
1

Generating Product-Lines of Product-Families

Don Batory, Roberto E. Lopez-Herrejon, Jean-Philippe Martin
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

 {batory, rlopez, jpmartin}@cs.utexas.edu

Abstract. GenVoca is a methodology and technology for build-
ing product-lines. The primitive components from which appli-
cations are constructed are refinements or layers, which are
modules that implement a feature that many programs of a prod-
uct-line can share. Unlike conventional components (e.g., COM,
CORBA, EJB), a layer encapsulates fragments of multiple
classes. Sets of fully-formed classes can be produced by compos-
ing layers. Layers are modular, albeit unconventional, building
blocks of programs.

But what are the building blocks of layers? We argue that facets
is an answer. A facet encapsulates fragments of multiple layers,
and compositions of facets yields sets of fully-formed layers.
Facets arise when refinements scale from producing variants of
individual programs to producing variants of multiple integrated
programs, as typified by product families (e.g., MS Office).

We present a mathematical model that explains relationships
between layers and facets. We use the model to develop a genera-
tor for tools (i.e., product-family) that are used in language-
extensible Integrated Development Environments (IDEs).

1 Introduction

Over the last thirty years, program modularity has been domi-
nated by object-orientation (OO): method, class, and package
encapsulations are now standard concepts. Over this same
period, another form of program modularity has arisen. The gen-
eral concept is feature refinement — that is, a module that encap-
sulates the implementation of a feature, which is a product
characteristic that customers view as important in describing and
distinguishing programs within a family of related programs
(e.g., a product-line) [Gri00].

Feature refinement is a very general concept, and many different
implementations of it have been proposed, each with different
names, capabilities, and limitations: layers [Bat92], features
[Kan90], collaborations [Ree92][Van96][Mez98], subjects
[Har93], aspects [Kic97] and concerns [Tar99]. Unlike tradi-
tional component technologies (such as COM, CORBA, and
EJB), a feature refinement encapsulates not an entire method or
class, but rather fragments of methods and classes. Figure 2
depicts a package of three classes, c1—c3. Refinement r1 cross-
cuts these classes, i.e., it encapsulates fragments of c1—c3. The
same holds for refinements r2 and r3. Composing refinements
r1—r3 yields a package of fully-formed classes c1—c3.
Because refinements reify the notion of levels of abstraction, fea-
ture refinements are often called layers — a name that is visually

reforced by their vertical stratification of c1—c3 in Figure 1. As
refinements, layers, and features are so closely related, these
terms are often used interchangably. In general, layers are modu-
lar, albeit unconventional, building blocks of programs.

This raises an interesting question: if layers (features) are the
building blocks of programs, what are the building blocks of lay-
ers (features)? We argue that an answer is a facet. The idea is
simple: Figure 2 depicts a set of three layers, r1—r3. Facet f1
cross-cuts these layers, i.e., it encapsulates fragments of r1—r3.
The same for facets f2 and f3. Composing facets f1—f3 yields
fully-formed layers r1—r3. Although it appears that Figure 2 is
just Figure 1 turned on its side, where classes and facets are
indistinguishable, this is not the case. Facets are not classes.
Because of their vertical stratification of r1—r3 in Figure 2, fac-
ets seem to be layers of layers or features of features.

A year ago, we would not have believed facets to exist or, if they
did, to have any utility. To our surprise, we now believe that they
are very common. Facets arise when feature refinements scale
beyond the confines of an individual program or package. As a
perspective, contemporary models of feature refinements allow
clients to customize individual programs; the set of all program
variants that can be produced is a product-line. In contrast, a
product-family is an integrated suite of programs, each program
having different capabilities [Cza00]. Microsoft Office is an
example; it includes the Excel (spreadsheet), Word (text proces-
sor), and Access (database) programs. Given how common prod-
uct-families are, an interesting question is: can feature
refinements scale to define a product-line of product-families?

In this paper, we present new results on feature refinement modu-
larity. We show that refinements do scale to product-families and
there are interesting twists in doing so. Previously considered

c1 c2 c3

r1

r2

r3

classes

Figure 1: Classes and Refinements (Layers)

layers

r1 r2 r3

f1

f2

f3

layers

facets

Figure 2: Facets — Features of Features

dsb
Text Box
Automated Software Engineering 2002

2

“atomic” refinements are revealed to be composed of more ele-
mentary refinements called gluons. Gluons are arranged in very
regular ways to form both “atomic” refinements and facets. We
present a model of gluons, called Origami, that reveals software
to have an elegant mathematical structure that leads to simpler
designs and more powerful models of code generation. Although
our work is based on GenVoca, a methodology and technology
for building product-lines using feature refinements, we argue
that our results are directly applicable to other models, such as
Aspect-Oriented Programming (AOP) [Kic01] and Multi-Dimen-
sional Separation of Concerns (MDSC) [Tar99][Oss01][Oss02],
and thus are not GenVoca-specific. We explore this connection
further in Related Work. We begin with a motivating example
that illustrates the phenomenon of facets.

2 A Motivating Problem

An Integrated Development Environment (IDE) is a suite of
applications (i.e., a product-family) that allow users to write,
debug, visualize, and document programs. Among the programs,
here called tools, of an IDE are a compiler, debugger, editor, for-
matter, and document generator (e.g, Javadoc). Figure 3a depicts
some of these tools, each of which is implemented in a different
package.

The problem we consider is generating IDE tools that all work on
the same language dialect or Domain-Specific Language (DSL).
The use of DSLs have shown benefits in terms of understandabil-
ity, maintainability, and extensibility in software design and
development processes [Deu97]. Providing IDE tools to support
DSL program compilation, editing, debugging, and document
generation is essential for the successful adoption of DSL tech-
nology. In particular, our work focuses on dialects of Java.

