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Abstract: The essence of architectural styles is component communication. In this paper, we
relate architectural styles to adaptors in the GenVoca model of software construction. Gen-
Voca components are refinements that have a wide range of implementations, from binaries
to rule-sets of program transformation systems. We explain that architectural styles can (1)
be understood as refinements (like other GenVoca components) and (2) that they are general-
izations of the OO concept of adaptors. By implementing adaptors as program transforma-
tions, complex architectural styles can be realized in GenVoca that simply could not be
expressed using less powerful implementation techniques (e.g., object adaptors). Examples
from avionics are given.

1  INTRODUCTION

McIlroy and Parnas observed almost thirty years ago that software products
are rarely created in isolation; over time a family of related products eventu-
ally emerges [McI68, Par76]. Software design and development techniques
then were aimed at one-of-a-kind products. While software design method-
ologies have improved significantly both in quality and sophistication, one-
of-a-kind products are still the norm. However, it is becoming increasingly
apparent that product families are indeed very common and methodologies
are needed to accommodate their economical design and construction.

A product-line architecture (PLA) is a blue print for building a family of
related applications. A number of different approaches for designing PLAs
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have been under development for some time, each proffering many suc-
cesses ([Wei90, Coh95, Har93, Bat92]). Of these approaches, the GenVoca
approach is distinguished by components that export and import standard-
ized interfaces [Bat92, Sma98]. Applications of a product-line are assem-
bled purely through component composition. Components themselves can
encapsulate domain-specific “intelligence” that can, for example, automate
domain-specific optimizations that are critical to application performance.

A fundamental issue in composing applications from components has to do
with the way components communicate their needs and results. This is what
we consider the essence of architectural styles: the separation of a compo-
nent’s computations from the means by which it communicates. As no sin-
gle architectural style suffices for all applications, there needs to be a way in
which styles can evolve (or be replaced) within or across application
instances.

In this paper, we explore the relationship of architectural styles and Gen-
Voca. GenVoca components are refinements that have a wide range of
implementations, from binaries to rule-sets of program transformation sys-
tems. Architectural styles can also be understood as refinements and treated
just like other GenVoca components. Furthermore, style refinements are
actually generalizations of the OO concept of adaptors. By implementing
adaptors as program transformations, complex architectural styles can be
realized in GenVoca that simply could not be expressed using less powerful
implementation techniques (e.g., object adaptors). Examples from avionics
are given to partially support this claim.

2  COMPONENTS, ARCHITECTURAL STYLES, AND
REFINEMENTS

The term software architecture refers to an abstract model of an application
that is expressed in terms of intercommunicating components. Components
communicate via abstract conduits whose implementations are initially
unspecified. An architectural style is an implementation of a conduit; the
original vision of Garlan and Shaw allowed software architects to select dif-
ferent styles (conduit implementations), such as pipes, RPC, etc., that
would satisfy application performance or functionality constraints. Some
architectural styles could reveal lower-level components and conduits,
thereby allowing conduit implementations to be expressed in a progressive
or “layered” manner [Gor91].



Mapping an abstract concept or declaration to a concrete (or less abstract)
realization is a refinement. Just as architectural styles are refinements of
communication conduits, component implementations can also be revealed
as a progression of refinements. Such progressions are sometimes, but not
always, equivalent to “layered” implementations.

Refinements expose the implementations of components and conduits in a
uniform way (which seems reasonable, since both are expressed as soft-
ware). It is evident that a powerful model of software architectures can be
created around the concept of refinements as primitive building blocks of
applications. This is one of several basic ideas that underly the GenVoca
model of software construction.

3  A MODEL OF PRODUCT-LINE ARCHITECTURES

A premise of GenVoca is that plug-compatible and interchangeable soft-
ware “building blocks” can be created by standardizing both the fundamen-
tal abstractions of a mature software domain and their implementations.
The number of abstractions in a domain is typically small, whereas a huge
number of potential implementations exist for every abstraction. GenVoca
advocates a layered decomposition of implementations, where each layer or
component encapsulates the implementation of a primitive feature shared
by many applications. The advantage is scalability [Bat93b, Big94]: librar-
ies have few components, while the number of possible combinations of
components (i.e., distinct applications in the domain that can be defined) is
exponential. GenVoca has been used to create product line architectures for
diverse domains including avionics, file systems, compilers, and network
protocols [Cog93, Bat93b, Hei93, Hut91].

