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1  Introduction

Building customized software systems from components has long been the dream of software
engineers. The success of hardware Plug-and-Play ⎯ the ability to easily assemble off-the-shelf
hardware components into customized configurations ⎯ presently has no counterpart in software.
The most relevant research today is at the intersection of the areas of software reuse and software
architectures.

The goal of software architectures, broadly speaking, is to identify techniques, solutions, tools,
and tradeoffs that will make Plug-and-Play software a reality. Software reuse, or the reuse of com-
ponents, is vital to architectures. Software system generators overlaps both areas. The distinguish-
ing feature of generators is that its components are designed to be plug-compatible,
interchangeable, and interoperable. Generator components are coded to standards that signifi-
cantly simplify the problems of component reuse, customization, composition, optimization, and
validation of compositions.

McIlroy outlined some of the key issues of Plug-and-Play software in a visionary paper in 1968
[McI68]; only in the last few years has noticeable engineering progress been made in making this
vision a reality. We now know that there are many reasons why Plug-and-Play software has been
slow to develop; the simplest reason is that the problem is much more difficult than any one imag-
ined. The history of my involvement with generators underscores the challenges.

2  Why Generator Technologies are Slow to Develop

1977-1982. In a previous academic lifetime, I was a database researcher. My interests were in
analytic models of database system (DBMS) performance. As a Ph.D. student at Toronto (1977-
1980), it became clear to me upon an exhaustive reading of the literature that researchers used a
small set of core ideas, assumptions, and techniques in hand-crafting performance models for cus-
tomized database applications. Although I didn’t know it at the time, the result of my dissertation
was a generator for a domain of performance models: specific combinations and instantiations of
its basic concepts reproduced the analytic equations and results of other researchers. The model,
called the Unifying Model [Bat82a], not only related previously disparate results, it also presented
a framework in which existing results could be generalized [Bat82b].

1983-1985. The Unifying Model was theoretical; it had never been applied to a real DBMS. Natu-
rally, I was curious to know how practical it was. Upon collecting and studying voluminous man-
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uals and notes (sometimes containing proprietary information) on how over ten different DBMSs
were implemented, it was clear to me that the Unifying Model (and by implication, the models
that it subsumed) was not general enough to describe commercial DBMSs accurately. A funda-
mentally more general approach was needed.

The central problem was that there was a vast number of ways of implementing database rela-
tions; the Unifying Model captured only the most elementary methods. To explain the storage
structures used in commercial DBMSs required elementary structures to be composed. Here is
where I discovered that the storage architectures (i.e., file structures, search and update algo-
rithms) of a broad family of DBMSs could be explained as compositions of a small number of
highly parameterized program refinements. With this new approach, called the Transformation
Model [Bat85], I was able to capture and explain in precise detail ⎯ yet specify in a very compact
way ⎯ how different DBMSs stored and retrieved data.

1985-1989. The next step was to validate the Transformation Model; its refinements had straight-
forward implementations as layers of hierarchical software systems. This took many years of
work, but led to the Genesis DBMS generator, the first Plug-and-Play software technology for
DBMSs [Bat88a-b]. Although parts of Genesis were operational in 1987, the first public/confer-
ence demonstration of Genesis was in 1989.

1990-1992. Long before Genesis was completed, it was evident to me that the techniques that I
used to decompose the domain of relational DBMSs into components had nothing to do with rela-
tional DBMSs per se. It was not until the Fall of 1990 that I became familiar with Dr. Sean
O’Malley and his work on Avoca/x-kernel [Hut89]. Avoca was the twin of Genesis in the domain
of network protocols. By comparing and contrasting the designs of our two systems, the basic
principles of decomposing domains into realms of plug-compatible components became evident.
Our joint work lead to the first paper on GenVoca (a name synthesized from Genesis and Avoca)
[Bat92].

1992-1996. In the following years, there were several important directions that I explored simulta-
neously. First was the issue of generality: could GenVoca be used to develop generators for other
domains? Second was performance: could high-performance software systems be assembled from
components? Third was basics: are the concepts of GenVoca fundamental (and not a complicated
rehash of simple ideas)? If “no” was the answer to any question, GenVoca would likely be of
interest only to academics. In the paragraphs below, I elaborate the progress made on each topic.

