
1

Another Look at Architectural Styles and ADAGE1

UT-ADAGE-95-02

Don Batory and Yannis Smaragdakis
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

Abstract

The relationship of architectural styles and ADAGE was explored in previous reports, and exten-
sions to GenVoca to support architectural styles were proposed. In this report, we present a new
way of achieving architectural style customization within GenVoca and show that there is a
straightforward implementation of these ideas. The contribution of our work is that the basic Gen-
Voca concepts, namely realms, components, elastic interfaces, and design rule checking, may be
sufficient without extensions to express software systems in a variety of useful architectural styles.

1 Introduction

Architectural styles is an important concept in software design [Gar92, Gar94, Mor94]. Among its various
aspects, it includes the idea of separating the computations of components from the protocols and transport
mechanisms by which components communicate. In an earlier report [Bat93], this separation was found to
have a profound impact on interpreting GenVoca type equations: a type equation (component composition)
specifies a layering of domain-specific computations but does not declare the transport mechanisms by
which components communicate. This implies that a type equation does not represent a single system, but
rather a large family of related systems. Each member of the family executes precisely the same domain-
specific computations in precisely the same order. However, members are distinct in that no two use
exactly the same protocols for component communication (e.g., procedure call, remote procedure call, glo-
bal variables, etc.). To address this important dimension of software design, it was proposed that the Gen-
Voca model be extended with the notion of “flavored” components. The “flavor” of a component specifies
the architectural-stylized interface (e.g., executive, functional, transducer, etc.) that defines the protocols
via which communication with that component is possible.

Generating avionics software in different styles is a key requirement of ADAGE. Avionics components
have been implemented traditionally with an “executive” style. That is, state vectors are represented by
global variables and component operations are implemented as procedures that read and write global vari-
ables. While this is efficient for single threads of execution, it is an architectural style that is not suited for
multiprocessors where multiple threads of execution might improve system efficiency. Individual compo-
nents or subsystems (type expressions) should be able to be encoded as Ada tasks, so that the possibilities
of large-grain parallelism that are inherent in avionics computations can be realized. Such a capability
could be expressed using architectural styles.

In [Bat93], it was suggested that architectural styles could be specified in the ADAGE layout editor. This
editor represented type equations as directed graphs, where nodes are components. The particular style of a

1. This research was sponsored, in part, by the U.S. Department of Defense Advanced Research Projects Agency in
cooperation with the U.S. Air Force Wright Laboratory Avionics Directorate under contract F33615-91C-1788.

2

component would be represented by a color or “flavor”, where different colors designated different styles.
Given flavoring information, ADAGE would then be able to produce avionics software in a variety of
architectural styles. Figure 1 illustrates the idea.

In the case where a multi-tasking avionics software system needs to be defined, the transducer (or task)
style would be used to encode a component as an Ada task. The flavoring of the components of Figure 1
depicts an avionics system with three communicating tasks: the main task, the d task, and the f task. Non-
task-flavored components communicate with other components via protocols (e.g., procedure calls, global
variables, etc.) that do not require inter-task communication.

A prototype implementation of a software generator (gen) was described in [Bat94a] for flavored type
equations. Type equations would be input to gen, along with a flavor specification for each component.
(gen supported 6 different flavors, including “executive”, “transducer”, and “inlining”). gen would then
generate a pseudo-Ada implementation from these specifications. In general, O(kn) distinct avionics sys-
tems could be generated by gen from a single type equation of n components given k possible flavors per
component.

There were many problems with gen. First, a “canonical” language had to be invented to define algorithms
of a component. (gen transformed “canonical” definitions of component algorithms into the stylized
encoding of the desired “flavor”). Second, the combinatorial interactions of different flavors made it very
difficult to write, debug, and otherwise verify a correct implementation of gen. In short, the approach
taken in gen could be made to work, but was fraught with significant obstacles.

In this paper, we explore a new, more elegant, and easier-to-implement approach to integrating architec-
tural styles within ADAGE. We begin by explaining the key ideas of encapsulating architectural styles as
layers, and then progressively develop the power of the ideas. We also explain experiments that we con-
ducted to verify the ideas.