Components and Realms. A hierarchical application is defined by a series
of progressively more abstract virtual machines [Dij68]. (A virtual machine
is a set of classes, their objects, and methods that work cooperatively to
implement some functionality. Clients of a virtual machine do not know
how this functionality is implemented). A component or layer is an imple-
mentation of a virtual machine. The set of all components that implement
the same virtual machine is a realm; effectively, a realm is a library of inter-
changeable components. In Figure 1a, realms S and T have three compo-
nents, whereas realm W has four.

Parameters and Refinements. A component has a (realm) parameter for
every realm interface that it imports. All components of realm T, for exam-
ple, have a single parameter of realm S.2 This means that every component



of T exports the virtual machine of T (because it belongs to realm T) and
imports the virtual machine interface of S (because it has a parameter of
realm S). Each T component encapsulates a refinement between the virtual
machines T and S. Such refinements can be simple or they can involve
domain-specific optimizations and the automated selection of algorithms.

Applications and Type Equations. An application is a named composition
of components called a type equation. Consider the following two equa-
tions:

A1 = d[ b ];
A2 = f[ a ];

Application A1 composes component d with b; A2 composes f with a. Both
applications are equations of type T (because the outermost components of
both are of type T). This means that A1 and A2 implement the same virtual
machine and are interchangeable implementations of T. Note that compos-
ing components is equivalent to stacking layers. For this reason, we use the
terms component and layer interchangeably.

Grammars, Product-Lines, and Scalability. Realms and their compo-
nents define a grammar whose sentences are applications. Figure 1a enu-
merated realms S, T, and W; the corresponding grammar is shown in Figure
1b. Just as the set of all sentences defines a language, the set of all compo-
nent compositions defines a product-line. Adding a new component to a
realm is equivalent to adding a new rule to a grammar; the family of prod-
ucts that can be created enlarges automatically. Because huge families of
products can be built using few components, GenVoca is a scalable model
of software construction.

Symmetry. Just as recursion is fundamental to grammars, recursion in the
form of symmetric components is fundamental to GenVoca. More specifi-
cally, a component is symmetric if it exports the same interface that it
imports (i.e., a symmetric component of realm W has at least one parameter

2.  Components may have many other parameters in addition to realm parameters. In this
paper, we focus only on realm parameters.

S:= a  |  b |  c ;

T:= d S | e S | f S ;

W:= n W| m W | p | q T S;

S={a,b,c}

T={d[S],e[S],f[S]}

W={n[W],m[W],p,q[T,S]}

Figure 1: Realms, Components, and Grammars

(b)(a)



of type W). Symmetric components have the unusual property that they can
be composed in arbitrary ways. In realm W of Figure 1, components n and m

are symmetric whereas p and q are not. This means that compositions
n[m[p]], m[n[p]], n[n[p]], and m[m[p]] are possible, the latter two show-
ing that a component can be composed with itself. Symmetric components
allow applications to have an open-ended set of features (because an arbi-
trary number of symmetric components can appear in a type equation).3

Design Rules, Domain Models, and Generators. In principle, any compo-
nent of realm S can instantiate the parameter of any component of realm T.
Although the resulting equations would be type correct, the equation may
not be semantically correct. That is, there are often domain-specific con-
straints that instantiating components must satisfy in addition to imple-
menting a particular virtual machine. These additional constraints are called
design rules. Design rule checking (DRC) is the process of applying design
rules to validate type equations [Bat97]. A GenVoca domain model or prod-
uct-line architecture (PLA) consists of realms of components and design
rules that govern component composition. A generator is an implementa-
tion of a domain model; it is a tool that translates a type equation into an
executable application.

Implementations. A GenVoca model is an abstract description of a prod-
uct-line architecture. It expresses the primitive building blocks of a PLA as
composable refinements (components). The model itself does not specify
when refinements are composed or how they are to be implemented. Refine-
ments may be composed statically at application-compile time or dynami-
cally at application run-time. Refinements themselves may be implemented
compositionally (e.g., COM binaries, Java packages, C++ templates), as
metaprograms (i.e., programs that generate other programs by composing
prewritten code fragments), or as rule-sets of program transformation sys-
tems (PTSs). Compositional implementations offer no possibilities of static
optimizations; metaprogramming implementations automate a wide range
of common and simple domain-specific optimizations at application synthe-
sis time; PTSs offer unlimited optimization possibilities. Choosing between
dynamic and static compositions, and alternative implementation strategies
is largely determined by the performance and behavior that is desired for
synthesized applications.

