
1

Composition Validation and Subjectivity in GenVoca Generators1

Don Batory and Bart J. Geraci
Department of Computer Sciences

The University of Texas, Austin, Texas 78712
{batory, geraci}@cs.utexas.edu

Abstract

GenVoca generators synthesize software systems by composing components from reuse libraries.
GenVoca components are designed to export and import standardized interfaces, and thus be plug-
compatible, interchangeable, and interoperable with other components. In this paper, we examine
two different but important issues in software system synthesis. First, not all syntactically correct
compositions of components are semantically correct. We present simple, efficient, and domain-
independent algorithms for validating compositions of GenVoca components. Second, components
that export and import immutable interfaces are too restrictive for software system synthesis. We
show that the interfaces and bodies of GenVoca components are subjective, i.e., they mutate and
enlarge upon instantiation. This mutability enables software systems with customized interfaces to
be composed from components with “standardized” interfaces.

1 Introduction

Software system generators automate the development of software for large families of applications. Gen-
erators automatically transform compact, high-level specifications of target systems into actual source
code, and rely on libraries of parameterized, plug-compatible, and reusable components for code synthesis.

Generators [Bla91, Bat92a, Bax92, Gom94, Lei94, Nin94] are among many approaches that are being
explored to construct customized software systems quickly and inexpensively from reuse libraries.
CORBA and its variants simplify the task of building distributed applications from components [Ude94];
CORBA can simplify the manual integration of independently-designed and stand-alone modules in a het-
erogeneous environment. In contrast, generators are closer to toolkits [Gri94], object-oriented frameworks
[Joh92], and other reuse-driven approaches (e.g, [Wei90, Sit94]), because they focus on software domains
whose components are not stand-alone, that are designed to be plug-compatible and interoperable with
other components, and that are written in a single language. The particular class of generators that we con-
sider in this paper, called GenVoca generators [Bat92a], is distinguished from the above approaches in that
their components are parameterized program transformations that encapsulate consistent data and opera-
tion refinements. These components also encapsulate logic to automate domain-specific decisions about
when to use a particular algorithm and when to apply a domain-specific optimization. For many domains,
such decisions are essential for generating efficient code.

A fundamental problem for all component-based software development technologies is: does a composi-
tion of components meet the behavioral (or functional) specifications of the target system? For the case of
GenVoca generators, this is the problem of design rule checking, i.e., the detection of illegal combinations
of components. To be viable tools of future software development environments, it is critical that genera-
tors validate component compositions automatically (and suggest repairs when errors are detected), rather
than burdening users with the impossible task of debugging generated code.

1. This work was supported in part by Microsoft, Schlumberger, the University of Texas Applied Research Labs, and the U.S.
Department of Defense Advanced Research Projects Agency in cooperation with the U.S. Wright Laboratory Avionics Directorate
under contract F33615-91C-1788.

2

In the first part of this paper, we present domain-independent algorithms for design rule checking in Gen-
Voca generators, and the domain-specific variants that we used in the P2 and Genesis projects. Our work is
related to Perry’s Inscape environment, which (among other topics) dealt with consistency checking in
software composition models [Per87-89b]. We adapt and generalize the component consistency checking
approach of Inscape to exploit the semantics of layers in the construction of hierarchical software systems.
We explain how GenVoca models of software domains are grammars, where sentences correspond to com-
ponent compositions. By encoding component properties as inherited and synthesized attributes, we find
that attribute grammars provide a natural formulation of the legal sentences (component compositions,
software systems) of a domain. We illustrate our results by explaining how the P2 data structure generator
validates component compositions.

Another fundamental problem in software component technologies is: how can the variability of interfaces
of systems within a domain be explained and synthesized? Not all systems of a software domain export
exactly the same interface; there will always be variations. Ossher and Harrison call this variability subjec-
tivity [Har93-94, Oss92-95]: no single interface can adequately describe any object that is common to a
family of applications. Such objects must be described by a family of interfaces; the particular interface
that is appropriate for an object for a given application is subjective (i.e., application-dependent).

In the second part of this paper, we explore the relationship of subjectivity to GenVoca. (We believe that
subjectivity impacts all generators, but here we focus exclusively on its impact on GenVoca). We show that
typical component interfaces (i.e., ones that are cast-in-concrete and that do not change upon instantiation)
are far too rigid to be practical; GenVoca components have interfaces and bodies that enlarge automatically
upon instantiation and hence are subjective (i.e., system-dependent). We review techniques that have been
used to achieve subjective interfaces in four independently-conceived generators and present a model that
unifies them.

2 The GenVoca Model of Software System Generation

GenVoca is a domain-independent model for defining scalable families of hierarchical systems from com-
ponents. Its basic premise is that standardizing both the fundamental abstractions of mature software
domains and their implementations, one can define plug-compatible and interchangeable software “build-
ing blocks”. Although the number of fundamental abstractions in a domain is rather small, there is a huge
number of potential implementations. GenVoca also advocates a layered decomposition of implementa-
tions, where each layer or component encapsulates a primitive domain feature. The advantage of GenVoca
is scalability [Bat93, Big94]: component libraries are relatively small and grow at the rate new components
are entered, whereas the number of possible combinations of components (i.e., distinct software systems in
the domain that can be defined) grows geometrically. Generators that use GenVoca organizations have
been built for the domains of avionics, data structures, databases, file systems, and network protocols
[Cog93, Bat93, Hei93, Hut91].

Components and Realms. A hierarchical software system is defined by a series of progressively more
abstract virtual machines [Dij68]2. A component or layer is an implementation of a virtual machine. The
set of all components that implement the same virtual machine is called a realm; effectively, a realm is a
library of plug-compatible and interchangeable components. In Figure 1a, realms S and T have three com-
ponents, whereas realm W has four.

2. An object-oriented virtual machine is a set of classes, their objects, and functions that work cooperatively together to imple-
ment a system (or subsystem). However, how these classes, objects, and functions are implemented is not known to the clients of
the virtual machine.

3

Parameters and Transformations. A component has a (realm) parameter for every realm interface that it
imports. All components of realm T, for example, have a single parameter of realm S.3 4This means that
every component of T exports the virtual machine interface of T and imports the virtual machine interface
of S. Thus, each T component encapsulates a mapping or transformation between the virtual machines T
and S. Such transformations often involve domain-specific optimizations and the automated selection of
appropriate algorithms.

Systems and Type Equations. A software system is modeled by a composition of components called a type
equation. Consider the following two equations:

System_1 = d[b];
System_2 = f[a];

System_1 is a composition of component d with b; System_2 composes f with a. Note that both systems
are equations of type T (because the outermost component of both systems are of type T). This means that
both implement the same virtual machine and hence, System_1 and System_2 are interchangeable
implementations of the interface of T (with respect to functionality, not performance).5

Grammars, Families of Systems, and Scalability. Realms and their components define a grammar whose sen-
tences are software systems. Figure 1a enumerated realms S, T, and W; the corresponding grammar is
shown in Figure 1b. Just as the set of all sentences defines a language, the set of all component composi-
tions defines a family of systems. Adding a new component to a realm is equivalent to adding a new rule to
a grammar; the family of systems enlarges automatically. Because large families of systems can be built
using few components, GenVoca is a scalable model of software construction.

Symmetry. Just as recursion is fundamental to grammars, recursion in the form of symmetric components
is fundamental to GenVoca. More specifically, a component is symmetric if it exports the same interface
that it imports (i.e., a symmetric component of realm W has at least one parameter of type W). Symmetric
components have the unusual property that they can be composed in almost arbitrary ways. In realm W of
Figure 1, components n and m are symmetric whereas p and q are not. This means that compositions
n[m[p]], m[n[p]], n[n[p]], and m[m[p]] are possible, the latter two showing that a component can be
composed with itself. In general, the order in which components are composed can significantly affect the
semantics, performance, and behavior of the resulting system [Bat92a].

Design Rules and Domain Models. In principle, any component of realm S can instantiate the parameter of
any component of realm T. Although the resulting equations would be type correct, the equation may not
be semantically correct. That is, there are often domain-specific constraints in addition to implementing a
particular virtual machine that instantiating components must satisfy. These additional constraints are

3. Parameterizations that we examine in this paper are simple enough to dispense with formal parameter names.
4. Components may have other parameters in addition to realm parameters. In this paper, we only focus on realm parameters.
5. Note that composing components can be interpreted as stacking layers in hierarchical software systems. We use the terms com-
ponent and layer interchangeably in this paper.

S := a | b | c ;

T := d S | e S | f S ;

W := n W | m W | p | q T S ;

S = { a, b, c }

T = { d[S], e[S], f[S] }

W = { n[W], m[W], p, q[T,S] }

Figure 1. Realms, Components, and Grammars

(a) (b)

4

called design rules. Design rule checking (DRC) is the process of applying design rules to validate type
equations. A domain model for a GenVoca generator are realms of components and design rules that gov-
ern component composition.

