces [Stroustrup 1997].12

Mixin layers are expressible in the latest incarnations of Ada (Ada95 [Interna-
tional Organization for Standardization 1995]). Standard ML still lacks support
for extensible records (i.e., a counterpart of inheritance). Nevertheless, there is
nothing fundamental that prevents integrating mixin layers. Recent research has
brought some of the mixin layers ideas in a modular language framework. Findler
and Flatt’s work [1998] introduces constructs remarkably similar to mixin layers,
in an experimental, module-based object system.

The most interesting lesson, however, is that modules—unlike classes—are often
not well integrated in programming languages. For example, a C++ namespace

121t is perhaps debatable whether C++ namespaces and Java packages are modules, because they
can be later re-opened and have more definitions added to them. Nevertheless, we choose to
include these mechanisms here. In practice, they are often used under certain assumptions in the
same way as modules in other languages. For instance, several Java tools perform whole-package
static analysis, although a change in any file of the package may invalidate the results of the entire
analysis.
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cannot, be parameterized, while a class can. This prevents us from using mixin-like
patterns with C++ namespaces. With class nesting and parameterized inheritance,
mixin layers are a kind of module with some desirable characteristics from a software
engineering standpoint.

5.3 Meta-Object Protocols

Meta-Object Protocols (e.g., [Forman et al. 1994; Kiczales et al. 1991]) are reflective
facilities for modifying the behavior of an object system while the system is being
used. Classical modifications include executing arbitrary code around method in-
vocations (method wrapping) and changing the semantics of inheritance. Specific
examples of method wrapping include function tracing, invariant checking, and
object locking [Forman et al. 1994].

Meta-object protocols solve a different problem than mixin layers. Mixin layers
address the issue of grouping class refinements together so they can be treated as
a unit. In contrast, meta-object protocols can express modifications to fundamen-
tal operations of an object system. Meta-object protocols can be used for desirable
functionality additions that are not convenient with mixin layers—e.g., the applica-
tion of a single wrapper to all methods of a class at once. Of course, a meta-object
protocol is a mechanism, not a design guideline. An appropriately designed meta-
object protocol, allowing the encapsulation of many metaclasses in parameterized
modules, could certainly be used to implement mixin layers. Unfortunately, to our
knowledge, none of the standard meta-object protocols offer such encapsulation
capabilities.

5.4 Aspect-Oriented Programming

Aspect-oriented programming (AOP) advocates decomposing application domains
into orthogonal aspects [Kiczales et al. 1997]. Aspects are distinct implementation
entities that encapsulate code which would otherwise be intertwined throughout an
application. In this respect, aspect-oriented programming seems strikingly similar
to GenVoca. Indeed, early AOP manifestos [Kiczales et al. 1997] are very similar
to the work describing GenVoca generators: the software engineering arguments
are identical and the implementation techniques used are very similar. Many of
the AOP example applications in [Kiczales et al. 1997] are layered generators for
domain-specific languages (an image processing language, a language for specifying
data transfer on remote procedure calls, etc.). Domain-specific languages (or lan-
guage extensions) are called aspect languages in AOP terminology and generators
are called aspect weavers.

An aspect, just like a collaboration, expresses a refinement that affects multi-
ple classes of an application. In this sense, mixin layers can be regarded as an
aspect-oriented implementation technique. Nevertheless, it is perhaps hard to find
cross-cutting software implementation techniques that would not qualify as “aspect-
oriented”. The term has nowadays acquired broad meaning and encompasses many
different techniques. We view using “aspect-oriented” terminology as purely a mat-
ter of taste. Certainly, the cross-cutting software development ideas pre-date the
introduction of “aspect-orientation”.
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5.5 Adaptive OO Components

Another approach to modular OO software development is Lieberherr’s Demeter
method and adaptive components [Lieberherr 1996; Lieberherr and Patt-Shamir
1997; Mezini and Lieberherr 1998]. Adaptive components specify functionality ad-
ditions based on an abstract pattern of participating classes. The pattern can later
be applied to actual classes of an application to extend their capabilities. This tech-
nique is analogous to identifying collaborations in an object-oriented design, only
now collaborations are implementation-level entities. Note that mixin layers offer
the same flexibility through the concept of adaptor layers discussed in Section 3.2.1.
An important difference is that adaptor layers are themselves mixin layers. That is,
with mixin layers, both the representation of a collaboration and the representation
of a collaboration application are the same (namely, mixin layers).

Nevertheless, the work on adaptive components reveals an interesting direction
of research, with no counterpart in our work. Adaptive components can be de-
clared by a strategy. That is, a strategy is a way to declaratively specify a path
through the class graph (the graph induced on classes by inheritance and contain-
ment relationships among them). Along each node in the strategy, extra methods
can be added. In this way, strategies are compact ways of expressing functionality
additions to many classes. For example, one can easily specify new methods to
be added to a class and all its superclasses. Similarly, assume that class A has a
member variable that can hold an instance of class B, which, in turn, may hold an
instance of class C. Using strategies, a programmer can describe the path from A to
C in the class graph. (Class B does not need to be specified explicitly.) An adaptive
component employing this strategy can then define a new method to be added to
all three classes. Thus, strategies are a higher-level way of specifying collaborations
(refinements); mixin layers could be used to implement strategies.

5.6 Design Patterns for Modularization

The visitor design pattern [Gamma et al. 1995] serves similar modularization pur-
poses to mixin layers. Visitor is a pattern allowing a functional style of program-
ming in object-oriented languages: multiple definitions of the same operation (ap-
plicable to objects of several different classes) can be grouped together in a visitor
class, instead of these methods being distributed over individual classes. Visitor is
a fundamental modularization mechanism and has been used to implement more
sophisticated techniques (e.g., [Mezini and Lieberherr 1998]).

Visitors are different from mixin layers in two ways. First, visitors are dynamic
in nature, whereas mixin layers are static. This means that mixin layers can be
used to add state (i.e., member variables) to the classes they refine. (For instance,
imagine a class describing a graph node. If one wants to maintain the information
“is_marked” for all nodes, this is easier to do with mixin layers: an is_marked field
can be added in a mixin and carried in every single refined node object. With a
visitor-based approach, this information must be maintained in a table on the side.)
Additionally, visitors impose a run-time overhead, unlike mixin layers. Second,
visitors are not allowed to access the internals of the classes they extend. In contrast,
mixin layers define subclasses of the refined classes. Hence, mixin layers are often
able to access more implementation details than visitors. For instance, a C++
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class may export a fairly extensive interface to its subclasses (using the protected
keyword), without making the same interface public so that visitors can use it.
This issue commonly arises when other design patterns (e.g., singleton) are used in
conjunction with the visitor pattern.

Visitors, like many other design patterns, express refinements of objects or classes.
Although not a design pattern, a mixin layer can be viewed as an elegant way of
expressing a collaboration pattern among classes so that it is clear at the language
level. Mixin layers can be expressed with the aid of a type system, rather than
bypassing it, so that more compile-time checking and optimization is possible.

5.7 Subjectivity

Objects written for one application may not be reusable in another because their
interfaces are different, even though both applications may deal with what is fun-
damentally the same object. The principle of subjectivity asserts that no single
interface can adequately describe any object; objects are described by a family of
related interfaces [Harrison and Ossher 1993; Ossher and Harrison 1992; Ossher
et al. 1995]. The appropriate interface for an object is application-dependent (or
subjective).

Subjectivity arose from the need for simplifying programming abstractions—e.g.,
defining views that emphasize relevant aspects of objects and that hide irrelevant
details. Ossher and Harrison took an important step further by recognizing that
application-specific views of inheritance hierarchies can be produced automatically
by composing different “subjects” [Harrison and Ossher 1993]. Subjects encapsulate
a primitive aspect or “view” of a hierarchy, whose implementation requires a set
of additions (e.g., new data and method members) to one or more classes of the
hierarchy.

Collaboration-based designs and mixin layers are analogous to subjectivity and
subjects. Nevertheless, even though the goals are common, different parts of the
problem are emphasized in the two approaches. The biggest difference between
subject-oriented programming and our approach is that a subject-oriented approach
aspires to combine programs that are developed completely independently. Mixin
layers focus on a different problem: the consistent refinement of groups of classes,
in order to raise the level of programming from single-class to multiple-class compo-
nents. Mixin layers need to be developed with interoperability in mind. This makes
mixin layers a more general technique, but with a lower degree of automation and
little applicability to pre-written software—manual adaptation is required.

6. CONCLUSIONS

Improved modularizations are the key to improved component-based software devel-
opment. We and others have observed that traditional notions of modularization—
method, class, package—are inadequate for this purpose. Many different results
in modularization point to large-scale refinements—the ability to encapsulate and
modularize fragments of classes and methods—as the basis for next-generation mod-
ularizations. The core idea centers on the idea of refinement as the centerpiece for
component-based software development. Our refinements are large-scale: a single
refinement can update multiple classes of an application, and a composition of a
few refinements specifies a complete implementation of an application.
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The fragments of classes and methods that need to be encapsulated are not
arbitrary. Rather, fragments are encapsulated together when they all define how a
particular service or feature, which can be shared by many applications of a domain,
is implemented. That is, these fragments must have meaningful expressions in
software designs. We have shown that the object-oriented concept of collaboration
based designs captures this idea. A collaboration is an abstract design that specifies
roles for different classes of objects, and defines protocols by which objects of these
classes interact to realize a particular service or feature. Collaborations are the way
large-scale (i.e., multi-class) refinements are expressed in object-oriented models.
Applications are typically defined by compositions of a small number of reusable
collaborations.

We have shown how collaborations can be defined and composed statically using
existing programming language constructs, and how they can be supported by
new language constructs. We presented a particular way of expressing large-scale
refinements as mizin layers, a name chosen to emphasize its connection to the
common mizin concept in object-oriented languages. We showed how mixin layers
overcame the scalability difficulties that plagued prior work. They rely on a novel
combination of parameterized inheritance and class nesting, in effect generalizing
the concept of a package (set of classes) so that parameterized packages could
participate in inheritance lattices. As an example, we showed how mixin layers were
used as the primary implementation technique for building an extensible compiler
for the Java language.
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Design Wizards and Visual Programming
Environments for GenVoca Generators

Don Batory, Member, IEEE Computer Society, Gang Chen, Eric Robertson, and Tao Wang

Abstract—Domain-specific generators will increasingly rely on graphical languages for declarative specifications of target
applications. Such languages will provide front-ends to generators and related tools to produce customized code on demand. Critical to
the success of this approach will be domain-specific design wizards, tools that guide users in their selection of components for
constructing particular applications. In this paper, we present the P3 ContainerStore graphical language, its generator, and design

wizard.

Index Terms—Self-adaptive software, architectural optimizations, generators, components, refinements, applications product-lines.

1 INTRODUCTION

DOMAIN—SPECIFIC languages (DSLs) will become progres-
sively more important as a medium for specifying
customized applications [5], [22], [15], [34]. Generators are
tools—compilers, really—that convert DSL application
specifications into optimized source code. Visual program-
ming languages, such as Visual Basic and VisualAge, will
simplify the use of DSLs and promote their promulgation.
But, more importantly, visual programming (or, more
accurately, visual specification) languages will offer a
convenient way to integrate a suite of analysis tools that
will substantially enhance the capabilities and effectiveness
of generators.

We are exploring the use of a visual specification and
analysis environment for a Java-based generator called P3.
P3 is a GenVoca (i.e, component-based) generator for
container data structures that is a successor to P2 [5], [6]. P3
is a modular extension of the Java language that allows
container data structures to be specified declaratively. That
is, P3 adds data-structure-specific statements to Java so that
users can compactly specify the implementation of a target
data structure as a composition of reusable P3 components.
The P3 generator, which is actually a Java preprocessor,
translates P3 programs directly into pure Java programs.
Among the features that make P3 attractive is that it is
equivalent to a gargantuan library of container data
structures whose efficiency is comparable to (or better
than) hand-coded libraries that are now available.

To promote and simplify the use of P3, we have
developed the ContainerStore applet as a visual program-
ming language for writing P3 programs. Clients fill in forms
and edit diagrams from which the ContainerStore can infer
P3 data structure specifications. While the applet itself is not
a major innovation, it is interesting because it integrates a

o The authors are with the Department of Computer Science, University of
Texas at Austin, Austin, TX 78712. E-mail: batory@cs.utexas.edu.
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1999.
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For information on obtaining reprints of this article, please send e-mail to:
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suite of tools and services that makes P3 programming
more effective—tools and services that P3 alone cannot provide.
The ContainerStore offers facilities for explaining composi-
tions of components so that clients can verify that the data
structure that they have defined is the one that they want. If
there are errors in a component composition (or in any
other phase of specification), they are caught immediately
and explanations of how to repair the errors are provided.
By far, the most innovative aspect of the ContainerStore tool
suite is a prototype technology for automatically critiquing
and optimizing container implementations (i.e., P3 compo-
nent compositions) for a particular workload. Given a set of
components and rules that express knowledge of what
combinations of components are best suited for solving
particular problems, a tool called a design wizard applies
these rules automatically to critique and optimize a P3
specification. If the design wizard discovers a composition
of components that is likely to perform better than that
specified by a user, this composition is reported and reasons
are given to explain why the alternative composition is an
improvement. In this way, design wizards offer expert
guidance so that design blunders can be avoided.

In this paper, we present the P3 ContainerStore applet,
its generator, and its design wizard.

2 THE P3 CONTAINERSTORE APPLET

The ContainerStore is a visual domain-specific language for
specifying container data structures. Specifications are
disributed across five tabs (i.e., presentation windows/
panels) and are completed in sequence (see Fig. 1). The first
tab allows a user to specify the class of elements that are to be
stored. In particular, the name of the element class, and the
name of each attribute, its type, and cardinality are entered."
As a running example, suppose elements of class emp are to
be stored, where emp objects have name and age attributes.

1. The cardinality of an attribute is the expected number of distinct values
that the attribute will be assigned.

0098-5589/00/$10.00 © 2000 IEEE
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element P3 type P3 container P3 cursor code
type —> | equation type — type - generatllon
definition definition declarations declarations and design
critique

Fig. 1. Sequence of panel specifications in ContainerStore.

The second tab—called the Type Equation Tab (Fig. 2)—
presents a visual interface for defining customized contain-
er implementations as a linear composition of P3 compo-
nents (also known as a P3 type equation or P3 component
stack). Fig. 2 shows two stacks: the “Equation” stack has
components rbtree (red-black tree) on top of hash (hash
table) on top of malloc (transient heap); the “Equation2”
stack has dlist (doubly linked list) on top of hashcmp (hash
comparison) and malloc. Stacks can be edited (e.g.,
components can be replaced and deleted) and annotations
can be added. An annotation is a configuration parameter
that is specific to a component. In Fig. 2, annotations to the
hash data structure component are specified by clicking
hash and entering the name of the key to hash (age) and the
number of buckets (100) in the Annotations fields.

Once a type equation (component stack) has been
constructed, the Explain/View Type Equation button is
pressed. If the equation is valid, an explanation of its
meaning is shown in the Explain Window. In Fig. 2, the
meaning of the “Equation” stack is:

A container of elements of type emp where all elements are

stored in ascending name order on a red-black tree and all

elements are hashed on age and stored in 100 buckets that
are insertion-ordered doubly linked lists in transient
memory.

As a general rule, people who are unfamiliar with P3
type equations are unfamiliar with their interpretation. For
these users, this facility for explaining equations is invalu-
able. Explanations are generated using the same techniques
that P3 uses to generate Java code; that is, instead of
composing code fragments, the explanation is composed

— Componenis
g8 Equation

& B Equation2

—Aunnotations

from English phrases. In the case that an equation is
incorrect—i.e., constraints for the correct usage of a
component have been violated (see [7])—the Explain
Window lists the errors and suggests reparations. For
example, “Equation2” is incorrect:

Design Rule Error: move hashcmp above dlist;
Design Rule Error: no retrieval layer beneath hashcmp;

The first error message says that ordering of the
hashcmp and dlist layers is incorrect; a correct ordering
would reverse their positions in the equation (the actual
reasons are low-level and are not given—only that a correct
composition requires hashcmp to be above dlist). Applying
this modification (it turns out) satisfies the objections of the
second error message, thus yielding a correct equation. In
this way, the ContainerStore gives invaluable guidance to
software designers: It helps them repair incorrect composi-
tions and it helps them verify that the specified data
structure is indeed the one that they want.

The third tab is where the names of the container classes
and their implementing type equations are specified.
Suppose container class named ec implemented by Equa-
tion is defined. The fourth tab specifies cursor classes
(Fig. 3). A cursor is a run-time object that is used to
reference, update, and delete elements in a container. In
Fig. 3, the cursor class few is defined. Its constructor has a
single parameter x of type ec—meaning that every few
instance will be bound to an instance of container class ec.
The selection predicate of a cursor class is specified
incrementally using the Predicate Builder, which allows
clauses of the form (attribute relation value) to be declared

Apply Changes |

—Explain Window

A container of elements of type emp where all elements are stored &
in ascending name order on a red-black tree, and all elements
are hashed on age and stored in 100 buckets that are =l

|Fquaﬁo:n = rhiree(name, hash{age, 100, malloc(}))

Fig. 2. The Type Equation Tab.
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Cursor Class
Cursor Class: Ifew
ADD | MODEYI DEUHEI
= Cursor Attributes
Parameter Type | Variable Update |IFrequency | Giissor Fiog: l_
ec ¥ age 100 S0

f e o [ e =] oo = —
Add | Modify | Delete | Add | Modify | Delete | =

Predicale Builder

w"""lage LI l> j |20 AND | O | CLEAHl

Iwhere name() == "Don" && age() > 20

Fig. 3. The Cursor Tab.

separately. The predicate for few selects ec container
elements where attribute name is “Don” and age is greater
than 20. In addition, elements will be retrieved in age order
(as specified by the OrderBy field) and the age attribute of
selected elements will be updated. The frequency that few
retrievals are performed is estimated by the user to be 100
times per time period.

Finally, the fifth tab (the Generate tab) presents a
scrollable window and four buttons. One button generates
the P3 specification of a ContainerStore declaration; a
second button invokes the P3 generator to convert this
specification into Java source. The generated source is
displayed in the scrollable window. (Section 3 illustrates
both specifications and generated source). The third button
generates a workload specification, which lists each cursor
and container operation that is to be performed with its
execution frequency. (This information was collected while
instantiating previous tabs). The last button sends this
specification to ContainerStore’s design wizard to be
analyzed and critiqued for its efficiency. (Section 5
elaborates this workload specification and analysis).

3 THE P3 GENERATOR

The Jakarta Tool Suite (JTS) is a set of domain-independent
tools for building extensible domain-specific languages and
GenVoca (component-based) generators [9]. JTS is written
in Jak, an extensible superset of the Java language. Jak
minimally extends Java with the addition of metaprogram-
ming features (e.g., syntax tree constructors) so that Java
programs can create and manipulate other Java programs.
JTS is itself a GenVoca generator, where variants of Jak are
assembled from components. One component in the JTS
library encapsulates the P3 generator and the P3 component
library.