3.  We refer to virtual machines as “standardized interfaces”. However, these interfaces are
not immutable; they can change with the addition or removal of a component [Bat97,
Sma98]. Thus, symmetric components can add new functionalities that are reflected in appli-
cation interfaces.



Separating PLA design from implementation provides a significant concep-
tual economy: GenVoca offers a single way in which to conceptualize
building-block PLAs and many ways in which to realize this model (each
with known trade-offs).

4  ARCHITECTURAL STYLES AS ADAPTORS

4.1  Motivation

An architectural style refers to the means by which components communi-
cate their needs and results, as well as a set of constraints that govern the
overall constellation of an application’s components. For example, compo-
nents can communicate through pipes in the pipe-and-filter style; constella-
tions are largely limited to linear chains of components. Our focus on
architectural styles lies exclusively with component communication. Note
that this definition of a “style” is not as broad as that in the treatment of
architectures by Perry and Wolf [Per92] (where a style can be any abstract
architectural element and may cover as many aspects as an entire architec-
ture), but follows a more constrained view taken by other researchers (e.g.,
[Sha97, DeL96]).

The obvious first question is, why use different architectural styles? There
are many reasons, some of which are:

• Compatibility reasons. Most often, a style is fixed by convention or
because the need to distinguish between computation and communica-
tion had not become apparent at component implementation time. Thus,
components need to adopt a special style to communicate with existing
software. The scale of both components and interfaces may vary
widely. Many standard protocols (interprocess communication, win-
dowing application conventions, COM for ActiveX controls) can be
viewed as alternative styles for connectors to some unit of functionality.

• Performance/portability reasons. Even simple decisions at the imple-
mentation level can constitute stylistic dependencies: a piece of code
could be inlined or made into a procedure. A set of parameters may be
passed through global variables or procedure arguments. A service can
be implemented as a static or dynamic library, or even a stand-alone
server. Such decisions fundamentally affect the performance and porta-
bility of a component. Distributed applications are a good example.
Deciding whether a piece of functionality is local or accessed over a
network can be viewed as a simple stylistic choice, albeit one that fun-



damentally affects performance. Ideally the same component could
adopt different styles and be used in vastly different applications. For
instance, the same piece of functionality may be in the core of both an
embedded system (with a primitive OS, small memory, and slow pro-
cessor) and a high-end server system. The component should not have
to be rewritten but should automatically adapt (through a style adaptor)
to the capabilities of either runtime environment.

4.2  GenVoca and Adaptors

GenVoca components are designed a priori to communicate with their cli-
ents in one style. For example, application A1 of Section 3 has component d
communicating with component b via the S interface. What exactly the
mechanisms and protocols are (e.g., local procedure calls, marshalled argu-
ments, global-variables, etc.) is governed by the definition of the virtual
machine S. But suppose we would like component d to communicate with b

via another style — remote procedure calls — which we would encode as
some interface G. Furthermore, we would like components d and b to
remain unchanged, so that d’s calls to interface S are translated (refined)
into calls to interface G; similarly, invocations of G methods are translated
(refined) into invocations of S methods for b to process, and vice versa.

This can be accomplished using adaptors [Gam94]. For our example, we
need to add two components and one realm to Figure 1. Component s2g[G]
would translate (refine, adapt) S method invocations to G method invoca-
tions; s2g[G] would be a new member of realm S. Component g2s[S]

would do the opposite: it would translate (refine, adapt) calls to G into calls
to S; g2s[S] would be the (lone) component of a newly-created realm G.
Figure 2 graphically illustrates the modification of A1 to A1’, where d indi-
rectly communicates (via interface G) with b.

d

b

d

s2g

g2s

b

A1
A1’ d

s2g

g2s

b

A1’

(a) d’ imports an
G-style S interface

(b) b’ exports an
G-style S interface

Figure 2: Changing Architectural Styles Figure 3: Stylized Component Interfaces

d’

b’



Note the following. First, the essence of replacing one architectural style
with another should not alter the semantics of the target application. We
have indeed not altered the computations of A1 in any way by rewriting it as
A1’; the only thing that has changed is the means by which components d

and b communicate. The architectural style equation G-Style[x] =

s2g[g2s[x]] is the identity mapping, and algebraically A1 = A1’. In gen-
eral, we postulate that architectural styles are algebraic identity elements.
Given the type equation of an application, it is possible to rewrite the equa-
tion in many different ways using ‘style’ identities. Each equation would
describe a different implementation of that application — i.e., the same fun-
damental computations are performed in the same order, the only difference
is the means by which components communicate.