3 Part I: Design Rule Checking in GenVoca Generators

Although the need for design rules seems evident, what exactly is the form that design rules should take?
How complicated are typical design rules? Are there different kinds of rules? Can design rule checking be
done automatically, or will human guidance be needed? To answer these questions, we briefly review the
domain model of the P2 generator and illustrate some of its design rules. We then develop a model of DRC
and outline simple algorithms based on attribute grammars that rely on shallow consistency checking.

3.1 P2 Domain Model

P2 is a GenVoca generator for container data structures [Bat93-94]. The domain model of P2 relies on two
realms: ds and mem. ds components export a standardized container-cursor interface. Among the compo-
nents of ds are those that implement common data structures (e.g., binary trees, doubly-linked ordered and
unordered lists) and storage options (e.g., free lists of deleted elements, sequential and random storage).
mem components export standardized memory allocation and deallocation operations. Among its members
are components that manage space in persistent and transient memory.

ds = { bintree[ds], // binary tree
dlist[ds], // unordered doubly linked list
odlist[ds], // key-ordered list
avail[ds], // free list of deleted elements
index[ds, ds], // key indexing
malloc[mem], // heap storage
array[mem], // array storage
inbetween[ds], // deletion actions
top2ds[ds], // first layer of a ds expression
… }

mem = { transient, // transient memory
persistent, // persistent memory
 … }

Currently there are over fifty components in P2, most of which are symmetric. Container data structures
are defined by type equations that reference from five to twenty components. Unfortunately, the correct-
ness of even the simplest equations is not obvious. Validation is complicated by the fact that many compo-
nents have nonobvious rules for their use.

As an example, the inbetween component encapsulates algorithms that are common to many data struc-
ture components (e.g., bintree and dlist). These algorithms deal with the positioning of a cursor
immediately after an element has been deleted (e.g., does the cursor point to a “hole” or should it be posi-
tioned on the next element in the container?). Instead of replicating these algorithms in every data structure
component (and then dealing with the maintenance/consistency problems that would ensue), the algo-
rithms are written once (i.e., factored) as the inbetween component. A consequence of this factoring is
that a precondition for using a data structure component is the previous appearance of inbetween in a
type equation. More specifically, the valid use of inbetween requires that a single copy of inbetween be
present in a type equation that uses at least one data structure component (dlist, bintree, etc.) and it

5

should precede all such components in the equation. The right equation, below, shows a correct usage 
i.e., inbetween precedes all data structure components. The wrong equation, below, shows an incorrect
usage: a data structure component dlist appears prior to inbetween.

right = …inbetween[…[dlist[dlist[…]]]]…;
wrong = …dlist[…[inbetween[dlist[…]]]]…;

Rules such as this should not be borne by programmers; they are much too easy to forget and to be misap-
plied. A design rule checker that tests such rules automatically and reports errors when they occur removes
a great burden from P2 users. We first present a general model of design rule checking in Section 3.2 and
then show how we adapted the model to P2 and Genesis generators in Section 3.3 and Section 3.4.

3.2 A Model of Design Rule Checking

Perry’s Inscape is an environment for managing the evolution of software systems [Per87-89b]. Among the
features it supports is consistency checking, a simplified form of verification. Components (i.e., opera-
tions) have preconditions for their use and postconditions (that describe what is known to be true as a result
of an operations’s execution). A novel aspect of Inscape is that components additionally have obligations
which are conditions that must be satisfied by any system that uses a component. Obligation predicates
require “action-at-a-distance”: although they might be satisfied locally by adjacent components, generally
they depend on global properties of the system (i.e., on properties of nonadjacent components). Obliga-
tions are propagated to their enclosing modules where eventually they must be satisfied by some postcon-
ditions. Another aspect of Inscape is that full-fledged verification is not attempted. Instead, primitive
predicates are declared and informally defined, typically with their names hinting at their semantics. Pre-
conditions, postconditions, obligations are expressed in terms of these predicates, thus enabling a practical
but powerful form of “shallow” consistency checking to be achieved using pattern matching and simple
deductions.

The Inscape approach can be adapted to design rule checking by exploiting the semantics of layers. First,
design rule checking examines states of software system (type equation) development; it does not model
states of system execution. Figure 2 illustrates the distinction. Suppose s[Q] is a system that is parameter-
ized by realm Q. Suppose further that k is a component of Q. Composing s with k maps system s to system
s’ = s[k]. To model states of system (type equation) development, every system is described by a set of
attributes whose values define its states or properties. Thus, we might define an attribute State whose
value is no-loops in system s (meaning that s has no loops), and after the instantiation, State has the
value has-loops (meaning that s’ has loops). Design rule checking deals with the testing and assign-
ment of system design states; it assumes that all transformations (components) are semantically correct.

Second, it is common for GenVoca components to have preconditions and obligations that are not satisfied
locally, i.e., by components that are adjacent to it in a type equation. Preconditions and obligations of a
component k are satisfied “at-a-distance”, that is, by components that either lie (far) beneath k or (far)
above k in a type equation.6 Moreover, the properties exported by k to “higher” layers are generally not

system s system s’

parameter

State = no-loops State = has-loops

Figure 2. Modeling States of Program Development

instantiation

6

the same properties that are exported to “lower” layers. For this reason, we found it necessary to distin-
guish two kinds of preconditions and postconditions.7

Postconditions are properties of k that are to be exported to components beneath k in a type equation. Pre-
conditions define the properties that must hold for k to work properly; they test the cumulative postcondi-
tions of components that lie above k in a type equation.

Example. Suppose component k has a precondition that attribute A must have the value v (see
Figure 3a). For k to be used correctly, there must be some component, say u, that sits above k whose
postcondition sets A = v. Note that u need not be immediately above k; u might reside far above k.

Postrestrictions are properties of k that are to be exported to components above k in a type equation. Pre-
restrictions (which correspond to Inscape obligations) are preconditions for instantiating component
parameters; they test the cumulative postrestrictions of components that lie beneath k in a type equation.

Example. Suppose component k has a single parameter with the prerestriction that attribute A must have
the value w (see Figure 3b). For the parameter to be correctly instantiated, there must be some compo-
nent, say d, that lies below k whose postrestriction sets A = w. Analogously, d need not be immediately
beneath k; d might reside far below k.

Given GenVoca design rules (i.e., preconditions, postconditions, prerestrictions, and postrestrictions) of
every component of a type equation, design rule checking involves:

• a top-down propagation of postconditions and the testing of component preconditions, and

• a bottom-up propagation of postrestrictions and the testing of parameter prerestrictions.

In the following sections, we present general algorithms for top-down and bottom-up design rule checking.
We initially place no restrictions on the complexity of DRC predicates. Later in Section 5, however, we
show that predicates for domain-customized instances of our algorithms are very simple and are consistent
with the shallow consistency checking approach taken in Inscape [Per87-89b].

3.2.1 Top-Down Design Rule Checking

Consider component k[x] which has a single parameter x. k has both a precondition (precondition-k)
and a postcondition (postcondition-kx). Let top denote the set of attribute values that are known to
hold at the point immediately above k in a type equation. Component k is correctly used if top implies k’s
preconditions (i.e., top ⇒ precondition-k). The set of attribute values that hold immediately beneath
k in the type equation is computed by applying the postconditions of k to the current conditions (i.e., top-

6. We use the terms “higher” and “lower” refer to relative positions of components within a type equation. The outermost compo-
nent of an equation is the “highest” component, and the innermost components are the “lowest”.
7. There may be some dispute on the proper terminology to use; preconditions and postconditions usually refer to run-time prop-
erties, not design-time properties. As there seems to be no commonly used terms for design-time preconditions and postconditions,
we chose not to invent more terms.

ku

k

precondition: A = v

postcondition: A = v

d

prerestriction: A = w

postrestriction: A = w

(b)(a)

Figure 3. Different Kinds of Design Rules

7

x = postcondition-kx ⊕ top). The operator ⊕ is the postcondition propagation operator. When type
equations correspond to a linear stack of components, the testing of preconditions and the propagation of
postconditions is straightforward: only two operators ⊕ and ⇒ are needed.

In general, type equations are trees of components. Branching arises when components have multiple
parameters, e.g., d[x,y]. Each parameter of a component has its own postcondition that defines the set of
attribute values that hold for that parameter; these are the values that are propagated to any system instanti-
ating that parameter. In the case of component d[x,y], parameter x would have postcondition-dx as
its postcondition and parameter y would have postcondition-dy.8 Let top be the set of conditions that
hold prior to component d in a type equation, top-x be the set of conditions that hold for parameter x after
d has been applied, and top-y be the set of conditions that hold for parameter y. top-x is computed by
applying x’s postcondition to top (i.e., top-x = postcondition-dx ⊕ top) and top-y is computed
similarly (top-y = postcondition-dy ⊕ top). Given the operators ⊕ and ⇒ , there is a straightfor-
ward, recursive algorithm for the top-down propagation of postconditions and the testing of component
preconditions [Bat95].

