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Abstract1

Domain-specific generators will increasingly rely on graphical languages for declarative specifications of target
applications. Such languages will provide front-ends to generators and related tools to produce customized code on
demand. Critical to the success of this approach will be domain-specific design wizards, tools that guide users in their
selection of components for constructing particular applications. In this paper, we present the P3 ContainerStore
graphical language, its generator, and design wizard.

1  Introduction

Domain-specific languages (DSLs) will become progressively more important as a medium for specifying custom-
ized applications [Bat93, Kie96, Due97, Sma97].  Generators are tools — compilers, really — that convert DSL
application specifications into optimized source code.  Visual programming languages, such as Visual Basic and Java
applets, will simplify the use of DSLs and promote their promulgation.  But more importantly, visual programming
(or more accurately visual specification) languages will offer a convenient way to integrate a suite of analysis tools
that will substantially enhance the capabilities and effectiveness of generators.

We are exploring the use of a visual specification and analysis environment for a Java-based generator called P3. P3 is
a GenVoca (i.e., component-based) generator for container data structures that is a successor to P2 [Bat93-94]. P3 is a
modular extension of the Java language that allows container data structures to be specified declaratively. That is, P3
adds data-structure-specific statements to Java so that users can compactly specify the implementation of a target data
structure as a composition of reusable P3 components. The P3 generator, which is actually a Java preprocessor, trans-
lates P3 programs directly into pure Java programs. Among the features that make P3 attractive is that it is equivalent
to a gargantuan library of container data structures whose efficiency is comparable to (or better than) hand-coded
libraries that are now available.

To promote and simplify the use of P3, we have developed the ContainerStore applet as a visual programming lan-
guage for writing P3 programs. Clients fill in forms and edit diagrams, from which the ContainerStore can infer P3
data structure specifications. While the applet itself is not a major innovation, it is interesting because it integrates a
suite of tools and services that makes P3 programming more effective — tools and services that P3 alone cannot pro-
vide. The ContainerStore offers the facilities for explaining compositions of components so that clients can verify that
the data structure that they have defined is the one that they want. If there are errors in a component composition (or
in any other phase of specification), they are caught immediately and explanations of how to repair the errors are
offered. By far, the most innovative aspect of the ContainerStore tool suite is a prototype technology for automatically
critiquing and optimizing container implementations (i.e., P3 component compositions) for a particular workload.
Given a set of components and rules that express knowledge of what combinations of components are best suited for
solving particular problems, a tool called a design wizard applies these rules automatically to critique and optimize a
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P3 specification. If the design wizard discovers a composition of components that is likely to perform better than that
specified by a user, this composition is reported and reasons are given to explain it is an improvement. In this way,
design wizards can offer expert guidance so that design blunders can be avoided.

In this paper, we present the P3 ContainerStore applet, its generator, and its design wizard.

2  The P3 ContainerStore Applet

The ContainerStore is a visual domain-specific language for specifying container data structures. Specifications are
distributed across five tabs (i.e., presentation windows/panels), and are completed in sequence (see Figure 1). The
first tab allows a user to specify the class of elements that are to be stored. In particular, the name of the element class,
and the name of each attribute, its type, and cardinality are entered.2 As a running example, suppose elements of class
emp are to be stored, where emp objects have name and age attributes.

The second tab — called the Type Equation Tab (Figure 2) — presents a visual interface for defining customized con-
tainer implementations as a linear composition of P3 components (also known as a P3 type equation or P3 component
stack). Figure 2 shows two stacks: the “Equation” stack has components rbtree (red-black tree) on top of hash
(hash table) on top of malloc (transient heap); the “Equation2” stack has dlist (doubly-linked list) on top of
hashcmp (hash comparison) and malloc. Stacks can be edited (e.g., components can be replaced and deleted) and
annotations can be added. An annotation is a configuration parameter that is specific to a component. In Figure 2,
annotations to the hash data structure component are specified by clicking hash and entering the name of the key to
hash (age) and the number of buckets (100) in Annotations fields .

Once a type equation (component stack) has been constructed, the Explain/View Type Equation button is pressed. If
the equation is valid, an explanation of its meaning is shown in the Explain Window. In Figure 2 the meaning of the
“Equation” stack is:

2.  The cardinality of an attribute is the expected number of distinct values that the attribute will be assigned.
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A container of elements of type emp where all elements are stored in ascending name order on a red-
black tree, and all elements are hashed on age and stored in 100 buckets that are insertion-ordered
doubly-linked lists in transient memory.