Like its predecessor P2, P3 allows users to specify
containers and cursors declaratively, just like database
systems provide declarative specifications of relations and
relational queries. In particular, P3 adds cursor and
container data structure declarations to Java. Examples
of these declarations are listed on the lefthand side of
Fig. 4; the generated Java code is shown on the right. When
Jak parses each of these declarations, it generates the

container< emp > empcont;

(1)
)
3)

cursor< empcont > empcursor;

container ec¢ implements empcont
using odlist( age, malloc( ) );

(4)

cursor all(ec e);

(5) cursor few(ec e)
where name ()

orderby age;

== “Don” && age() > 20

Fig. 4. P3 declarations and generated classes.

— — —> interface empcont { ... }
— — —> interface empcursor { ... }

— — —> c¢lass ec implements empcont { ... }
— — —=> class all implements empcursor {
all(ec e) { ... }

eee }

— — —> class few implements empcursor {
few(ec e) { ... }
ees }
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TABLE 1
P3 Data Structure Components

DS Component

Semantics

malloc elements are stored in transient memory

persistent elements are stored in persistent memory

odlist( key x, DS vy ) elements are stored on an x-ordered doubly-linked list*
dlist( DS vy ) elements are stored on an unordered doubly-linked list*
rbtree( key x, DS y ) elements are stored on a red-black tree with key

predindex( predicate p, DS y ) elements that satisfy predicate p are linked on a separate
doubly-ordered linked list®

hashemp( key %, DS v ) equality predicates on key x are hashed to improve performance”

hash( key x, int n, DS y ) elements are hashed on x and stored in a hash table with n

buckets; each bucket implemented by a doubly-linked list*

bstree( key x, DS y )

elements are stored on a binary tree with key x*

Note: parameter y defines a stack of components that lie below the given component in a P3 type equation.

appropriate Java interface or class definition and replaces
the declaration with the generated code.

Suppose instances of class emp are to be stored in a
container. Lines (1) and (2) in Fig. 4 concisely declare Java
interfaces for containers (empcont) and cursors (empcursor)
that are specialized for emp instances. Note that the C++-
like syntax for these declarations was chosen deliberately to
indicate that container interfaces are parameterized by the
elements (emp) to be stored and cursor interfaces are
parameterized by the container (empcont) over which
cursor instances will range.

Among the methods in the empcont interface (not shown
in Fig. 4) are emp instance insertion and a test for container
overflow. Among the methods in the empcursor interface
are positioning a cursor on the first emp instance of a
container, advancing to the next emp instance, testing for
end-of-container, and get and set methods for each attribute
of emp.

Each container class is declared separately. Statement (3)
defines a container class ec that implements the empcont
interface by storing emp instances in an age-attribute-
ordered doubly linked list in transient memory.
odlist(age,malloc()) is its P3 type equation that defines
both the stacking of components (i.e., odlist sits atop of
malloc) and annotations (i.e., age is the key of the odlist
data structure). Table 1 lists the library of components that
P3 currently offers.

It is worth noting that P3 components are not the same as
traditional parameterized components for data structures
(e.g., STL [27]), but instead are “refinements” [33], [5], [6].
To see the difference, consider the interpretation of the
composition of hash and bintree:

hash[ keyA, 400, bintree[ keyB, ... ] ]

This composition does not mean that a container of elements
is hash-partitioned into 400 buckets on keyA and then each
bucket is implemented as a binary tree ordered on keyB.

The correct interpretation is much closer to the way
database systems compose access methods: Each container
element is simultaneously linked onto two distinct and
independently traversable data structures—a hash structure
on keyA and a binary tree on keyB. Thus, one can access
every element of the container by traversing either data
structure, where, obviously, the hash structure provides
faster access to elements on keyA, while the binary tree
provides faster access via keyB. More generally, P3 allows
elements to be linked into any number of distinct data
structures, thus enabling P3 users to define arbitrarily
complicated structures that simply could not be created
using traditional parameterized components. This distinc-

tion is explained in greater detail in [33], [5, [6].
Each P3 cursor class is also declared separately. State-

ment (4) declares a cursor class all of whose instances
return every element of an ec container. The syntax of the
statement defines the arguments of the constructor of the
generated class (i.e., each all instance is bound to a
particular ec container instance). P3 infers that all imple-
ments the empcursor interface (because ec containers store
emp instances and cursors over ec containers implement

the empcursor interface).
Statement (5) declares another cursor class few whose

instances return in attribute age order only those elements
of an ec container where name == “Don” and age > 20.
(Again, each instance of few is bound to a single ec
container and only returns instances of that container that
satisfy the few predicate). Other features of P3 that are not
shown in Fig. 4 include parameterized selections (i.e., city()
== X, where x is specified at run-time) and declarations of
cursor usage (e.g., retrieval only, element modification/
deletion) for optimizing generated code.
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TABLE 2
Code Size of Dictionary Benchmark Programs (in Words)

dlist bstree rbtree hash

JDK 541 N/A N/A 506

CAL 540 561 561 562

JGL 534 N/A N/A 540
PIZZA 565 N/A N/A 509

P3 570 572 572 574

4 PERFORMANCE OF P3-GENERATED CODE

Generators, contrary to handwritten component libraries,
offer a scalable way to produce customized software [5],
[11]. The declarative way in which P3 users specify
container and cursor implementations through component
composition leads to huge families of customized data
structures. As shown in [8], significant increases in
productivity and major cost reductions both in maintenance
and experimentation with different container implementa-
tions can result from generators. While we have not yet
used P3 in a sophisticated Java application, we have
performed preliminary benchmarks on P3-generated code
to assure us that P3 is on a trajectory that is comparable
with its predecessors [33], [5], [6]. In this section, we review
some of our preliminary results on P3’s performance.

The Container and Algorithm Library (CAL) [39] and the
Java Generic Collection Library (JGL) [18] are two popular and
publicly available Java data structure libraries. Both are
based on STL [27] and are optimized for performance. Pizza
(a dialect of Java that supports parametric polymorphism
[29]) and Sun’s Java Development Kit (JDK) also provide
simple data structures, so we also included them in our
study. Presently, CAL and JGL support features (adaptors
for stacks, queues, etc.) that P3 does not yet offer.
(Adaptors can be encapsulated as P3 components that
will be stacked on top of P3 containers to give them
noncontainer interfaces; so, there is no a priori reason
why such capabilities/componentry cannot eventually be
added to P3).

We performed a number of experiments that bench-
marked productivity and performance; the most revealing
of which are presented in Tables 2 and 3. The benchmark of
[5] was used to evaluate the performance of the Booch
Components, libg++, and the P1 and P2 generators. We
used this program for our studies. The program spell-
checks a document against a dictionary of 25,000 words.
The main activities are inserting randomly ordered words
of the dictionary into a container, inserting words of the
target document into a second container and eliminating
duplicates, and printing those words of the document
container that do not appear in the dictionary. The
document that we used was the Declaration of Indepen-
dence (~1,600 words).

TABLE 3
Execution Times of Dictionary Benchmark Programs (in secs)
dlist bstree rbtree hash
JDK 82.5% N/A N/A 8.2
CAL 117.4 19.4 17.3 13.5%%
JGL 116.9 N/A N/A 8.1
PIZZA | gg_ g *** N/A N/A 8.7
P3 74.9 13.8 12.8 7.9

*JDK Vector data structure is used here.

** CAL does not have explicit support for hash tables; the Set container
is used instead. Internally, CAL implements Set by hash table.

*** Pizza Vector data is used here.

We used JDK, CAL, JGL, Pizza, and P3 to implement this
program using four different container implementations:
doubly linked lists, binary search trees, red-black trees, and
hash tables. The benchmarks were executed on a Pentium
Pro 200 with 64 MB of memory, running Windows NT
Workstation version 4.0. The programs were compiled and
executed using JDK version 1.1.3, with the -O optimization
option. We also recompiled the CAL beta 2 and JGL 2.0.2
libraries using JDK version 1.1.3 to ensure the validity of
comparison.

Table 2 shows the program sizes for different libraries.
(Sizes were obtained by removing comments and using the
Unix wec utility to count the words). P3 programs are
slightly longer than the corresponding CAL, JGL, Pizza, and
JDK programs because P3 declarative specifications are
more verbose than class references to Java packages. Such
differences are not significant because P3 can generate vast
numbers of data structures that have no counterpart in the
CAL, JGL, Pizza, and JDK libraries. In such cases, these
libraries would not be of much help as the target data
structure would have to be written by hand. The brevity of
the corresponding P3 programs and the speed at which
their Java source is produced would be unchallenged. So
too would the ability to alter container implementations
quickly and easily (by merely redefining the P3 type
equation and recompiling); significantly more work would
be needed using Pizza, CAL, JGL, and JDK.

Table 3 lists the execution times for each program. In
general, P3 programs outperform their hand-coded counter-
parts for two reasons. First, both CAL and JGL are based on
STL, but, since Java does not support templates, both have
to rely extensively on inheritance. This introduces addi-
tional dispatches and down-casts, which slows execution.
Second, and more significant, there is inherent overhead in
the JDK, CAL, Pizza, and JGL designs. These libraries are
designed for generic applications, whereas the programs
generated by P3 are produced for a specific task. Consider
element comparisons. P3 directly inlines comparison ex-
pressions, whereas CAL and JGL programs have to use a
“predicate” object that encapsulates a function to evaluate
that predicate on a given element. (This is a common way to
work around the lack of function pointers in Java.) Note
that this function cannot be optimized by the Java compiler
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because it knows nothing about query optimization. There
are other inefficiencies that preclude significant optimiza-
tions that generators can provide.

The point of our experiments was to provide minimal
confirmation that P3 generates code comparable to that
written by hand. Clearly, many more experiments are
needed. We have no illusions that this simple example is
sufficient in any way; our goal at this stage of our research
is to demonstrate that the performance of P3-generated
code conforms to that observed in earlier generators, which
it does.

5 THE P3 DESIGN WIZARD

A fundamental problem in all component-based generators
is: Given a workload specification and a set of components,
how should one select and assemble components to define
an appropriate application implementation? In the case of
P3, what type equation (data structure) would efficiently
process a given workload? This is a difficult problem for
two reasons.

First, software designers are rarely aware of the actual
workload that an application will subject a data structure. A
designer will know the kinds of queries asked (e.g., since
these queries will be specified as cursor declarations), but
the actual frequency with which particular cursor classes
are instantiated and elements are retrieved will not be
known until run-time. At best, only educated guesses can
be made (and, often, these estimates are determined
instinctively).

Second, even if a workload is known precisely, it can be a
challenging problem to determine an efficient data struc-
ture. When a workload is simple, the problem is easy. For
example, if elements of a container are to be accessed only
via the predicate N == <value>, then a hash table with
elements hashed on field N is likely to be an optimal choice.
However, if workloads become slightly more complicated,
it is hard to tell what data structure would be best. For
example, if there are 20,000 elements, 3,000 elements are
inserted and deleted per time period, fields S and N are
updated 1,000 times per period, elements are retrieved
using predicate N == <value> && A=="b" 2,000 times per
period, and all elements are retrieved in S order 50 times
per period, what data structure would most efficiently
support this workload? The answer is not obvious even to
experienced programmers.

To solve the first problem, one can instrument generated
code so that it collects workload statistics at run-time. So,
initially, one fields an application knowing full well that its
data structures are not optimal. After a period of time,
enough statistics will have been collected so that a more
appropriate data structure can be determined. The applica-
tion cursor and container classes are then regenerated and
the old classes discarded. A new cycle of collect-statistics-
and-regenerate then begins. Normally, a programmer is in
the loop to close the cycle (i.e., a programmer decides how
long to collect statistics, how to use these statistics to deduce
a better data structure, and when to initiate the class
regeneration and replacement). However, this loop could be
closed without programmer intervention. That is, the
application determines when enough statistics have been
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collected, a tool called a design wizard finds a more efficient
data structure given this workload, and if regeneration is
warranted, class regeneration and replacement is per-
formed automatically. Such software is called self-adaptive
[23], [36], [30], [2] and may be the ultimate way to minimize
software development and maintenance costs through
component reuse.

The key to achieving self-adaptive software requires a
solution to the second problem—deducing an efficient type
equation for given a workload. This requires a kind of
knowledge that is not present in GenVoca domain models
(and domain models in general). Knowledge of when and
how to use a component effectively to maximize perfor-
mance or to meet a design objective is quite different than
that of design rules (i.e., requirements that define the correct
usage of a component [7]). What form this knowledge will
take, what is a general model to express such knowledge,
and how to optimize type equations remain open problems.
Short of proposing a general-purpose theory, it is possible
to develop ad hoc techniques for given domains and, in
particular, for data structures. By abstracting from specific
solutions in different domains (i.e., performing a “domain
analysis” on these solutions), a general theory may result.

For now, however, we outline an approach that we have
found effective to optimize and critique P3 type equations
automatically given a workload specification. While the
solution itself is domain-specific, it does constitute a
valuable first step toward self-adaptive software and a
general model of design wizards.

5.1 P3 Workload Specifications

Data structure optimization is a well-studied problem.
Because P3 presents a relational-like interface to data
structures, relational database optimization models are an
obvious starting point (e.g., [26]). A workload on a database
relation (or P3 container) is characterized by the type and
cardinality of individual attributes of an element, plus the
frequency with which each container or cursor operation is
performed. Fig. 5 illustrates a workload specification file
produced by the ContainerStore applet. (The information
of Fig. 5 was provided by a ContainerStore client when
he/she filled in the operation frequency slots in the
ContainerStore specification tabs or it might be the result
of a statistical analysis of running instance of the target
application.) It states that there are 5,000 elements in a
container. Each element has two fields, one is a String
called name that has 5,000 unique values, etc. Three
hundred elements are inserted per time period, all
elements are retrieved in name order 100 times per
period, and so on. The type equation (which implements
the container whose workload is defined in Fig. 5) that is
to be critiqued is odlist(age,malloc()).

5.2 Cost Model

Given a workload W and a container implementation (type
equation) T, we want to estimate the cost of processing W
using 7. This is accomplished by synthesizing cost func-
tions.” The cost function we seek, Cost(T, W), is the sum of

2. The method by which cost functions are produced is exactly the same
as that used in P3 code synthesis and type equation explanations.



BATORY ET AL.: DESIGN WIZARDS AND VISUAL PROGRAMMING ENVIRONMENTS FOR GENVOCA GENERATORS 447

workload {
cardinality = 5000;

attributes {

#id type cardinality
.
name String 5000;
age int 60;
}
work {
#operation frequency
Bomm e
insertion 300;
deletion 300;
ret orderby name 100;
ret where name() == "Don" &&
age() > 20
orderby age 100;

}

Equation = odlist(age, malloc()):

Fig. 5. P3 workload specification.

the costs of processing each individual cursor and container
operation times its execution frequency. The cost of an
individual operation is the sum of the costs contributed by
individual layers of T. For example, every layer performs
some action when an element is inserted into a container.
Thus, the cost of an element insertion is equal to the sum of
the costs of insertion actions that are performed by each
layer (see Fig. 6). The same holds for attribute update and
element deletion. Retrieval costs are estimated a bit
differently, as query optimization is involved. A retrieval
predicate is processed by traversing a single data structure.
The data structure that is to be traversed (i.e., the structure
whose traversal algorithms are to be generated) is the one
that returns the minimum cost estimate for processing that
predicate. This “polling” of layers/data structures by P3 is
called query optimization. Selected functions that define
Cost(T, W) are summarized in Table 4, where n denotes the
number of elements in a container, b the number of hash
buckets, and c¢ is a constant. Different data structures will
have different values for ¢ for different operations, where
particular values are determined by benchmarking P3 data
structures on a specific platform.>*

3. Equality retrieval are predicates of the form key == value; range retrieval
are predicates of the form low-value < key < high-value; scan retrievals do
not qualify elements on key values.

4. Although we list only the higher-order terms in Table 4, we included
lower-order terms in our prototype. It turns out that basic problems which
plague database researchers for obtaining accurate estimates of query
processing costs also hinder us (see [31]). For example, it is well-known that
accurate estimates of query and subquery selectivity are difficult to obtain.
While we could use more advanced techniques of estimation, experience
has shown that this is overkill for typical P3 applications. When designing
data structures, most programmers do not sit down with a calculator to
determine the most efficient data structure; rather, they apply heuristics
learned in their data structure courses to design and implement their
container. These heuristics are captured by these equations when n, the
number of elements in a container, is “sufficiently large.” When the number
of elements is not known (which is generally the case), these heuristics are
reasonable. See [5], [6] for examples.

Cost(T, W)= I(T) x InsFreq+ D(T)x DelFreq +

2( U(T, Field;) x UpdFreq;) + E(R( T; Ret)) x RetFreq;)
j J
()= 2 insertionCost(layer;)
ieT
D(T)= 2 deletionCost(layer;)
ieT
U(T, Field))= 2 updateCosi(layer;, Field))
ieT
R(T, Retj) = Min; _ f(retrieval(layer;, Retj))

Fig. 6. P3 cost model.

Cost(T, W) again is used to evaluate a particular design
T for a workload W. Ideally, a design wizard must walk the
space of all legal type equations and find the equation 7'
that minimizes Cost(T', W). In the next section, we explain
how this space is defined and, later, how our wizard walks
this space.

5.3 The Space of P3 Type Equations

P3 components are characterized by three kinds of
attributes: properties, signatures, and design rules. To-
gether they define the space of all syntactically and
semantically correct P3 type equations. A Layer Declaration
File (LDF) is a specification of this information, an example
of which is shown in Fig. 7.

Properties are attributes that classify components [7]. In
Fig. 7, six different properties are defined. logical_key is the
propositional symbol for the attribute that defines “a key-
ordered component,” i.e., a P3 component that implements
a data structure that stores elements in key order. Red-black
trees and ordered doubly linked lists have this property.
Similarly, hash_key is the propositional symbol for the
attribute that defines “a hash component,” ie., a P3
component that implements a data structure that stores
elements via hashing. As we will see shortly, properties are
used to express both design rules and type equation rewrite
rules (discussed in the next section). Consistent with the
experience discussed in [7], determining these properties is
a fairly straightforward task.

Signatures define the export and import interfaces of a
component; these properties are used to determine if a
component usage in a type equation is syntactically correct.
In Fig. 7, ds = {...} denotes the usual GenVoca syntax for a
realm (i.e., library) of components that implement the
interface ds [Bat92]. Three such components are listed:
rbtree, delflag, and malloc. The signature of the rbtree (red-
black) tree is circled. rbtree has a keyfield parameter and ds
parameter (which means that rbtree can be composed with
other ds components). In contrast, the malloc component
has no parameters.