3.2.2 Bottom-Up Design Rule Checking

Every parameter of a component has preconditions (called prerestrictions) for instantiation; every compo-
nent also has postconditions (called postrestrictions) that are exported to higher layers in a type equation.
Figure 4 depicts a typical situation: components q, r, s, t, and w are composed hierarchically, and q has a
single parameter. In general, the prerestrictions for q are not satisfied by the component r that instantiates
its parameter, but rather by components deep within the system rooted at r. That is, the prerestrictions of q
may be satisfied by r or s or t or w, or any combination thereof.

This gives rise to a different interpretation of instantiation, namely that systems instantiate parameters, not
components. Every system exports a realm interface plus a set of attribute values (called system postre-
strictions) that higher layers can reference. A component parameter is correctly instantiated if the postre-
strictions of the instantiating system imply that parameter’s prerestrictions.

Consider component u[x]. u has both a prerestriction (prerestriction-ux) and a postrestriction
(postrestriction-u). Let bottom denote the set of attribute values that are exported by a system that
instantiates parameter x. x is instantiated correctly if bottom implies its prerestrictions (i.e., bottom ⇒
prerestriction-ux). The set of attribute values that are exported by the system rooted at u is computed
by applying the postrestrictions of u to the attribute values of the system that it imported (i.e., bottom’ =
postrestriction-u ⊕ bottom). Note that the same operators ⇒ and ⊕ used in top-down design rule
checking are used in bottom-up design rule checking. Just as in the case of top-down design rule checking,
there is a simple, recursive algorithm for the bottom-up propagation of postrestrictions and the testing of
parameter prerestrictions [Bat95].

8. Postconditions for different parameters are generally not the same. For example, the realm of a parameter can be expressed as a
postcondition. If a component had two parameters and the realms for both were different, so too would be their postconditions.

q

r

s

t

system rooted at r

w

Figure 4. System Instantiation of Parameters

8

3.2.3 Attribute Grammars

McAllester [McA94] observed that attribute grammars unify realms, components, attributes, top-down and
bottom-up design rule checking. From previous sections, we know that realms of components define a
grammar. Attributes model states of system (type equation) development, where postconditions assign val-
ues to inherited attributes (i.e., attributes whose values are determined by component ancestors) and pos-
trestrictions assign values to synthesized attributes (i.e., attributes whose values are determined by
component descendants). The practical benefit of this connection with attribute grammars, besides the fact
that design rule checking reduces to a well-studied problem, is that common tools, such as lex and yacc,
are well-suited for writing design rule checkers, as we’ll see in Section 3.4.

3.3 Targeting DRC Algorithms to Specific Domains

The design rule checking algorithms of Section 3.2 are domain-independent. To specialize them to a par-
ticular domain, we need definitions and representations for attributes, predicates, and the operators ⊕ and
⇒ . In the following, we explain the representations that we implemented for P2; virtually the same repre-
sentations were used in Genesis.

3.3.1 Attributes

An attribute models a property that exposes a composition constraint. Although the properties in which we
are interested undoubtedly have complex formal definitions, we have found (like Perry [Per87-89b]) that in
practice they can be defined informally as attributes that assume restricted values. The values we use (any,
assert, negate, and inherit) are defined in Table 1.

Example P2 attributes are: df_present and retrieval. df_present represents the property that a
component implements logical deletions. That is, instead of physically deleting an element from a con-
tainer, the component marks the element deleted but does not immediately reclaim its space. The
retrieval attribute represents the property that a component interlinks all elements of a container to
facilitate searching. Components that implement data structures (e.g., bintree, dlist, etc.) have the
retrieval property. The assignment of assert or negate to these attributes as a postcondition or pos-
trestriction depends on whether a component satisfies the property. inherit is used when the value of an
attribute is unchanged by a component.

3.3.2 Predicates

Preconditions and prerestrictions in P2 and Genesis request specific attribute values (e.g., any, assert,
negate), but not how the attribute value was determined (e.g., inherit). Table 2 lists the four different
primitive predicates that can be defined over a single attribute. P2 predicates are simple conjunctions and
disjunctions of these primitive predicates. Conjunctive predicates, for example, are encoded as a vector of
primitive predicates that are indexed by attribute. Thus, predicate P1 ∧ P2 ∧ … ∧ Pn would be encoded as
the vector [P1, P2, …, Pn] where Pi is the primitive predicate for attribute i.

Attribute Value Interpretation

any nothing is known

assert property is asserted

negate property is negated

inherit property value is inherited from existing conditions

Table 1. Attribute Values used in P2 and Genesis

9

3.3.3 Postcondition Propagation Operator ⊕

Component postconditions and postrestrictions selectively declare new attribute values (e.g. assert or
negate) or propagate existing (inherited) values. Table 3 defines the condition propagation operator +
for a single attribute. Given a postcondition/postrestriction value vector V = [V1, V2, …, Vn] and the vector
of existing conditions E = [E1, E2, …, En], the ⊕ operator is vector addition using the + operator of Table 3:

V ⊕ E = [V1 + E1, V2 + E2, …, Vn + En]

3.3.4 Implication Operator ⇒

The implication operator → for a single attribute is defined by a truth-table (Table 4). Given a vector of
existing conditions E = [E1, E2, …, En] and a precondition/prerestriction vector P = [P1, P2, …, Pn] of a
conjunctive predicate, the implication operator ⇒ has a simple definition: all primitive predicates must be
true for the compound predicate to be true. (A simple generalization handles disjunctions).

E ⇒ P = (E1 → P1) ∧ (E2 → P2) ∧ ... ∧ (En → Pn)

3.4 Implementation Notes

The implementation of our DRC algorithms and the P2/Genesis specializations of the ⊕ and ⇒ operators
was straightforward: the source files consist of 1500 lines of lex and yacc. We wrote a general utility,
called dreck, that would allow designers to declare realms, components, and their design rules based on
the representations we noted previously for attributes, predicates, and DRC operators [Bat95]. Figure 5
shows a dreck declaration of the array component and its design rules. A component’s name, realm
membership, and realm parameters are declared on the first line. Subsequent lines define design rules. A

Predicate Interpretation

P-any true (no constraints)

P-assert attribute has assert value

P-negate attribute has negate value

P-false false (unsatisfiable)

Table 2. Primitive Predicates used in P2 and Genesis

Postcondition/Postrestriction
+ Existing Condition

Existing Condition

any assert negate

Postcondition
 or
Postrestriction

assert assert assert assert

negate negate negate negate

inherit any assert negate

Table 3. The Propagation Operator + for a Single Attribute

Existing Condition →
Precondition/

Prerestriction

Precondition or Prerestriction

P-any P-assert P-negate P-false

Existing

Condition

any true false false false

assert true true false false

negate true false true false

Table 4. The Implication Operator → for a Single Attribute

10

precondition for array’s usage is that a layer above array needs to support logical deletion. This precon-
dition is expressed by asserting the df_present property. Other design rules assert to layers above and
below that array is a retrieval layer. Such a declaration is expressed by asserting the retrieval property
as a postcondition and postrestriction.

Algorithm Efficiency. Let n denote the number of components in a type equation and let m denote the num-
ber of attributes. A straightforward implementation of the DRC algorithms is as a tree traversal, where
each node is visited twice (once on the way down from the root, and once on the way up from visiting
leaves). At each visit, m attribute values are propagated. Thus, the complexity of our algorithm is O(mn).

To give readers upper estimates of n and m, the most complicated type equations that we have encountered
in Genesis and P2 have approximately 30 components (i.e., n ≤ 30). Genesis maintains the greatest number
of attributes (m=14), whereas P2 has fewer (m=8), even though both generators have libraries of 50 compo-
nents. Although it is not difficult to envision greater values for m and n, substantially greater values (e.g.,
m, n > 100) seem unlikely.

Extensibility. Adding new components to a domain model is not difficult. The component designer must
determine whether existing attributes are sufficient to capture illegal compositions (in which case compo-
nent addition is trivial) or whether new attributes are needed. In practice, adding more attributes has not
been problematic because the number of components in generator libraries is modest (and because of scal-
ability, we would expect the number to remain small). For example, ADAGE has the largest library (about
400 components) which avionics experts have no difficulty managing.

Explanation-Based Error Reporting. Detecting composition errors is only part of the problem of debugging
type equations; repairing equations are also important. Precondition ceilings is a technique used in Inscape
that we found particularly effective. Suppose component Y’s precondition A=v failed. This means that
some component above Y, say X, set A ≠ v as a postcondition. To repair this error, there needs to be another
component, Z, that must be inserted below X and above Y whose postcondition is A=v. Techniques such as
this (including obligation/prerestriction ceilings) form the basis of a powerful explanation-based error
reporting scheme. The following example illustrates the idea.