2 Architectural Styles and Components

GenVoca components are forward refinement program transformations that map calls to a component’s
export interface into calls to the component’s import interface (Figure 2a). Architectural styles can be
viewed analogously: a particular architectural style transforms canonical interface into a stylized interface
(Figure 2b). For this reason, architectural styles should be expressible as GenVoca components.

a

b

c

d f

e g

h

legend
transparent (inlined)

transducer (task)

executive

functional

main

Figure 1: A Flavored Type Equation

3

Consider the GenVoca model that consists of realms R, S, and T:

S = { s, ... }
R = { r[S], ... }
T = { t[R], ... }

The interface of every realm is encoded in a specific, default architectural style. Thus by definition, all
components of a realm share the same “flavor”. Let S, R, and T denote the flavors for realms S, R, and T,
respectively. This implies that every component of equation E:

E = t[r[s]];

has a specific flavor (t has flavor T, r has R , and s has S).2

Now suppose we want to give R components flavor F; that is, we want components of realm R to export an
F-architectural stylized version of the canonical R interface. This can be accomplished by introducing a
new realm FR that has a single component:

FR = { f2r[R] }

That is, realm interface FR defines the F-flavored encoding of realm interface R. The single component
f2r[R] converts calls to the FR interface into corresponding calls of the R interface. Thus, a version of
component r that exports an F-flavored encoding of the R interface is defined by the equation fr[S]:

fr[S] = f2r[r[S]];

Thus, stylizing the export interface of a component is straightforward. Now, let’s turn to the problem of
stylizing the import interfaces of a component. If R is an import interface that we want to encode in style F,
this means that calls to the canonical R interface must be translated into the corresponding calls to the FR
interface. This can be done by adding a new component r2f[FR] to realm R that accomplishes this transla-
tion. Thus, a version of component t that imports interface FR is defined by the equation tf[FR]:

tf[FR] = t[r2f[FR]];

r2f and f2r are flavor components, i.e., components that encode realm interfaces in different architectural
styles. To see how flavor components are used, recall equation E. To give component r the flavor F is
accomplished by a straightforward rewrite: the direct connection between components t and r is replaced
by a composition of components r2f and f2r (see equation E’ of Figure 3a). The idea behind this rewrite is
simple: the composition of r2f and f2r is the identity mapping. That is, r2f translates calls from the R inter-
face into calls of the FR interface, and f2r translates FR calls back into the original R calls. Because this

2. Note that lowercase courier names are components, uppercase courier names are REALMS, uppercase zaph
names are FLAVORS, and lowercase zaph names are flavor_components.

component
mapping

export interface

import interface

architectural
stylization

canonical interface

stylized interface

(a) (b)

Figure 2: Architectural Stylizations as Mappings

4

composition is (by definition) an algebraic identity, it follows that the domain-specific computations of
equation E’ must be identical to E. This is consistent with the [Bat93] model where the flavors of compo-
nents of can change without altering the computations of a system.

The net effect of introducing this identity is: (1) to generate a version of component t (defined above as tf)
that imports the interface FR and (2) to generate a version of component r (defined above as fr) that
exports the interface FR. Figure 3b illustrates these effects. (We will discuss implementation techniques to
accomplish this in Section 3).

These ideas generalize in the following way. Components of realm R have default style R. For each addi-
tional style Q that R components can be assigned, there will be an additional component r2q[QR] added to
realm R. (r2q translates R calls into QR calls). If there are n such additional styles, there will be n additional
components.

Also, there will need to be n additional realms created, each with one component. Thus, for style Q and
realm R, there will be a realm QR = { q2r[R] }. (q2r translates QR calls into R calls). In general, if there
are m realms each with n nondefault flavors, one will need to write 2*m*n components. In practice, we
anticipate that typical values of m are O(10) and n are O(1), so the product 2*m*n should be manageable.