An example of a Java dialect is the one we are using to write fire-
support simulators for the U.S. Army [Bat01]. As a brief sum-
mary, fire support programs are a set of collaborating state

machines. Figure 4a depicts a state machine of three states (s1,
s2, s3) and three edges (e1, e2, e3), where an edge denotes a
transition from one state to another. For example, edge e3 begins
at state s1 and ends at state s3. Wide spectrum languages, like
Java, are typically used to implement state machines. The result-
ing code, even when using the state machine design pattern
[Gam94], is often ugly, involving nested switch statements, large
numbers of methods or classes. This places a burden on mainte-
nance engineers because they must re-engineer the simple
abstractions of state machines (e.g., Figure 4a) from the code in
order to understand and modify it. In contrast, Figure 4b shows
the specification of Figure 4a in our extended Java language.
Highlighted are state declarations and edge declarations. We
have found that state-machine-extended Java programs are about
half the size of their pure-Java counterparts, and this in turn sim-
plifies the writing, maintenance, and understanding of domain-
specific programs. Similar benefits accrue when other exten-
sions, such as templates, are added to Java.

compiler debugger document

Java

Sm

(a)

(b)

Figure 3: IDE Tools and Cross-Cutting
Language Features

Tmpl

compiler debugger document

state_machine example {
 event_delivery receive_message(M m);

no_transition { error(-1, m); }
 otherwise_default { ignore_message(m); }

 states s1, s2, s3;

 edge e1 : s1 -> s2
 conditions !booltest() do { /* e1 action */ }

 edge e2 : s2 -> s3
 conditions booltest() do { /* e2 action */ }

 edge e3 : s1 -> s3
 conditions true do { /* e3 action */ }

 // Java class data members and methods from here

 boolean booltest() { ... }
 example() { current_state = start; }
}

states

edges

(b)(a)

s1 s2

s3

e1

e2
e3

Figure 4: State Machine Specifications in Extended Java

3

In the future, we expect to work in other domains, each requiring
their own specific extensions to Java. This means that we need to
be able to construct IDE tools targeted for a particular Java dia-
lect, or more generally, we need to define a product-line for a
product-family of IDE tools. The novelty of our work is that we
are using refinements (layers) as the unit of modularity.

Figure 3b revisits our IDE tools, but this time we expose the lay-
ers from which they were constructed. One layer, Java, encapsu-
lates a cross-cut of the compiler, debugger, and document
generation packages that is specific to the Java language. A sec-
ond layer, Sm, encapsulates another cross-cut of these tools; the
encapsulated code fragments implement our state machine exten-
sion to Java. (That is, Sm extends the compiler tool to compile
state machine specifications, it also extends the debugger so that
it can debug state machine programs, etc.) A third layer, Tmpl,
encapsulates the code fragments that implement our template
extension to Java.

In principle, this is an encouraging result: layers (features) scale
to product-families. That is, refinements scale to the encapsula-
tion of fragments of multiple tool packages. Further, it appears
that an IDE generator for a language dialect has a simple, declar-
ative GUI front-end. Figure 5 suggests its basic outline: a client
selects a set of optional language features and a set of tools (as
not all might be needed), and by pressing the Generate button,
the generator produces the requested set of IDE tools to work on
the specified dialect of Java.

While the GUI suggests a simple interface, the technology that
underlies this generator is sophisticated. To understand how it
works, we first review the GenVoca model and the Jakarta Tool
Suite.

3 GenVoca

GenVoca is a design methodology for creating product-lines and
building architecturally-extensible software — i.e., software that
is extensible via component additions and removals. GenVoca is
an outgrowth of an old and practitioner-ignored methodology
called step-wise refinement [Dij76], which advocates that effi-
cient programs can be created by revealing implementation
details in a progressive manner. Traditional work on step-wise
refinement has focussed on microscopic program refinements
(e.g., x+0 ⇒ x), for which one had to apply hundreds or thou-
sands of refinements to yield admittedly small programs. While
the approach is fundamental and industrial infrastructures are on

the horizon [Bax92][Sim95], GenVoca extends step-wise refine-
ment by scaling refinements to a multi-class-cross-cut granular-
ity, so that each refinement adds a feature to a program, and
composing a few refinements yields an entire application.

3.1 Model Concepts

The central idea is to recognize that programs are values and that
refinements are functions that add features to programs. Consider
the following constants that represent programs with different
features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and pro-
duces a refined (or feature-augmented) program as output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A multi-featured application is specified by an equation that is a
named composition of functions. Different equations define a
family of applications, such as:

app1 = i(f) // app1 has features i & f
app2 = j(g) // app2 has features j & g
app3 = i(j(f)) // app3 has features i, j, & f

Thus, by casually inspecting an equation, one can determine fea-
tures of an application.

Note that there is a subtle but important confluence of ideas: a
function represents both a feature and its implementation —
there can be different functions that offer different implementa-
tions of the same feature:

k1(x) // adds feature k with
// implementation1 to x

k2(x) // adds feature k with
// implementation2 to x

When an application requires the use of feature k, it is a problem
of equation optimization to determine which implementation of k
would be the best (e.g., provide the best performance)1. It is pos-
sible to automatically design software (i.e., produce an equation
that optimizes some quantitative criteria) given a set of declara-
tive constraints for a target application. An example of this kind
of automated reasoning is in [Bat00].

Although GenVoca constants and functions appear to be untyped,
typing constraints do exist in the form of design rules. Design
rules capture syntactic and semantic constraints that govern the
legal composition of features [Bat97]. It is not unusual that the

Figure 5: A GUI for an IDE-Tool Generator

1. Different equations represent different programs and equation
optimization is over the space of semantically equivalent pro-
grams. This is identical to relational query optimization: a query
is initially represented by a relational algebra expression, and this
expression is optimized. Each expression represents a different,
but semantically equivalent, query-evaluation program as the
original expression.

4

selection of a feature will disable (or enable) the selection of
other features. For this paper, design rules constrain the order in
which features are composed. Details of their specification are
beyond the scope of this paper and can be found in [Bat97].