Example. Suppose we would like a P2 container implementation that stores elements in a binary tree,
whose nodes are stored sequentially in transient memory. A first attempt at a composition might be:9

first_try = top2ds[bintree[array[transient]]];

array : ds [mem] {
logical deletion layer required
above array

precondition assert df_present

assert that array is a retrieval
layer to all descendants and
ancestors

postcondition assert retrieval
postrestriction assert retrieval

}

name of component

realm of component

component parameters

Figure 5. Specification of Design Rules

design rules

11

Our DRC algorithms report the following:

Precondition errors:
an inbetween layer is expected between top2ds and bintree
a logical deletion layer is expected between top2ds and array

Prerestriction error:
parameter 1 of top2ds expects a subsystem with a qualification layer

The first error reminds us (from Section 3.1) that we forgot that a bintree layer requires the inbetween
layer to be above it. Not only that, the error message states exactly how to repair the equation; there is only
one location where inbetween can go (i.e., in between top2ds and bintree). The second error reminds
us that array requires a logical deletion layer above it. Further, this layer must be below top2ds. The
third error tells us that a qualification layer is required below top2ds. Users with minimal experience with
P2 are able to repair all of these errors easily. But suppose repairs lead to the following equation:

second_try = top2ds[inbetween[bintree[qualify[delflag[array[transient]]]]];

where qualify is a qualification layer and delflag is a logical deletion layer. The DRC response to this
equation is:

Precondition error:
a retrieval layer (bintree) is not expected above qualify

This error tells us that all retrieval layers must lie beneath qualify; the fix is to transpose bintree and
qualify, which results in a correct equation:

correct = top2ds[inbetween[qualify[bintree[delflag[array[transient]]]]];

In general, DRC error messages direct users to modify an incorrect equation to the nearest set of correct
type equations in the space of all equations. We have found this advice works well. With minimal experi-
ence, P2 users typically come very close to their desired equation on the first attempt; DRC messages
enable them to correct errors quickly.

3.5 Related Work and Insights

Related Work. DRACO used a form of shallow consistency checking (called assertions and conditions) in
composing layers of transformations [Nei80]. DaTE, the design rule checker for Genesis [Bat92b] sup-
ported only component preconditions. The limitations of DaTE led to the work presented in this paper.

McAllester developed a functional programming language, VAG, based on variational attribute grammars,
to address the design rule checking issues for the ADAGE generator [McA94]. Preconditions and prere-
strictions were treated uniformly as constraints. The constraints associated with a component were
expressed as a VAG program. When an avionics system was composed from components, the set of con-
straints that had to be satisfied was defined by the composition of corresponding VAG programs. The VAG
interpreter had limited reasoning abilities to infer values of unbound VAG program parameters.

9. bintree links elements of a container onto a binary tree; the nodes of the binary tree are stored sequentially in an array;
the array will reside in transient memory. The top2ds layer must root all P2 type equations; had top2ds been absent,
the DRC algorithms would report additional errors.

12

Parameterized programming is intimately associated with the verification of component compositions.
Goguen’s work on OBJ and library interconnection languages, such as LIL and LILEANNA [Gog86,
Tra93], are basic. The RESOLVE project explores the design of reusable and parameterized components,
component certifiability, and the certifiability of component compositions [Sit94]. Although there are
many similarities among these works and ours, there is a basic difference: there is no “action-at-a-dis-
tance” in the other work. Vertical compositions of OBJ, LILEANNA, and RESOLVE components are ver-
ified locally; components constrain the behavior of immediately adjacent components, and not components
that reside far above or below them in a hierarchy.

Our work is also an example of the types of consistency checking problems encountered in software archi-
tectures [Per92, Gar94-95, Mor94]. To our knowledge, other than Inscape, validating compositions of
components in the context of architectures has only begun to be addressed.

Insights. Our work on DRC was actually developed independently of DRACO and Inscape. That our
results are so similar is encouraging: we suspect that “shallow” consistency checking is a general tech-
nique for automatic software system generation.

An important distinction between Inscape and our work is the scale of componentry. An Inscape compo-
nent is a function; a GenVoca component is a subsystem (i.e., a suite of interrelated classes). Perry noted
that there can be many primitive predicates when there are thousands or tens of thousands of functions in a
system. In contrast, type equations rarely reference more than fifty components, and the number of primi-
tive predicates that we have encountered in modeling different and multiple domains is modest. So, it
would seem that scaling the size of a component reduces the number of primitive predicates (attributes)
that need to be maintained. This seems counterintuitive.

Our best explanation for this centers on two observations. First, we believe that modeling states of software
system development (instead of states of execution) reduces the number of properties to examine. Second,
we believe that GenVoca offers a powerful methodology for the design of reusable components. Object-
oriented design methodologies, for example, are powerful because of their ability to manage and control
software complexity [Boo91]. It is not difficult to recognize that standardizing domain abstractions and
their programming interfaces (i.e., the core of GenVoca) is also a powerful way of managing and control-
ling the complexity of software in a family of systems. We believe that standardization makes some prob-
lems tractable that would otherwise be very difficult. Composibility of software components is one
example (c.f., [Gar95]) and DRC is another (c.f. [Kat92]).

13

4 Part II: Subjectivity in GenVoca Generators

A domain model is a design for a family of systems. Recognizing fundamental objects (or classes) that
appear in many or all systems is central to domain modeling. A common trait of domains is that not all of
its systems export the same interface. Thus, it is quite possible for two systems to export exactly same fun-
damental object, but disagree on the set of operations (i.e. methods) that can be performed on it.

Consider modeling a domain of textbook applications. Textbooks would clearly be fundamental objects. It
seems reasonable to give textbooks the attributes author, title, and subject. This would be acceptable
if all applications needed to distinguish textbooks on the basis of these attributes. They would not be
appropriate, however, if some applications maintained stock and volume information for a warehouse
(where at least the subject attribute is irrelevant), or if other applications only recorded the materials
used in manufacturing textbooks (where author, title, and subject are irrelevant). Clearly, the data
and operations that are encapsulated by an object will vary from application to application.

This variability of object interfaces is a consequence of subjectivity [Har93-94, Oss92-95]: when modeling
software domains, objects don’t have single interfaces, but are described by a family of related interfaces.
The interface of an object for a given application will be subjective (i.e., application-dependent).

Subjectivity is clearly relevant to software reuse. In some sense, software is analogous to a photograph.
Experiences in photography tell us that no single perspective captures all aspects of an object; every per-
spective exposes some features, hides others, and skews the remaining. Analogously, software encodes a
particular “view” or “perspective” of an object relative to the needs of a particular application. Reusing
software written for one application to build another application is possible only if the views of shared
objects are compatible.

Subjectivity is also relevant to generators. Generators use one of two different ways to model families of
interfaces. One way is to use multiple inheritance [Gom94]. Multiple inheritance elegantly expresses prim-
itive increments of interface variation and the means to combine these primitives to define the family of
interfaces that arise in a domain. However, multiple inheritance fails to adequately capture the combinato-
rial numbers of implementations of these interfaces; only limited families of implementations can be
expressed [Har92, Big94].

A second approach is to ignore interface variations altogether: systems and components export “standard-
ized” interfaces and are otherwise indistinguishable except for performance-related or feature-related met-
rics. While this seems restrictive, in practice it works well. Components with standardized interfaces
provides an effective solution for addressing the combinatorial numbers of implementations that can arise
for a given interface; it simply fails to explain interface variations that can occur. Object-oriented frame-
works and abstract factory design patterns take this approach [Joh88-92, Gam94], and so too it would seem
GenVoca components.

A general solution to the problem of generating interface and implementation variations among software
systems of a domain is needed. Although components with nonstandardized interfaces seems at odds with
the GenVoca model, we explain in the following sections that this is not the case. GenVoca components
have subjective (i.e., mutable) interfaces and bodies, i.e., their interfaces and bodies adjust upon instantia-
tion to a “standard” that is system-specific (i.e., application-specific). We begin by explaining why “cast-
in-concrete” interfaces cannot be part of a general solution.

14

4.1 The Myth of Standardized Interfaces

GenVoca components are composable because they export and import “standardized” interfaces. Yet sub-
jectivity tells us that no single interface captures all views of an object. What then does it mean for a Gen-
Voca interface to be “standardized”? How are operations chosen to be included in a “standardized”
interface? What criteria is used to exclude operations? One could argue if GenVoca generators purport to
produce high-performance software, then no operation could be excluded because that operation might be
needed for performance-critical applications. Indeed, when GenVoca interfaces are defined, there are oper-
ations that most people would agree are “core” or “intrinsic”, but many other operations are indeed
“optional” or “subjective”.

Example. The core operations that one can perform on P2 containers are element retrievals, updates,
insertions, and deletions. However, there is an infinite number of optional operations: count the number
of elements in the container, return the last element inserted, insert an element after a given element,
etc. Core operations are distinguished from optional operations subjectively, i.e., by their perceived
need for the target applications that P2 was initially designed to support.