Generality. An essential ingredient in creating domain models is domain expertise. By 1992, I
had exhausted the list of domains that I had enough expertise to create a domain model. Thus, I
was fortunate to participate in the ADAGE project as the “domain modeling” expert to help
design a generator for avionics software (i.e., data source, navigation, guidance, and flight direc-
tor software). I interviewed avionics experts to define the ADAGE domain model; this model
served as the blue-print for the ADAGE generator [Bat95a]. Furthermore, ADAGE’s graphical
editor (that allowed avionics software designers to specify a target system as a composition of
components) was based largely on the graphical layout editor developed for Genesis.
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At the same time I worked on ADAGE, I discovered yet another independently-conceived gen-
erator, Ficus [Hei93], that fit the GenVoca paradigm. Both ADAGE and Ficus provided critical
evidence on the generality of GenVoca.

Performance. Genesis demonstrated the feasibility of assembling customized DBMSs from
components, but it did not convincingly show that the DBMSs produced were efficient. Genesis
made me aware of the tremendous opportunities for optimization if a generative approach,
rather than compositional approach, were taken. Genesis was a compositional generator: its
components were composed and executed at DBMS run-time. This meant that all domain-spe-
cific optimizations that could simplify a target DBMS and substantially increase its performance
had to be applied and executed at DBMS run-time with a concomitant enormous overhead. In
contrast, generative components output code that is to be executed by applications. Domain-spe-
cific optimizations and simplifications could be applied at DBMS/application generation-time,
not at DBMS/application run-time. Consequently, generative components could potentially pro-
duce very efficient software.

Although it was not initially obvious, this line of reasoning exposed a fundamental connection
of GenVoca to program transformation systems. GenVoca refinements can be implemented as
modules (as Genesis and Avoca demonstrated), but they could also be implemented as trans-
forms of a program transformation system. Coding GenVoca refinements as transforms was a
simple way to introduce and apply domain-specific optimizations at software-generation time.

The P2 generator for container data structures was the first GenVoca generator implemented as a
program transformation system. (P2 components mapped parse trees of abstract programs into
parse trees of less abstract (or concrete) programs). Although we had many “small” successes in
generating efficient code, our most ambitious undertaking and most significant results came
when we used P2 to re-engineer LEAPS. LEAPS is a performance-driven, hand-coded, highly-
tuned production system compiler [Mir90]. At the time of our work, LEAPS produced the fast-
est executables of OPS5 rule sets. It converted OPS5 rule sets into C programs that utilized
unusual container data structures and search algorithms for efficient rule processing. It was
well-known that the complexity of LEAPS made it difficult to understand and build. Although
my students and I had no prior experience with production systems, we were able to rebuild
LEAPS using P2 in less time than experts (who had built LEAPS-like systems before). More-
over, P2 reduced the volume of programming by a factor of four; the LEAPS algorithms had a
clean, elegant, and easy-to-understand specification as P2 programs; and the performance of our
generated C programs was better than that of LEAPS. (P2 could perform complex domain-spe-
cific optimizations automatically that were difficult, if not impractical, to do by hand). More-
over, the simplicity of our P2 specifications of the LEAPS algorithms suggested a way to
improve performance dramatically. By altering the composition of components that imple-
mented LEAPS containers, we were able to improve performance by orders of magnitude in the
execution of some rule sets [Bat94, Bat95b]. These results, coupled with results from Avoca/x-
kernel and Ficus projects, convinced us that efficient software could be produced by generators.

Basics. GenVoca is an unorthodox design and programming paradigm. Recognizing the con-
cepts to explain its underpinnings has always been a challenge. Some concepts were evident
early on: layers and virtual machines, large-scale program transformations (i.e., refinements that
simultaneously and consistently refine multiple classes of a software design), parameterized
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programming (a simple and elegant model of software composition), and symmetry (compo-
nents exporting and importing the same interface). However, new concerns have since arisen
that have an elegant expression in GenVoca, suggesting that there are indeed basic principles at
work.