Not all syntactically correct type equations are semanti-
cally correct. Domain-specific constraints called design rules
are needed to define the legal uses of a component. The
algorithms that we use for design rule checking are given in
[7]. Design rules are expressed in two parts. First, properties
that are asserted or negated by a component are broadcast
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TABLE 4
Selected Individual Cost Equations
equality range scan
Layers insertion | deletion update retrieval retrieval retrieval
dlist ¢ c c c*n c*n c*n
rbtree c*log(n) c*log(n) key: c*log(n) key: c*log(n) key: c*log(n) c*n
non-key: ¢ non-key: c*n non-key: c*n
hash ¢ ¢ key: ¢ key: c(n/b) c*n c*n
non-key: ¢ non-key: c*n

to all layers that lie above it and below it in a type equation.
These properties are declared by the asserted properties
and negated properties statements. For example, the
malloc component broadcasts the asserted property
transmem when it is used in a type equation. Similarly,
the rbtree component broadcasts the asserted properties
retrieval and logical_key.

Second, preconditions for component usage are ex-
pressed as conjunctive predicates. Asserted properties are
expressed with the require statement; negated properties
with the forbid statement. Thus, if a component X has the
declarations:

require above = { A, B }
forbid above = { C}

they define the predicate A A B A —C which must be
satisfied by layers that lie above X in a type equation. By
replacing “above” with “below,” the predicate must be
satisfied by layers that lie below X in a type equation. (Thus,

properties = {
logical key "a key-ordered component™
hash_key "a hash component™”
. transmem "a transient memory component™
properties - — > inbetween "a component needed for element deletion"
retrieval "a retrieval component™
delete "a component that marks elements deleted"
}
ds = {
signature - — =" rbtree [ keyfield ds 1 {

asserted properties

require above = {
}

delflag [ ds 1 {

asserted properties = { delete }
constraints - — — — ‘forbid above = { delete }
}
broadcasted malloc {
properties- — — — — /asserted properties = { transmem }
e L LR .
}

Fig. 7. A P3 layer declaration file.

different conditions can be imposed on layers above X and
below X in an equation). As an example that combines both
property broadcasting with preconditions, the delflag layer
in Fig. 7 allows only one instance of itself in a type equation.
That is, the first delflag instance will broadcast the delete
property, while a second delflag will detect its presence
when its precondition —~delete fails.

5.4 Automatic Optimization of Equations

The space of all P3 type equations is the set of all design-
rule-correct type equations that can be composed using the
given components. The size of this space is enormous: If
there are k components in the P3 library, the number of type
equations with ¢ components is O(k°). So, even for small &
and ¢, an exhaustive search is infeasible. While the number
of components in an equation is theoretically unbounded,
we know from experience that domain experts can quickly
identify an efficient equation with few (i.e., typically under
10) components.

{ retrieval,
inbetween }

logical_key }
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The number of equations that are relevant to an
application is a subspace of the entire P3 space. One way
in which this subspace can be generated is by applying
rewrite rules that transform one equation into an equivalent
equation, starting from an initial feasible solution/equation
(e.g., [17]). The rewrite rules that we use are derived from
an analysis of the heuristics that we have personally applied
to produce efficient type equations manually. In particular,
our intuitive optimization strategy has been guided by three
heuristics:

e When an equation rewrite is attempted, we check
that the resulting equation is consistent (i.e., it is
syntactically correct and it satisfies the design rules);

e The cost of the rewritten equation is unchanged or
lowered;

e Rewrites are considered in an order (we feel) will
most likely lead to a new equation with lower cost.

Some of our rules deal with element attributes. Consider
the following rewrite that is expressed in two parts:

1. If an element attribute A is listed as an orderby key
in the workload specification, then try to insert a
logical_key layer (such as a red-black tree or an
ordered-list) with A as its key.
The idea of this rewrite is that it is cheaper to store elements
in sorted order rather than sorting an unordered set of
elements on demand. This rewrite may fail if there already
exists a logical_key layer with that attribute as key. (The
reason for failure is that the Cost(T,W) of the rewritten
equation 7" will be higher—the rationale is that a single data
structure that maintains element order is usually cheaper
than two structures maintaining the same order.) This leads
to the second part of the rewrite:

2. If 1 fails, then try to replace the logical_key layer
with A as its key with a more efficient logical_key
layer.

The idea of this rewrite is that if there already exists a data
structure that maintains elements in key order, there may be
a more efficient data structure to accomplish the same task.
This rewrite attempts to find a such a replacement.

Readers may have observed the use of Layer Declaration
File properties in expressing rules. To apply the above rule,
our design wizard searches its library for components that
assert the logical_key property. These components are
candidates for insertion or replacement in the above rule.
Different rules qualify components on different properties.
Consider a second rewrite:

e If element attribute A is used in an equality retrieval
predicate (e.g., name == “Don”), then try to insert a
hash_key component with A as its key; if there
already exists such a layer, try to substitute it with a
more efficient hash_key layer.5

These and similar rules are growth rules—i.e., they add

components to type equations. There are growth rules that
do no involve element attributes. There are also shrink rules

5. At present, P3 has only one hash component. A component for
dynamic hashing may be added later.

—i.e., rules that remove components from type equations.
An example is:

e Remove a component from a type equation if it
increases Cost.

The optimization of a P3 type equation is similar to an Al
planning process [16]. We discovered that optimizing P3
equations manually followed a best-first (greedy) heuristic;
we automated this search to find a correct and efficient type
equation with regard to the given workload, cost models,
and layer declarations. Because the equations that are
retained in the search have progressively lower cost, we are
guaranteed to find a local minimum. The search can begin
from scratch, starting from a trivial data structure—such as
a doubly linked list in transient memory. However, when
used with the ContainerStore applet, the search begins with
the type equation that was specified in the workload.

Overall, we have about 10 different rewrite rules. The
basic algorithm that we use to apply these rewrites to
optimize type equations is:

for each element attribute A {
apply each “attribute growth”
rewrite for A;
}
apply each “nonattribute growth” rewrite;
apply each “shrink” rewrite;

The algorithm is run to a fixpoint (i.e., the algorithm is
continually invoked until no further rewriting is possible)
and, thus, will identify a local minimum. If the P3 subspace
defined by our rewrite rules is well-formed (i.e., has only
one minimum), our algorithm is guaranteed to find it. If the
subspace has several local minima, our algorithm will locate
one, but not necessarily the global minimum. We are
unaware of any theoretical result that would tell us whether
a P3 subspace is (or is not) well-formed. Lacking such
information, it is possible that a more powerful search
algorithm might uncover better results. However, the
results we have obtained using this algorithm have been
quite good—occasionally better, but never worse than, what
we would have manually selected. Moreover, we are
unaware of a proposed equation that we could subse-
quently improve. Although much more work (e.g., using
more powerful search algorithms) remains, we believe that
a greedy search algorithm is a reasonable first step.®

5.5 Critique and Optimization

Given a workload specification, the P3 design wizard
applies its rewrites to the input type equation. If there is

6. Since the conference publication of this paper, we have a proof that the
P3 search space can indeed have multiple local minima and that finding the
global minimum is NP-hard. An example that illustrates the problem
involves processing every query of a set of queries using some keyed data
structure (e.g., binary-tree). Suppose that creating a keyed data structure on
field A, then another on field B, and a third for field C will allow all queries
in the set to be processed efficiently by traversing one of these structures.
Call these structures the ABC indexing set. Now, suppose that we had
created a keyed structure on field E and a second on field F and all queries
of the set could be processed efficiently by traversing either the E structure
or F structure. Call this the EF indexing set. Clearly, the ABC indexing set
and the EF indexing set are local minima. If our design wizard selects the
ABC as an answer, it will be unable to “backtrack” to find solution EF (or
vice versa) and, hence, will not find the global minimum.
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Original Type Eguation is:
odlist (age,
malloc( ))

cost = 19593

Type Equation we recommend is :
hashcmp (name,
hash (name, 5000,
odlist (name,
malloc( ))))

cost = 1606

Projected improvement: 1119%

Reasons why we choose this type equation:

hashcmp: field name is hashed because it
will be faster to compare the values
of two string fields when they are
hashed.

hash: A hash data structure with hash key
name is used because 11% of the
operations involve equality retrieval
on name.

odlist: A doubly linked list ordered by
name is used because many retrievals
will be ordered by name.

Fig. 8. Critique and optimization of a Type Equation.

no substantial improvement, the wizard simply reports that
no changes to the equation need to be made. A more likely
response is that it will have discovered an implementation/
equation that has better performance characteristics. Fig. 8
shows the output of a critique using the workload of Fig. 5.

Both the input and revised equations are presented, along
with their cost (i.e., Cost(T, W)) estimates. An explanation is
also presented which provides reasons why the generated
equation is better. The reason is that the original data
structure linked elements together onto an age-ordered list.
The workload, on the other hand, demands that all elements
of the container be periodically retrieved in name order and
thatindividual elements (whose name is “Don”) be retrieved
frequently. The original data structure does not efficiently
support this workload at all. The recommended data
structure allows elements to be accessed quickly (via hashing)
on name and that elements be stored in order on name (via an
ordered linked list). Furthermore, to speed up the search for
elements on name, the hashcmp component is used.
(hashcmp transforms equality predicates on strings (name
== “Don”) to include integer comparisons (hash_of_name
==hash(“Don”) && name ==“Don”). Theideais thatinteger
comparisons are much faster than string comparisons). While
most programmers would not think to add this enhancement
(probably because it is tedious for a programmer to add by
hand), it is quite simple for P3 to do it. The performance
enhancements for altering the type equation are predicted by
the design wizard to pay-off handsomely. (The actual
percentage reported in Fig. 8 is not particularly important;
rather, it gives users some idea of how much better the
suggested design would be.)

There are two general contributions that design wizards
make to automated software development. First, not all
users of a generator will be domain experts. Even if they
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have familiarity with a domain, they may not know as
much as an expert, or, in the case of design wizards, a host
of domain experts. Design wizards will help avoid blunders
and will help users find more efficient implementations for
their target systems. Second, and possibly more significant,
type equation synthesis is a prerequisite to adaptive
software—applications that dynamically change their con-
figuration as a function of current workload. For most
domains—including data structures—manual reconfigura-
tions are rarely done because of the costs involved. (The
problem becomes even more complicated if data structures
are persistent; updating data structures requires the
additional cost of unloading data from old structures and
reinserting it into the new structures). As a consequence,
application users must suffer with degraded performance
and application developers must endure the costs of
program maintenance. Design wizards have the potential
to change this situation dramatically.

6 RELATED WORK

It is widely believed that domain-specific languages (DSLs)
will significantly impact future software development.
DSLs offer concise ways of expressing complex, domain-
specific concepts and applications, which in turn can offer
substantially reduced maintenance costs, more evolvable
software, and significant increases in software productivity
[5], [22], [15]. Generators are compilers for DSLs [34].
Component-based generators, such as P2 and P3, show how
reusable components form the basis of a powerful technol-
ogy for producing high-performance, customized applica-
tions in a DSL setting (see also [28]).

The automatic selection of data structures is an
example of automatic programming [3]. SETL is a set-
oriented language where implementations of sets can be
specified manually or determined automatically [32].
SETL offers very few set implementations (bit vector,
indexed set, and hashing) and relies on a static analysis
of an SETL program using heuristics rather than using
cost-based optimizations to decide which set implementa-
tion to use. AP5 relies more on user-supplied annotations
for data structure selection [13].

Deductive program synthesis is another way to achieve
automatic programming [3], [35], [25], [24], [19]. The idea is
to define a domain theory (typically in first order logic) that
expresses fundamental relationships among basic domain
entities. A domain theory, together with a theorem prover
and theorem-proving tactics, can find a constructive proof
for a program specification and extract from this proof
computational methods from which a program can be
synthesized. Finding a proof may be fully automatic, but
frequently requires guidance from users to help navigate
through the space of possible proofs. Our design wizard is
very different. First, finding a “proof” (a P3 type equation)
for a workload specification is trivial—simply implement
every container as a doubly-linked list. All container and
cursor operations will be processed, but not efficiently. The
challenge is finding a P3 type equation that efficiently
processes that workload. Second, work on program synth-
esis has largely focused on generating algorithms (e.g.,
algorithms for solving PDEs [19], algorithms for scheduling
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[35], algorithms for computing solar incidence angles [24],
etc.); subroutines are the components from which generated
algorithms are built. The inferences needed for algorithm
synthesis tend to be quite sophisticated (thus requiring
theorem provers) because there are very complex relation-
ships among domain entities. In contrast, GenVoca is
different both in component scale and in the simplicity of
the relationships among domain entities. GenVoca compo-
nents are subsystems—suites of interrelated OO classes. (A P3
component, for example, encapsulates three classes: a cursor
class, a container class, and an element class.) As noted in [7],
scaling the size of components and designing components to
be plug-compatible has a nonobvious effect: The relation-
ships that exist among components tend to be very simple,
and elementary inferencing (i.e., no theorem provers) is
adequate.

Our concept of design wizards resonates with recently
proposed notions of open implementations (OI) [20] and
Aspect Oriented Programming (AOP) [21]. Aspects in AOP are
very similar to components in GenVoca; they encapsulate
changes to be made to multiple classes when an aspect (or
feature) is added to an application. Aspect weavers are
functions which take a program as input and produce
another (more detailed, extended, or refined) program as
output. P3 components have an almost identical descrip-
tion. The primary difference is that AOP starts with existing
application source, whereas GenVoca decomposes applica-
tions into primitive layers and reexpresses them as a
compositions of these layers. P3 relies on general results
from GenVoca that address the issues of optimizing across
multiple layers/aspects and the order in which compo-
nents/aspects can be legally composed. To our knowledge,
there are no corresponding general results for AOP.

The idea of OI is that, when interfaces largely hide
implementation details, it should be possible for clients to
annotate abstract declarations with profiling (or other
implementation-specific) information so that a compiler or
server can automatically select the most appropriate imple-
mentation that is available. The OI guidelines address design
issues, but implementation details are not discussed. When
the space ofimplementationsis restricted to a small handful of
choices, the solution is straightforward [3], [32], [13]. How-
ever, our experience with P3 shows that declarative specifica-
tions can map to vast numbers of implementations. While
design issues are indeed important, additional difficult
problems remain:

1. creating a model that defines the space of possible

implementations,

2. using the model to produce efficient implementa-
tions,

3. the ability to rank individual implementations in this
space, and

4. efficiently walking the space.

GenVoca and design wizard provide a systematic way to
address all of these concerns.

The techniques we used for optimizing type equations are
very similar to those of rule-based query optimization [14],
[37]. A query is represented by an expression where terms
correspond to relational operators (e.g., join, sort, select).

Query optimization progressively rewrites a query expres-
sion according to a set of rules, where the goal is to find the
expression with the lowest cost. Since we model data
structures as expressions and our design wizard progres-
sively rewrites expressions until no further rewriting pro-
duces a more efficient expression, the problems seem
identical. However, there are differences. First, constraints
among relational operators can be expressed simply by
algebraic rewrite rules. In contrast, we do not yet have an
algebraic representation for our rules. (In fact, the implemen-
tation of our “rules” is pure Java code). Moreover, the correct
usage of layers requires design rule checking, which we also
have been unable to express as algebraic rewrites. Second,
query optimization deals with a rather small set of operators
(e.g., join, sort, select), whereas type equation optimization
potentially may deal with a much larger set of operators (i.e.,
tens or hundreds of layers). For these reasons, type equation
optimization may be more difficult than query optimization.

7 CONCLUSIONS

P3 is a GenVoca generator for container data structures.
Although its basic technology was developed earlier [5], [6],
P3’s novelty is that it has been implemented as a modular
extension to the Java language that introduces data-
structure-specific statements. These statements enable P3
users to compactly and declaratively specify a family of
data structures whose size dwarfs that of hand-coded Java
libraries (e.g., CAL, JGL, JDK, Pizza). Besides offering
broader coverage, P3 is additionally attractive because it
generates efficient code. The basic reason for its efficiency—
beyond the fact that the generation techniques are powerful
—is that P3 produces data structures for a specific
application (where all kinds of optimizations can be
performed), whereas conventional libraries only offer
generic data structures (where these optimizations have
not been applied).

The P3 generator, however, is not sufficient for a practical
software development environment. In this paper, we
presented the ContainerStore applet, a visual domain-
specific programming language that integrates an important
suite of tools and services that P3 alone does not provide.” The
particular services that we discussed are: English-generated
explanations of P3 component compositions (which are
important as P3 novices will not be familiar with component
semantics), automatic validation of compositions with
messages suggesting how to repair errors (if errors are
detected), automatic generation of P3 code (so that users can
study correct P3 specifications), automatic translation of P3
specifications into Java code (i.e., the P3 generator is called),
and the automatic critique and optimization of a user-defined
P3 component composition given a workload specification
(i.e., the P3 design wizard is called).

Among all these services, our design wizard is the most
novel. Although its optimization strategies and component
rewrite rules are indeed specific to the domain of container
data structures, we believe it is the first example of a much
more general technology for automatic component selection
and composition. The idea of optimizing component
compositions by applying domain-specific rewrite rules is

7. The capabilities described in this paper were demonstrated at the
DARPA EDCS Workshop in Seattle, July 1997.
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certainly not limited to container data structures. The
reason is that GenVoca provides a general way in which
to create vast “product-lines” from components; applica-
tions of GenVoca product-lines are expressed as type
equations and the improvement of a particular equation/
design is always through component replacement, inser-
tion, and removal (i.e., equation rewrite rules).

Our initial success with the P3 design wizard is encoura-
ging. However, it is essential that design wizards for other
domains be created. We believe that analyzing design
wizards for different domains may lead to a general model
for expressing type equation rewrite rules. Such a model may
offer a general purpose technology for achieving adaptive
software—i.e., software that automatically reconfigures itself
upon noticing a change in its usage/workload. Adaptive
software may be the ultimate way to minimize software
development and maintenance costs through component
reuse.
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Abstract. We propose a standard problem to evaluate product-line methodolo-
gies. It relies on common knowledge from Computer Science, so that domain-
knowledge can be easily acquired, and it is complex enough to expose the funda-
mental concepts of product-line methodologies. As areference point, we present
a solution to this problem using the GenVoca design methodol ogy. We explain a
series of modeling, implementation, and benchmarking issues that we encoun-
tered, so that others can understand and compare our solution with theirs.

1 Introduction

A product-lineis afamily of related software applications. A product-line architecture
isadesign for a product-line that identifies the underlying building blocks or compo-
nents of family members, and enables the synthesis of any particular member by com-
posing these components. Different family members (product-line applications) are
represented by different combination of components. The motivation for product-line
architecturesis one of economics and practicality: it istoo expensive to build all possi-
ble family members; it is much cheaper to build components and to assemble desired
family members from them.