There is a practical benefit of unifying architectural styles with GenVoca components. It is well-known that
there are syntactically correct compositions of components that are semantically incorrect. Design rule
checking algorithms test for composition correctness. VAGs [McA94] and the DRC model [Bat95] are dif-
ferent systems for accomplishing design rule checking. Analogously, we noted in [Bat93] that there may
be some combinations of flavors that are not correct. If this is the case (although we do not yet have good
examples of such combinations), tools used for design rule checking (DRC) should be sufficient to address
this problem. That is, DRC algorithms detect illegal combinations of components; since flavors are now
expressed as components, these same algorithms can be used to define and detect illegal flavor combina-
tions.

3 An Experiment

To test the ideas of Section 2, we present a simple GenVoca model of avionics software and explain a C++
implementation. Next, we introduce two additional flavors and explain their C++ implementation. Lastly,
we report our experiences building systems using the resulting components.

t

r

s

t

r2f

f2r

r

s

E

E’ t

r2f

f2r

r

s

E’ t imports an
F-style R interface

 r exports an
F-style R interface

Figure 3: Changing Architectural Styles

(a) (b)

5

3.1 An Abstract Model of Avionics Software

Consider the GenVoca model consisting of three realms T, R, and S:

T = { rotate[T], // rotate input vector <m,n,o> to <o,m,n>
derived[R], // convert <x,y,z> vector into <m,n,o> vector
... }

R = { washout_filter[R], // output running average of <x,y,z>
mode[S], // convert <a,b> vector into <x,y,z> vector
... }

S = { s5, // generator of <a,b> vectors
s50, // another generator of <a,b> vectors
ave[S,S], // output average of <a,b> input vectors
... }

The intent of this model is for S components to correspond to data source objects, R components are navi-
gation components, and T components are guidance components. S components export a state vector with
two values <a,b>, R components export a state vector with three values <x,y,z>, and T components
export a state vector also with three values <m,n,o>. The essential computation of each component is
noted in above as comments in the realm definitions; basically every component performs some elemen-
tary computation on its input vectors to produce an output vector. Although there is a “pipeline” flow of S
components exporting vectors to R components, which in turn export vectors to T components, there is an
operation (modz or modify-z) that is translated by T components into R operations for purposes of updat-
ing the z value of an R vector. (This models pilot updates of navigation vectors).

An equation Sys of type T models a pseudo-avionics system. For this paper, we will use the following as a
running example:

Sys = rotate[derived[washout_filter[mode[ave[s50, s50]]]]];

The default flavor of the T, R, and S realms is “inlining” — that is, the algorithms of components T, R, and
S are inlined into their calling components. Unflavored equations, such as Sys, will be referred to as
“vanilla” flavored.

3.2 An Implementation of the Basic Model

Because ADAGE components are essentially singleton classes, it is not difficult to use C++ to express a
realm of components as a subtyping hierarchy: an abstract class with virtual methods defines the root of the
hierarchy (and the realm interface), and concrete classes define actual components.

Our model would be implemented by three C++ class hierarchies: abstract classes for T, R, and S would
root the hierarchies. For example, the abstract class for T would have two concrete classes: rotate and
derived. To represent the fact that each of T’s components are parameterized, each component/class
would be represented as a C++ template. Figure 4a defines the T realm interface and Figure 4b shows the
template implementation of rotate. Note that the rotate component has the “inlined” flavor as all of
its operations are declared inline.

Figure 5a shows how type equation Sys is expressed in GNU C++. A simple driving program (which rep-
resents the periodic looping of the console display) is given in Figure 5b.

6

3.3 Adding Flavors

To compare our work to gen, we add two flavors to our model: pipe and proc. Communication with pipe-
flavored components is done through Unix pipes; communication with proc-flavored components is done
through explicit procedure calls (i.e., not as inlined procedures). A direct application of the ideas presented
in Section 2 yields the following model:

class T {
public:
 virtual void compute() = 0; // compute new vector
 virtual float readm() = 0; // read m field
 virtual float readn() = 0; // read n field
 virtual float reado() = 0; // read o field
 virtual void modz(float newz) = 0; // modify z field
};

template <class Tcomp>
class rotate : public T
{
 Tcomp lower; // lower level component
 float m,n,o; // T vector values

public:

 inline void compute() { lower.compute(); }

 inline float readm() { return lower.reado(); }
 inline float readn() { return lower.readm(); }
 inline float reado() { return lower.readn(); }

 inline void modz(float newz) { lower.modz(newz); }
};