The notion that standardized interfaces are immutable or cast-in-concrete in GenVoca is a myth. Each com-
ponent encapsulates a domain-specific feature. For programmers or other components to take advantage of
this feature, it is often necessary for a component to export non-core, component-specific operations. The
ability of components to augment the set of core operations that they export and import, of course, destroys
any pretense of realm interfaces being immutable or cast-in-concrete. To emphasize this point, it is quite
common in GenVoca for the exported interface of a generated system to change with the addition or
removal of a component.

Example. P2 has a size_of component which maintains a count of the number of elements in a con-
tainer. This count variable cannot be read by a core operation. Instead, size_of exports the nonstand-
ard read_size operation to read the count. When size_of appears in a type equation that defines a
container’s implementation, read_size is added to that container’s interface. If size_of is removed
from the type equation, read_size is removed from the interface.

Example. P2 has a timestamp component. It appends to every element in a container the time of its
insertion. The layer-specific operation get_timestamp is added to the cursor class interface for read-
ing element timestamps. If timestamp is removed from the container’s type equation,
get_timestamp disappears from the cursor interface.

To illustrate the general situation, Figure 6a depicts three symmetric layers; each layer exports and imports
the same set of core operations. (Export operations are drawn above a component; import operations are
drawn below). Note that the bottom layer has an extra left operation and the middle layer has an extra right
operation; neither of these extra operations are “core”. Figure 6b shows the result of composing these lay-
ers: all layers are automatically extended to support both a left and right operation.10 The simplest way to
understand this behavior is that in layered systems, it is common for lower layers to export operations that
only they understand. For these layer-specific operations to be exported through the top of the system, they
must be propagated through higher layers. By the same reasoning, if the middle or lower layer is removed
from a composition, its layer-specific operation will be removed from all layers of that composition.11 It is
in this way that GenVoca generators customize the interfaces of components (and their exported objects)

10. Actually, it is unnecessary for the bottom layer of Figure 6b to have a right operation if it is never called. An “dead-code” opti-
mizer would remove such an operation.

11. Another explanation is that the bottom and middle layers modify their realm interface by adding their layer-specific opera-
tions. As all layers of a realm export the same interface, every layer of that realm in the type equation must have a left and right
operation.

15

and thus produce view-specific software. Furthermore, the ability to add new operations renders the dis-
tinction of core v.s. layer-specific operations moot.

However, this does raise an interesting dilemma: on the one hand, the composibility of GenVoca compo-
nents is dependent on standardized interfaces. On the other hand, individual components may export non-
standard operations. Although this seems contradictory, subjectivity offers a resolution.

GenVoca components really don’t have single interfaces  their instances can export any one of a family
of related interfaces. When GenVoca components are composed, their interfaces are automatically adjusted
to a “standard” that is specific to that type equation (i.e., the resulting interfaces are system-specific).
Figure 6a shows that prior to composition, the top, middle, and bottom components do not export the same
interface; yet Figure 6b shows that after composition their instances do, and this interface is specific to this
particular composition. Thus, standard interfaces do not mean cast-in-concrete in GenVoca; they are
indeed subjective.

It is worth exploring how subjective interfaces are different from the conventional OO concept of inherit-
ance (subclassing), which also supports operation propagation and refinement. Inheriting operations from
superclasses is the only way operations are automatically propagated from one class definition to another
in OO models. Figure 7a shows an inheritance hierarchy of three classes, rooted at class X. The operations
of class Z are those that are defined by Z and those that are inherited from X and Y. The direction of opera-
tion propagation is top-down (i.e., from superclasses to subclasses). In addition, one can view inheritance
(subclassing) hierarchies as a composition of refinements: X refines some abstract interface, Y refines X’s
implementation, and Z refines Y’s implementation.

...

...

...

...

...

core

layer with extra
right operation

operations

Figure 6: Propagation of Layer Specific Operations

...

layer with extra
left operation

...

...

...

...

...

corelayer-specific
operation

left-extended
layer

left & right
extended layer

operations

...

right-extended
layer

(a) Layers prior to composition (b) Layers after composition

X

Y

Z

T

M

B

propagation
of operations

operations of Z
are those defined
by Z and those
inherited from X
and Y

(a)

class
inheritance
hierarchy: propagation

of operations

(b)

component
instantiation
hierarchy:

operations of T
are those defined
by T and component-
specific operations
from M and B

Figure 7: Inheritance v.s. Subjectivity

16

Figure 7b depicts a component instantiation hierarchy T[M[B]]. Although drawn deliberately like
Figure 7a, edges between boxes denote realm parameter instantiation, not inheritance. Like the inheritance
hierarchy, T refines an abstract interface, M refines T’s implementation, and B refines M’s implementation.
But notice that the direction in which operations are propagated is exactly the opposite of inheritance: the
operations of T are those that are defined by T and the component-specific operations that are defined by M
and B.

Emulating parameter instantiation by inheritance (i.e., by inverting Figure 7b so that B is on the top) isn’t
the answer. First of all, emulating parameter instantiation by inheritance an abuse of inheritance. Inherit-
ance expresses the ISA relationship, while parameter instantiation (as we are using it) expresses a generic
PART_OF relationship: these are clearly different concepts and should not be confused. Second, while this
“inversion trick” does make the direction of operation propagation similar to Figure 7a, the order in which
refinements are composed is destroyed, and the order in which components/refinements are composed is
crucial to GenVoca models. Third, even in restricted cases where emulation is possible, this is an awkward
and obfuscating way of programming. Subjectivity is not the same concept as inheritance/subclassing
[Oss92-95, Har93-94].

Adding new operations to an interface is simple, but how does one automatically manufacture a method for
such operations on a per-component basis? How can components with subjective interfaces be imple-
mented? What programming language features are needed to support subjectivity? What programming
paradigm unifies these ideas? In the following section, we review actual implementations of components
with subjective interfaces in four independently-conceived GenVoca generators. Although all four solu-
tions are outwardly different, they are fundamentally similar. Afterward, we distill the essence of these
solutions, and in doing so, we answer the questions posed in this paragraph.

4.2 Four Implementations

Generators perform tasks that are automatable (e.g., code generation, composition, composition validation,
optimization, etc.); the tasks that are not automatable (e.g., recognizing new domain abstractions, recog-
nizing new components of a realm, recognizing design rules and composition constraints, understanding
domain knowledge, etc.) are the responsibilities of domain analysts and component implementors. It is this
perspective that one should keep in mind when reviewing the following implementations of subjective
components.

Genesis. Genesis was the first GenVoca generator; it demonstrated that customized database management
systems (in excess of 50,000 lines of code) could be assembled from prefabricated components [Bat92].
Genesis relied on a rather rigid (and in hindsight) inflexible way of accommodating subjectivity; realm
interfaces evolved as new components were written. That is, when a new component K was added to realm
R, and K exported nonstandard operation O, all components of R were manually retrofitted to export O. This
did not mean that every component of R had to implement O; non-stubbed implementations were provided
only for those components where it made sense to do so.

Thus, the interfaces of Genesis components were adjusted manually whenever a new component was
added to a realm.12 There was no subsequent adjustment of interfaces if type equations did (or did not) use
a particular component. This approach worked because of the objectives of Genesis, namely, to demon-
strate DBMS synthesis. Performance wasn’t an issue and a large user community (that would insist on hav-
ing many optional operations) was not envisioned.13

12. Components were added to realms in the order that maximally stressed realm interfaces. We discovered that once the first few
components were added, realm interfaces quickly reached a steady state. So backtracking and global updating was infrequent.

17

Avoca. Avoca/x-kernel demonstrated that highly layered communications protocols could be more efficient
and more extensible than monolithic protocols [Hut91, Bat92]. Avoca realm interfaces were rigid (i.e.,
cast-in-concrete) sets of operations. Microprotocols, the name given to Avoca components, implemented a
fixed-set of core operations for transmitting messages and opening and closing sessions, plus an additional
operation control. Every microprotocol could export zero or more control functions  what we have
called layer-specific operations  that only it understood. Calls to these functions were made through
control which took a pair of arguments: a control function name and a pointer to the control function’s
argument list. A control operation was implemented as a switch statement; there was one case for each
of the microprotocol’s control functions and a default case for transmitting the control operation to the next
lower microprotocol:

void control(int op_id, arg *arg_list)
{

switch(op_id)
{
case op1: // code for layer-specific operation #1
case op2: // code for layer-specific operation #2
...
default : // call control operation of lower layer

lower.control(op_id, arg_list);
}

}

The advantage of this approach is its generality; it can accommodate any number of control functions per
microprotocol and it does not require component interfaces to be modified (with the addition or removal of
a layer-specific operation).14 The drawbacks are program clarity and performance. Coding function calls
via switch statements and marshalling arguments are well-known to be obscure ways of programming
[Joh88]. Moreover, there can be a considerable performance overhead in processing control operations.
Calling a control function essentially requires polling each component of a type equation to test if it could
process the function. Control functions were not called frequently enough in Avoca for their inefficiencies
to be problematic.