3.2 Model Implementation

Feature refinements are intimately related to collaboration-based
designs [Ree92][Sma00][Sma98]. A collaboration is a generic
relationship among multiple classes. An individual class repre-
sents a particular role in a collaboration, and is a set of data mem-
bers, methods, and method overrides that are needed to carry out
this role. Because collaborations are defined largely in isolation
of each other, they define features that are reusable, i.e., that can
be used in the construction of many applications. A particular
application is a composition of collaborations. Each class of an
application plays one or more roles, where each role originates
from a different collaboration.

A GenVoca constant is a set of classes. Figure 6 depicts a con-
stant i with four classes (ai—di). A GenVoca function is a set of
classes and class extensions. A class extension is a subclass: it
encapsulates new data members, methods, and method overrides
of its parent class. Figure 6 shows the result of applying function
j to i: three classes are extended and another class is added.
(That is, j encapsulates a cross-cut that extends classes aj, cj, and
dj, and adds class ej). Figure 6 also shows the application of
function k to j(i), resulting in two classes being extended. In
general, a forest of inheritance hierarchies is created as layers are
composed, and this forest grows progressively broader and
deeper as the number of layers increase [Bat98].

Linear inheritance chains, called refinement chains, are common
in this implementation method. The general rule is that only the
bottom-most class of a refinement chain is instantiated, because
this class implements all roles that were assigned to it. These
classes are shaded in Figure 6. For example, the bottom-most
class of the c refinement chain plays the roles ci, cj, and ck in the
collaborations i, j, and k respectively.

Because GenVoca functions may be composed in arbitrary
orders, class extensions are implemented as mixins. A mixin is a
template: it is a class whose superclass is specified via a parame-
ter. Mixins enable the order in which subclasses appear in a
refinement chain to be permuted. More details on mixins and
implementing collaborations as mixins are discussed elsewhere
[Sma00][Sma98][Fla98].

4 The Jakarta Tool Suite (JTS)

The Jakarta Tool Suite (JTS) is a suite of compiler-compiler tools
for building families of language translators [Bat98] that we used
to implement our IDE tools. A language family is defined by a
GenVoca model, which consists of a single constant — the base
language — and functions that define optional extensions to the
base. The family of Java dialects that can be synthesized by JTS
is a GenVoca model, named J, consisting of the Java constant
(representing the Java 1.4 language) and functions that add to
Java embedded domain-specific languages for state machines
(Sm(x)), container data structures (P3(x)), code fragments a la
Lisp quote and unquote (Ast(x)), hygienic macros
(Gscope(x)), and templates (Tmpl(x)), among others
([Bat98][Bat00][Sma99]):

J = { Java, Sm(x), P3(x), Ast(x),
 Gscope(x), Tmpl(x), ... } (1)

A particular dialect of Java is defined by an equation. The current
dialect is called Jak (short for Jakarta), which is Java extended
with state machines and templates:

Jak = Sm(Tmpl(Java)) (2)

The state machine and template features are independent of each
other. As a consequence, the order in which Sm and Tmpl are
composed doesn’t matter. Thus, an equation equivalent to (2) is:

Jak = Tmpl(Sm(Java)) (3)

JTS converts such equations directly into a Java package using
the ideas of Section 3 to implement a translator (preprocessor)
for that language. The Jak preprocessor, like other JTS-produced
preprocessors, translates an extended-Java program (with state
machines and templates) into a program that represents its pure-
Java counterpart. Figure 7 depicts its internal organization. An
extended-Java program is parsed into an extended-Java parse
tree. A reducer walks the tree, replacing each non-Java node or
subtree with its pure-Java counterpart. The result is a pure-Java
parse tree, which is then printed. The printed program is the Java
translation of the extended-Java program. No matter what lan-
guage extensions are added to Java, the organization of Figure 7
remains the same. This organization was inspired by Microsoft’s
IP [Sim95].

Jak is only one of a number of IDE tools that must be custom-
ized to a particular language dialect. Another is a Javadoc-like
tool that harvests comments from specific program constructs
and organizes them neatly on HTML pages. Obviously, Sun
Microsystem’s Javadoc [Jav01] can’t be used directly, as it only
understands pure-Java programs (and documenting generated
pure-Java programs typically isn’t all that useful). So we created
a language extensible version of Javadoc called Jedi (Java Exten-
sible DocumentatIon). Jedi, like Jak, is produced by JTS using
a GenVoca model, called D. The lone constant is JavaDoc, which
encapsulates the code that parsers, harvests, and documents com-
ments in pure-Java programs. Functions of this model extend
JavaDoc with the capabilities of producing HTML documenta-
tion for state machines (SmDoc(x)), templates (TmplDoc(x)),
etc. In principle, the elements of models J and D are in one-to-

ai bi ci dii

aj cj dj ej

ck dk

j

k

Figure 6: Implementing Refinements as
Collaborations and Mixins

5

one correspondence: for each language extension in J there is a
corresponding documentation extension in D.2

D = { JavaDoc, SmDoc(x), TmplDoc(x),
 ... } (4)

A particular version of Jedi is specified as an equation, e.g.,

Jedi = SmDoc(TmplDoc(JavaDoc)) (5)

As before, the template and state machine layers of Jedi are
independent, and thus can be composed in any order. Thus, an
equation equivalent to (5) is:

Jedi = TmplDoc(SmDoc(JavaDoc)) (6)

Figure 8 depicts the internal organization of Jedi. An extended-
Java program is parsed into an extended-Java parse tree. A har-
vester walks the tree, harvesting comments prefacing particular
language constructs (e.g., interface declarations, class declara-
tions, method declarations, state machine declarations, etc.) and
stores them in a comment repository. Finally, a doclet reads the
contents of the comment repository, and formats harvested com-
ments neatly on an HTML page, which users recognize as Java-
doc-like output.

It is interesting to note that Jak, Jedi, and other IDE tools can
be expressed directly by a single GenVoca model, IDE_Model,
where different equations correspond to different tools. The
primitives of this model are tool features. There is a lone constant
Parse, which represents the parser for the given language dia-
lect, and there are functions for reducing extended-Java con-
structs to pure-Java (Reduce(x)), for printing parse trees
(Print(x)), for harvesting comments from parse trees (Har-
vest(x)), for producing HTML documents from harvested
comments (Doclet(x)), and so on.