Realm T
definition
in C++

rotate[T]
component
definition
in C++

Figure 4: C++ Realm and Component Definitions

(a)

(b)

typedef ave<s50,s50> X1;
typedef mode<X1> X2;
typedef washout_filter<X2> X3;
typedef derived<X3> X4;
typedef rotate<X4> Sys;

main()
{
 Sys system; // instantiate system

 for (int i = 1; i <= 20; i++)
 {
 system.compute();
 if (i==10)
 system.modz(200);
 cout << i << “)\t” << system << “\n”;
 }
};

(b) main loop

Figure 5: Component Compositions and Main Loop in C++

(a) type equation Sys in C++

7

T = { rotate[T], derived[R], t2pipe[PipeT], t2proc[ProcT] }
R = { washout_filter[R], mode[S], r2pipe[PipeR], r2proc[ProcR] }
S = { aiding[S,S], s5, s50, s2pipe[PipeS], s2proc[ProcS] }
PipeT = { pipe2t[T] }
PipeR = { pipe2r[R] }
PipeS = { pipe2s[S] }
ProcT = { proc2t[T] }
ProcR = { proc2r[R] }
ProcS = { proc2s[S] }

A feature of C++ is that interfaces for proc-flavored realms are indistinguishable from interfaces of inlined-
flavored realms. That is, the ProcT interface is identical to the T interface in C++. Consequently, ProcT
components do absolutely nothing. This allows us to eliminate the ProcT, ProcR, and ProcS realms
and their components to yield:

T = { rotate[T], derived[R], t2pipe[PipeT], t2proc[T] }
R = { washout_filter[R], mode[S], r2pipe[PipeR], r2proc[R] }
S = { aiding[S,S], s5, s50, s2pipe[PipeS], s2proc[S] }
PipeT = { pipe2t[T] }
PipeR = { pipe2r[R] }
PipeS = { pipe2s[S] }

We found that the implementation of proc-flavored components is trivial. In contrast, pipe-flavored compo-
nents take some work. When a pipe-flavored component is initialized, it creates pipes and forks a copy of
itself. The main difficulty from this point is bookkeeping: i.e., ensuring that the parent and child processes
are reading and writing from the appropriate pipes, closing pipes upon process completion, etc. One book-
keeping problem we discovered (and did not fully solve in our prototype) is closing unneeded file descrip-
tors. When a process is forked, all open file descriptors of the parent process are open to the child. As there
is a finite number of descriptors that can be open by a process at any one time, not closing unneeded
descriptors ultimately limits the number of processes that can be created (i.e., the number of pipe-flavored
components that can be used) in a pipe-flavored type equation. (Unix isn’t helpful here; there is no simple
way that we are aware to ask Unix what descriptors are currently in use). Presumably, the same would be
true for its socket-flavored relatives. For further details, all code in our discussions is available through the
ftp.cs.utexas.edu site in tmp/adage/styles.tar. Contents of the tar file are reviewed in
Section 7 of this report.

3.4 Experiments

We built several multi-flavored type equations of type T that were semantically equivalent to Sys to verify
that flavoring would not alter the computed results. Actually, we found doing so to be a good technique for
debugging flavored components - i.e., computed results had to match their “vanilla” counterpart. This was
accomplished by using diff to compare the outputs of vanilla-flavored and multi-flavored equations.

The most complex flavored type equation that we built is displayed in Figure 6a. It consists of 17 compo-
nents layered 16 levels deep; by comparison, its “vanilla” counterpart consists of 7 components that are
layered 6 deep. Figure 6b shows its C++ declaration.

Our experiments convinced us that the basic architectural styles (i.e., proof of concept) that is needed by
ADAGE can be achieved through compositions of flavored components. This is a much simpler approach
than that advocated earlier in gen. Although we did not have many different “flavorings”, in principle, we
do not feel that there are show-stopping limitations.