Ficus. Ficus builds customized file systems from a single realm of components [Hei93]. All Ficus layers
support the same set of core operations plus any number of layer-specific operations. The reliance of Ficus
on the Unix vnode facility encouraged a uniform treatment of core and layer-specific operations. It also
encouraged the interface of a file system to be determined at configuration time, where every layer of its
type equation is polled for the set of operations that it implements. The union of all operations from all lay-
ers in a file system defines the interface to that file system. All layers of that file system are then automati-
cally extended to support this interface. Since it is not possible to anticipate what operations would be
provided by other (possibly yet-to-be-written) layers, every Ficus layer provides a bypass method for
unanticipated operations. Usually, the default method is simply to transmit calls of unanticipated opera-
tions to the next lower layer. However, nondefault methods do arise.

An example of a nondefault method occurs in protection layers. Protection layers validate access privileges
of clients prior to performing file operations. The bypass method for unanticipated operations is to verify
the user’s ability to access the given file. Variations on this theme (e.g., testing for read-only access or write
access) are possible [Hei93-95].

13. A consequence of this approach was the need for design rules: although the interfaces of all components of realm R were syn-
tactically identical, not all components implemented operation O. This meant that components of R were not always interchange-
able and that not all syntactically correct compositions of Genesis components were semantically correct. Design rule checking
was needed to validate compositions.
14. Note that a nondefault method, i.e., something other than transmitting a control function call to lower layers, could easily be
encoded in this scheme.

18

P2. A P2 layer is a transformation between the layer’s export interface and its import interface(s); only
layer-specific operations and core operations for which non-identity transforms are performed need to be
defined. When the P2 generator is compiled, the union of the export interfaces of every layer in a realm is
determined. Each layer is then automatically extended to support this union interface. Operations that are
undefined by a layer are (in effect) supplied default bodies which transmit the operation to the next lower
layer. Default methods can be overridden on a per class basis.

A P2 component that has multiple non-default methods is monitor, which encapsulates the transforma-
tion that converts a container into a monitor; i.e., all accesses to the container occur within a critical region.
monitor exports two classes: container and cursor. The monitor rewrite adds a semaphore data
member sem to the container class and modifies the methods of all cursor and container operations
by wrapping them with wait and signal calls.

Sketches of the monitor operation rewrites are shown below. container_op pattern-matches with any
container operation and “…” is bound to its arguments. The rewritten method is enclosed within braces
{ }: a wait is performed, then the actual operation itself is processed (by the layer immediately beneath
monitor), followed by a signal:

container_op(…)
{ sem.wait();

lower_container.container_op(…);
sem.signal();

}

The rewrite of cursor operations is different (albeit slightly) from that of container operations: the con-
tainer semaphore must be accessed indirectly:

cursor_op(…)
{ container->sem.wait();

lower_cursor.cursor_op(…);
container->sem.signal();

}

In general, a bypass method is specified for each class that is exported by a component. It is not difficult to
imagine that even finer granularities of rewrites may be needed.15

4.3 A Model of Subjectivity

Although different, there are striking commonalities in the subjectivity mechanisms of the Genesis, Avoca,
Ficus, and P2 generators. In this section, we propose a model of these mechanisms as extensions to the
P++ language [Sin93, Bat94b, Sin96]. P++ is a superset of C++ that is specifically designed to support the
GenVoca model. Among its extensions are declarations for realms, components, and parameters. The cur-
rent version of P++ permits the composition of components at compile-time; it does not yet support run-
time compositions or the concept of subjectivity discussed in this paper. (Realm interfaces are standardized
manually at design-time, much like component interfaces were standardized in Genesis). Our proposed
extensions to P++ have been implemented in the P2 generator, so we will be describing an abstraction of
a working system. Our choice of P++ as the medium of explanation stems from the recognition that lan-
guage support for a design paradigm greatly simplifies the application and understanding of that paradigm.

15. As an example, if an operation only reads a private data member of a class, there should be no need to execute the read within
a critical region. Thus the wrapping of wait and signal operations around a method could be selective.

19

As a running example, we will use the container data structure abstraction of P2 [Bat93-94b]. This abstrac-
tion is represented by three classes: elements, containers, and cursors. Elements are the objects stored in
containers. Cursors are used to retrieve and update objects within containers.

Realms. A realm interface defines a programming interface for a domain abstraction. It is a specification
of the prototypes of one or more classes and functions; realms have no variables or data members. The DS
(container data structures) realm is shown in Figure 8a. DS consists of two classes, container and cur-
sor, that are parameterized by a third class e, the class of elements that are to be stored in containers and
that are to be accessed by cursors.

To support subjectivity and interface variations, we introduce subrealms to P++, i.e., specializations/sub-
types of a realm definition. Figure 8b shows two subrealms of DS. DS_size extends the container class
with the read_size operation and DS_time extends the cursor class with the get_timestamp opera-
tion. Note that the parameter(s) of superrealms are inherited by their subrealms (i.e., DS is parameterized
by class e, thus e is a parameter of subrealms DS_size and DS_time). Figure 8c shows an alternative way
of defining subrealms as a union of previously declared subrealms.

Components. A P++ component is a large-scale refinement of its realm interface. It is defined as a set of
consistent data refinements, non-bypass operation refinements, and bypass refinements. A specification of
the size_of component is shown in Figure 9a. size_of refines the container class by adding the vari-
ables lower and count, and explicitly refining the constructor and read_size operations. All other
container operations are implicitly refined by the container bypass. size_of refines the cursor
class by adding the lower variable, plus explicit refinements of the constructor, insert and remove
operations (that increment and decrement count). All other cursor operations are implicitly refined by
the cursor bypass. There are three points about this example that we want to elaborate.

First, rewrites of unspecified operations are expressed by the P++ bypass construct. bypass pattern-
matches with the name of any operation that is not explicitly declared within the enclosing class but is an
operation that is to be exported by that class. bypass_type is the return type of that operation and
bypass_args matches its argument list. The body of bypass defines the method rewrite. For example,
the size_of bypasses for both cursor and container transmit the operation verbatim to the layer
immediately beneath size_of. Figure 9b shows the monitor component which does not use verbatim
bypasses.

template <class e>
realm DS
{

class container
{ container ();
bool is_full();
... // other operations

};

class cursor
{ cursor (container *c);
void advance ();
e* insert (e *obj);
void remove ();
... // other operations

};
};

(a) (b)

Figure 8: Realm and Subrealm Declarations

(c) template <class e>
realm DS_size_time : DS_size<e>, DS_time<e>;

template <class e>
realm DS_size : DS< e >
{

class container { int read_size(); };
};

template <class e>
realm DS_time : DS< e >
{

class cursor { int get_timestamp(); };
};

20

Second, bypasses complicate type checking in P++ because they allow interfaces of component instances
to be of an arbitrary size. Consequently, component instances can have varying realm export and import
types. To type check component definitions, we must ensure that the type signatures of the realm opera-
tions that are explicitly referenced in the component body match those of the export and import realms. For
example, size_of explicitly exports the insert, remove, read_size and constructor operations; their
signatures are covered by the DS_size realm. (These signatures could also be covered by DS_size_time
and many other larger realms; DS_size is the smallest cover given the realms of Figure 8). Further,
size_of explicitly imports the insert, remove and constructor operations; their signatures are covered
by the DS realm. Thus, the size_of component is declared to minimally export the realm DS_size<e>
and to minimally import DS<e>.

Third, an implicit assumption of the DS abstraction is that the only way elements can be added or removed
from containers is via the cursor operations insert and remove. Should a new layer L introduce another
operation for adding or removing elements, the size_of component may not maintain an accurate count
of the number of elements in a container. This means that size_of cannot be composed with L to yield a
valid type equation. Such a constraint can be expressed using design rules. Alternatively, size_of could
be made compatible with L if it explicitly defines rewrites for all element addition and removal operations
of L. As mentioned in Section 4.2, the recognition of the incompatibility of component compositions (or
the modification of components to make them consistent) is borne by domain analysts and component
implementors, and is not done automatically by generators.

template <class e, DS<e> x>
component size_of: DS_size< e >
{
class container
{ friend class cursor;
x::container lower;
int count;

container() { count = 0; };
int read_size(){ return count; };

bypass_type bypass(bypass_args)
{ return lower.bypass(bypass_args); };

};

class cursor
{ x::cursor *lower;

container *c;

cursor(container *k)
{ c = k;

lower = new x::cursor(&c->lower); };

e* insert(e *element)
{ c->count++;

return lower->insert(element); };

void remove()
{ c->count--;

lower->remove(); };

bypass_type bypass(bypass_args)
{ return lower->bypass(bypass_args); };

};
};

template < class e, DS<e> x >
component monitor: DS< e >
{

class container
{ friend class cursor;

x::container lower;
semaphore sem;

container() { };

bypass_type bypass(bypass_args)
{ bypass_type tmp;

sem.wait();
tmp = lower.bypass(bypass_args);
sem.signal();
return tmp; }

};

class cursor
{ x::cursor *lower;

container *c;

cursor(container *k)
{ c = k;

lower = new x::cursor(&c->lower); };

bypass_type bypass(bypass_args)
{ bypass_type tmp;

c->sem.wait();
tmp = lower->bypass(bypass_args);
c->sem.signal();
return tmp; }

};
};

Figure 9: The size_of and monitor Components

(a) (b)

21

Type Equations. Components are composed in P++ in typedef declarations. Suppose array and avl
are components that implement the DS interface and do not export layer-specific operations. Type equa-
tions C1 and C2 (below) will generate systems that export the DS_size interface:

typedef size_of[avl] C1;
typedef size_of[array] C2;

Given these declarations, the program of Figure 10 is type correct. An environment variable decides
whether container and cursor implementations of type C1 or C2 should be used during program execution.