IDE_Model = { Parse, Reduce(x), Print(x),
 Harvest(x), Doclet(x), ... } (7)

Each IDE tool has an equation. The equations for Jak and Jedi
are given below:

Jak = Print(Reduce(Parse)) (8)

Jedi = Doclet(Harvest(Parse)) (9)

Even though the above equations look suspiciously like “func-
tional” (e.g. Haskell) programs, they really do represent a com-
position of features that are implemented by the usual cross-cuts.
Figure 9a shows that the Parse layer encapsulates a set of parser
classes (only one class is shown), a set of parse tree node classes
(again, only one is shown), and a Main class. The Reduce layer
extends each parse tree node type with a reduction method (spe-
cific to that type), and extends the Main class with a call to
reduce an extended-Java parse tree to a pure-Java parse tree.
Finally, the Print layer extends each parse tree node type with a
print method (specific to that node type) and extends the Main
class with a call to print the reduced tree. Again, the terminals of
the resulting refinement chains are the classes that are instanti-
ated. Figure 9b shows the code added by each layer to the Main
class.

Note: the order in which tool features are composed is impor-
tant. Parse must be first, followed by Reduce and then
Print, or followed by Harvest and then Doclet. The rea-
son is Harvest extends classes in Parse, and Doclet refer-
ences methods in Harvest. The same applies to Reduce and
Print. These constraints are examples of design rules.

Language extensibility is not part of the IDE_Model. In fact,
astute readers may have noticed that our original descriptions of
Jak and Jedi were based on GenVoca models based on lan-
guage-specific features, and not tool-specific features of the
IDE_Model. Clearly these models are related, but how? Further,
we know the Jak equations (2) and (8) must be equivalent, and
so too the Jedi equations (5) and (9). But how? An answer

Extended-Java
Program

Pure-Java
Program

Parse
Extended-Java

Parse Tree Reduce Print
Pure-Java
Parse Tree

Jak

Figure 7: The Organization of the Jak Translator

2. In practice, J and D need not be in correspondence. That is,
there might be a language extension without a corresponding
documentation extension, simply because that extension has yet
to be built.

Extended-Java
Program

HTML
Page

Parse
Extended-Java
Parse Tree Harvest Doclet

Jedi

Figure 8: The Organization of the Jedi Translator

Comment
Repository

6

requires a closer look at the internals of these tools, which we do
in the next section.

5 Gluons

Language features are orthogonal to tool features. This means
that we can understand the modularity of Jak and Jedi in terms
of matrices, where rows correspond to language features and col-
umns correspond to tool features.

The matrix for Jedi is shown in Figure 10. Each matrix entry
lists the name of a module that implements a particular language
feature and a particular tool feature. For example, Sharvest is a
module that implements the harvesting of comments from state
machine specifications. Jharvest harvests comments from Java
specifications. Tdoclet formats comments from template decla-
rations on an HTML page. And so on. A composition of these
modules implements Jedi.

The matrix for Jak is shown in Figure 11, and has a similar inter-
pretation. There is a difference: there are no Sm and Tmpl row
entries for the Print column. The reason is simple: consider the
interpretation of Sreduce: it is a module that transforms parse
trees on state machines into parse trees of pure Java. The Jprint
module prints parse trees of pure Java. So once the Sreduce
module performs its task, the Jprint module is invoked. So
there is no need for a module that prints state machine parse
trees. The same argument applies for templates. Once again, a
composition of these modules implements the Jak tool.

These matrices provide the first indication of facets. Let us call
matrix entries gluons and consider the Jedi matrix of Figure 10.
Each row represents a language feature, and the implementation
of a feature is defined by a composition of the gluons in that row.
For example, the Java language feature is defined by a composi-
tion of the Jparse, Jharvest, and Jdoclet gluons. The same
for other rows.

By the same reasoning, each tool feature is represented by a col-
umn and is implemented by a composition of gluons in that col-
umn. For example, the Harvest tool feature is defined by a
composition of the Jharvest, Sharvest, and Tharvest glu-
ons. The same for other columns.

Thus, if layers are rows of gluons, then facets are columns of glu-
ons — columns cross-cut every row. Similarly, if layers are col-
umns of gluons, then facets are rows of gluons — rows cross-cut
every column.

Two questions remain. First, what are gluons? Very simply, they
are elementary layers that implement the intersection of pair of
orthogonal features. That is, they are modules that encapsulate
any number of classes and class extensions, and have straightfor-
ward implementations as a set of classes and mixins. Thus, we
can represent each gluon as a GenVoca constant or function.
When we are creating the matrices of Figure 10 and Figure 11,
what we are actually doing is decomposing composite layers into
more primitive layers — in essense, separating their concerns.
The theoretical justification is simple: any function F could be
the result of composing more primitive functions F1…Fn, and
any constant C could be the result of composing a more primitive
constant C’ with one or more functions F1’…Fn’:

F(x) = F1(F2(... Fn(x) ...))
C = F1’(F2’(... Fn’(C’)...))

Decomposing software is modeled by decomposing equations.