8

As another aspect of our work, we note that the ADAGE layout editor need not be extended: avionics
designers can include/exclude the use of flavored components in their specifications. Alternatively, a nice
touch would be to hide use of flavored components and simply allow designers to “flavor” their type equa-
tions by coloring nodes. The layout editor, in turn, could insert the appropriate “flavored” components
“under-the-covers” to hide this aspect of type equation specification.

In the following section, we examine an extension of the ideas that we have presented so far, to give
ADAGE users much more power in customizing the architectural styles of avionics software systems.

4 Architectural Styles and Operations

Until now, we considered every realm to have a unique flavor. This is not always the case. It is often desir-
able to specify a component interface that has a different flavor for each exported operation. Consider a B-
tree component (from the domain of database management systems). Such a component would export
operations “insert”, “delete”, “is_empty”, and “num_of_elements”. Encoding this component as an Ada
task would entail all calls to be expressed as inter-task messages. For complex and time consuming opera-
tions like “insert” and “delete”, the overhead of inter-task communication may be negligible. However, for
the less-time consuming operations like “is_empty” and “num_of_elements” (which merely read a B-tree
internal variable), the overhead of inter-task communication would be tremendous; it would be much more
efficient if such operations were inlined.

For exactly the same reasons, a component encoding a network protocol or a part of an avionics system
might exhibit analogous needs. In general, we should expect flavoring of realm interfaces to occur at the
operation level for most domains. Figure 7 illustrates these ideas (c.f. Figure 1). In the following sections,
we explain how flavoring of individual operations can be accomplished through layering.

// Sys = t2pipe[pipe2t[t2proc[rotate[derived[
// r2pipe[pipe2r[washout_filter[r2proc[mode[
// s2pipe[pipe2s[s2proc[ave[s2proc[s50],s50]...];

typedef s2proc<s50> X0;
typedef ave<X0,s50> X1;
typedef s2proc<X1> X1proc;
typedef pipe2s<X1proc> X1pipe;
typedef s2pipe<X1pipe> X1s;
typedef mode<X1s> X2;
typedef r2proc<X2> X2proc;
typedef washout_filter<X2proc> X3;
typedef pipe2r<X3> X3pipe;
typedef r2pipe<X3pipe> X3r;
typedef derived<X3r> X4;
typedef rotate<X4> X5;
typedef t2proc<X5> X5proc;
typedef pipe2t<X5proc> X5pipe;
typedef t2pipe<X5pipe> Sys;

(a)

(b)

Figure 6: Multiflavored Type Equations

9

4.1 The Brute-Force Approach

One way to flavor individual operations of a realm interface is by enumeration. A realm could be flavored
as (F,S,R,T,S) - meaning that its first operation has a flavor F, the second has a flavor S, etc. However, the
number of different flavoring components that are needed for a single realm with k methods when n differ-
ent flavors are applicable is exponential, O(nk). The brute-force approach is, thus, unscalable even for
small values of n and k.

4.2 A Layered Approach

Among the main ideas behind GenVoca is to factor independent program transformations into individual
components; scalability results from composing such components. We would like to exploit these ideas to
flavor operations. An immediate observation shows that we can get the number of different flavoring com-
ponents for a realm to depend linearly on the number of flavors n and the number of operations k. To do so,
we must stack flavoring components on top of one another while preserving the semantics of each flavor.
With such a mechanism we can compose flavor (F,G,S,T,U) by composing layers that define its coefficients,
for example: (F,G,−,−,−), (−,−,S,−,−), and (−,−,−,T,U), where − is assumed to be a transparent (inlined) fla-
vor (see Figure 8). Note that the layers suggested here exhibit a notion of mutual exclusion: if a layer “fla-
vors” an operation O with anything other than “transparent”, no other layer can flavor O. Such properties
are easily expressible propositionally and are ideally suited for design-rule checkers. The real challenge,
however, is expressing such layers in terms of realms and components. We show how this is accomplished
in the next section using the concept of elastic interfaces.