Second, one of the goals of component-based design is to avoid component
replication in library development. Replication occurs, for example, when
the computations of a component are fused with its communication style.
Different encodings of a computation exist when multiple styles need to be
supported. Unfortunately, this approach doesn’t scale. If there are n compu-
tations and s styles, then potentially n*s different components may be
needed. Adding a new style may introduce n components; adding a new
computation might introduce s components.

Our model suggests a way to avoid such replication. Components and adap-
tors are designed to be orthogonal to each other; this gives them a mix-and-
match quality that avoids the fusing of component computations with com-
munication styles. In Figure 3, we can view application A’ as a composition
of components d’ and b’, where d’ communicates with b’ via interface G

(i.e., the computations of d and b are communicating via a “G” style). Alge-
braically, d’[x] = d[s2g[x]] and b’ = g2s[b].

This view of architectural styles as adaptors is not novel. Nevertheless, stan-
dard compositional implementations of adaptors (e.g., as objects, proce-
dures, or templates) have not always been up to the task. The use of
adaptors makes interface translations look conceptually trivial but the
implementations of such translations may be very sophisticated. Composi-
tional implementations (e.g., OO object adaptors) are inadequate to equate
architectural styles with adaptors. There are many architectural styles that
cannot be implemented (or implemented efficiently) in this manner. (Con-
sider the example given earlier, of a single component being used in both a
high-end server and an embedded system.) This is not surprising: the use of
a compositional mechanism (e.g., procedures or objects) is itself a stylistic
dependency!



In contrast, our approach focuses on conceptualizing building-blocks of
product-line architectures as refinements. The advantage of refinements is
that they are not limited to compositional implementations. In fact, many of
the useful expressions of styles as adaptors employ metaprogramming tools
(software generators). Generators have control over components that
exceeds the limits of languages. For instance, code fragments can be fused
together (e.g., [Sma97]) or specialization hooks can be eliminated from the
generated code if they are not used. Even very simple “generators” (like the
Microsoft MFC and ATL wizards for adapting software to the style of Win-
dows applications, ActiveX controls, etc.) are much more powerful than a
simple collection of compositional components. It is this flexibility of gen-
erators that allows us to equate architectural styles with (“intelligent”) adap-
tors.

A significant consequence of using software generators is that the structure
of the generated program may look nothing like the structure of its specifi-
cation. Hence, even though GenVoca is a layered model, it is not con-
strained to building layered implementations. GenVoca just offers the
“vocabulary” for specifying product-lines. Generators are compilers that
translate such specifications into their concrete realizations. A layered spec-
ification may well be describing programs with non-layered architectural
styles (e.g., client-server, blackboard, etc.).

5  AN EXAMPLE FROM AVIONICS

ADAGE was a project to realize a GenVoca-based product-line architecture
for avionics (in particular, navigation) software [Cog93, Bat95]. While the
details of the model are not germane to this paper, the central idea is that
navigation components communicate by exchanging state vectors — i.e.,
run-time objects that encode information about the position of an aircraft at
a particular point in time. Different components perform common computa-
tions on state vectors (e.g., filtering, integration, etc.). This section over-
views an approach that was prototyped for ADAGE.

For the purposes of our paper, we will study a very simple type equation, E
= Main[A[B[C]]], that is a linear chain of components. The Main compo-
nent encapsulates the application that is periodically executed; the remain-
ing components perform computations on state vectors. Computations
proceed bottom-up; that is, component C outputs a vector that is processed
by B; B’s vector is processed by A; Main displays the contents of A’s vector.
The specific computations will be abstracted into a set of uninterpreted
algorithms that will allow us to explore the impact of using different archi-



tectural styles. Each component exports a read-vector method that a higher-
level component can call. Although there are many other methods, the cen-
tral idea of architectural styles can be conveyed with the rewriting/packag-
ing of this one method; other methods can be treated in a similar manner.
Note that our examples are deliberately idealized with complicating details
omitted.