Second, we want to represent Jak and Jedi as equations that are
compositions of gluons. Equations for Jak and Jedi are:

Jak = Jprint(Treduce(Sreduce(Jreduce(
Tparse(Sparse(Jparse)))))) (10)

Jedi = Tdoclet(Tharvest(Tparse(
Sdoclet(Jdoclet(Sharvest(
Jharvest(Sparse(Jparse))))))))) (11)

class Main { // Parse Aspect
main(String args) {

treeNode n;
n = parse(args[0]);

n.reduce();

n.print();

}
}

Reduce

Print

parser
classes

treeNode
classes Main

Parse

Reduce

Print

Jak = Print(Reduce(Parse))

Figure 9: Cross-Cuts of Tool Features

(a)
(b)

Doclet Harvest Parse

Java Jdoclet Jharvest Jparse

Sm Sdoclet Sharvest Sparse

Tmpl Tdoclet Tharvest Tparse

Figure 10: Jedi Matrix

Print Reduce Parse

Java Jprint Jreduce Jparse

Sm — Sreduce Sparse

Tmpl — Treduce Tparse

Figure 11: Jak Matrix

7

These equations are much more complex than those of previous
sections. Two questions immediately arise: (a) are they correct
— are they legal compositions of gluons? and (b) are they consis-
tent — do they represent tools that work on the same language
dialect? Existing design rule checking algorithms can validate
these equations [Bat97], but there are no algorithms to check for
consistency. In fact, without the techniques presented in the next
section, it would take some time to manually write such equa-
tions and verify that they are consistent. We would expect the
consistency problem to be much worse for larger sets of tools and
more complex language dialects. Hence, automated support is
required to write these equations and to ensure their consistency:
we need a model of gluons.

6 Origami: A Model of Gluons

The notation that we have used prior to this section is consistent
with previous work on GenVoca. However, the usual “func-
tional” notation becomes cumbersome as equations become com-
plicated. So we will make a cosmetic switch in notation to
simplify our upcoming discussions. Without loss of generality,
instead of writing A = B(C(D)) we will write A = B o C o D,
where o is the (function) composition operator.

GenVoca models are inherently one-dimensional; they are sets of
constants and functions. In contrast, models of gluons are 2-
dimensional — and generally n-dimensional — and need to be
treated accordingly.3 Consider the matrix of Figure 12, called an
Origami matrix, where rows denote language dialect features and
columns are tool features. Elements of this matrix are gluons.

Adding new entries to this matrix is easy. When a new row is
added, a gluon must be supplied for every existing column. For
example, to add the container data structure (Ds) language fea-
ture, we would have to add Dparse (a parser for container DSL
specifications), Dreduce (reduction methods to transform con-
tainer specification parse trees to Java parse trees), Dharvest (a
harvester of comments for container specifications), and
Ddoclet (a doclet that formats container comments). Some
entries (such as the entry for the Print column) are “empty”
because no code needs to be written to implement that function-
ality. In such cases, the identity function (denoted by “-”) is sup-
plied.

Symmetrically, when a new column is added, a gluon must be
supplied for every existing row. To add a new doclet that pro-
duces, say Word documents, we would have to add Jword (a
doclet that formats Java comments in Word), Sword (a doclet
that formats state machine comments in Word), Tword (a doclet
that formats template comments in Word), and so on. Again, if no
code needs to be written for a particular entry, an identity func-
tion is supplied.

An application (expression) is created by folding an Origami
matrix (hence its name). Rows are folded together by composing
the corresponding gluons in each column. Columns are folded
together by composing the corresponding gluons in each row.
Folding continues until a matrix is produced; the entry of
this matrix is the desired expression. (Unlike true Origami, rows
and columns to be folded need not be adjacent. For our examples,
we have arranged this matrix so that they are).

Rows and columns cannot be chosen at random for folding.
Rows (columns) must be composed in design rule order. That is,
if we are folding tool features, we must begin with the Parse
column, and then fold/compose the Harvest column, and finally
the Doclet column, just as design rules prescribe for the
IDE_Model. Similarly, if we are folding language features, we
must begin with the Java row, and then fold the Sm row and
Tmpl rows in any order, as prescribed by the language feature
models J and D. The reason for this is that language features and
tool features are orthogonal.4

As an illustration, suppose we want to create an equation for cur-
rent version of Jedi. We project this matrix of unnecessary rows
and columns, leaving the rows for Java, Sm, and Tmpl, and the
columns Parse, Harvest, and Doclet yielding Figure 13a.
(Note that there can be different kinds of doclets — HTML,
Word, etc. So part of this projection is selecting the appropriate
tool features).

Figure 13b shows the result of composing the Java row with the
Sm row. Figure 13c-d shows the result of composing the Har-
vest column with the Parse column, and this result with the
Doclet column. A matrix of two rows and one column results.
The final fold merges the remaining two rows to yield the expres-
sion of equation (11). We leave it as an exercise for readers to
discover the folding of equation (10).

3. All examples of gluons that are known to us can be expressed
in 2-dimensions. We would expect examples yet to be discovered
to have higher dimensionality. A 3-dimensional example would
expose “facts of facets”, and so on. Thus our model scales.

Doclet Harvest Parse Reduce Print ...

Java Jdoclet Jharvest Jparse Jreduce Jprint ...

Sm Sdoclet Sharvest Sparse Sreduce - ...

Tmpl Tdoclet Tharvest Tparse Treduce - ...

Ds Ddoclet Dharvest Dparse Dreduce - ...

...

Figure 12: An Origami Matrix

4. Of course, bad implementation of gluons would introduce
unnecessary dependencies, but our experience has been that such
implementations are rather easy to avoid.

1 1×

8

Other constraints may preclude certain foldings, but this is the
essential idea. In the next section, we show how we can use
Origami to produce sets of language-dialect consistent equations.

7 An Application of Origami

Recall the GUI for the IDE generator of Figure 5: users select a
set of optional language features and a set of tools, and the gener-
ator produces this set of tools for the specified language dialect.5

To see how the generator works, we begin the Origami matrix of
Figure 12 and eliminate all language feature rows that were not
selected. Figure 14 shows this matrix for the current Jak/Jedi
dialect.

Rows are folded in design rule order (i.e., Tmpl o Sm o Java). In
general, our generator simply uses design rules to hard-code this
ordering. The result is a matrix (i.e. a row) in Figure 15.

Note the row’s semantics. First, each column defines an equation
for a tool feature:

Doclet = Tdoclet o Sdoclet o Jdoclet
Harvest = Tharvest o Sharvest o Jharvest
Parse = Tparse o Sparse o Jparse
...