Now suppose avl and array are modified to export layer-specific operations: avl additionally exports
the num_balances operation, while array additionally exports the num_free_slots operation. As
explained in Section 4.1, the compositions C1 and C2 will generate different systems, both of which have
slightly different interfaces than DS_size. C1 would export the DS core, num_balances, and
read_size operations, while C2 would export DS core, read_size, and num_free_slots. Note that
the program of Figure 10 would no longer be type correct (as C1, C2, and DS_size are distinct types), and
will fail to compile.16 This, despite the fact that the additional operations that were generated,
num_free_slots and num_balances, are never referenced.

The problem is that C1 and C2 have manufactured interfaces that don’t match any explicitly defined realm.
For an application to insulate itself from irrelevant operations of components, it must use a realm declara-
tion that defines the interface that all generated systems should export. This could be accomplished by
casting type equations to yield the subjective view that is required:

typedef (DS_size) size_of[avl] C1;
typedef (DS_size) size_of[array] C2;

That is, our application interacts with generated subsystems via interface DS_size. C1 and C2 are now
equations that define different systems that implement DS_size. Hence, instances of C1 and C2 are plug-
compatible and thus the program of Figure 10 is now type correct. From the perspective of the P++ com-
piler, casting may actually simplify the composition of components. Once the export interface of a gener-
ated system is known, operations that do not belong to this interface need not be generated.

Open Problems. The proposed extensions to P++ take us closer to a better understanding of programming
language support for GenVoca and components with subjective interfaces. However, several important
open problems remain. P++ components are presently composable only at application compile-time; ide-

16. Compilation will fail because types C1 and C2 do not have identical signatures and are not explicitly related as subtypes of
DS_size.

Figure 10: Environment-Selectable Implementation

main()
{ DS_size::container *cont;
 DS_size::cursor *curs;

 if (environment_variable)
 { cont = new C1::container;

curs = new C1::cursor; }
 else
 { cont = new C2::container;

curs = new C2::cursor; };
 ...
}

22

ally, components should also be composable at run-time. Such a capability would permit software systems
to evolve dynamically. Although there are several possibilities on how to proceed (e.g., [For94, Hei93,
Hut91]), it is not yet clear what run-time capabilities should be added to P++ to support the dynamic com-
position of components with bypass methods.

Another challenging problem is how to encapsulate design rules within P++ components. Presently, design
rule checking is accomplished with a tool external to P++ (e.g., dreck). Thus, design rules for components
are specified separately from P++ component definitions. The difficulty of integration is that design rules
would extend the P++ type checking system, thereby requiring P++ to be a fairly “open” compiler. Once
again, there are possibilities on how to proceed (e.g., [Oss95]).

5 Related Work

Frameworks. An object-oriented framework is a set of abstract classes with their own sets of concrete
classes. The combinations of concrete classes that can work together can be defined in a variety of ways
(e.g., informally or using factory design patterns [Gam94]); there is no fixed rule about how concrete
classes can be paired. Realms and frameworks are indeed similar [Bat92]: the n classes of a realm’s inter-
face correspond to the n abstract classes of a framework. Each GenVoca/P++ component specifies an n-
tuple of concrete classes (one concrete class per abstract class) that work together as a unit. The differences
between realms and frameworks are (a) the subjective nature of component interfaces and (b) the need for
bypass methods to encapsulate the operation refinements of components.

Subjectivity. Subjectivity arose from the need for simplifying programming abstractions, e.g., defining
views that emphasize relevant aspects of objects and that hide irrelevant details [Shi89, Hai90, Gam94].
This led to a connection of object modeling with view integration in databases [Elm89], namely, object
models can be defined as a result of integrating different application views of objects [Gol81, Har92].
Ossher and Harrison took an important step further by recognizing that application-specific views of inher-
itance hierarchies can be produced automatically by composing “building blocks” called extensions
[Oss92]. An extension encapsulates a primitive aspect or “view” of a hierarchy, whose implementation
requires a set of additions (e.g., new data and method members) to one or more classes of the hierarchy. A
customized “view” of an inheritance hierarchy could therefore be defined by composing extensions. Exten-
sions and their compositions are similar to the GenVoca concepts of components and type equations.
Moreover, similar scalability arguments have been advanced independently for both models and that not all
compositions of extensions (or GenVoca components) may be semantically correct (c.f., [Bat93] and
[Oss92]). The models are not the same, however, as (for example) extensions have no counterparts to
realms and realm parameters.

It is worth noting that a rather different and powerful approach to views and software reuse has been pro-
posed by Goguen [Gog86], Novak [Nov95], and Van Hilst [Van95]. The essential idea is to define a cus-
tomized interface to an object (or sets of objects); a view defines a mapping of each object to its
customized interface.

Module Interconnection Languages (MILs). Limited forms of subjectivity can be achieved through
MILs. Microsoft’s Common Object Model (COM) permits objects to have a set of (upwards compatible)
interfaces to maintain backwards compatibility with old views of objects [Mic95]. As another example,
Goguen’s model of parameterized programming (LIL) permits simple transforms on modules, such as
combining modules by merging their operations and types; types, operations, and exceptions can be added,
exchanged, removed, or renamed, etc. [Gog86, Tra93]. While the basic transforms are present to achieve
subjectivity, there are no higher-order transforms that query module interfaces, wrap all or selected opera-

23

tions of a module, and propagate operations to other modules automatically; such capabilities can only be
specified manually on a per module basis.

Reflectivity. Bypass methods correspond to method wrappers or before and after methods in metaobject
protocols [Kic91]. CLOS was among the first languages to have method wrappers. Wrappers in CLOS are
different than in P++ as they are defined on a per-operation basis. A model of wrappers that is closer to
P++ is that of SOM metaclasses, where all (or selected) operations of a class can be wrapped by before and
after methods [For95]. Wrappers are defined in SOM by overriding the dispatch methods of metaclasses.
Thus, to define the equivalent of the P++ monitor component would require four separate definitions in
SOM: two classes (cursor and container) and two metaclasses (a metaclass for wrapping cursor
operations and a metaclass for wrapping container operations). SOM has no mechanism to encapsulate
multiple classes and metaclasses. In contrast, the P++ component construct allows multiple classes to be
encapsulated and does not require the need for metaclasses to specify wrappers. A more important distinc-
tion is that wrappers are composed in SOM (and CLOS) through class inheritance; wrappers (bypass meth-
ods) are composed in P++ through realm parameter instantiation. Thus, the mechanism for wrapper
composition in both models is quite different.

6 Conclusions

Software system generators will become important tools for software developers. An important class of
generators, called GenVoca generators, utilize libraries of reusable components to assemble complex,
high-performance systems quickly and cheaply. In this paper, we have presented solutions to two funda-
mental problems of GenVoca generators: validating component compositions and manufacturing subjec-
tive interfaces for component instances.

First, every library component has limitations, called design rules, on how it can be combined with other
components. Experience has shown that validating component compositions by casual inspection is error-
prone; as the number of components and the complexity of their rules grow, a mechanical approach to val-
idation is absolutely essential. We have developed domain-independent algorithms that rely on shallow
consistency checking to validate component compositions. Experience confirms that domain-specific
instances of our algorithms are practical: they are simple, easy to implement, and efficient. Moreover, they
offer powerful explanation-based error reporting capabilities to suggest to users how incorrect composi-
tions can be repaired.

We also observed that the number primitive predicates that are needed for design rule checking is surpris-
ingly small. We believe the explanation for this lies in the power of standardizing domain abstractions and
their programming interfaces (i.e., the core of GenVoca) to control the complexity of families of software
systems. Components that are designed to be interoperable, plug-compatible, and interchangeable often
make otherwise difficult problems tractable.

Second, we explored an unusual feature of GenVoca components. Unlike traditional software modules
whose interfaces remain unchanged upon instantiation, GenVoca components mutate upon instantiation 
their interfaces and bodies enlarge automatically to meet interface requirements that are imposed by a sys-
tem. The mutability of interfaces is interesting in the context of GenVoca because the composibility of
components is based on components exporting and importing standardized interfaces.