Many methodologies have been invented to create product-line architectures (e.g., [2,
3,7,9 11, 12, 13, 14, 17, 20]). Unfortunately, the state-of-the-art is immature. We are
unaware of any attempts to evaluate different methodol ogies on a common set of prob-
lems. If this were done, we would understand better the strengths and weaknesses of
different methodologies. We would know when to use a particular methodology, and
when not to. Further, we would know if different methodologies relied on the same
concepts. For example, different OO design approaches rely on a common conceptual
foundation of classes, interfaces, and state machines, but offer different ways of pro-
ducing adesign expressed in terms of these concepts. For product-line methodologies,
we generally do not know even this. Different methodologies have rather different
meanings for the terms “architecture’, “component”, and “composition” so that it is
not at al obvious what, if anything, isin common. It is not evident that the same con-
cepts are shared among product-line methodologies, let al one knowing what these con-
cepts are. From a practical standpoint, the choice of which methodology to use in a
situation is dictated by convenience (at best) or by random selection (at worst) rather
than by scientific fact. Thisis unacceptable.
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For this areato mature, it is essential that we compare and eval uate proposed method-
ologies. The scientific principles that underlie this area must be identified and the con-
tributions and novelties of different methodologies be exposed in a way that all can
appreciate and recognize. The immaturity of thisareais not unique and has occurred in
other areas of Computer Science. In such cases, a standard problem has been proposed
and different authors have applied their methodologies to solve it (e.g., [1]). Doing so
exposes important details that would otherwise be overlooked or misunderstood. Such
studies allow researchers to more accurately assess the strengths, benefits, commonali-
ties, and variabilities of different methodologies. We believe this approach would be
beneficial for product-lines.

In this paper, we propose a standard problem for evaluating product-line methodol o-
gies. We believe a standard problem should have the following characteristics:

* |t draws on common knowledge from Computer Science, so that the often difficult
requirement of becoming a domain expert or acquiring domain-expertise is mini-
mized.

* |tisnot atrivia design problem; it is complex enough to expose the key concepts
of product-lines and their implementation.

These characteristics should enable others to see the similarities and differences
among approaches both at a superficial level and moreimportantly, at a deeper concep-
tual level.

To carry this idea forward, we present as reference point a solution to this problem
using the GenVoca design methodology. We outline a set of design, implementation,
and benchmarking issues that we had to resolve before we settled on our final design.
Doing so exposed a variety of concerns and insights that we believe others would ben-
efit hearing. Our designs, code, and benchmarks are available at aweb site (ht t p: //
WWw. cs. ut exas. edu/ user s/ dsb/ GPL. ht m ) for othersto access.

2 A Standard Problem: The Graph Product Line

The Graph Product-Line (GPL) is a family of classical graph applications that was
inspired by early work on software extensibility [16, 19]. GPL is typical of product-
lines in that applications are distinguished by the set of features that they implement,

where no two applications have the same set of features.> Further, applications are
modeled as sentences of agrammar. Figure 122 shows this grammar, where tokens are
names of features. Figure 1b shows a GUI that implements this grammar and allows
GPL products to be specified declaratively as a series of radio-button and check-box
selections.

1. A featureisafunctionality or implementation characteristic that isimportant to clients [15].
2. For simplicity, the grammar does not preclude the repetition of agorithms, whereas the GUI
does.
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GPL := Gtp Wit Src Alg™;

Gp :=Directed | Undirected;

Wyt = Weighted | Unwei ghted;

Src := DFS | BFS | None;

Al g := Nunber | Connected | StronglyConnected
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Figure 1. GPL Grammar and Specification GUI

The semantics of GPL features, and the domain itself, are uncomplicated. A graph is
either Di rect ed or Undi r ect ed. Edges can be Wi ght ed with non-negative num-
bers or Unwei ght ed. Every graph application requires at most one search algorithm:
breadth-first search (BFS) or depth-first search (DFS); and one or more of the following
algorithms [10]:

Vertex Numbering (Nunber): Assigns a unique number to each vertex as a
result of a graph traversal.

Connected Components (Connect ed): Computes the connected components
of an undirected graph, which are equivalence classes under the reachable-from
relation. For every pair of vertices x and y in an equivalence class, there is a path
fromxtoy.

Srongly Connected Components (St r ongl yConnect ed): Computes the
strongly connected components of a directed graph, which are equivalence classes
under the reachable-from relation. A vertex y isreachable form vertex x if thereis
apathfromxtoy.

Cycle Checking (Cycl e): Determines if there are cyclesin a graph. A cyclein
directed graphs must have at least 2 edges, whilein undirected graphs it must have
at least 3 edges.



* Minimum Spanning Tree (MST Pri m MST Kr uskal ): Computes a Minimum
Spanning Tree (MST), which contains al the vertices in the graph such that the
sum of the weights of the edgesin the tree is minimal. We include both algorithms
because they present distinct and interesting performance and design issues.

* Single-Source Shortest Path (Shor t est ): Computes the shortest path from a
source vertex to al other vertices.

A fundamental characteristic of product-lines is that not all features are compatible.
That is, the selection of one feature may disable (or enable) the selection of others.
GPL is no exception. The set of constraints that govern the GPL features are summa-
rized in Table 1.

Required Required Required
Algorithm Graph Type | Weight Search
Vertex Numbering Directed, Weighted, BFS, DFS
Undirected Unweighted
Connected Components Undirected Weighted, BFS, DFS
Unweighted
Strongly Connected Components Directed Weighted, DFS
Unweighted
Cycle Checking Directed, Weighted, DFS
Undirected Unweighted
Minimum Spanning Tree Undirected Weighted None
Single-Source Shortest Path Directed Weighted None

Table 1. Feature Constraints

A GPL application implements avalid combination of features. As examples, one GPL
application implements vertex numbering and connected components using depth-first
search on an undirected graph. Another implements minimum spanning trees on
weighted, undirected graphs. Thus, from a client’s viewpoint, to specify a particular
graph application with the desired set of features is straightforward. And so too is the
implementation of the GUI (Figure 1b) and constraints of Table 1.

We chose Java as our implementation language. Besides its simplicity over C++ and
availability of GUI libraries, we made use of Java containers, iterators, and sort meth-
ods, to avoid reimplementing these low-level routines by hand. We recommend others
to follow our lead to make comparisons easier.



3 GenVoca

GenVoca is a model of product-lines that is based on step-wise extension [3-6]3.
Among its key ideasis programs are values. Consider the following constants that rep-
resent programs with individual features:

f /1 programthat inplements feature f
g /1 programthat inplenents feature g

An extension is a function that takes a program as input and produces an extended (or
feature-augmented) program as output:

i(x) // adds feature i to program x
j (x) // adds feature j to program x

It follows that a multi-featured application is an equation, and that different equations
define a set of related applications, i.e., a product-line, such as:

a; = i(f) /'l application a; has features i and f
a, = j(9) /'l application a, has features j and g
az = i(j(f)) /'l application az has features i, j, and f

Thus one can determine features of an application by inspecting its equation.

3.1 GPL

A GenVoca model of GPL is the set of constants and functions defined in Table 2.
There are three extensions that are not visible to the GUI: Tr anspose, Benchnmar k,
and Prog. Transpose performs graph transposition and is used (only) by the
St rongl yConnect ed algorithm. It made sense to separate the St r ongl yConnect ed
algorithm from Tr anspose, as they dealt with separate concerns. (This means that an
implementation constraint in using the St r ongl yConnect ed extension is that the
Transpose extension must also be included, and vice versa). Benchmar k contains
functions to read a graph from a file and elementary timing functions for profiling.
Pr og creates the objects required to represent a graph, and calls the algorithms of the
family member on this graph.

Extensions can not be composed in arbitrary orders. The legal compositions of exten-
sionsin Table 2 are defined by simple constraints called design rules [3] whose details
we omit from this paper, but do include with our source code. Our GUI specification
tool trandates a sentence in the grammar of Figure 1 (in addition to checking for ille-
gal combinations of features) into an equation. Because features are in 1-to-1 corre-

3. A refinement adds implementation detail, but does not add methods to a class or change the
semantics of existing methods. In contrast, extensions not only add implementation detail
but also can add methods to a class and change the semantics of existing methods. |nherit-
ance isacommon way to extend classes statically in OO programming languages.



spondence with extensions, this translation is straightforward. For example, a GPL
application app that implements vertex numbering and connected components using
depth-first search on an undirected graph is the equation:

app = Prog( Benchmark( Nunmber( Connected( DFS( Undirected )))))

Di rected directed graph Cycl e(x) cycle checking
Undi rect ed undirected MSTPri nm( x) MST Prim
graph algorithm
Wei ght ed( x) weighted graph | MSTKr uskal ( x) MST Kruskal
algorithm
DFS( x) depth-first Shortest (x) single source
search shortest path
BFS( x) breadth-first Transpose(x) graph
search transposition
Number ( x) vertex Benchmar k( x) benchmark
numbering program
Connect ed( x) connected Prog(x) main program
components
St rongl yConnect ed( x) strongly
connected
components

Table 2. A GenVoca Model of GPL

3.2 Mixin-Layers

There are many ways in which to implement extensions. We use mixin-layers[18]. To
illustrate, recall the Di r ect ed program implements a directed graph. This program is
defined by multiple classes, say Gr aph, Ver t ex, and Edge. (The exact set of classesis
an interesting design problem which we discuss in Section 4). A mixin-layer that rep-
resentsthe Di r ect ed program isthe class Di r ect ed with inner classes G- aph, Ver -

t ex, and Edge:

class Directed {
class G aph {...}
class Vertex {...}
cl ass Edge {...}

}

An extension isimplemented as amixin, i.e., aclass whose superclassis specified by a
parameter. The depth-first search extension is implemented as a mixin DFS that encap-
sulates extensions (mixins) of the G aph and Ver t ex classes. That is, DFS grafts new
methods and variables onto the Gr aph and Ver t ex classes to implement depth first
search algorithms:



cl ass DFS<x> extends x {
class Gaph extends x.Gaph {...}
class Vertex extends x.Vertex {...}

}

The above describes the general way in which GenVoca-GPL model constants and
functions are implemented. When we write the composition A = DFS(Di rect ed) in
our model, we trandlate this to the equivalent template expression:

cl ass A extends DFS<Directed>;

In general, there is a simple mapping of model equations to template/mixin expres-
sions. Of course, Java does not support mixins or mixin-layers, but extended Java lan-
guages do. We used the Jakarta Tool Quite (JTS) to implement mixin-layers [4].

4 Graph Implementation

Designing programs that implement graph algorithms is an interesting problem. Every
implementation will define a representation of graphs, vertices, edges, and adjacency
— i.e.,, what vertices are adjacent (via an edge) to a given vertex. Further, there must
be some way to represent annotations of edges (e.g., weights, names). We did not
arrive at our final design immediately; we went through a series of designs that incre-
mentally improved the clarity of our code, which we document in the following sec-
tions. In the process, we learned a simple rule to follow in order to simplify extension-
based designs.

4.1 Adjacency Lists Representation (G)

The first representation we tried was based on a “legacy” C++ design [18, 5] that had
been written years earlier and that implemented few of the extensionslisted in Table 2.
It consisted of 2 classes:

* G aph: consistsof alist of Ver t ex objects.
* Vertex:containsalist of itsadjacent Ver t ex objects.

That is, edges were implicit: their existence could be inferred from an adjacency list.
Figure 2 illustrates this representation for a weighted graph. The advantage of this rep-
resentation was its simplicity. It worked reasonably well for most extensions that we
had to implement. However, it failed on edge annotations (e.g., weights). Because
edges were implicitly encoded in the design, we had to maintain aweights list that was
“parallel” to the adjacency list. While this did indeed work, our layered designs were
obviously not clean or elegant — e.g., for operations like graph transposition which
needed to read edge weights, and Kruskal’s algorithm which needed to manipulate
edges directly. Because of these reasons, thislead us to our second design.
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Figure 2. Adjacency Lists Representation Example

4.2 Neighbor List Representation (GN)

The second representation consisted of three classes:
* G aph: containsalist of Ver t ex objects.
* Vertex:containsalist of Nei ghbor objects.

* Nei ghbor : contains areferenceto aVer t ex object, the other end of an edge.

Edge annotations were encoded as a extensions — i.e., extra fields — of the Nei gh-
bor class. Figure 3 illustrates this representation. By pushing the neighbor Ver t ex
object and edge annotations into a Nei ghbor object, we reduced the number of list
accesses required to obtain these annotations. While this did lead to a simplification of
the coding of some mixin-layers, it did not simplify the complexity of the Kruskal
algorithm. Since this mixin-layer was unnecessarily difficult to write (and read!), we
knew there was till something wrong. This lead to our final design.

4.3 Edge-Neighbor Representation (GEN)

Textbook descriptions of algorithms are almost always simple. The reason is that cer-
tain implementation details have been abstracted away — but this is, in fact, the
strength of layers and extensions. We wanted to demonstrate that we could (almost lit-
erally) copy algorithms directly out of text books into mixin-layer code. The benefits
of doing so are (a) faster and more reliable implementations and (b) easier transference
of proofs of algorithm correctness into proofs of program correctness. We realized that
the only way this was possible was to recognize that there are a standard set of “con-
ceptual” objects that are referenced by all graph algorithms: Graphs, Vertices, Edges,
and Neighbors (i.e., adjacencies). Algorithmsin graph textbooks define the fundamen-
tal extensions of graphs, and these extensions modify Graph objects, Vertex objects,
Edge objects, and Neighbor objects. Thus, the simplest way to express such extensions
istoreify all of these “conceptual” objects as physical objects and give them their own
distinct classes.
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The problems of our previous designs surfaced because we tried to make “ short-cuts”
to avoid the explicit representation of certain conceptual objects (e.g., Edge, Neigh-
bor). Our justification for doing so was because we felt the resulting programs would
be more efficient. That is, we were performing “optimizations’ in our earlier designs
that folded multiple conceptual objects into a single physical object. In fact, such pre-
mature optimizations caused us nothing but headaches as we tried to augment our
design to handle new extensions and to produce easy to read and maintain code. (We
think that this may be a common mistake in most software designs, not just ours). So
our “final” design made explicit all classes of objects that could be explicitly extended
by graph algorithms. Namely, we had four classes:

* G aph: containsalist of Ver t ex objects, and alist of Edge objects.
* Vertex:containsalist of Nei ghbor objects.

* Nei ghbor : contains a reference to a neighbor Ver t ex object (the vertex in the
other end of the edge), and a reference to the corresponding Edge object.

* Edge: extendsthe Nei ghbor classand contains the start Ver t ex of an Edge.

Edge annotations are now expressed as extensions of Edge class, and were expressed
by the addition of extra fields in the Edge class. This representation is illustrated in
Figure 4.

Equating conceptual objects with physical objects may simplify source code, but the
question remains: were our original designs more efficient? Is “ premature design opti-
mization” essential for performance? These questions are addressed next.

5 Profiling Results

We performed a series of benchmarks to quantify the trade-offs between our three
designs. Several implementations of the designs were tried, using different containers,
and different strategies to access and copy the edge annotations. This section shows the
results for our most fine-tuned implementations. The benchmarks were run on a Win-
dows 2000 platform using a 700Mhz processor with 196MB RAM.
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The first program used the vertex number algorithm on undirected graphs using depth
first search. This program measured the performance of graph creation and traversal. A
randomly generated graph with 1000 vertices was used astest case. Figure 5 showsthe
benchmark results.

Figure 5a indicates that design G (our first) performs better than the other two; 6%-
22% better that GN (our second), and 75%-120% better than GEN (our third). Thisis
not surprising: GN and GEN have object creation overhead that is absent in G —
Nei ghbor objects are created in GN, and Nei ghbor and Edge objects are created in
GEN. Whilethisis an obvious difference, the overall speed of the benchmark was dic-
tated by the time reading the graph from disk. Figure 5b shows this total execution
time, where the difference between the G application and the GN application is about
5% and G with GEN is about 9%.
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Figure 5. Simple graph traversal comparison

The second program benchmarked the impact of copying a graph with edge annota-
tions. St r ongl yConnect ed utilizes such an operation, transpose, that creates a new
copy of a graph but with the direction of the edges reversed. A randomly generated



graph with 500 vertices was used as test case. In general, there was no significant dif-
ference (see Figure 6a). The G design performed 2% better than GN and 6% better
than GEN. Although cost of graph creation is different among designs (asindicated by
Figure 5a), the differences are swamped by the large computation times of the
St r ongl yConnect ed algorithm. In particular, only 15% of the total executiontimein
Figure 6b was spent in reading the graph in from disk.
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Figure 6. Strongly Connected Components

The third program benchmarked the impact of algorithms that use edges explicitly, like
Kruskal’s algorithm. A randomly generated graph with 500 vertices was used as a test
case. As expected, the GEN representation outperformed the other two simply because
it does not have to compute and create the edges from the adjacency or neighbor lists.
It performed between 43% and 98% faster than representation G, and between 59%
and 120% faster than representation GN (see Figure 7a). The difference between G
and GN is due to the fact that in the latter, to get the weights for each edge, an extra
access to the weights lists is required; and that the creation of the output graph is more
expensive because it has to create Nei ghbor objects as well. Of the total execution
time (Figure 7b), approximately 60% was spent reading a graph of 25K edges from
disk, and less than 5% when the graph had 125K edges.
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Figure 7. MST Kruskal

Overall, we found that the performance of algorithms that did not use weighted edges
(e.g., numbering, cycle-checking, connected components, strongly-connected compo-



nents) had dlightly better performance with the G design. For those algorithms that
used weighted edges (e.g., MST Prim, MST Kruskal, shortest path), the GEN design
was better. Because an application is specified by the same equation for all three mod-
els, we could exploit our performance observationsin a“ smarter” generator that would
decide which design/implementation would be best for a particular family member —
i.e., one equation might be realized by a G design, another by a GEN design (see[6]).

Focussing exclusively on performance may be appropriate for most applications. But a
more balanced viewpoint needs to consider program complexity (which indirectly
measures the ease of maintenance, understandability, and extensibility). The main
issue for us was the impact that the representation of edges had on program complex-
ity. By in large, al layers had visually simple representations. But the Kruskal layer
seemed more complicated than it needed to be. The reason was that in both the G and
GN designs, the Kruskal layer had an explicit Edge class that was private to that layer,

and used by no other Iayer4. (The Kruskal algorithm demanded the existence of
explicit edge objects). The fact that all layers might benefit from making Edge explicit
drove usto the GEN design, which we considered visually and conceptually more ele-
gant than our earlier designs. Asit turns out, our instincts on “visual simplicity” were
not altogether accurate. To see why, we use two metrics for program complexity: lines

of code (LOC) and number of symbols (NSYM B).5 Table 3 shows these statistics for
the Kruskal layer. Making edges explicit did indeed simplify this layer’s encoding.
However, other parts of our design grew a bit larger (mostly because we had to make
the Nei ghbor and Edge classes and their extensions explicit). Table 4 shows these
same statistics, across al layers, for all three designs. Overall, the statistical complex-
ity of all three designs was virtually identical. So the drive for “visual simplicity”
among layersin the end did improve our designs, but surprisingly did not impact their
Size statistics.