We will denote the read-vector computation of component C to be algorithm
c(); that is, whenever the read-vector computation of C is called (no matter
how the read-vector method is expressed), algorithm c() is invoked. Simi-
larly, the read-vector computation of component B is algorithm
b(x:TYPE_C), where TYPE_C is the type of vector output by component C.
The read-vector computation of A is algorithm a(x:TYPE_B), where TYPE_B

is the type of vector output by component B.

5.1  Example Styles

There are many ways of encoding the computations of E as one or more Ada
tasks. Many reflect minor differences in programming styles. In this sec-
tion, we present three very different implementations of E — executive,
layered, and task — each with its own unique architectural style. Every
implementation executes exactly the same domain-specific computations in
the same order; the only difference is how the components of E communi-
cate with each other (and hence are encoded). Later, we will explain how
each of these implementations could be “derived” or “generated” using
GenVoca architectural-style adaptors.

Executive Implementation. The most common way in which the computa-
tions of E are realized in avionics software is as an executive (also com-
monly known as time-line executive). The state vector that is output by each
component is stored in a global variable; read-vector methods are encoded
as procedures that read and write global state vectors. The Main task exe-
cutes read-vector methods in an order that reflects a bottom-up evaluation
of E. An Ada representation of an executive encoding of E is depicted in
Figure 4.

Layered Implementation. A typical layered implementation of Main

would permit Main to call only the methods of component A; A’s methods, in
turn, would call methods of component B, and B’s methods would call those
of C. State vectors are returned as method results; there are no global vari-
ables. An Ada representation of a layered encoding of E is depicted in Fig-
ure 5.



Task Implementation. A third and very different implementation of E

would be to realize each component as an Ada task; state vectors would be
exchanged between tasks. Figure 6 depicts a task encoding of E.

Note that all three of the above examples are semantically equivalent (i.e.,
they each perform exactly the same computations in the same order), and
are syntactic transformations of each other. The only code that is shared
among all three are the algorithms c(), b(x:TYPE_C), and a(x:TYPE_B);
the differences are simply in the packaging of these algorithms in a particu-
lar architectural style.

-- global state vectors

vec_a : TYPE_A;
vec_b : TYPE_B;
vec_c : TYPE_C;

-- read-vector for component C

procedure READ_C is
begin

 vec_c = c();
end;

-- read-vector for component B

procedure READ_B is
begin

 invec : TYPE_A;
invec = vec_c;
vec_b = b( invec );

end;

-- read-vector for component A

procedure READ_A is
begin

 invec : TYPE_B;
invec = vec_b;
vec_a = a(invec);

end;

-- main task

task body MAIN is
begin

x : integer;
loop

-- bottom-up evaluation of E
READ_C;
READ_B;
READ_A;

-- compute time x till next cycle
delay x;

end loop
end;

Figure 4. The “Executive” Style

-- component read functions

function READ_C return TYPE_C is
begin

return c();
end;

function READ_B return TYPE_B is
begin

invec : TYPE_B;

invec = READ_C;
return b(invec);

end;

function READ_A return TYPE_A is
begin
 invec : TYPE_B;

invec = READ_B;
return a(invec);

end;

-- main task

task body MAIN is
begin

x : integer;
vec_a : TYPE_A;
loop

vec_a = READ_A;
-- compute time x till next cycle
delay x;

end loop
end;

Figure 5. The “Layered” Style



There are several trade-offs involved in choosing one of the above styles.
Not all of them are apparent in our presentation of these styles as Ada code
fragments. Nevertheless, we will try to outline here the trade-offs between
the “executive” and “task” implementations.