That is, the Doclet equation is the composition of gluons that
builds a doclet layer for the Java language that has been extended
by state machines and templates. The Harvest equation defines
a harvest layer for the Java language that has been extended by
state machines and templates, and so on. Thus, by folding rows
in design-rule order, we have produced a set of equations for tool
features that are consistent with respect to a particular language
dialect.

Second, the row itself is exactly the set of tool features that com-
prise the IDE_Model. Since we know the IDE_Model equations
for each tool (e.g., (8),(9)), we can use these equations and
plug in the generated definitions for their tool features. Thus, for
each GUI-selected tool, we evaluate its equation, and send it to a

Doclet
Harvest o

Parse

Sm o
Java

Sdoclet o
Jdoclet

Sharvest o
Jharvest o

Sparse o
Jparse

Tmpl Tdoclet Tharvest o
Tparse

Doclet Harvest Parse

Java Jdoclet Jharvest Jparse

Sm Sdoclet Sharvest Sparse

Tmpl Tdoclet Tharvest Tparse

Doclet Harvest Parse

Sm o Java Sdoclet o
Jdoclet

Sharvest o
Jharvest

Sparse o
Jparse

Tmpl Tdoclet Tharvest Tparse

Doclet o
Harvest o

Parse

Sm o
Java

Sdoclet o
Jdoclet o

Sharvest o
Jharvest o

Sparse o
Jparse

Tmpl Tdoclet o
Tharvest o

Tparse

Doclet o
Harvest o

Parse

Tmpl o

Sm o

Java

Tdoclet o
Tharvest o

Tparse o

Sdoclet o
Jdoclet o

Sharvest o
Jharvest o

Sparse o
Jparse

(a) (b)

(c)
(d) (e)

Figure 13: Folding an Origami Matrix

5. We assume the set of language features is consistent. Design
rule checking algorithms can be used to check consistency.

Doclet Harvest Parse Reduce Print ...

Java Jdoclet Jharvest Jparse Jreduce Jprint ...

Sm Sdoclet Sharvest Sparse Sreduce - ...

Tmpl Tdoclet Tharvest Tparse Treduce - ...

Figure 14: A Row-Projected Matrix

1 n×

Doclet Harvest Parse Reduce Print ...

Tmpl o
Sm o

Java

Tdoclet o
Sdoclet o

Jdoclet

Tharvest o

Sharvest o
Jharvest

Tparse o
Sparse o

Jparse

Treduce o
Sreduce o

Jreduce

Jprint ...

Figure 15: A Row-Folded Matrix

9

generator to produce the Java package for that tool. In this way,
our IDE generator produces language-dialect-consistent tools
from a simple declarative specification.

8 Implementation

We currently have five tools that are language-dialect sensitive:
Jedi, Jak, Mixin and Jampack (two different tools that com-
pose Jak specifications), and UnMixin (a tool that propagates
changes made manually in composed code back to their defining
“gluon” layers). There are nine language features and nine tool
features that span these tools. Table 1 lists for each tool its size in
Java LOC, and the number of gluons that define its equation. Just
with this set of tools (for which we expect many more), we are
generating over 100K LOC. Without Origami, our designs would
be irregular and difficult to maintain and update in a mechanized
way. Simply put, without the organization that Origami imposes,
we don’t know how we could generate a product-family of IDE
tools.

9 Relevance to Other Component
Technologies

There are many non-GenVoca examples of Origami. One possi-
bility is the internationalization of programs made during Win-
dows OS installations. By selecting a particular language (or
dialect), the GUIs of different Windows programs are modified
to present commands in that language. Origami also has relation-
ships to component-based software design.

Microsoft’s Component Object Model (COM), Sun’s Enterprise
Java Beans (EJB), and CORBA are conventional software com-
ponent models [Ses00]. Conventional models deal with inter-
face-based programming — clients program to standardized
interfaces and components implement these interfaces [Syp97].
This makes it easy to swap out one interface implementation
(component) with another, say, for purposes of bug fixes,
improved performance, or trying alternative implementations.
Variations of interface-based programming are found in design
patterns (e.g., OO decorators) and in common OO designs (e.g.,
frameworks) [Gam94].

Not long ago, GenVoca was presented as example of interface-
based programming.6 The key design issue was choosing the

methods of an interface. Those that were included were funda-
mental; those that were excluded were dismissed as not funda-
mental.

The problem that we and other engineers have noticed with inter-
face-based designs is that they are brittle. Over a period of time,
we observed that the set of methods that we designated as funda-
mental was subjective — they were sufficient for our current
needs. Over time, we longed for other methods to be included,
and periodically we would indeed extend the set of methods in
our interfaces. However, when new methods are added to a stan-
dardized interface, all components that export that interface had
to be (manually) updated. After an extension, we would be happy
for a while until we discovered a new set of methods that needed
to be added, and the update cycle would repeat.

The problem with this, of course, is that we couldn’t subse-
quently customize our interfaces or our components. It was sim-
ply too much work to eliminate unneeded groups of methods
from interfaces and components. The impact of interface exten-
sions is negative: interfaces become fat and components suffer
code bloat. Other techniques have been developed to address this
problem, but they too have limitations. COM, for example,
requires that a new interface be published rather than changing
an existing interface. While this works, it still requires a manu-
ally-introduced extension to each component that is to implement
that new interface. The visitor design pattern allows almost arbi-
trary method extensions to existing components [Gam94].
Access to private data members and methods of components is
precluded to visitors, and this can be problematic. Also, it is use-
ful for extensions to add new data members to components, and
this too is problematic using visitors.

It is easy to recognize the concept of gluons and Origami in this
situation. Each row represents either a standardized interface or a
component that implements such an interface. Columns represent
semantically cohesive groups of methods — features — where
one column defines a “core” set of methods and other columns
represent optional additional extensions to this set. Matrix (col-
umn) folding corresponds to the construction of interfaces and
components that are customized for a desired set of interface
extensions with their implementing components.