We have shown that standardized interfaces and mutable interfaces are not inconsistent. The principle of
subjectivity asserts that when modeling a domain of applications, objects do not have single interfaces, but
rather are described by a family of related interfaces. At component instantiation time, an interface is man-
ufactured for each object/class of a component that is appropriate to the system in which it is to be used.

24

Thus, all components in a system that export or import these objects/classes must use this system-specific
standard. It is in this way that the interfaces of GenVoca components are automatically customized. We
outlined linguistic extensions to C++ that would support components with subjective interfaces.

So that others may learn from our work, dreck and P2 are available free of charge via the Predator web
page: http://www.cs.utexas.edu/users/schwartz/.

Acknowledgments. We thank Dewayne Perry for stimulating discussions on Inscape and drafts of the
design rule checking sections. We also thank Ira Baxter, Paul Clements, Dave Weiss, Chris Lengauer,
Bruce Weide, and Steve Edwards for their insights on design rule checking. Finally, we are grateful to
Mike Hewett and Chris Petrock for their CS395T term project that gave rise to our work.

I thank Reed Little (SEI) for pointing out the similarity of method wrapper mechanisms in CLOS and
FLAVORS to the operation bypasses in GenVoca components. I also thank Lance Tokuda, Vivek Singhal,
Trudy Levine, Peter Clark, Jeff Thomas, and Guillermo Perez for their useful comments on earlier drafts of
the subjectivity sections of this paper. Finally, I thank Ira Baxter for his helpful comments on revisions.

7 References

[Bat92a] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems
with Reusable Components”, ACM TOSEM, October 1992.

[Bat92b] D. S. Batory and J. R. Barnett. “DaTE: The Genesis DBMS Software Layout Editor.” In Con-
ceptual Modeling, Databases, and CASE, Pericles Loucopoulos and Roberto Zicari, eds. John
Wiley & Sons, 1992.

[Bat93] D. Batory, et al., “Scalable Software Libraries”, Proc. ACM SIGSOFT, December 1993.

[Bat95] D. Batory and B.J. Geraci, “Validating Component Compositions in Software System Genera-
tors”, UT/CS TR-95-03, University of Texas at Austin, 1995.

[Bax92] I. Baxter, “Design Maintenance Systems”, Communications of ACM, April 1992, 73-89.

[Big94] T. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete Component Reuse”,
International Conference on Software Reuse 1994 (Rio de Janeiro).

[Bla91] L. Blaine and A. Goldberg, “DTRE - A Semi-Automatic Transformation System”, in Construct-
ing Programs from Specifications, Elsevier Science Publishers, 1991.

[Boo91] G. Booch. Object-Oriented Design With Applications, Benjamin-Cummings, 1991.

[Cha94] C. Chambers and G.T. Leavens, “Type Checking and Modules for Multi-Methods”, OOPSLA
1994.

[Cog93] L. Coglianese and R. Szymanski, “DSSA-ADAGE: An Environment for Architecture-based
Avionics Development”, Proc. AGARD, 1993.

[Coh95] S. Cohen, et al., “Models for Domains and Architectures: A Prescription for Systematic Soft-
ware Reuse”, AIAA Computing in Aerospace, 1995.

[Dij68] E.W. Dijkstra, “The Structure of THE Multiprogramming System”, Communications of ACM,
May 1968, 341-346.

[Gar94] D. Garlan, et al., “Exploiting Style in Architectural Design Environments”, ACM SIGSOFT
1994.

[Gar95] D. Garlan, et al, “Architectural Mismatch or Why It’s Hard to Build Systems out of Existing
Parts”, International Conference on Software Engineering, 1995.

[Gog86] J.A. Goguen, “Reusing and Interconnecting Software Components”, Computer. February 1986.

25

[Gol81] P. Goldstein et al., “An Experimental Description-Based Programming Environment: Four
Reports”, TR CSL-81-3, Xerox PARC, March 1981.

[Gom94] H. Gomaa, et al., “A Prototype Domain Modeling Environment for reusable Software Architec-
tures”, International Conference on Software Reuse 1994.

[Gri94] M.L. Griss and K.D. Wentzel, “Hybrid Domain-Specific Kits for a Flexible Software Factory”,
ACM SAC’94, March 1994.

[Hai90] B. Hailpern and H. Ossher, “Extending Objects to Support Multiple Interfaces and Access Con-
trol”, IEEE Transactions on Software Engineering, November 1990.

[Har92] W. Harrison, et al., “Integrating Coarse-grained and Fine-Grained Tool Integration”, Workshop
on Computer-Aided Software Engineering, July 1992.

[Har93] W. Harrison and H. Ossher, “Subject-Oriented Programming (A Critique of Pure Objects)”,
OOPSLA 1993.

[Har94] W. Harrison, H. Ossher, R.B. Smith, and D. Ungar, “Subjectivity in Object-Oriented Systems:
Workshop Summary”, Addendum to OOPSLA 1994.

[Hei93] J. Heidemann and G. Popek, “File System Development with Stackable Layers”, ACM TOCS,
March 1993.

[Hei95] J. Heidemann, email correspondence, 1995.

[Hut91] N. Hutchinson and L. Peterson, “The x-kernel: An Architecture for Implementing Network Pro-
tocols”, IEEE TSE, January 1991.

[Joh88] R.E. Johnson and B. Foote, “Designing Reusable Classes”, Journal of Object-Oriented Pro-
gramming, June/July 1988.

[Joh92] R.E. Johnson, “Documenting Frameworks using Patterns”, OOPSLA 1992, 63-76.

[Kat92] M.D. Katz and D.J. Volper, “Constraint Propagation in Software Libraries of Transformation
Systems”, International Journal of Software Engineering and Knowledge Engineering, Vol. 2#3
(1992).

[Kic91] G. Kiczales, J. des Rivieres, and D.G. Bobrow, The Art of the Metaobject Protocol, MIT Press,
1991.

[Lei94] J.C.S. do Prado Leite, et al., “Draco-PUC: A Technology Assembly for Domain-Oriented Soft-
ware Development”, International Conference on Software Reuse 1994.

[McA94] D. McAllester, “Variational Attribute Grammars for Computer Aided Design.” ADAGE-MIT-
94-01.

[Mor94] M. Moriconi and X. Qian, “Correctness and Composition of Software Architectures”, ACM SIG-
SOFT 1994.

[Nei80] J. Neighbors, “Software Construction Using Components”, Ph.D. Thesis, ICS-TR-160, Univer-
sity of California at Irvine, 1980.

[Nen95] M. Nenninger and F. Nickl, “Implementing Data Structures by Composition of Reusable Com-
ponents: A Formal Approach”, ICSE-17 Workshop on Formal Methods Applications in Software
Engineering Practice, April 1995.

[Nin94] J.Q. Ning, et al. “An Architecture-Driven, Business-Specific, and Component-Based Approach
to Software Engineering”, International Conference on Software Reuse 1994.

[Nov95] G.S. Novak, “Creation of Views for Reuse of Software with Different Data Representations”,
IEEE Transactions on Software Engineering, December 1995.

[Oss92] H. Ossher and W. Harrison, “Combination of Inheritance Hierarchies”, OOPSLA 1992.

26

[Oss95] H. Ossher, et al., “Subject-Oriented Composition Rules”, OOPSLA 1995.

[Per87] D.E. Perry, “Software Interconnection Models”, International Conference on Software Engi-
neering, 1987.

[Per89a] D.E. Perry, “The Logic of Propagation in The Inscape Environment”, ACM SIGSOFT 1989.

[Per89b] D. E. Perry, “The Inscape Environment”, International Conference on Software Engineering
1989.

[Per92] D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”, ACM SIG-
SOFT Software Engineering Notes, October 1992.

[Sin93] V. Singhal and D. Batory, “P++: A Language for Large-Scale Reusable Software Components”,
WISR (Owego, New York), November 1993.

[Sin96] V. Singhal, “A Programming Language for Writing Domain-Specific Software System Genera-
tors”, forthcoming Ph.D., Department of Computer Sciences, University of Texas at Austin,
1996.

[Sym84] Symbolics, Inc., Intermediate Lisp Programming, September 1984.

[Sit94] M. Sitaraman and B. Weide, “Component-Based Software using RESOLVE”, ACM Software
Engineering Notes, October, 1994.

[Tra93] W. Tracz, “LILEANNA: A Parameterized Programming Language,” International Conference
on Software Reuse, 1993.

[Ude94] J. Udell, “Componentware”, BYTE, May 1994.

[Van95] M. Van Hilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”, Dept.
Computer Science and Engineering, University of Washington, TR 95-07-02.

[Wei90] D.M. Weiss, Synthesis Operational Scenarios, Technical Report 90038-N. Version 1.00.01,
Software Productivity Consortium. August 1990.