4.3 A Model of Flavored Operations

The concept of elastic realm interfaces was presented in [Bat94b]. The basic idea is simple: every compo-
nent of a realm exports a standard set of operations plus any number of component-specific operations.
Thus, the notion that a realm defines a cast-in-concrete, unchangeable interface is a myth: the actual defini-
tion of a realm interface is type equation dependent. Suppose component C of realm R exports a compo-
nent-specific operation O. Whenever C is used in a type equation E, then realm R is automatically enlarged
to export O; if C is removed from E, then O is removed from R. The enlarging (or shrinking) of realm inter-

main
legend

all methods inlined

certain methods inlined,

purely functional

others invoke tasks and

some methods use

use message passing to
communicate

g
are functionally invoked

some methods are
functional, others use
separate tasks

main

main

main

main

main

main

a

b

c

d

e

e

f

g

lobal variables, others

Figure 7: An Operation-Flavored Type Equation

10

faces implies that the interface of all components of a realm are also enlarged (or shrunk). Additionally,
when C’s interface is enlarged, C must provide default methods for the new operations. It is the use of
default methods that distinguishes the concept of realm extensibility from subclassing and subtyping.

To see the relevance of elasticity, suppose realm R exports three standard operations a(), b(), and c().
Suppose further that a() is to be mapped to its F-flavored counterpart fa(), b() to the G-flavored gb(),
and c() to H-flavored hc(). (We will call the resulting “rainbow” realm interface fghR). Three compo-
nents will be needed to do this: fa, gb, and hc. Component fa maps calls to a() to fa(). Similarly for
components gb and hc.

Now, what are the realms and parameters of these components? Consider component fa. It will belong to
realm R, but will export the component-specific operation fa(). fa will import interface R. Similarly for
components gb and hc. Thus, the component membership for R is:

R = { ... standard components of R ..., fa[R], gb[R], hc[R] }

What the above definition means is that realm R exports its standard set of operations plus its flavored
operations as well. The equation rainbow[R]:

rainbow[R] = fa[gb[hc[R]]];

defines a stacking of operation-flavoring layers that converts calls to the standard R interface into calls to
the rainbow interface fghR. Other possible (and equivalent) definitions for rainbow[R] are formed by
permuting the composition of operation flavored layers:

rainbow1[R] = gb[fa[hc[R]]];
rainbow2[R] = fa[hc[gb[R]]];
...

Note that parameter R of rainbow[R] probably should be fghR. That is, rainbow translates from the
standard interface of R to fghR — by the time calls to the R standard interface filter through rainbow,
only calls to fghR remain, even though the full interface of R is still present. One might add another compo-
nent to R, namely view[fghR], which simply trims the standard operations from R’s interface leaving
only the interface of fghR. Generally, this is both unnecessary and infeasible. If there are n colorings for
each of the m operations of R, there could be O(nm) such view components. Design rule checking algo-
rithms are sufficient to encode the constraints of view components without having to define view compo-
nents explicitly.

t

fg layer
s layer
tu layer

fg-1 layer
s-1 layer
tu-1 layer

r
...

Flavor created by
stacking operation
flavored layers

Figure 8: Stylizing Operations by Layering

11

In a similar manner, it is possible to define compositions of primitive components to convert from an fghR
interface back to R. Three components would be needed in our example: fa-1[R], gb-1[R], and hc-1[R].
Component fa-1[R] performs the inverse mapping of fa[R], namely translating calls to operation fa()
into calls to a(). Thus, one of many type equations that map calls to interface fghR into calls to R is:

rainbow-1[R] = fa-1[gb-1[hc-1[R]]];

Thus, the algebraic identity: rainbow[rainbow-1[R]] = R follows directly from the above discussion,
and thus rainbow flavorings of realm interfaces can be treated no differently than “pure” flavorings as
shown in Section 2.

We have now reached the point of making another important observation: the specification of architectural
styles at the operation level can also be expressed as a layered design.