An important issue in generators is determining whether a composition of components is con-
sistent. There must be automated help in validating and debugging compositions, otherwise
users might be clueless on how to repair their component assemblies. GenVoca domain models
are attribute grammars: tokens correspond to components and sentences correspond to systems
(component compositions). It is well-known that not all syntactically correct programs are
semantically correct; the same idea holds for compositions of components. Attributes encode
the conditions in which components can be used legally. This insight led to the development of
very simple and efficient algorithms for validating component compositions [Bat96a].

A second issue is scalability: a small number of components should be composable in vast num-
bers of ways to produce large families of software systems. The connection of GenVoca domain
models to grammars demonstrates scalability: adding a new token to a grammar is equivalent to
adding a new component to a GenVoca library. The number of new sentences (systems) that can
be produced (composed) with a new token (component) is potentially enormous [Bat92-93].

A third issue stems from a phenomenon called subjectivity [Har93]: when modeling families of
applications, objects do not have single interfaces, but are described by a family of related inter-
faces. The interface that is appropriate for an object will be application-dependent. Because
GenVoca models families of systems, the effects of subjectivity must be accounted for.
Although the simplest explanation of GenVoca assumes components that export and import
standardized interfaces, the true story is more complicated. It turns out that GenVoca compo-
nents customize themselves upon instantiation: their interfaces and bodies automatically adjust
to the requirements of the system in which they are being used. This behavior is not yet well-
understood, but has been observed in all GenVoca generators. The best explanation of subjectiv-
ity to date suggests that the ideas of operation propagation (via subclassing) and method wrap-
pers (of meta-object protocols) have counterparts in parameterized programming [Bat96b].

What’s Next? Basic research is still needed. The development of GenVoca has been, and will
continue to be, experimentally-driven. Many of its distinguishing (and nonobvious) features arose
out of practical necessities in making generators solve real-world problems. The more domains
that are analyzed, the better our understanding will be about the principles at work.

Constructing GenVoca generators has been very labor-intensive. All of the above-mentioned gen-
erators have been built from scratch because there is no tool support for GenVoca. Over 80% of
the construction effort in building the infrastructure of GenVoca generators is writing languages
(and their compilers) to define components, developing tools to compose components, and pro-
viding other domain-independent environmental support (e.g., component composition consis-
tency checkers, layout editors). Not surprisingly, the high start-up costs of building generators
discourages attempts at creating them. To move generator technology forward will require an
advance in programming languages; it is not cost effective to write generators from scratch.
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Recap. So why have generator technologies been so difficult to develop? From my experience,
generators rely on an unorthodox programming technology that takes a long time to understand. It
requires domain expertise and insight to know how to decompose domains into reusable compo-
nents. It takes time and effort to validate models by building generators and to re-engineer non-
trivial applications to evaluate the potential of generators. To understand the domain-independent
principles of generator organization requires building generators for different domains. Lastly, it
is a nontrivial intellectual challenge to accomplish all this because one needs expertise in many
areas of software design and development (e.g., compilers, transformation systems, parameterized
programming, object-oriented programming, meta-object protocols, and software architectures).

3  This Volume of Papers

The future of software engineering lies in automation: programmer productivity can be greatly
increased by programming at higher-levels of abstraction and producing rote software automati-
cally. I know that generators can realize these lofty goals, and my research is to show how this can
be accomplished.

To help others avoid the pitfalls and the innumerable dead-ends that I encountered over the years,
I have created this collection of papers that give my best explanation to date of GenVoca and its
potential. The first paper is my ACM TOSEM paper with O’Malley [Bat92]. The second paper,
“Scalable Software Libraries”, explains why conventional ways of building software libraries are
inherently limited and why scalability is vital to domain-specific libraries [Bat93]. The third
paper, “Creating Reference Architectures...” shows the power of GenVoca concepts and outlines
the blueprint (domain model) for the ADAGE avionics software generator [Bat95a]. (This paper
was voted the Best Paper at the 1995 Symposium for Software Reuse). The fourth and fifth papers,
“Validating Component Compositions...” [Bat96a] and “Subjectivity...” [Bat96b], were two of
four papers recommended for journal publication from the 1996 International Conference on
Software Reuse. Finally, the last two papers present experimental results on LEAPS that show per-
formance and productivity improvements that generators can deliver [Bat94, Bat95b].
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