The need for Origami arises because abstractions change over
time. Changes tend to be incremental and optional. That is,
abstractions change by incremental leaps in understanding, and
these leaps are needed for building specialized classes of applica-
tions. The contribution of this paper is a general model and a set
of techniques that allow us to evolve both conventional compo-
nents and implementations of feature refinements statically in an
automatic and declaratively-specified way.

10 Related Work

The idea that features have features is well-established in the
product-line community. Feature diagrams, which are typically
hierarchies of features, i.e., parent features are defined to have
aggregate sets of child features, was first introduced in the
FODA methodology [Kan90] and has been improved by others

Tool # of Gluons Size in Java LOC

Jak 7 26K

Jedi 22 32K

Mixin 13 24K

JamPack 15 26K

UnMixin 11 23K

Table 1. Size of Generated IDE Tools

6. Which actually it still is. Layers have interfaces, although in
recent papers including this one, this “feature” of layer imple-
mentation has been down-played. See [Car02][McD01].

10

[Cza02]. Our contribution shows how these ideas translate into
product-family models that are based on feature refinements.

As mentioned earlier, there are other models of program develop-
ment that seem very similar to GenVoca, the most prominent of
which are AspectJ and Hyper/J. AspectJ [Asp02] offers two
flavors of cross-cutting implementations: static and dynamic.
Static cross-cuts are almost identical to GenVoca layers: they can
add new data members and new methods to existing classes.
Dynamic cross-cuts, where explicit pointcut-advice pairs are
defined, can emulate the refinement (overriding) of methods
offered by inheritance. What aspects cannot currently represent
is the addition of new classes; in GenVoca terms, aspects only
extend existing classes. (At least, we have been unable to add
classes in aspect definitions that can be subsequently refined).
With simple work-arounds, we have implemented GenVoca gen-
erators using AspectJ. These preliminary results suggest that
compositions of layers can be modeled as compositions of
aspects. Therefore, we believe that the Origami example in this
paper can be implemented using AspectJ and thus our results
are relevant to AOP in that they show how aspects can scale to
product-families.

Admittedly, AspectJ can do much more than just implement
layers (modulo our comments above), and in fact, we are focus-
sing on the least novel part of AspectJ. But it is also the case
that what we and others have been able to do with GenVoca gen-
erators has never been done in AOP. Our work provides an
opportunity to enhance AOP’s appeal from a novel direction.

Our work is more closely related to Multi-Dimensional Separa-
tion of Concerns (MDSC). MDSC is the idea that modularity
relationships can be understood in terms of an n-dimensional
space, called a hyperspace, of units [Tar99][Oss01][Oss02]. A
unit can be primitive (such as an individual method or variable)
or compound (e.g., a class or package). Each dimension is associ-
ated with a set of similar concerns, such as a set of classes or a set
of features; different values along a dimension are different
members of this set (e.g., class1…classn or feature1…featuren).
A hyperslice is the set of units that pertain to a concern; it is an
(n-1)-dimensional space where one coordinate value (e.g., a con-
cern) is specified. A hypermodule is a set of hyperslices and a set
of integration relationships that dictate how the units of hyper-
slices are to be integrated or composed to form a program.

Hyper/J is the flagship tool for MDSC [Tar01]. We have used
Hyper/J to implement GenVoca product-line models. GenVoca
layers have direct implementations as hyperslices, and layer
compositions are hyperslice compositions. Again, we believe
that the Origami model and its results are directly applicable to
Hyper/J. Origami is a 2-dimensional example of MDSC, where
both dimensions are features and units are gluons. Further, the
strength of MDSC models is that they do not impose fixed modu-
larization hierarchies, and this flexibility is present in Origami
matrices.

In summary, GenVoca, Hyper/J (MDSC), and AspectJ (AOP)
have substantial overlaps. What distinguishes GenVoca and
Origami is an algebra for organizing features into programs.
Origami clarifies the relationship between different features and

leads to declarative specifications (e.g., GUIs) for tools that auto-
matically compose features into programs and program-families.

Other related work deals with tool integration [Sul92]. Cross-
cuts are problematic when new features can impact every product
in a product-family. However, instead of designing a system to
easily handle features, [Sul92] explored how a product family
can be designed in such a way that new features can be added by
modifying a single class — a design that eliminates cross-cuts.
The advantage is that it can be applied to legacy software and
that it ensures that existing tools will be able to work with new
additions to the program family without recompilation. The
authors emphasize that in their design, the cost of evolutionary
change is proportional to its apparent size in specification. The
disadvantage is that this technique only applies to some features,
so in fact their approach is complimentary to AOP.

11 Conclusions

Raising the level of abstraction in modularity has always been
beneficial. It hides extraneous details that unnecessarily compli-
cate designs and enables new or better analyses to be performed
because abstractions are explicit and haven’t been compiled
away.

Features have proven their value in raising the level of abstrac-
tion in modularity in building and customizing individual pro-
grams. The question is: do features scale to larger program
organizations, such as program families? We showed that they
do, although this is certainly not a first (e.g., [Bat01]). However,
what is new is our recognition that formerly “atomic” features
are actually compositions of more primitive features, which we
called gluons. Gluons are arranged and composed in very regular
ways, so that compositions of gluons yields both familiar and
formerly “atomic” features, as well as an interesting and what we
now believe is a common phenomena of facets or “features of
features”. Facets cross-cut features and compositions of them
yield fully-formed features. In essence, we have identified a new
class of sophisticated composition relationships among features
that were not previously known. These ideas are important,
because we believe others will encounter them as feature refine-
ment models scale to address more complex systems.

There is anecdotal evidence that supports our work. Engineers
have repeated the observation that there is something about pro-
gram scale that introduces complexity one doesn’t find in small
programs. Our work reveals one reason: there are sophisticated
relationships and constraints that exist among gluons when build-
ing program families. If there is no way (or only ad hoc ways) of
expressing and satisfying these constraints, it is no wonder why
scaling programs introduces complexity. At least now we have a
way to express and reason about such constraints. Undoubtedly
there are even more relationships to be discovered.