5 Recap and Future Work

It is important that ADAGE be able to generate avionics software in a variety of architectural styles. We
considered this problem some time ago, and produced a prototype generator gen which demonstrated the
feasibility of producing avionics software in different stylized forms. We mentioned in Section 1 that gen
had several difficulties which we were able to eliminate with the ideas presented in this paper:

• No need for a canonical specification language - our approach allows Ada or C++ (or any language) to
be used to define components;

• No combinatorics - our approach factors architectural styles as independently definable layers, where
feature combinatorics is made explicit through component compositions;

• Easily extensible - adding new flavors to gen would require a full rewrite; adding new flavors to our
approach is no more complicated than adding new layers to realms.

gen did offer some advantages that our current implementation does not. To understand the distinction,
there are two different approaches to building GenVoca components: compositional and generative. Com-
positional components encapsulate domain-specific source code; these components can be linked at com-
pile time or at run-time. ADAGE components are compositional; so too are the C++ components that we
defined in this paper. Generative components encapsulate algorithms that generate domain-specific source
code; these components can only be linked at generation time, and not at application run-time. The primary
difference between compositional and generative components is (a) compositional are easier to write but
(b) generative-produced code is typically faster (because of many optimizations that can be done at gener-
ation time which would otherwise have to be done at application run-time for compositional components).

gen was based on generative, not compositional, components. gen was able to perform certain program
transformations (i.e, create certain architectural styles) that cannot be achieved effectively in a composi-
tional setting. In principle, gen is able to perform all sorts of nonlocalized transformations (i.e., introduc-
tion of global variables, etc.) inside the text of a program which our compositional components are unable
to achieve. However, from what we have gathered in our experiments, composition will be adequate for
ADAGE prototyping. A generative approach might be taken for ADAGE if the performance of the result-
ing code that is produced by composing compositional components is inadequate.

Another benefit, which we mentioned earlier, is that testing whether or not certain combinations of flavors
is illegal was unsolved for gen. For our approach, the problem of detecting incompatible flavors reduces to
design rule checking.

12

A third benefit of our approach is that changes are not needed to the ADAGE layout editor. By allowing
designers to introduce flavoring components inside their own type equations, avionics software can be pro-
duced by ADAGE in a variety of styles.

Finally, we outlined ideas that would take the idea of flavoring one step further: that is, instead of flavoring
entire components, individual operations of components could be given distinct flavors. Future work might
include experiments to validate our notions of realm interface elasticity, so that the flavoring of individual
operations can be tested and to discover if there is a critical need for such a capability.

6 References

[Bat93] D. Batory and L. Coglianese, “Techniques for Software System Synthesis in ADAGE”,
ADAGE-UT-93-05, 1993.

[Bat94a] D. Batory, “A Software Generator for Flavored Type Expressions”, ADAGE-UT-94-02.

[Bat94b] D. Batory, “Extensible Realm Interfaces”, ADAGE-UT-94-01.

[Bat95] D. Batory and B.J. Geraci, “Validating Component Compositions in Software System
Generators”, ADAGE-UT-94-03. Also, Technical Report TR-95-03, Department of Computer
Sciences, University of Texas at Austin, February 1995.

[Gar92] D. Garlan and M. Shaw, “An Introduction to Software Architecture”, in Advances in Software
Engineering and Knowledge Engineering, Vol. 1, V. Ambriloa and G. Tortora, eds., World
Scientific Publishing.

[Gar94] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting Style in Architectural Design
Environments”, ACM SIGSOFT 1994.

[McA94] D. McAllester. “Variational Attribute Grammars for Computer Aided Design.” ADAGE-MIT-
94-01.

[Mor94] M. Moriconi and X. Qian, “Correctness and Composition of Software Architectures”, ACM
SIGSOFT 1994.

7 Appendix

At site ftp.cs.utexas.edu, there is a tar file tmp/adage/styles.tar which contains the post-
script of this document, plus the C++ source code mentioned in this report. To unload the tar file, type:

tar xvf styles.tar // will create a directory code that contains tarfile
contents
cd code
make // will make contents of the directory

There are three .h files: rlib.h, proc.h, and pipe.h. rlib.h contains the realm definitions and
component definitions of the “vanilla” model; proc.h defines the extensions to the model for proc-flavor-
ing and pipe.h defines extensions to the model for pipe-flavoring.

There are two driver files: ttest.cc and ttest-vanilla.cc. ttest-vanilla.cc is the driver
of Figure 5b using the vanilla flavored Sys; ttest.cc is the same program using the type equation of
Figure 6. Upon execution, the output of the two executables (ttest and ttest-vanilla) are com-
pared; they should produce the same output.