As a general rule, people who are unfamiliar with P3 type equations are unfamiliar with their interpretation. For these
users, this facility for explaining equations is invaluable. Explanations are generated using the same techniques that
P3 uses to generate Java code; that is, instead of composing code fragments, the explanation is composed from
English phrases. In the case that an equation is incorrect — i.e., constraints for the correct usage of a component have
been violated (see [Bat97a])— the Explain Window lists the errors and suggests reparations. For example,
“Equation2” is incorrect:

Design Rule Error: move hashcmp above dlist; 
Design Rule Error: no retrieval layer beneath hashcmp;

The first error message says that ordering of the hashcmp and dlist layers is incorrect; a correct ordering would
reverse their positions in the equation (the actual reasons are low-level and are not given — only that a correct compo-
sition requires hashcmp to be above dlist). Applying this modification (it turns out) satisfies the objections of the
second error message, thus yielding a correct equation. In this way, the ContainerStore gives invaluable guidance to
software designers: it helps them repair incorrect compositions and it helps them verify that the specified data struc-
ture is indeed the one that they want.

The third tab is where the names of the container classes and their implementing type equations are specified. Sup-
pose container class named ec implemented by Equation is defined. The fourth tab specifies cursor classes
(Figure 3). A cursor is a run-time object that is used to reference, update, and delete elements in a container. In
Figure 3, the cursor class few is defined. Its constructor has a single parameter x of type ec — meaning that every
few instance will be bound to an instance of container class ec. The selection predicate of a cursor class is specified
incrementally using the Predicate Builder, which allows clauses of the form (attribute relation value) to be declared
separately. The predicate for few selects ec container elements where attribute name is “Don” and age is greater than
20. In addition, elements will be retrieved in age order (as specified by the OrderBy field) and the age attribute of
selected elements will be updated.  The frequency that few retrievals are performed is estimated by the user to be 100
times per time period.

Finally, the fifth tab (the Generate tab) presents a scrollable window and four buttons. One button generates the P3
specification of a ContainerStore declaration; a second button invokes the P3 generator to convert this specification
into Java source. The generated source is displayed in the scrollable window. (Section 3 illustrates both specifications
and generated source). The third button generates a workload specification, which lists each cursor and container
operation that is to be performed with its execution frequency. (This information was collected while instantiating

Figure 3: The Cursor 
Tab
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previous tabs). The last button sends this specification to ContainerStore’s design wizard to be analyzed and critiqued
for its efficiency. (Section 5 elaborates this workload specification and analysis).

3  The P3 Generator

The Jakarta Tool Suite (JTS) is a set of domain-independent tools for building extensible domain-specific languages
and GenVoca (component-based) generators [Bat98]. JTS is written in Jak, an extensible superset of the Java lan-
guage. Jak minimally extends Java with the addition of metaprogramming features (e.g., syntax tree constructors) so
that Java programs can create and manipulate other Java programs. JTS is itself a GenVoca generator, where variants
of Jak are assembled from components. One component in the JTS library encapsulates the P3 generator and the P3
component library. 

Like its predecessor P2, P3 allows users to specify containers and cursors declaratively, just like database systems
provide declarative specifications of relations and relational queries. In particular, P3 adds cursor and container data
structure declarations to Java. Examples of these declarations are listed on the left-hand side of Figure 4; the gener-
ated Java code is shown on the right. When Jak parses each of these declarations, it generates the appropriate Java
interface or class definition and replaces the declaration with the generated code.

Suppose instances of class emp are to be stored in a container. Lines (1) and (2) in Figure 4 concisely declare Java
interfaces for containers (empcont) and cursors (empcursor) that are specialized for emp instances. Note that the
C++-like syntax for these declarations was chosen deliberately to indicate that container interfaces are parameterized
by the elements (emp) to be stored and cursor interfaces are parameterized by the container (empcont) over which
cursor instances will range. 

Among the methods in the empcont interface (not shown in Figure 4) are emp instance insertion and a test for con-
tainer overflow. Among the methods in the empcursor interface are positioning a cursor on the first emp instance of
a container, advancing to the next emp instance, testing for end-of-container, and get and set methods for each
attribute of emp.