Time-line executive is the easiest runtime implementation to write. The pro-
grammer needs to set a timer interrupt for the basic system cycle. When the
timer goes off, a predefined set of procedures that implement the applica-
tion functions get called. The main advantage of this style is its predictabil-
ity. Application functions will run in a fixed pattern. Adding the maximum
time for each function yields the maximum time for the cycle. The simplic-
ity of the dispatcher (no scheduler is needed) results in a low overhead,
quite predictable OS when no real-time alternative exists. The down side to
the executive style is that it is too simplistic. The data used by the system is
fundamentally produced at different rates. Computations need to run at a
variety of rates. Data consumers need information with another set of rates
and latencies. If some unit needs to operate at a rate different than the basic
cycle, the system will become more complex. Adding and deleting func-

-- components as tasks

task TASK_C is
entry READ_C(vec_c : out TYPE_C);
...

end;
task body TASK_C is
begin

loop
accept READ_C(vec_c : out TYPE_C) do

vec_c = c();
end;
...

end loop
end

task TASK_B is
entry READ_B(vec_b : out TYPE_B);
...

end;
task body TASK_B
use TASK_C is
begin

loop
accept READ_B(vec_b : out TYPE_B) do

invec : TYPE_C;

-- read vector from TASK_C
TASK_C.READ_C(invec)
vec_b = b(invec);

end;
...

end loop
end;

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TASK_A
begin
loop
accept READ_A(vec_a:out TYPE_A)
do
invec : TYPE_B;

-- read vector from TASK_B
TASK_B.READ_B(invec);
vec_a = a(invec);

end;
...

end loop
end

-- main task

task body MAIN
use TASK_A is
begin
x : integer;
invec : TYPE_A;
loop

-- read vector from TASK_A
TASK_A.READ_A(invec);

-- compute time x till next cycle;
delay x;

end loop
end;

Figure 6. A Transducer/Task Style



tions or changing the timing requirements forces one to modify code
throughout the system. In all, the code is partitioned more to satisfy timing
than based on objects or functional cohesion. A second problem arises from
the linear nature of the executive’s calling sequence. Data is not passed
from one part of the cycle to the next. Rather the majority of state informa-
tion is stored in global data. Without formal data-flow analysis, it is easy to
use data in global variables that have not yet been updated for the current
cycle.

Tasking architectures have been designed to overcome the brittle, error-
prone nature of time-line executives. Modern schedulers permit analysis to
prove that all processing deadlines will be met. Thus data can be produced
at the required rates. Tasks can be added and the effects of their load on the
system can be calculated. The disadvantage of the task style is that it is dif-
ficult to implement and generally has a higher overhead.

In the next section, we explain how computations and “style” adaptors can
be packaged as GenVoca components.

5.2  Packaging Adaptors as Components

As mentioned earlier, both components and adaptors that represent archi-
tectural styles can be unified by the concept of consistent refinements. An
implementation of refinements that can synthesize the examples of
Section 5.1 are metaprograms and rule-sets of program transformation sys-
tems (PTS). A metaprogram is a program that generates another program
by composing code fragments; a rule-set of a PTS is a set of tree rewrite
rules that, when applied, progressively transform one program into another.
For both metaprograms and PTS, programs are manipulated as data. We
will explain our implementation using a metaprogramming approach. Later
in Section 5.3.2, we motivate the generalization to rule-sets of PTSs.

Our model assumes that components communicate in a predetermined
“standard” style. Any other style would be obtained through the use of
adaptors. For this to be possible, each avionics component will be repre-
sented as a metaprogramming protocol — each component can query the
capabilities and properties of adjacent components to determine what code
should be generated. In particular, this allows each component to determine
(a) the global variables that are to be used, (b) the protocol on how a com-
ponent’s current state vector is to be obtained, (c) when component methods
are to be executed, and (d) what interface “wrapper” should surround the
source code of domain-specific computations. Each of these capabilities
will be expressed as methods that return code fragments.



5.2.1  An Executive Component

Let’s look at how component A might be represented as a metaprogram.
Let’s assume that the “standard” style in our model is executive (any style
will do). So our implementation of component A will encapsulate both A’s
fundamental computations as well as its executive encoding. The following
explains a set of methods that A (as well as B and C) would implement:

• global-variable method: This method outputs the declaration of any
global variable of a component. Component A would output “A_vec :

TYPE_A;”. That is, it would output a standard name for its global vari-
able (A_vec) and its declaration. In addition, the global-variable method
of the component beneath A would be invoked, thereby generating a
chain of global variable declarations originating from multiple compo-
nents. Consider equation E. When the global-variable method for A is
called, the following declarations would be generated:

vec_a : TYPE_A;
vec_b : TYPE_B;
vec_c : TYPE_C;

• get-current-vector method: This method outputs a statement that
assigns local variable invec to the current vector of the given compo-
nent. For component A, the statement “invec = vec_a;” is produced,
meaning that the current vector of A is in global variable vec_a.