There is a benefit to the GEN design that is not indicated by the above tables. If we
chose to enlarge the G and GN product-line with more algorithms that directly manip-
ulate edges, then it is likely alocal copy of the Edge class would be introduced into
these layers. And doing so would result in replicated code, possibly leading to prob-
lems with program maintenance. By making the Edge class global to all extensions as
in the GEN design, we would expect little or no code replication — precisely what we
want in a product-line design.

Finally, we wanted to see if explicit layering (which mixin-layers produce) affects the
overall performance. We created equations for each design that contained the most lay-
ers (10), and manually-inlined the resulting chain of mixin-layers into an unlayered
package called Flat. There are two equations that have 10 layers, namely:

4. Thelocal version of Edge in the Kruskal layer isindicated in Table 4 as 7 lines of 52 tokens.
5. We used other metrics [8], but found they provided no further insights.



LOC NSYMB
G GN GEN G GN GEN
Kruskal 87 90 69 927 928 695
Table 3. Kruska Algorithm Statistics
Class LOC NSYMB
Name G GN GEN G GN GEN
Graph 372 387 380 3554 3600 3492
Vertex 209 202 198 1832 1758 1631
Neighbor 0 30 16 0 229 49
Edge 7 7 26 52 52 304
Total 588 626 620 5438 5639 5476

Table 4. Lines of Code (LOC) and Number of Symbols (NSY MB)

Directed, Weighted, DFS, SronglyConnected, Number, Transpose, Shortest,
Cycle, Benchmark, Prog: in this case the difference between the layered version
and the flattened one oscillates between 0% and 2% in G, -1% and 1% for GN,
and -1% and 1% for GEN. A randomly generated graph with 500 vertices was
used as test case. These results are shown in Figure 8a.

Undirected, Weighted, DFS, Connected, Number, Cycle, MST-Kruskal, MST-Prim,
Benchmark, Prog: for this application the difference between the layered version
and the flattened one varies between 0% and 3% in G, 0% and 5% in GN, and
between -1% and 1% in GEN. A randomly generated graph with 300 was used as
test case. The results are shown in Figure 8b.
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Figure 8. Effect of Class Layering
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The small difference between the layered version and its corresponding flattened one
is due to the fact that few methods override their parent method. When overriding does
occur, it involves fewer than 3 layers. Again, thisresult is specific to GPL and may not
hold for other domains.

6 Conclusions

GPL is a simple and illustrative problem for product-line designs. Different applica
tions of the GPL product-line are defined by unique sets of features, and not all combi-
nations of features are permitted. The state of the art in product-linesisimmature, and
the need to understand the commonalities and differences among product-line design
methodologies is important. We want to know how methodologies differ, what are
their relative strengths and weaknesses, and most importantly what are the scientific
principles that underlie these models. We do not know answers to these questions. But
it is our belief that by proposing and then solving a standard set of problems, the
answers to these questions will, in time, be revealed.

We believe GPL is a good candidate for a standard problem. It has the advantages of
simplicity — it is an exercise in design and implementation that can be discussed in a
relatively compact paper — and understandability — domain expertise is easily
acquired because it is afundamental topic in Computer Science. Further, it provides an
interesting set of challenges that should clearly expose the key concepts of product-
line methodologies.

In this paper, we presented a product-line model and implementation of GPL using the
GenVoca methodology and the Jakarta Tool Suite (JTS). We showed how GenVoca
layers correspond to features, and how compositions of features are expressed by
equations implemented as inheritance lattices. We presented a sequence of designs that
progressively ssimplified layer implementations. We benchmarked these implementa-
tions to understand performance trade-offs. As expected, different designs do have dif-
ferent execution efficiencies, but it is clear that a “smart” generator (which had all
three designs available) could decide which representation would be best for a particu-
lar application. As an additional result, we showed that there is a very small impact of
class layering in overall application performance.

We hope that others apply their methodology to GPL and publish their designs and
findings. We believe that our work would benefit by a close inspection of others, and
the same would hold for other methodologies as well. Our code can be downloaded
fromhttp://ww. cs. ut exas. edu/ users/ dsbh/ GPL. ht i .
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Abstract?

The Jakarta Tool Suite (JTS) aims to reduce substantially
the cost of generator development by providing domain-
independent tools for creating domain-specific languages
and component-based generators called GenVoca genera-
tors. JTSis a set of precompiler-compiler tools for extend-
ing industrial programming languages (e.g., Java) with
domain-specific constructs. JTSisitself a GenVoca gener-
ator, where precompilers for JTS-extended languages are
constructed from components.

1 Introduction

Software generators are among the most effective
methods of achieving software reuse. Generators reduce
maintenance costs, produce more evolvable software, and
provide significant increases in software productivity
[Deu97, Die97, Kie96]. From atechnical standpoint, gen-
erators are compilers for domain-specific languages
(DSLs) or general-purpose programming languages with
domain-specific extensions [Cor90, Sma97]. Such lan-
guages express fundamental abstractions of a domain
using high-level programming constructs. The P2 data
structure generator is an example: P2 extended the C lan-
guage with cursor and container data types [Bat93-94].
This alowed P2 users to program in data-structure-spe-
cific abstractions, which resulted in substantial improve-
ments in productivity, program clarity, and performance.

Implementing a domain-specific language as an
extension of an existing programming language (called a
host language) has several advantages. First, we can lever-
age off existing functionality and not have to re-implement

1. This work was supported in part by Microsoft, Schlumberger, the
University of Texas Applied Research Labs, and the U.S. Department of
Defense Advanced Research Projects Agency in cooperation with the
U.S. Wright Laboratory Avionics Directorate under contract F33615-
91C-1788.

common language constructs. Second, the extensions
themselves only need to be transformed to the point where
they are expressible in the host language. Third, existing
infrastructure (e.g., development and debugging environ-
ments) can be reused. All these factors result into lower
implementation costs for language developers and
decreased transition and education costs for users.

Nevertheless, adding domain-specific constructs to a
general programming language presents severe technical
difficulties. Programming languages are generaly not
designed to be extensible, and the ones that are (e.g., Lisp
and a variety of other functional languages) have not
gained wide acceptance. Addressing the needs of the
industry (where C, C++, and Java prevail) is paramount
for promulgating generator technology. Our interest in
DSL s comes from our work in the design and construction
of component-based generators, called GenVoca genera-
tors [Bat92-97]. Target applications are specified as com-
positions of reusable components; GenVoca generators
convert these compositions into source code. From our
experience, there is a serious lack of tools to simplify the
construction of these generators. We estimate that over
60% of the effort in building a GenVoca generator
involves the creation of alargely domain-independent pro-
gramming infrastructure (e.g., component specification
languages, component composition languages, etc.).

The Jakarta Tool Suite (JTS) is aimed at providing
this common infrastructure: it is a set of domain-indepen-
dent tools for extending industrial programming languages
with domain-specific constructs. JTS is designed specifi-
cally for creating DSL s and GenVoca generators. JTS con-
sists of two tools: Jak and Bali. The Jak language is an
extensible superset of Java that supports meta-program-
ming (i.e., features that allow Java programs to write other
Java programs). Bali is a tool for composing grammars.
JTS is itself a GenVoca generator. Languages and lan-
guage extensions are encapsulated as reusable compo-
nents. A JTS component consists of a Bali grammar file



(which defines the syntax of a language or extension) and
aset of Jak files (that define the semantics of the extension
as syntactic transformations). Different combinations of
these components yield different language variants. Bali
and Jak work cooperatively to automatically convert a
composition of components that defines alanguage variant
into a preprocessor for that variant.

The implementation of JTS is bootstrapped: JTS is
written in Jak and Jak is also the first customized language
that has been produced by JTS. (That is, new extensions
are written in Jak (Java); the Jak preprocessor is then
extended by this new component so that it can be used to
write other extensions, and so on). In the following sec-
tions, we review the current features of Jak and Bali and
explain the strategy behind their implementation. After-
wards, we explain the novelty of JTS and differentiate JTS
from other language specification and construction tools.

2 TheJak Language

Jak is an open, extensible superset of Java. It extends
Java with support for meta-programming (i.e., features
that enable Java programs to write other Java programs).
In the following sections, we explain two key features of
Jak —namely, AST constructors and Generation Scoping
— that distinguish it from Java. Both have been imple-
mented as JTS components and are examples of the kinds
of language extensions that JTS is capable of expressing.

2.1 AST Constructors

JTS internally represents programs and code frag-
ments as two kinds of trees. A surface syntax tree (SST) is
aparse tree of a code fragment (as defined by some gram-
mar). An abstract syntax tree (AST) is a semantically-
checked SST that has been annotated with type declara
tions and references to the symbol table. An SST is con-
verted into an AST by invoking thet ypecheck() method
on the root of the tree. In this section, we present the (sur-
face syntax) tree constructors and composition methods in
Jak.

A tree constructor is a code-template operator, analo-
gous to the Lisp quot e construct. It converts a code frag-
ment into an SST; the value of a constructor is a pointer to
the root. The expression constructor exp{ ... }exp, for
example, encloses a syntactically correct Jak expression.
When the constructor is evaluated, an SST for that expres-
sion is created, and the root of that tree is the result. Simi-
larly, st n{ ... }st mis the corresponding constructor for
Jak statements. SSTs can be unparsed (into text) using the
print () method:

AST _Exp x = exp{ 7 + z*8 }exp;
AST_Stms = stm{ foo(3);

if (y<4) returnr; }stm
x.print( ); /] outputs “7 + z*8”
s.print( ); /1 outputs “foo(3);

/1 if (y<4) returnr;”

There are presently 17 different tree constructors in
Jak, the most commonly used are listed in Table 1.

Code fragments are composed using escapes, the
counterpart to the Lisp comma (unquote) construct. The
example below shows a statement constructor with an
escape $st nm( body) . When the constructor is evaluated,
the SST of body is substituted in the position at which its
escape clause appears.

AST_St m body
AST_Stm | oop

stm{ if(i>40) foo(i); }stm
stm{ for(i=1; i<10; i++) {
$stn(body); } }stm

| oop. print();
/1 outputs “for (i=1; i<10;i++)
/1 { if (i > 40) foo(i); }”

Unlike Lisp and Scheme which have only a single
constructor operator (e.g., backquote/comma), multiple
congtructors in syntactically rich languages are common
(e.0., [Wei93], [Chi96]). The main reason has to do with
the ease of parsing code fragments. We avoided the com-
plications described in [Wei93] by making explicit the
type of SST that is returned by a tree constructor. The
result is a slightly more complicated but robust system.

Constructor Escape Class AST Representation Of

exp{ ... }exp $exp( ... ) AST_Exp expression

stm{ ... }stm $stn( ... ) AST_St nt list of statements

mh{ ... }nth $nth( ...) AST_Fi el dDecl list of datamember and method declarations
cls{ .. }cls $cls( ...) AST Ol ass list of class and interface declarations

id{ ..}id $id( ...) AST_Qual i fiedName  qualified name

Table 1: AST Constructors and Escapes



Although the tree constructors of Table 1 are pres-
ently specific to Jak, this will not always be the case. Tree
constructors can be added for other languages, such as
CORBA IDL, embedded SQL, (subsets of) C and C++, so
that IDL code, embedded SQL code, etc. can be generated.

2.2 Generation Scoping

Tree constructors and escapes are not sufficient for
code generators (meta-programs); there must also be a
mechanism to solve the variable binding or inadvertent
capture problem [Koh86], which arises when indepen-
dently-written code fragments are composed. Consider the
following parameterized macro that defines a variable
t enp and initializes it to be twice the value of parameter
X:

macro(x) { int temp = 2*x; ... }

Now consider application code that defines avariable,
also called t enp, and that invokes macr o(t enp) :

int tenp = 5;
macr o(tenp);

The code that is produced on expansion is incorrect:

int tenp = 5;

{ int tenp /1l wrong

2*tenmp; ... }

The inner t enp variable was to be initialized using
the outer t enp variable; instead the uninitialized inner
tenp variable is used to initiaize itself! The problem is
that the t enp identifiers are not sufficient to disambiguate
the variables that they reference.

Hygienic, lexically-scoped macros (HLSM) were
designed to solve this problem. HLSM relies on a “paint-
ing” algorithm that ensures identifiers are bound to the
correct variables [Ree91]. Often, HLSM is implemented
as a preprocessing step that mangles variable names to
ensure their uniqueness:

int tenp_O

:5;
{ int tenp_1 =

2*tenp_0; ... } /] right

HLSM’s applicability is limited to macros (pattern-
based source code transformations). Since JTS supports
programmatic (as opposed to macro or pattern-based) tree
construction, we devised Generation Scoping (GS), an
adaptation and generalization of HLSM that is suited for
JTS. We originaly developed GS for Microsoft's Inten-
tional Programming (IP) system [Sim95], and used it to
develop the DiSTiL generator, an IP-version of the P2
generator [Sma96-97]. The IP implementation of GS used
handles to symboal table entries to represent variable refer-
ences (see also [Tah97]). Since JT'S produces domain-spe-

cific preprocessors, we chose an adternative
implementation that mangles identifiers. In the following
sections, we review its features.

2.2.1 GSEnvironments

A GS environment is alist of identifiers (i.e., class or
interface names, data member or method names, etc.) that
arelocal to aset of related code fragments. To ensure there
is no inadvertent capture, local identifiers are mangled.
Associated with each environment instance is a unique
mangle number, an integer that is attached to an identifier
to make it unique. For example, if an environment’s man-
gle number is005 and identifier i isto be mangled, identi-
fieri _005 is produced.

Environments are associated with classes; environ-
ment instances are associated with objects. Class f oo
below defines an envi r onment with identifiersi andj .
Each foo instance creates an environment containing
identifiersi and j . Different f oo instances represent dis-
tinct environment instances. Whenever a tree constructor
is evaluated by af oo object, it does so in the context of
that object’s environment. Thus, if x andy aredistinct f oo
instances, and x. bar () and y. bar () return code frag-
ments, the returned fragments will be isomorphic in struc-
ture, but will have different namesfori andj .

class foo {
environment i, j; /1 ids to mangle
AST_Exp bar() { return exp{ i+ }exp; }

}
foo x = new foo();// assume mangl e# is 000
fooy = new foo();// assume mangle# is 001

X.bar().print(); // yields “i_000+j _000”
y.bar().print(); // yields “i_001+ _001"

With the above capabilities, the variable binding
problem presented earlier is easily avoided. One defines a
class (macr oExanpl e) with an envi ronment that con-
tains the t enp identifier. A method of this class (macr o-
Code) uses a tree constructor to manufacture the body of
the “macro”. The t enp variable that is defined internally
to that tree is given a unique name via mangling, so inad-
vertent capture can not arise.

cl ass macr oExanpl e {
envi ronment tenp;

AST_Stnmt nmacroCode( AST_Qual i fi edNane n)

{ return stn{ int tenp = 2*$id(n);
}stm

}



Since identifiers in an environment need to be explic-
itly designated, the JTS version of generation scoping is
not fully automatic.?2 Associating environments with
objects does, however, represent an improvement com-
pared to the explicit creation of unique identifiers (as with
Lisp's gensym [Gra96]) and the manual substitution of
mangled names (via explicit escapes) into generated code
fragments. Identifiers are now encapsulated and can be
treated as a group. Additionally, these groups can be
arranged in complex configurations, as we will see next.

2.2.2 GSEnvironment Hierarchies

Environment instances can be organized hierarchi-
caly to emulate scopes in the name space of generated
programs. As expected, identifiers of parent environments
are visible in child environments and identifiers that are
declared in a child environment hide identifiers in parent
environments with the same name. Parent linkages among
environments are made at meta-program run-time using
the environnent parent declaration. The example
below shows that instances of class baz make their envi-
ronments children of environments of f oo objects. Note
that atree constructor for the expression“i + k” produces
“i_000 + k_002" because identifier i is mangled by the
f oo environment while k is mangled by the baz environ-
ment:

class baz {
envi ronnment Kk;
baz( foo z ) { environnent parent z; }

AST Exp biff() {return exp{ i+k }exp; }

2. The IP version of GS automatically enters identifiers into environ-
ments as tree constructors are evaluated. The JTS version reflects a
design that was used in the P2 generator, where manual declaration of
identifiers was used.

baz r = new baz(x); [// x has mangle # 000

/1l r has mangle # 002

r.biff().print(); // yields *i_000+k_002"

More generally, generation scoping allows environ-
ment instances to be arranged in directed acyclic graphs.
This permits the visibility of identifiers from multiple par-
ent environments, which is indispensable when building
GenVoca generators. Detailed examples of generation
scoping are presented in [Sma96].

2.3 TreeTraversals

Jak provides a Java package of classes for searching
and editing trees using objects of type Ast_Cursor.
Methods that can be performed on cursors are listed in
Table 2.2 In the code fragment below, a cursor ¢ is used to
examine every node of a tree and subtrees that define
interface declarations are del eted.

Ast _Cursor ¢ = new Ast_Cursor();
Ast _Node Root = // root of AST to search

for(c.First(root); c.Mre(); c.PlusPlus())
if (c.node instance™ Ast_Interface)
c.Delete();

2.4 Jak Extensibility

Representing programs internally as parse trees offers
a powerful form of language extensibility. This principle
has been widely explored in the Lisp community and vari-
ous syntax tree formats are commonly used in transforma-
tions systems (e.g., Microsoft's IP [Sim95], Open C++
[Chi96]). New kinds of tree nodes can have domain-spe-

3. Tree editing methods guarantee syntactic correctness; however, they
cannot guarantee semantic correctness.

Cursor Operation

M eaning

First(r)

Mor e()

Pl usPl us()
Si bl i ng()
Par ent ()

Del et e()
Repl ace(x)
AddAf t er (x)
AddBef or e(x)

print()

position cursor on root (r ) of tree

true if more nodes to examinein tree
advance cursor to next node of tree

skip the search of subtrees of current node
reposition to parent of current subtree
delete subtree rooted at current node
replace the current node with x

add tree x after the current node

add tree x before the current node
unparse the tree rooted at the current node

Table 2: Operations on Tree Cursors



cific semantics and transform, at reduction time, to a host
language implementation (or, more accurately, a tree that
defines this implementation). This approach is called
intention-based programming® [Sim95]. For example, the
P2 language extended the C language with cursor and con-
tainer data types and operators. Tree nodes that repre-
sented these types and operations were intentions. At
reduction time, a P2 program was converted into a pure C
program by replacing cursor and container nodes with
trees that defined their concrete C implementations.

JTS follows this approach (see Figure 1). A domain-
specific program is converted into an AST by a lexical
analyzer (lexer) and parser. The AST is then manipulated
into another tree by a reduction program, and the resulting
tree is unparsed into a pure host-language program (cur-
rently a Java program). Note that the reduction program
itself iswritten in Jak, because Jak is specifically designed
for tree creation and manipulation.