The key to our success is how we represent and manipulate these
relationships. Using GenVoca formulations allows us to elegantly
capture these regularity relationships as matrices of functions and
constants that can be folded into equations. (That is, we can rea-
son about software designs as equations). Moreover, our experi-

11

ence has shown GenVoca implementations unifies domain-
specific languages with programming practice. DSLs are another
important way of raising the level of abstraction in programming
and DSLs fit neatly into the GenVoca approach. More impor-
tantly, DSLs fit neatly in with refinements, and this is consistent
with the observations of others. Finally, the most important con-
tribution of our work is a more powerful model of software gen-
eration: we can now automatically generate a class of product
families from declarative specifications. With Origami, we are
now synthesizing applications of far greater complexity than we
ever have before.

Acknowledgements. We thank Jack Sarvela for pointing out the
relationship of Origami to internationalization customizations of
Windows programs. We also thank anonymous referees for help-
ing us to better clarify our presentation.

12 References

[Asp02] AspectJ. Programming Guide. http://aspectj.org/
doc/proguide

[Bat92] D. Batory and S. O’Malley, “The Design and Implementation
of Hierarchical Software Systems with Reusable Components”,
ACM TOSEM, October 1992.

[Bat97] D. Batory and B.J. Geraci, “Composition Validation and
Subjectivity in GenVoca Generators”, IEEE Transactions on
Software Engineering, Feb. 1997, 67-82.

[Bat98] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for
Implementing Domain-Specific Languages”, 5th Int. Conf. on
Software Reuse, Victoria, Canada, June 1998.

[Bat00] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design
Wizards and Visual Programming Environments for GenVoca
Generators”, IEEE Trans. Software Engineering, May 2000.

[Bat01] D. Batory, C. Johnson, R. MacDonald, and D. von Heeder,
“Achieving Extensibility Through Product-Lines and Domain-
Specific Languages: A Case Study”, to appear in ACM TOSEM.

[Bax92] I. Baxter, “Design Maintenance Systems”, CACM, April
1992.

[Car02] R. Cardone, A. Brown, S. McDirmid, and C. Lin, “Using
Mixins to Build Flexible Widgets”, AOSD 2002.

[Cza00] K. Czarnecki, U.W Eisnecker. Generative Programming:
Methods, Tools, and Applications. Addison Wesley, 2000.

[Cza02] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker,
“Generative Programming for Embedded Software: An Industrial
Experience Report”, GCSE/SAIG 2002.

[Deu97] A. van Deursen, P. Klint, “Little Languages: Little
Maintenance?”, SIGPLAN Workshop on Domain-Specific
Languages, 1997.

[Dij76] E.W.Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

[Fla98] Flatt, M., Krishnamurthi, S., and Felleisen, M. “Classes and
Mixins”. ACM Principles of Programming Languages, San Diego,
California, 1998, 171-183.

[Gam94] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley,
1994.

[Gri00] M. Griss, “Implementing Product-Line Features by
Composing Component Aspects”, First International Software
Product-Line Conference, Denver, August 2000.

[Har93] W. Harrison and H. Ossher, “Subject-Oriented Programming
(A Critique of Pure Objects)”, OOPSLA 1993, 411-427.

[Jav01] Javadoc — The Java API Documentation Generator. Sun
Microsystems, http://java.sun.com/j2se/1.3/docs/
tooldocs/solaris/javadoc.html

[Kan90] K.C. Kang, et al., Feature-Oriented Domain Analysis
Feasibility Study, SEI 1990.

[Kic97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin, “Aspect-Oriented Programming”, ECOOP
97, 220-242.

[Kic01] G Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm, W.G.
Griswold. “An overview of AspectJ”. ECOOP 2001.

[Mez98] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play
Components for Evolutionary Software Development”, OOPSLA
1998, 97-116.

[McD01] S. McDirmid, M. Flatt, and W.C. Hsieh, “Jiazzi: new-Age
Components for Old-Fashioned Java”, OOPSLA 2001.

[Orl02] D. Orleans, “Incremental Programming with Extensible
Decisions”, AOSD 2002.

[Oss01] H. Ossher and P. Tarr. “Using Multi-Dimensional Separation of
Concerns to (Re)Shape Evolving Software.” CACM October 2001.

[Oss02] H. Ossher and P. Tarr, “Multi-dimensional separation of
concerns and the Hyperspace approach.” In Software Architectures
and Component Technology (M. Aksit, ed.), 293-323, Kluwer, 2002.

[Ree92] T. Reenskaug, et al., “OORASS: Seamless Support for the
Creation and Maintenance of Object-Oriented Systems”, Journal of
Object-Oriented Programming, 5(6): October 1992, 27-41.

[Ses00] R. Sessions, COM+ and the Battle for the Middle Tier, Wiley
Computer Publishing, 2000.

[Sim95] C. Simonyi, “The Death of Computer Languages, the Birth of
Intentional Programming”, NATO Science Committee Conference,
1995.

[Sma98] Y. Smaragdakis and D. Batory, “Implementing Layered Designs
with Mixin Layers”. 12th European Conference on Object-Oriented
Programming, ECOOP, July 1998.

[Sma99] Y. Smaragdakis and D. Batory, “Scoping Constructs for
Program Generators”. Generative and Component-Based Software
Engineering (GCSE), September 1999.

[Sma00] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs”, to appear ACM TOSEM.

[Sul92] Sullivan, K.J. and Notkin, D., ``Reconciling Environment
Integration and Software Evolution,'' ACM TOSEM July 1992.

[Syp97] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 1997.

[Tar99] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N Degrees
of Separation: Multi-Dimensional Separation of Concerns”, ICSE
1999.

[Tar01] P Tarr, H. Ossher. Hyper/J User and Installation Manual.
IBM Corporation, 2001. http://www.research.ibm.com/
hyperspace.

[Van96] M. Van Hilst and D. Notkin, “Using Role Components to
Implement Collaboration-Based Designs”, OOPSLA 1996, 359-369.