• interface-generation method: This method generates a component’s
read-vector method in executive style. Component A produces a param-
eterless procedure where the body of the procedure invokes algorithm
a(x:TYPE_B):

procedure READ_A is
begin

invec : TYPE_B;
--- set invec to appropriate value
vec_a = a(invec);

end

Note that the above procedure is incomplete, because invec has yet to be ini-
tialized. The assignment statement that initializes invec is produced by invok-
ing the get-current-vector method of the component that lies
immediately beneath A. Again consider equation E. The read procedure that is
generated by calling interface-generation for component A is:

procedure READ_A is
begin

invec : TYPE_B;



invec = vec_b;
vec_a = a(invec);

end

• compute-vector method: The computation of a new state vector in
executive style is distinct from returning its result. To compute A’s new
vector, we must first compute the state vector of the layer immediately
below A (by calling its compute-vector method). We then generate the
call “READ_A;”. For equation E, the calls that would be produced by
invoking the compute-vector method of A is:

READ_C;
READ_B;
READ_A;

This sequence of calls is included in the task-loop of Main of Figure 4.

Note when the type equation E is created, one is actually composing metap-
rogramming implementations for each of E’s components. When the gener-
ator executes E, it produces/generates the executive source code of Figure 4.
In the next section, we will show how a layer-style adaptor can be written.

5.3  A Layer-Style Adaptor

A metaprogramming adaptor intercepts method calls for code generation
and replaces them with different calls. Here are the refinements for a layer-
style adaptor called layer:4

• global-variable method: To make component A appear to be in a lay-
ered architectural style, A will have no global variables. When the glo-
bal-variable method of the layer adaptor is called, a dispatch to the
global-variable method of the component immediately below A is
called (thereby skipping the call of A’s global-variable method). So, the
variable declarations generated for the equation E’ = layer[A[B[C]]]

would be:

vec_b : TYPE_B;
vec_c : TYPE_C;

That is, components B and C are still in executive style (and thus have global
variables), but A is not.

• get-current-vector method: To obtain the current vector in layered
style, A would output the assignment statement “invec = READ_A;”,
where READ_A is a function that returns A’s current state vector.

4.  Note that x = layer[x] is an architectural style identity.



• compute-vector method: The computation of a new state vector in lay-
ered style occurs whenever its READ_A function is called. Thus, the
compute-vector method of a layer adaptor generates no code and has a
null body. An example of this method will be given shortly.

• interface-generation method: A’s read-vector method in layered style
involves the generation of a parameterless function that returns A’s state
vector:

function READ_A return TYPE_A is
begin

invec : TYPE_B;
--- invoke compute-vector
--- set invec to appropriate value

return a(invec);
end

The above function is incomplete, because the computation of the state vector
from the component beneath A must be performed and local variable invec

must be initialized. The code for the latter is produced by calling the com-
pute-vector method, and the code for the latter is produced by calling the
get-current-vector method of the component beneath A. As an example, the
code generated for the equation E’ = Main[layer[A[B[C]]] would be:

function READ_A return TYPE_A is
begin

invec : TYPE_B;
READ_C; --- compute-vector before referencing
READ_B;
invec = vec_b; --- variable invec equals vec_b
return a(invec);

end

5.3.1  A Task-Style Adaptor

A task-style adaptor (called task) would have the following methods:

• global-variable method: There are no global variables in task archi-
tectural styles. The global-variable method of a task adaptor simply
returns the result of the global-variable method of the component
beneath A.

• get-current-vector method: To obtain the current vector in task-style,
A would output the assignment statement “TASK_A.READ_A(invec);”,
which assigns variable invec a value via a task call.



• compute-vector method: As with the layer-style adaptor, the computa-
tion of a new state vector in task-style occurs whenever its task read-
vector method is called. Thus, the compute-vector method of a layer
adaptor has a null body. An example will be given shortly.

• interface-generation method: A’s read-vector method in task style
generates an Ada task:5

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TASK_A
begin

loop
accept READ_A( vec_a : out TYPE_A ) do

invec : TYPE_B;
--- invoke compute-vector
--- set invec to appropriate value
vec_a = a(invec);

end;
...

end loop
end

As an example, the code generated for the equation E’ =

Main[task[A[B[C]]]] would be:

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TA
begin

loop
accept READ_A( vec_a : out TYPE_A ) do

invec : TYPE_B;
READ_C;
READ_B;
invec = vec_b;
vec_a = a(invec);

end;
...

end loop
end

5.  Readers may note that the Ada uses clause specifies tasks that can be called from within
a task. The list of such tasks could be produced by an additional method — uses-tasks

method — that all components would need to implement.