2.5 Pergpective

Jak is an integration of a popular programming lan-
guage (Java), with meta-programming concepts (tree con-
structors and generation scoping), and intention-based
programming. The structure of Jak provides the basis for
an inherently open precompiler. In the following sections,
we answer the following questions:

e How are lexers and parsers produced by JTS?
e How isthe reduction program produced by JTS?
* How isGenVocarelated to JTS?

3 Bali: A GenVoca Generator of DSL
Precompilers

Bali is the second tool of JTS. There are two aspects
to Bali. First, it is a tool for writing precompilers for
domain-specific languages. In this respect, Bali looks sim-
ilar to other DSL -specification tools: the syntax of a DSL
or language extension is specified using an annotated,

4. Although the term is new, the idea is quite old. Lisp macros were
powerful enough to express useful extensions to the language. They have
been routinely used to encode new constructs in terms of core language
constructs. We prefer, however, to use the term “macro” exclusively for
pattern-based program transformations.

Jak lexer
program) — % | and | TP
' |parser

' Jak Preprocessor

extended BNF grammar. Second, Bali is a GenVoca gener-
ator. DSLs and their precompilers are specified as a com-
position of components; evolution of a DSL (e.g., adding
and removing features) is accomplished by adding and
removing components.

To show that Bali is a GenVoca generator, we will
examine one of its most important applications: Jak itself.
Jak is a preprocessor implemented as an extended version
of Javausing Bali. The reasoning behind this design deci-
sion is simple. Jak is really not a single language, but a
family of related languages. There will be variants of Jak
with/without generation scoping, variants with/without
tree constructors, variants with/without CORBA DL
extensions, and so on. This a classical example of the
library scalability problem[Bat93, Big94]: there are n fea-
tures and often more than n! valid combinations (because
composition order matters and feature replication is possi-
ble [Bat92]). It isn’'t possible or practical to build all com-
binations by hand. Instead, the specific instances that are
needed can be generated. The JTS library presently
includes components for the Java language, tree construc-
tors, generation scoping, and domain-specific generators
(e.g., P3 [Bat98]). Compositions of these components
define a particular variant of Jak.

3.1 BaliasaDSL Compiler Tool

Bali transforms a Bali grammar into a preprocessor. A
Bali grammar is BNF with regular-expression repetitions.
For example, two Bali productions are shown below: one
defines St at ement Li st as a sequence of one or more
St at ements, while ArgunentList is defined as a
sequence of one or more Ar gunent s separated by com-
mas. The use of repetitions simplifies grammar specifica-
tions [Wil93, Rea90a] and allows an efficient internal
representation as alist of trees.

St at ement Li st
Ar gument Li st

( Statenent )+ ;

Argurent ( ‘,’ Argunment )*;

Bali productions are annotated by the class of objects
that is to be instantiated when the production is recog-
nized. For example, consider the Bali specification of the
Jak Sel ect St nt rule:

. written
: in Jak

p |reduction| _| . Java
program !

Figure 1: Data Flow in Jak



Sel ect St nt
IF ‘(" Expression ‘)’ Statement ::1fStm
| SWTCH ‘(" Expression ‘)’ Block ::SwStm

When a parser recognizes an “if” statement (i.e., an
| F token, followed by ‘(*, Expression,‘)’, and St at e-
ment ), an object of class | f Stm is created. Similarly,
when the pattern defining a“ switch” statement (a SW TCH
token followed by ‘(‘, Expression, ‘)’, and Bl ock) is
recognized, an object of class SwSt mis created. As a pro-
gram is parsed, the parser instantiates the classes that
annotate productions, and links these objects together to
produce the SST of that program.

For each production, Bali infers (among other things)
the constructors for tree nodes. Each parameter of a con-
structor corresponds to a token or nonterminal of a pat-
tern.® For example, the constructor of the | f St mclass has
the following signature;

I fStm Token iftok, Token Ip,
Expression exp, Token rp, Statenment stm)

Methods for editing and unparsing nodes are addition-
ally generated.

Bali also deduces an inheritance hierarchy of tree
node classes. Consider Figure 2a which shows rules
Rul el and Rul e2. When an instance of Rul el is parsed,
it may be an instance of pat t er n1 (an object of class C1),
or an instance of Rul e2 (an object of class Rul e2). Simi-
larly, an instance of Rul e2 is either an instance of
patt ern2 (an object of C2) or an instance of pattern3
(an object of C3). From this information, the inheritance
hierarchy of Figure 2b is constructed: classes C1 and
Rul e2 are subclasses of Rul el, and C2 and C3 are sub-
classes of Rul e2.

A Bali grammar specification is a streamlined docu-
ment. It is a list of the lexical patterns that define the
tokens of the grammar followed by alist of annotated pro-

5. Thetokens need not be saved. However, Bali-produced precompilers
presently save al white space — including comments — with tokens. In
this way, JTS-produced tools that transform domain-specific programs
will retain embedded comments. This is useful when debugging pro-
grams that have a mixture of generated and hand-written code, and is a
necessary feature if transformed programs will subsequently be main-
tained by hand [Tok95].

() Rul el : patternl o ]
| Rule2

Rul e2 : pattern2 M 07

| pattern3 . C3

ductions that define the grammar itself. A Bali grammar
for an elementary integer calculator is shown in Figure 3.
To give readers an idea of the size of other grammars, the
Jak grammar uses 160 tokens, 270 productions, defines
290 classes in 750 lines. The “meta’ grammar for Bali
grammars uses 20 tokens, 20 productions, defines 37
classesin 100 lines.

/1 Lexene definitions

"print" PRINT
S PLUS
AR M NUS
LPAREN
RPAREN
0-9]*" | NTEGER

—_— o~

W /1 production definitions
[l start rule is Action

Action : PRINT Expr :o Print
Expr : Expr PLUS Expr i Plus
| Expr M NUS Expr :: Mnus
| M NUS Expr :: UnaryM nus
| LPAREN Expr RPAREN :: Paren
| I NTEGER 11 Integer

Figure 3: A Bali Grammar for an Integer Calculator

Bali generates the following from a grammar specifi-
cation:

e Alexical analyzer. We are using JI ex, a version of

I ex written in Java [Lof96].

e A parser. We are using JavaCup, a version of yacc
written in Java [Hud96].

¢ Inheritance hierarchies of tree node classes, with con-
structor, editing, and unparsing methods.

There are obviously many methods that cannot be
generated by Bali, including type checking, reduction, and
optimization methods. Such methods are node-specific;
we hand-code these methods and encapsulate them as sub-
classes of Bali-generated classes. (The reason for this will
become clear in Section 3.2). Figure 4 shows the inherit-
ance hierarchy of a Bali-generated precompiler. Ast Node
isthe root of al node hierarchies; it is a hand-written class

(b)

Figure 2: Grammar Inheritance Hierarchies



in the JTS ker nel package. Its immediate subclasses are
the hierarchy of subclasses generated from a Bali gram-
mar. The terminal classes of this hierarchy are hand-coded
and define the type checking, reduction, and optimization
methods for individual nodes. It is these termina classes
that are instantiated during the compilation of a domain-
specific program.

JTS kernel |

Bali-generated | Sel ect St m |
mkﬁ.erltan(r:]e P T
ierarchy | |
Y Cirsim ) sestm )
e — —————_ _

hand-coded
subclasses ! ( 'fStm>< SwSt m ) !

___________________

Figure 4: A Bali-Generated Class Hierarchy

3.2 Bali asa GenVoca Gener ator

GenVoca is a scalable model of component-based
software construction [Bat92-97b]. The central ideais that
software domains are characterized by a finite set of fun-
damental abstractions. By standardizing the programming
interfaces to these abstractions, components can encapsu-
late reusable algorithms of a domain by exporting and
importing standardized interfaces. A target systemis spec-
ified by a composition of components called a type equa-
tion. Elementary compositions of components can be
visualized as a stack of layers. Figure 5a depicts a system
S where component Z sits atop Y which sits atop X. Itstype
equationisS=Z[ Y[ X]].

GenVoca generators have been created for widely dis-
parate domains. Interestingly, most have been written in

inheritance hierarchies

O OO

(@) layer stack

(B

(@) layering
hierarchy

(b) subclassing
hierarchy

Figure 5: Layering and Subclassing Hierarchies

the C language, and only two have been written in OO lan-
guages [Sin93-96, Van96]. A problem that we have faced
for years but only very recently have been able to answer
is: What is the relationship between GenVoca components
and OO classes? The key lies in the relationship of layer-
ing and inheritance.

A common phenomenon in layered systems is opera-
tion propagation [Bat97b]: operations of lower layers are
exported through the top of a system. In Figure 5a, sup-
pose operation g() of layer X is to be exported by system
S. Thismeansthat g() must be propagated through layers
Y and Z (or in general, whatever layers are stacked above
X). When an operation of Siscalled (suchasg() ), the cor-
responding operation of layer Z is invoked, which might
call methods of layer Y, which further might call methods
of X.

Now, suppose every component encapsul ates a single
class. To account for operation propagation and the pro-
cessing of operations in layered systems, the subclassing
hierarchy of Figure 6b comes to mind. Operation g() of
class X is propagated to classes Y and Z by inheritance.
Invoking an operation of S (such asg() ) invokes the cor-
responding operation of class Z, which might call methods

inheritance hierarchies
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Figure 6: Component Composition and Inheritance Hierarchies



of class Y, which might further call methods of X. From
this perspective, inheritance hierarchies are inverted layer
hierarchies.®

The relationship of GenVoca components and OO
classes can now be seen. GenVoca components encapsu-
late suites of interrelated classes. Figure 6a shows a (ter-
minal) shaded layer that encapsulates three classes. Figure
6b shows a striped layer that also encapsulates three
classes; when it is stacked on top of the shaded layer, one
class becomes a subclass of the left-most shaded class,
while the others begin new inheritance hierarchies. Figure
6¢ shows a white layer to encapsulate four classes. When
stacked upon the striped layer, each of these classes
becomes a subclass of an existing class. Lastly, Figure 6d
shows the effect of adding a black layer, which encapsu-
lates two classes. The application (which is defined by the
resulting layer stack) instantiates the most refined classes
(i.e., the terminal classes) of these hierarchies. These
classes are circled in Figure 6d; the non-terminal classes
represent intermediate derivations of the terminal classes.
Thus, when GenVoca components are composed, a forest
of inheritance hierarchies is created. Adding a new com-
ponent (stacking a new layer) causes the forest to get pro-
gressively broader and deeper [Sma98].

The connection of these ideas to Bali and the Jak lan-
guage is straightforward. A JTS component has two parts:
Thefirst isaBali grammar file (which contains the lexical
tokens and grammar rules that define the syntax of the
host language or language extension). The second is a
GenVoca component: a collection of multiple hand-coded
classes that encapsulate the reduction, etc. methods for
each tree node defined in that grammar file. These classes
define the semantics of an extension. There are JTS com-
ponents for Java (Java), SST constructors and explicit
escapes (SST), generation scoping (GScope), and data

6. Note that the converse is not true; there are layer hierarchies that are
not inheritance hierarchies. Inheritance hierarchies arise whenever layer
hierarchies refine a single abstraction (e.g., classes X, Y, and z are differ-
ent implementations of the same concept). When layers implement dif-
ferent abstractions, class composition relies solely on parameterization
and does not involve inheritance.

Bali layer stack

P3 -___C_% __________

inheritance hierarchies

structures (P3 [Bat98]), anong others.” The Jak language
and precompiler is defined by a composition of these com-
ponents, i.e, the type equation Jak =
P3[ GScope[ SST[ Java]]].

The syntax of a composition is defined by taking the
union of the sets of production rules in each JTS compo-
nent grammar. The semantics of a composition is defined
by composing the corresponding GenVoca components, as
described previously. Figure 7 depicts the class hierarchy
of the Jak precompiler. Ast Node belongs to the JTS ker-
nel, and is the root of al inheritance hierarchies that Bali
generates. Using the composition grammar file (the union
of the grammar files for the Java, SST, GScope, and P3
components), Bali generates a hierarchy of classes that
contain tree node constructors, unparsing, and editing
methods. Each JT'S component then grafts onto this hierar-
chy its hand-coded classes. These define the reduction,
optimization, and type-checking methods of tree nodes by
refining existing classes, just as in Figures 4 and 6. The
terminal classes of this hierarchy are those that are instan-
tiated by the generated preprocessor.

It is worth noting that Figure 7 is not drawn to scale.
Jak consists of over 300 classes. The average number of
classes that a language-extension component adds to an
existing hierarchy ranges from 10 to 40. In terms of the
number of classes a GenVoca component encapsulates,
Bali components are clearly the largest we've ever
encountered. However the simplicity and economy of
specifying Jak using type equations is enormous: to build
the Jak precompiler, al that users have to provide to Bali
is the equation Jak = P3[ GScope[ SST[ Java]]], and
Bali does the rest. To compose all these classes by hand
(as would be required by Java) would be very sow,
extremely tedious, and error prone. This is (another) good
example why programming with reusable components
(and hence at higher-levels of abstraction) offers big pro-
ductivity gains. Additionally, the scalability advantages of
GenVoca can easily be obtained: when new extension

7. Presently, Bali supports a single realm of components (J) that define
and extend the Java language. Using the standard notation for realm defi-
nitions,J = {Java, SST[J], GScope[J], P3[J], ...}.

AstNode

GScope

Java

R

Figure 7: The Jak Inheritance Hierarchy



mechanisms or new base languages are specified as com-
ponents, a subset of them can be selected and Bali will
automatically compose a preprocessor for the desired lan-
guage variant.

3.3 Pergpective

The primary goal of JTSisto provide tool support for
building GenVoca generators. Initially, it was unclear to us
how language extensions could be encapsulated or com-
posed; we feared that we would invent an ad hoc technol-
ogy for defining and specifying components that was
foreign to GenVoca. (This would then put a significant
burden upon us to demonstrate the generality of this new
model and its connection with other work, let alone how to
address the odd situation of using a different component
model to implement a more general model). Thus, realiz-
ing the connection between layering and inheritance hier-
archies was awatershed event. It told us that JTS (or more
specifically the central tool of JTS — Bali) was yet
another example of GenVoca. Our focus immediately
shifted away from an ad hoc implementation of Bali to one
that would exhibit a principled and clean design.

4 Related Work

Meta-programming and syntactic transformations
have been areas of active research for several decades.
Since the volume of related work is enormous we will be
selective in our presentation and only discuss approaches
that are particularly closeto JTS.

As should be evident from the previous sections, JTS
is only concerned with the front-end of what is tradition-
aly termed a transformation system (e.g., Draco [Nei89],
Refine [Rea90b]). JTS mainly deals with parsing and the
mechanics of syntactic transformation. Any sophistication
of the transformation process (e.g., algebraic rewrites) will
have to be provided by JTS client programs (e.g., the P3
generator [Bat9g]).

Part of the novelty of JTSisthat basic ideas of meta-
programming and precompiler-compiler tools have trans-
ported to a "modern” and syntax-rich language platform
(i.e., Java). The intricacies of our task are demonstrated,
for instance, by the large variety of AST constructors dis-
cussed in Section2.1 (compared to a single "quoting"
operator for languages like Lisp).

Another contribution of JTSis in the way it achieves
language extensibility: it does so through the prescripts of
an architectural model (GenVoca): language extensions
are encapsulated as components and languages and their
preprocessors are assembled from these components.

It is instructive to compare this approach to that of
Dialect [Rea90d]. Didlect is the front-end of the Refine

transformation system and is in many ways analogous to
the part of Bali described in Section 3.1. One of the big-
gest differencesisin the way separate language extensions
can be composed. By analogy to object-oriented program-
ming, Dialect introduces the notion of grammar inherit-
ance: a grammar (e.g., one defining a language extension)
could "inherit* from another grammar (e.g., a base lan-
guage). The resulting grammar is defined by taking the
union of all productions contained in the two grammars —
just like in JTS. An important difference, however, is that,
unlikein Dialect, JTS grammars do not have to specify the
grammar they areinheriting from. Thisisimplicitly speci-
fied when grammar components are composed to form an
entire language. The benefit is that a single JTS grammar
component can be used to extend multiple base languages.
Carrying the object-oriented programming analogy fur-
ther, we could say that, instead of grammar inheritance,
JTS adlows grammar mixins (in the sense of OO mixin
classes[Bra9q0]).

An interesting technical comment on comparing JTS
with Dialect has to do with the way grammar rules are
associated with inheritance between classes of AST nodes
(see Section 3.1). Recall that JTS infers inheritance rela-
tionships from grammar rules. Conversely, Dialect
requires that inheritance relationships be explicitly speci-
fied but infers grammar rules from them. The two
approaches are semantically equivalent but we preferred
having an explicit and compact representation of all gram-
mar rules, as opposed to a mixed representation.

It is interesting to examine the relationship of JTS to
meta-object protocols (MOPSs). The fundamental premise
of aMOP is that class-specific extensions are themselves
object-oriented in nature. Thus, they can be encapsulated
in another class, called a meta-class. If a certain class A
has meta-class MA, A is itself viewed as an object — an
instance of MA. Methods of MA define extensions for all
objects of A. For instance, methods of MA may define
extension code for every construction of objectsof classA,
any assignment to such objects, or any method invocation
on them.

Most MOPs are compositional: meta-classes contain
code to be executed at a specified moment. There are,
however MOPs where extensions are transformational:
meta-classes contain code that transforms the source code
of a class definition or use. The transformational MOP
closest to JTS is Open C++ ([Chi95], [Chi96]). Open C++
encapsulates transformational extensionsto C++ (i.e., syn-
tax tree transforms, just like JTS) as meta-classes. Like
JTS, Open C++ is implemented as a compiler that takes
meta-class specifications as input and produces a prepro-
cessor and compiler (packaged together) for extended C++
as output. Unlike JTS, however, no arbitrary syntactic
extensions are allowed (the changes to the language syntax



are of one of afew pre-determined forms). The reason has
to do with the complicated syntax of C++ and the diffi-
culty of adding more syntax rules to it. The complexity of
arbitrary syntactic extensionsin JTS iswhat led us to rep-
resent them as GenVoca components. Compared with
Open C++, the elements of JTS have direct counterparts:
Jak corresponds to the meta-programming part (language
for transformational extensions), while Bali is the counter-
part of the meta-object protocol. Now we can see the role
of JT'S extensions as GenVoca components. Just like Open
C++ (or any MOP) represents class-specific extensions as
(meta-)classes, JTS represents arbitrary syntactic exten-
sions as GenVoca components (encapsulated suites of
classes). The main purpose of JTS has been to facilitate
adding extensions for building GenVoca components in
Java. By making the extension mechanism structure simi-
lar to that of the intended applications, the JTS design
exhibits the same kind of simplicity and self-containment
as meta-object protocols for object-oriented languages.
Microsoft’s Intentional Programming (IP) system isa
visionary project that has similar goalsto JTS [Sim95]. IP
inherently supports language extensibility through syntac-
tic rewrites. It is not, however, concerned with surface lan-
guage syntax but operates directly on an abstract syntax
tree representation of a program. Additionally, IP transfor-
mations have no inherent knowledge of the semantics of
any particular programming language. The purpose of IP
is to become a powerful enough transformation system so
that entire languages can be expressed as collections of
cooperating transformations. We considered using 1P but
did not do so for reasons that had to do both with its cur-
rent state (under development) and with our funding
requirement for public availability of our code. Addition-
aly, we were interested in experimenting with an extensi-
ble language system implemented around ideas from
object-oriented and component-based programming.