5.3.2  Recap

Given the above model of components and adaptors, the type equations for
Figures 4-6, which are equivalent to equation E, are:

Figure4 = Main[A[B[C]]];
Figure5 = Main[layer[A[layer[B[layer[C]]]]]];
Figure6 = Main[task[A[task[B[task[C]]]]]];

It is not difficult to imagine that metaprogramming adaptors for other archi-
tectural styles — such as table dispatching, file filters, and Weaves [Gor91]
— can be created by following the above approach. It is also not difficult to
see that different architectural styles can be intermixed within the same type
equation. Thus, a version of E that implements A as a task, B in layered style,
and C in executive style would be E* = Main[task[A[layered[B[C]]]]].
The source that would be generated from this equation is shown in the
Appendix.

Readers may have noticed that more compact code could be generated in
our examples. For example, the invec variable could easily be removed
from many of our generated procedures. While this is a trivial optimization,
it is symptomatic of inefficiencies that can arise in metaprogramming
implementations of components and adaptors. Optimizations requiring code
movement and variable elimination are extremely difficult to express in
metaprograms. If such optimizations are crucial for producing efficient
code, then rather than implementing components and adaptors as metapro-
grams, a better way would be to implement them as rule-sets of program
transformation systems (where such optimizations are possible and can be
expressed easily). Again, this is possible in a GenVoca model because the
basic model remains unchanged; it is only the implementation the generator
(and the domain model components) that are affected.

6  CONCLUSIONS

Product-line architectures are becoming progressively more important. Iso-
lated designs of individual software products are being replaced with
designs for product-lines that amortize the cost of both building and design-
ing families of related products. A critical aspect of product-line designs
involves architectural styles. Different applications of a product family may
require the use of different styles as the basis of component communication.
Simple and comprehensible models of product lines demand the inter-
changeability of architectural styles.



In this paper, we have explored the relationship of architectural styles and
GenVoca models. Our approach outlined first steps towards viewing archi-
tectural styles as adaptors [Gam94]. Since GenVoca represents applications
as equations (i.e., compositions of components), adaptors have a particu-
larly appealing representation as algebraic identities. That is, the ability to
replace one architectural style with another is elegantly expressed by rewrit-
ing an equation using an algebraic identity. Moreover, the central concept of
GenVoca — namely building blocks of product line architectures are refine-
ments — was unaffected. Both components and adaptors are examples of
refinements.

We presented deliberately simplified examples of avionics software that
were coded in different architectural styles. We explained how metapro-
gramming implementations of components and adaptors could achieve the
effect of synthesizing these examples through component composition.
This demonstrated the important effect that adaptors and components could
be designed to be orthogonal to each other, thereby admitting a mix-and-
match capability that is both desirable and characteristic of GenVoca
designs.

Most approaches to architectural styles do not adopt the wholistic view that
we have taken, namely that one designs components and adaptors to work
together to achieve a mix-and-match capability. Typically approaches begin
with pre-existing components; the task is to develop tools that will alter the
architectural styles by means of component unwrapping and/or rewrapping.
While this approach will achieve success, we believe that an approach that
integrates component and adaptor designs will yield stronger results and
less fragile tools in developing product line architectures of the future.
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8  APPENDIX - SOURCE FOR Main[task[A[layered[B[C]]]]]

-- global state vectors
vec_c : TYPE_C;

procedure READ_C is
begin

 vec_c = c();
end;

function READ_B return TYPE_B is
begin

invec : TYPE_B;
READ_C;
invec = vec_c;
return b(invec);

end;

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TASK_A
begin

loop
accept READ_A( vec_a : out TYPE_A ) do

invec : TYPE_B;
invec = READ_B();
vec_a = a(invec);

end;
...

end loop
end

-- main task

task body MAIN
use TASK_A is
begin

x : integer;
invec : TYPE_A;
loop

TASK_A.READ_A(invec);
-- compute time x till next cycle;
 delay x;

end loop
end;