5 Conclusions

Future software development tools will feature the
generation and transformation of OO programs. Such tools
will automate certain aspects of software design methodol-
ogiesthat aim at reuse, namely automating OO design pat-
terns and generating domain-specific software from
declarative specifications. The Jakarta Tool Suite (JTS) is
designed with these applications in mind. JTS is a careful
integration of three different technologies — meta-pro-
gramming, precompiler-compiler tools, and component-
based generators. JTS is also aimed at a growing commu-
nity of software developers — those that use Java— who
will benefit most from such toals.

The novelties of JTS are its integration of technolo-
gies and that JTS is an example of the very software

design paradigm it was intended to support — GenVoca.
With appropriate language support, it is substantially eas-
ier to write generators. And with clearly written and docu-
mented examples, it should be much easier to transition
component-based generator technology from academic
environments to industry.

In this paper, we have reviewed the two tools that
comprise JTS: Jak and Bali. Jak is a JTS-produced lan-
guage that extends Java with meta-programming features
(e.g., tree constructors, generation scoping). Bali is the
generator that produced Jak through component assem-
blies. Thefirst GenVoca generator that we have built using
JTS is P3 [Bat9g], a Jak-based version of the P2 data
structures generator. P3 was developed in a fraction of the
time that was needed for P2. Moreover, the source code of
P3 is substantially more elegant, readable, and maintain-
able because JT'S provides the appropriate language con-
structs for building such generators. Further work on JTS
will extend Jak to have language support for component
definitions and compositions.

JTS runs on Unix (Solaris), and Windows (95 and
NT) platforms. A beta-release became available in Febru-
ary 1998. For current information, release announcements,
and the latest technical reports, please check our web page
http: //ww. cs. ut exas. edu/ users/ schwart z.
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Abstract: Frameworks are acommon object-oriented code-structuring technique that is used
in application product-lines. A framework is a set of abstract classes that embody an abstract
design; aframework instance is a set of concrete classes that subclass abstract classes to pro-
vide an executable subsystem. Frameworks are designed for reuse: abstract classes encapsu-
late common code and concrete classes encapsulate instance-specific code. Unfortunately,
this delineation of reusable v.s. instance-specific code is problematic. Concrete classes of
different framework instances can have much in common and there can be variations in
abstract classes, all of which lead to unnecessary code replication. In this paper, we show
how to overcome these limitations by decomposing frameworks and framework instances
into primitive and reusable components. Doing so reduces code replication and creates a
component-based product-line of frameworks and framework instances.

1 INTRODUCTION

A product-line architecture (PLA) is a design for a family of related
applications. The motivation for PLAs isto simplify the design and mainte-
nance of program families and to address the needs of highly customizable
applications in an economical manner. Although the idea of product fami-
liesisold (Mcllroy, 1968; Parnas, 1976), it isan area of research that isonly
now gaining importance in software design (Bosch, 1998; DeBaud, 1999;

1. This work was supported in part by Microsoft, Schlumberger, the University of Texas
Applied Research Labs, and the U.S. Department of Defense Advanced Research Projects
Agency in cooperation with the U.S. Wright Laboratory Avionics Directorate under contract
F33615-91C-1788.
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Gomaa et al., 1994; Cohen and Northrup, 1998; Batory 1998; Weiss and
Lai, 1999; Czarnecki and Eisenecker 1999).

A framework is a collection of abstract classes that encapsulate common
algorithms of a family of applications (Johnson and Foot 1998). Certain
methods of these classes are left unspecified (and hence are “abstract™)
because they would expose details that would vary among particular, fully-
executable implementations. Thus a framework is a “code template” —key
methods and other details still need to be supplied, but all common code is
present in abstract classes. A framework instance provides the missing
details. It is a pairing of a concrete subclass with each abstract class of the
framework to provide a complete implementation. These subclasses encap-
sulate implementations of the abstract methods, as well as other details
(e.g., data members specific to a particular framework instance).

Frameworks often arise in PLA implementations. This is hardly unex-
pected: frameworks are appropriate for reusing software parts and specializ-
ing them in multiple ways for distinct applications. Members of a product-
line can be created by refining framework classes with appropriate concrete
implementations. Frameworks are afundamental technique because of their
simplicity and generality—from an implementation standpoint, frameworks
are just a coordinated use of inheritance. Since inheritance is a fundamental
mechanism in object-oriented languages, the applicability of the framework
approach iswide.

The factoring of common algorithms into reusable, abstract classes
greatly reduces the cost of software development when building a new
product-line application (i.e., when creating a framework instance). Unfor-
tunately, this delineation of reusable vs. instance-specific code has prob-
lems. Concrete classes of different framework instances can have much in
common. This situation is typically addressed by either copying code (with
predictable maintenance problems) or redeveloping concrete classes from
scratch (which is costly). A different problem arises with abstract classes:
they can have variations. Much of the code in abstract classes would be
common across variations, but some parts would be radically different.
Variability istypically handled by replicating the abstract classes of frame-
works and hard-coding the changesinto a new framework. Framework pro-
liferation ensues, again incurring maintenance problems.

These problems are redl. In arecent discussion with amember of IBM’s
SanFrancisco proj ect,? these limitations of frameworks have become appar-
ent. While code replication is not yet burdensome because SanFrancisco is
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gtill new, difficulties are anticipated in the future. We believe that these
problems arise in other projects that use OO framewaorks.

A simple way to state the above problem is that product lines with
optional features will not be concisely expressed using frameworks. Such
frameworks suffer from either “overfeaturing” (Codenie, De Hondt,
Steyaert, and Vercammen 1997) —a lot of not-entirely-general functional-
ity is part of the framework— or replication of the same code across many
instances. In this paper we present a general technique to solve this prob-
lem. The solution is effected by relaxing the boundary between a frame-
work (the common part of the product line) and its instantiations (the
product-specific part). More specifically our technique is based on assem-
bling both the abstract classes of frameworks and the concrete classes of
their instances from primitive and reusable components. We show that the
level of abstraction that delineates abstract classes from concrete classes
can be drawn in different ways, and by decomposing frameworks and their
instances in terms of our components, variations in abstract and concrete
classes can be handled without code replication. A particular framework or
framework instance is created by a composition of components; variations
in frameworks and their instances are expressed as different component
compositions. Our approach can be used to express any framework, but
requires more language support than plain frameworks—instead of regular
inheritance, parameterized inheritance is needed. Nevertheless, this support
is readily available in production languages like C++. An example in an
extended version of the Javalanguage is given to illustrate our ideas.

2 GENVOCA AND COLLABORATION-BASED
DESIGNS

In this section we offer an overview of some design-level ideas that
underlie our work. Many terms and concepts used in the rest of the paper
are defined here.

Collaboration-Based Designs. It is well-known in object-oriented
design that objects are encapsulated entities that are rarely self-sufficient.
The semantics of an object is largely defined by its relationship with other
objects. Object interdependencies can be expressed as collaborations. A

2. IBM SanFrancisco is a Java-based set of components that allows developers to assemble
server-side e-business applications from existing parts, rather than building applications
from scratch.
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collaboration is a set of objects and a protocol (i.e., a set of alowed behav-
iors) that determines how these objects interact. The part of an object that
enforces the protocol of acollaboration is called the object’srolein that col-
laboration (Reenskaug, et al, 1992; VanHilst and Notkin 1996; Smaragdakis
and Batory 1998).

A collaboration-based design expresses an application as a composition
of separately-definable collaborations. In this way, each object of an appli-
cation represents a collection of roles describing actions on common data.
Each collaboration, in turn, is a collection of roles that encapsulates rela-
tionships across its corresponding objects.

Example. | (Batory) am an author of this paper. This relationship is
defined by a collaboration of two objects, one in the role of author
and another in the role of manuscript. | am also a parent—a collabo-
ration of two or more objects, one in the role of parent and othersin
therole of children. | am also a car owner—a collaboration of two or
more objects, one in the role of owner and others in the role of pos-
session. And so on. | am a single object where relationships that |
have with other objects are expressed through collaborations where |
play a specific role in each collaboration.

The collaborations mentioned above are generic; they are not specific
to me but are general relationships that can be defined in isolation of
each other. Furthermore, such collaborations are applicable in differ-
ent contexts to different entities. For example, a corporation can own
a car, and so too can a government entity. The relationship between
owner and possession isthe samein all cases, but the ownership roles
are played by very different classes of objects (e.g., people, corpora-
tions, government). Symmetrically, a possession could be a car, dog,
or building; the possession role can also be played by very different
classes of objects. The same holds for rolesin other collaborations.

GenVoca. GenVoca is a design methodology for building architectur-
dly-extensible software—i.e., software that is extensible via component
addition and removal (Batory and O’ Malley 1992). GenVoca is a scalable
outgrowth of an old and practitioner-ignored methodology of program con-
struction called step-wise refinement. GenVoca freshens this methodol ogy
by scaling refinements to a component or layer (i.e., multi-class-modular-
ization) granularity, so that applications of enormous complexity can be
expressed as a composition of a few refinements rather than hundreds or
thousands of small refinements (c.f. (Partsch and Steinbruggen, 1983)).
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Relationship. GenVoca product-lines and collaboration-based designs
are intimately related: a GenVoca refinement is a collaboration. An applica-
tion is constructed by composing reusable refinements (collaborations).
Refinements can be composed dynamically at application run-time or stati-
caly at application compile-time. To address the problems of OO frame-
works noted in the Introduction, we consider only statically composable
refinements in this paper.

Consider how refinements are expressed statically in OO languages. A
static refinement of an individual class adds new data members, new meth-
ods, and/or overrides existing methods. Such changes are expressed through
subclassing: class A is refined by subclass B:

class A

is statically
refined by

o subclass B

Both collaboration-based designs and GenVoca deal with large-scale
refinements: such refinements involve the addition of new data members,
new methods, overriding existing methods, etc. simultaneoudly to several
classes:

application classes ——— class class class

) r— 0 - — —|— — — h

classes of a refinement

or collaboration > | @ubclas§ @ubclasg Csubclas§
L |

The encapsulation of these “refining” subclasses in the above figure
defines both a GenVoca component or layer and a collaboration. (Note that
we are showing only subclassing relationships in this figure; there can be
any number of “horizontal” interrelationships among individual sub-
classes).

Example. Have you ever added a new feature to an existing OO
application? If so, you discover that changes are rarely localized.
Multiple classes of an application must be updated simultaneously
and consistently for the feature to work properly. Similarly, if one
subsequently removes that feature, all of its updates must be simulta-
neously removed from all affected classes. It is this collection of
changes that we want to encapsulate as an application building block.
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Each subclass of a layer encapsulates a role of a collaboration-based
design. For a collaboration-based design to be “hooked” into an application,
each role must be bound with an existing class of the application. We will
see in Section 3 that layers can be expressed as templates and that such
binding is accomplished via template parameterization. Thus, a layer
defines a collaboration, while a layer instance additionally defines role/
class bindings.

Compositions. When a layer (collaboration) is composed with other
layers, aforest of subclassing (inheritance) hierarchies is created. As more
layers are composed, the hierarchies become progressively broader and
deeper. Figure 1 illustrates this concept: layer L1 encapsulates three classes.
Each of these classes root a subclassing hierarchy. Layer L2 encapsulates
three classes, two classes refine existing classes of L1 while a third starts a
new hierarchy. Layer L3 also encapsulates three classes, two of which
refine classes of L1 and L2. Finally, layer L4 encapsulates two classes, both
of which refine existing classes.

r- - — — — — — — T
Legend I_1|_ 9_ . _ 4
<:Dclass r T — - — — — 1
N L2 O @)
subclass relationship [ |
@ most refined class - T — — — — — 9
L3
L4 - - - - — | = |
class Left Tt - — — — — | — -
L4 ©
Lo - |

Figure 1 Creating Inheritance Hierarchies by Composing Layers

Each inheritance or refinement chain of Figure 1 represents a derivation
of its terminal class. That is, each terminal class (shaded in Figurel) isa
product of its superclasses, where each superclass defines a role in some
collaboration. In general, the classes that are instantiated by an application
are the terminal classes, because these classes encode all the roles that are
required of application objects. (For example, an object of class Left in
Figure 1 plays three distinct roles which originate from collaborations L1,
L2, and L4). The non-terminal (non-shaded) subclasses represent intermedi-
ate derivations of application classes. Thus, the composition of layers L1
through L4 yields five classes (i.e., those that are shaded in Figure 1); the
unshaded classes represent the “intermediate” derivations of these shaded
classes. If the resulting complexity of class hierarchiesis aconcern, prepro-
cessors can be built to “accordion” (compact) inheritance chains so that
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only the terminal classes remain. The resulting classes would be conceptu-
ally layered, but not physically layered (Habermann, Flon, and Cooprider,
1976). In general, collaboration-based designs ultimately reduce complex-
ity by shifting the design emphasis from small-scale components (individ-
ual classes) to large-scale ones (entire collaborations).

Product-Lines. A layer implements a feature (aspect, capability) that
can be shared by many applications of a product-line. An application that
supports a given set of features is defined by a composition of layers that
implements those features. Thus, layers are the basic building blocks for
families of applications. In general, n layers can be composed in excess of
n! ways, because the order of composition matters and layer replication is
possible 3

3 MIXIN-LAYERS

A mixin-layer is a template representation of a GenVoca refinement
(Smaragdakis and Batory, 1998; Findler and Flatt, 1998). Templates are
important in our methodology because they allow writing source-code com-
ponents that can be used in multiple contexts. We will use Jak, a superset of
Javathat supports templates, to explain the basic technique (Batory, L ofaso,
and Smaragdakis, 1998).4 Mixin-layers are an interesting meld of parame-
terized inheritance, inner classes, and standardized naming conventions.

Mixins. A mixin is a class whose superclass is specified by a parameter
(Bracha and Cook, 1990).° Below we define a mixin Mwhose superclassis
defined by parameter S. AnyCl ass isaJavainterface that all classesimple-
ment:

class M <AnyC ass S> extends S { ... }

3. Soitis not uncommon that different applications of a product-line can be assembled by
composing exactly the same layers in different orders (Batory and O’ Malley, 1992; Hayden,
1998). Figure 1 provides an illustration: the order of L2-L4 could be permuted, provided
that L4 is“below” L3.

4. We will not offer a strict definition of the Jak language, but its diversions from Java are
few and, we hope, mostly self-explanatory. The reader can think of the semantics of our
parameterization mechanism (templates) as those resulting from straightforward textual sub-
stitution. We will not address the potential problems of an actual textual substitution imple-
mentation as these are orthogonal to the topic of this paper.

5. C++ has adifferent meaning of “mixin” that is not equivalent to our use.
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Mixins provide the capability of creating customized inheritance hierar-
chies when they are composed.

Nested Classes. Class declarations in Java can be nested inside other
class declarations, and are inherited like data members and methods. Con-
sider the following example:

class Parent { class Inner { ... } }
class Child extends Parent { }

Chi | d is a subclass of Parent. Although no Child. | nner classis
explicitly defined, such a class does exist as it is inherited from Par ent .
Nested classes emulate the encapsul ation of multiple classes within a pack-
age, except this representation allows “packages’ to appear as nodes in
inheritance hierarchies.

Combining lIdeas. A mixin-layer is an implementation of a collabora-
tion. It is a mixin with nested classes, where each nested class corresponds
to arole of acollaboration. A genera form of amixin-layer Mis a Jak tem-
plate that has n+1 parameters. one parameter S that defines the superclass
of M plus n additional parameters{r , ...r .} that define the specific classes
the collaboration’s role classes are to refine:

class M<AnyC ass S, Anydass rq, ... Anydass r>
extends S {

class role; extends rq { ... }

class role, extends r, { ... }

/1 additional non-refining classes (if any)

}

When adomain is decomposed into primitive collaborations, experience
has shown that different collaborations use the same names for roles, and
classes that have the same role names refine each other when their collabo-
rations are composed. While the above template for mixin-layer Mis gen-
eral, a much more compact form standardizes names of inner classes and
eliminates role-class parameters to yield atemplate with a single parameter
S, the mixin-layer’s superclass:

class M <AnyC ass S> extends S {
class role; extends S.role; { ... }

class role, extends S.role, { ... }

/1 additional non-refining classes (if any)
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This form of a source-code component is interesting because it enforces
aclear structure. Mixin-layers are written in such away that they are com-
posable with each other. Yet, composing layers entails fixing the superclass
of all classesinside alayer. Thus, layers are simple to use (e.g., they have a
single parameter), but can affect large portions of a software application.

Collaboration Typing. Astute readers may have noticed that mixin-
layer M should not have an unconstrained parameter; substituting an arbi-
trary class for parameter S is unlikely to work. A lega instantiation of S
must satisfy constraints, e.g., it must have inner classes{rol e; ... rol ep}.
This gives rise to the notion that collaborations (layers) are typed and so too
are their parameters. Unfortunately, Java currently offers no support for
type-checking nested classes. For instance, it is not possible to use an
i npl ement s clause to express the requirement that a class should contain a
nested class that supports a certain interface. Therefore, we limit ourselves
to very simple properties that can be expressed in the Java type system.
Namely, we use an empty interface R. Collaborations that “implement” R
are said to be of type R; parameters of type R will be legally instantiated
only by collaborations of type R. Thus the set of layers of Figure 1 can be
represented as.

interface R{ } Il empty
class L1

inmplements R{ ... } /1 mxin-layer L1
class L2 <R x> extends X

inmplements R{ ... } /1 mxin-layer L2
class L3 <R x> extends x

implements R{ ... } /] mxin-layer L3
class L4 <R x> extends x

inmplements R{ ... } /1 mxin-layer L4

Although typing collaborations in this manner goes a long way toward
ensuring that parameters have legal instantiations, additional properties are
needed to distinguish the case where components with identical interfaces
have different semantics (Batory and Geraci, 1997; Smaragdakis and
Batory, 1998). For the purposes of this paper (and without loss of general-
ity), we make the simplifying assumption that typing is sufficient.

Compositions. Refinements are composed by instantiating one mixin-
layer with another asits parameter. The two classes are then linked as a par-
ent-child pair in an inheritance hierarchy. The final product of a collabora-
tion compositionisaclass Fi g1 with the general form (expressed in Jak):

class Figl extends L4< L3< L2< L1 >>> (1)
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Thatis, L4, L3, ...,L1 aremixin-layers, “<. . . >” isthe Jak operator for
template instantiation, and Fi g1 is the name given to the class that is pro-
duced by this composition. (This particular composition corresponds to
Figure 1). The classes of Fi g1 are referenced in the usual way, namely
Fi g1. rol e; defines the application class r ol e;, etc. Readers who are
familiar with GenVoca will recognize such compositions as type equations,
which has an aternative and more compact syntax:

Figl = L4< L3< L2< L1 >>> // type equation of (1) (2)

The space of al type equations corresponds to all applications that can
be synthesized in this product-line.

4 LIMITATIONS OF OO FRAMEWORKS

A common case where frameworks prove to be too rigid is that of
optional features. If aset of features are often but not always used, they can-
not be encoded in the framework. (Otherwise, they will burden or render
incorrect any framework instances not needing these features.) Thus, such
features need to be encoded independently (i.e., replicated) in each frame-
work instance that uses them. We will show in this section that using mixin-
layers as building blocks for frameworks and their instances, we can encode
an optional feature as a mixin-layer and include or exclude it at will from a
specific composition.

Recall that a framework is a set of classes. For simplicity, our prior dis-
cussions assumed that all framework classes are abstract, but in general
they need not be. Non-abstract classes could encapsulate a capability that is
shared by (and can be optionally extended by) al framework instances. We
will proceed under this more general setting. We also assume that mixin-
layers have no variations (e.g., no optionally-selected algorithms) and that
their collaborations are “monolithic”. Variations in product-line applica-
tions arise only from variations in compositions of mixin-layers. We will
relax this assumption later.

To see the relationship between mixin-layers and frameworks, consider
Figure 2a which replicates the inheritance hierarchies of Figure 1. Suppose
we drew a line between layers L2 and L3, where classes above the line
define the classes of a framework. In Figure 2a, there would be four such
classes {A, Ay, As, As}. Note that these classes correspond to the “most
refined” classes of the refinement chains that lie above the line. The most
refined classes that lie below the line define the concrete classes of aframe-
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work instance. In Figure 2a, there would be four such classes {C;, C,, C;,
Cs}. (Note that for this framework instance, A, need not be subclassed/
refined). If we had a language preprocessor that would “accordion” (com-
pact) refinement chains so that only the most refined classes remained,
Figure 2b shows the result of this compaction. Readers will recognize
Figure 2b as an encoding of aframework’s classes and its instance classes.

Two points are worth noting. First, the classes of the framework of
Figure 2 are defined by the type equation F = L2<L1>. An instance of this
framework is any type equation whose innermost term is F (e.g., Fi g1 =
L4<L3<F>>). From this we can conclude that mixin-layers are building
blocks of both frameworks and framework instances.

r— - - — — — al
@ 11 O Q@AD
abstract L4 -r-—-—--"
classes of

a framework L2 E)Al EDK3(5AI

concrete L3 CaHC3
classes of L - = a
a framework .
instance La HC1 Cs
Lo- - - . .
(b) AL Ay Az Ag
o O O O
o O O (@]
C, C, Cs Cs

Figure 2: Refinement Hierarchies and Framework Instances

Second, we could have drawn our line in between any two adjacent lay-
ers and produced a different framework and one of its instances. (There is
nothing specia about the boundary between L2 and L3). If the boundary is
raised, the framework will become more general (as framework classes are
simplified), but more code will need to be written for aframework instance.
If the boundary is lowered, framework classes will encapsulate more fea-
tures at an expense that the framework may be too specific (i.e., have too
many features) to be used for a particular application.
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But why partition along layer boundaries? Why not partition across
layer boundaries? To see the answer, consider Figure 3 which defines the
partitioning between framework and instance classes by crossing multiple
layer boundaries. The framework of Figure 3 would consist of classes { A,
Ay, Ag}. The framework instance that is depicted would consist of concrete
classes {C;, C;, C4, G5}, where C; includes superclass K, and C; includes
superclass Ks.

Look carefully at what Figure 3 implies: any instance of the framework
of Figure3 must replicate classes C; (which includes Ky), G4, and Ks. The
reason is simple: al collaborations encapsulate the implementation of some
primitive feature that is shared by many applications of a product line. If the
classes of a framework implement only part of features L2 and L3 (which
they do in this case), then any legal instance of this framework must supply
the missing parts. Classes C;, K3, C4, and Kz are the missing parts and these
parts do not vary (as we assumed at the beginning of this section). The
framework of Figure 3 is abad design because it forces the same code to be
replicated in every framework instance. The only framework designs for
which this isn’t true are those that partition framework code from instance
code along layer boundaries. Stated another way, the classes of aframework
must fully implement an integral number of collaborations otherwise code
replication in framework instances will occur.

r - — — K - — /"1
L1 O 3
abstract i - — = —-
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1 4
a framework |_2L ED_ I _3(:_) “ | concrete
classes of
-+ — <. Tk a framework
L3 © 3 ® instance
L4 - - — — — | — .
_________ _
1 ~ — — — T | - al
L4 ©OC1 Cs
- - - - - _— __ |

Figure 3: Partitioning Against Layer Boundaries

From our experience, the above model of framework construction cov-
ers a mgjority of situations that are encountered in practice. That is, varia-
tions in frameworks and their instances can be explained as the composition
of monoalithic mixin-layers. Occasionally however, mixin-layers and their
collaborations do have variations. If there are few variations, one could
define a separate mixin-layer for each variant (see example of the next sec-
tion). If there are alarge number of variations, it is not difficult at all to cre-
ate a generator of mixin-layers that will produce the desired variant of a
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collaboration from a high-level specification (Batory, Singhal, Sirkin, and
Thomas, 1993). Doing so retains the building-block nature of mixin-layers
(as we have been advocating) while forming a more compact encoding of
the library of mixin-layers that must be maintained. By following either of
these approaches, we can restructure the problem so that “ good” framework
designs can always be expressed as a partitioning along layer boundaries
and not across layer boundaries.

Without loss of generdlity, let us assume “good” designs whose frame-
work-instance partitioning corresponds to a layer boundary. We can now
understand the problems of OO frameworks that we noted in the Introduc-
tion. Variations in framework classes arise whenever the type equation of a
framework changes. Consider framework F whose type equation is F =
L2<L1>. Any change to this equation—by swapping components (F1 =
L2<L0> for some new terminal component LO) or adding hew components
(F2 = L2<L5<L0>> for some new nonterminal component L5)—will cause
the classes of the framework to change.

Similarly, code repetition in multiple framework instances corresponds
to the situation where the type equations of framework instances share the
same framework subexpression and some (not necessarily all) remaining
components. Consider equations Fi g1 = L4<L3<F>> and Q= L4<L5<F>>,
Both framework instances are distinct, but share the same framework sub-
expression (F) and component L4.

A way to avoid code replication problems in frameworks is to decom-
pose the domain that a framework and its instances represent into alibrary
of refinements/components. These are the components that should be given
to application developers. They will choose which type equation (compo-
nent composition) that they need to define their framework and/or frame-
work instance. The boundary where an abstract class ends and concrete
classes begin isleft up to the developer. We would expect that the library of
components that is distributed to be incomplete. That is, we would not
expect the library to have enough components to construct a target frame-
work instance (because we anticipate novel capabilities to be added by the
instance). However, if there are sufficient components (or even just a few
that can be reused), application developers will be further along their soft-
ware development than they would otherwise.
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5 AN EXAMPLE PRODUCT-LINE

To illustrate the concepts of the previous sections, we present a GenVoca
product-line model of graph traversal applications (Smaragdakis and
Batory, 1998). This application domain is interesting because of the inter-
changeability of its components. More complex examples are discussed in
Section 6 (Related Work).

TheModel. A graph traversal application is a program that implements
traversals on graphs. The library of refinements that we consider focuses on
two traversals. vertex numbering and cycle checking. (The library can be
expanded with other traversals—see (Smaragdakis and Batory, 1998)). The
membership of our traversal library is:

undi rect ed /1 undirected graphs
directed /1 directed graphs

df t <G x> /] depth-first traversal
bf t <G x> /1 breadth-first traversal
nunmber <G x> /] vertex nunbering

cycl e<G x> /'l cycle checking

where all members implement the (empty) interface G,

The mixin-layers undi rect ed and di rect ed implement undirected
graphs and directed graphs, respectively. Both encapsulate a pair of classes
Ver t ex and Gr aph. The methods of these classes support vertex addition
and removal from graphs, but not traversals. Both mixin-layers are designed
to implement the same interface, so that they are plug-compatible and inter-
changeable.

The mixin-layers df t <G x> and bf t <G x> implement depth-first and
breadth-first traversals, respectively. Both encapsulate refinements of the
Ver t ex and Gr aph classes and add new abstract class Wor kSpace. (Thus
the dft and bft mixin-layers have three inner classes, two of which are
mixins). The Vert ex and G aph classes are refined with the addition of
traversal methods: Gr aphSear ch is added to G aph and Vert exSear ch
is added to Ver t ex. Both methods take a Wor kSpace object as a parame-
ter. At various times during a graph or vertex search, e.g., prior to visiting a
node and after visiting a node, a dispatch is made to the Wor kSpace object
for graph-traversal-specific actions. Each Wor kSpace object supports three
abstract methods: i ni t _vertex (to initialize a vertex for a particular tra-
versal), preVi si t Acti on, and post Vi si t Acti on.
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The mixin-layers nunber <G x> and cycl e<G x> implement vertex
numbering and cycle checking, respectively. Both encapsulate refinements
of the Vertex and Graph classes, in addition to adding a subclass to
Wor kSpace. (nunber adds the subclass Wor kSpaceNunber ; cycl e adds
the subclass Wor kSpaceCycl e). nunber refines Graph by adding the
Ver t exNunber method (whichis called by application usersto invoke ver-
tex numbering); nunber refines Vert ex by adding a public integer called
ver t exCount (which holds the assigned number of a vertex). The Wor k-
SpaceNunber class supplies methods for initializing a vertex (i.e., setting
vert exCount to zero), doing nothing for apr eVi si t Acti on, and assign-
ing a number to a vertex for the post Vi si t Acti on. The cycl e mixin-
layer encapsulates similar capabilities and refinements for cycle-checking.

The Product-L ine. Consider the following type equations:

framel = dft<undirected>

i nst11 = nunber<framel>

instl12 = cycl e<framel>

i nst 13 = nunber <cycl e<franel>>

A framework isdefined by f r anel: itisaset of classes that encapsulate
adepth-first traversal on undirected graphs. These classes areincomplete in
that there is no traversal application; an application must be supplied by
extending these classes in a framework instance. Distinct framework
instances are defined by i nst 11—i nst 13. A vertex humbering applica-
tion is defined by i nst 11; a cycle checking application is defined by
i nst 12; i nst 13 defines an application that supports both vertex number-
ing and cycle checking. Note that one of the limitations of frameworks is
exposed by this example: two different framework instances share common
code(e.g., i nst 11 andi nst 13 sharethe nunber component; i nst 12 and
i nst 13 sharethe cycl e component). By encapsulating domain features as
mixin-layers, we minimize code replication through component reuse.

Now consider the equations:

frame2 = dft<directed>

i nst21 = nunber <franme2>
inst22 = cycl e<franme2>
i nst 23 = nunber <cycl e<frame2>>

A framework is defined by f r ane2: it is a set of classes that encapsu-
lates a depth-first traversal on directed graphs. The framework instances
i nst 21—i nst 23 respectively define applications for vertex numbering,
cycle checking, and both numbering and cycle checking on directed graphs.
Note that the other limitation of frameworksis exposed by this example: the
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variation of classes in aframework (e.g., franel and f r ane2 are distinct
frameworks that share the df t component). Other variations can be created
by swapping df t with bf t . This would yield vertex numbering and cycle
checki r%g applications on directed graphs using breadth-first search algo-
rithms.

Note that our frameworks above encapsulated a pair of features. a graph
encoding and atraversal; aframework instance added the traversal applica-
tion(s). We could have “raised the delineation line” so that our framework
merely encoded a graph; instances of this framework would have to provide
atraversal method and application:

frane0 = undirected,;
i nst 01 = nunber<dft<frane0>> // equivalent to instll
i nst 02 = cycl e<bft <frane0>>

The advantages of this decision is that the framework is more general,
but writing instances is more work. Alternatively, we could have “lowered
the delineation line” to enrich the capabilities of our framework:

frame00 = nunber <dft <undi rected>>// sane as instill
inst0l1 = cycl e<frane00> /1 sanme as instl3

The advantages of this decision is that less code needs to be written in
framework instances at an expense that the framework may be too special-
ized to use for a particular application. Mixin-layers, however, eliminates
the annoying problem of deciding where to draw the framework-instance
“line”; application designers are free to define the contents of frameworks
asthey seefit. This provides designers more flexibility in customizing their
applications than using frameworks whose designs are inflexible to such
customizations.

6 RELATED WORK

Use of Mixin-Layers. Product-lines using mixin-layer components
have been created for extensible compilers (Batory, Lofaso, Smaragdakis,
1998; Findler and Flatt, 1998) and command-and-control simulatorsfor fire
support for the U.S. Army (Batory, Johnson, MacDonald, and von Heeder,

6. Note that there is a definite order in which components can be legally composed: a
directed/undirected graph component can be refined by a depth/breadth-first component,
which can be refined by one or more traversal applications. Our typing of these components
does not encode these constraints. See (Smaragdakis and Batory, 1998; Batory and Geraci,
1997) for constraint enforcement.
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2000). Non-O0 implementations of early versions of mixin-layers can be
found in product-lines for databases, file systems, and network protocols
(Batory and O’ Malley, 1992; Heidemann and Popek, 1994).

Library Scalability. The drawbacks that we have noted with frame-
works are classical examples of the library scalability problem (Batory,
Singhal, Sirkin, and Thomas, 1993; Biggerstaff, 1994). The ideais simple:
in adomain where there are n optional features, there can be in excess of n!
different programs, each implementing a unique combination of features.
Library components should not implement combinations of features,
because (obviously) libraries would have exponentialy large memberships.
A better approach is to populate libraries with building blocks that imple-
ment individual features, and compose these blocks to synthesize the pro-
gram with the desired combination of features. Such libraries are scalable:
they grow at a linear rate, but the number of programs that can be synthe-
sized from component combinations grows at an exponentia rate.

We have seen that the classes of a framework may correspond to a com-
position of primitive refinements (i.e., mixin-layers). The classes of a
framework instance may also correspond to a composition of primitive
refinements. Since both are treated as encapsulated units, any variation
made to either (corresponding to the addition, removal, or replacement of
one or more refinements) will theoretically lead to an exponential number
of variations to maintain. Our contribution in this paper is to show how to
solve the library scalability problem for frameworks and framework
instances.

Parameterized Components. GenVoca is an example of a program-
ming paradigm called parameterized programming—that applications are
synthesized by composing components via parameter instantiation
(Goguen, 1986). It is interesting to note that programming support for
mixin-layersis presently limited in Java. The most well-known versions of
Java that offer parameterization (e.g., Pizza and GJ (Odersky and Wadler,
1997; Bracha, Odersky, Stoutamire, and Wadler, 1998)) do not support
parameterized inheritance. This led to the development of JTS, atool suite
for creating a product-line of Java dialects, which does support parameter-
ized inheritance (Batory, Lofaso, and Smaragdakis, 1998).

Most work on parameterized programming deals with parametric source
code. Industry prefers to distribute binaries rather than source. Our
approach presently cannot extend binary components, where the source
code of mixin-frameworks is unavailable. Thisisatemporary problem. The
static parameterizations of mixin-layers are simple enough to be expressed
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as parameterized binaries (e.g., parameterized Java .class files). That is,
parameter instantiation is accomplished at class load time rather than at
mixin-layer compile time. Recent work on parameterized Java class bina-
ries suggests this possibility is not far off (Duncan and Holzle, 1999). Thus,
we anticipate in the future that libraries of binaries will be distributed.

Aspect-Oriented Programming (AOP). AOP is intimately related to
refinements. An aspect is feature of a domain whose implementation
“cross-cuts’ multiple application classes (Kiczales, €t. a., 1997). When an
aspect is added to an existing application, multiple classes must updated.
Clearly, aspects are refinements. An application-specific AOP implementa-
tion can provide custom refinements to any existing application. GenVoca
implementations, on the other hand, start by conceptually decomposing leg-
acy applications and resynthesizing them in an extensible way through
component composition. Interface conformance plays a prominent role in
the software composition process of GenVoca, more so thanin AOP.

Reuse Contracts. The problems of framework version proliferation and
architectural drift may be mitigated through formal annotations on classes
(Codenie, De Hondt, Steyaert, and Vercammen, 1997). Reuse contracts
record the design intentions of reusable classes and the assumptions made
by actual users of those classes. Automated annotation checking can detect
if new modifications violate the contract from either the producer or con-
sumer point of view. Codifying the management of framework evolution in
this way limits the proliferation of code that violates reuse conventions.

GenVoca is “neutral” on the use of contracts. Contracts can be used in
the development and composition of mixin-layers. So the benefits accrued
by using contracts are also available to layered designs.

Framework Coding Techniques. The use of traditional object-oriented
construction techniques and patterns is typically not restricted when build-
ing frameworks under GenVoca. For example, inverting control through the
use of hook methods (Fayad and Schmidt, 1997) is common in traditionally
constructed frameworks and can easily encapsulated as GenVoca compo-
nents. Many of the design choices that current framework developers face
still need to be addressed when using GenVoca. For instance, the choice
between black box and white box framework implementations must still be
made when using alayered approach.
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7 CONCLUSIONS

A framework is an object-oriented code-structuring technique that
seems ideal for product-lines. The classes of a framework encapsulate the
common algorithms that arise in afamily of related applications. A particu-
lar application of a product-line is created by defining an instance of this
framework, i.e., supplying concrete subclasses of framework classes to pro-
vide the necessary customizations. While frameworks are indeed useful, we
and others have noticed that frameworks fail miserably in the very common
case of optional features. Framework classes can vary (which leads to
framework proliferation); classes of different framework instances can have
much in common (which leads to code replication).

The core of these problemsis that frameworks exhibit arather inflexible
design: the delineation between the content of framework classes and
classes of framework instances is fixed. Application features are either
hard-coded into framework classes or hard-coded into instance classes. In
this paper, we have outlined a different approach for product-line imple-
mentation. We have presented a component-based model that reveals the
building blocks of frameworks and framework instances. Our components
alow application designers to define the set of features that they want both
in their framework classes and instance classes. If features need to be
changed, our model supports this by adding, swapping, or removing com-
ponents from previously defined compositions. In general, the application
product-lines that we can express with our model is much more varied with
far less code replication than that which can be expressed by frameworks.

The essence of our approach is understanding software in terms of
object-oriented collaborations or refinements, and creating a parametric
model of product-lines that is based on refinement/collaboration composi-
tion. Many product-lines have been built using this approach before; the
contribution of this paper is demonstrating that this approach offers signifi-
cant advantages over frameworks in building application product-lines.
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