Each container class is declared separately. Statement (3) defines a container class ec that implements the empcont
interface by storing emp instances in an age-attribute-ordered doubly-linked list in transient memory.
odlist(age,malloc()) is its P3 type equation that defines both the stacking of components (i.e., odlist sits atop
of malloc) and annotations (i.e., age is the key of the odlist data structure). Table 1 lists the library of components
that P3 currently offers.

It is worth noting that P3 components are not the same as traditional parameterized components for data structures
(e.g., STL [Mus96]), but instead are “refinements” [Sir92, Bat93-94]. To see the difference, consider the interpreta-
tion of the composition of hash and bintree:

hash[ keyA, 400, bintree[ keyB, ... ] ]

container< emp > empcont;

cursor< empcont > empcursor;

container ec implements empcont
using odlist( age, malloc( ) );

cursor all(ec e);

cursor few(ec e)
where name() == “Don” && age() > 20 
orderby age;

interface empcont { ... }

interface empcursor { ... }

class ec implements empcont { ... }

class all implements empcursor {
all(ec e) { ... }

 ... }

class few implements empcursor {
few(ec e) { ... }
... }

Figure 4:  P3 Declarations and Generated Classes

(1)

(2)

(3)

(4)

(5)
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This composition does not mean that a container of elements is hash-partitioned into 400 buckets on keyA, and then
each bucket is implemented as a binary tree ordered on keyB. The correct interpretation is much closer to the way
database systems compose access methods. Namely, take a container of elements and create a hash index over these
elements (using 400 buckets) on keyA, and then using the same container, create a binary tree index on keyB. The
data structure that P3 synthesizes adds 4 fields to each element. Two fields — next and prior — store pointers of
the doubly-linked list implementation of hash buckets, and another two fields — left and right — store pointers of
the binary tree. Thus, each element of a container is simultaneously on two distinct and independently traversable
data structures: a hash structure and a binary tree. More generally, P3 allows elements to be linked into any number of
distinct data structures thus enabling P3 users to define arbitrarily complicated structures that simply could not be cre-
ated using traditional parameterized components. This distinction is explained in greater detail in [Sir93, Bat93-94] .

Each P3 cursor class is also declared separately. Statement (4) declares a cursor class all whose instances return
every element of an ec container. The syntax of the statement defines the arguments of the constructor of the gener-
ated class (i.e., each all instance is bound to a particular ec container instance). P3 infers that all implements the
empcursor interface (because ec containers store emp instances, and cursors over ec containers implement the
empcursor interface).

Statement (5) declares another cursor class few whose instances return in attribute age order only those elements of
an ec container where name == “Don” and age > 20. (Again, each instance of few is bound to a single ec container
and only returns instances of that container that satisfy the few predicate). Other features of P3 that are not shown in
Figure 4 include parameterized selections (i.e., city() == x, where x is specified at run-time) and declarations of
cursor usage (e.g., retrieval only, element modification/deletion) for optimizing generated code.

4  Performance of P3-Generated Code

Generators, contrary to hand-written component libraries, offer a scalable way to produce customized software
[Bat93, Big94]. The declarative way in which P3 users specify container and cursor implementations through compo-
nent composition leads to huge families of customized data structures. As shown in [Bat97b], significant increases in
productivity and major cost reductions both in maintenance and experimentation with different container implemen-
tations can result from generators. While we have not yet used P3 in a sophisticated Java application, we have per-

DS Component Semantics

malloc elements are stored in transient memory

persistent elements are stored in persistent memory

odlist( key x, DS y ) elements are stored on an x-ordered doubly-linked list#

dlist( DS y ) elements are stored on an unordered doubly-linked list#

rbtree( key x, DS y ) elements are stored on a red-black tree with key x#

predindex( predicate p, DS y ) elements that satisfy predicate p are linked on a separate 
doubly-ordered linked list#

hashcmp( key x, DS y ) equality predicates on key x are hashed to improve performance#

hash( key x, int n, DS y ) elements are hashed on x and stored in a hash table with n 
buckets; each bucket implemented by a doubly-linked list#

bstree( key x, DS y ) elements are stored on a binary tree with key x#

#Note: parameter y defines a stack of components that lie below the given component in a P3 type equation.

Table 1  P3 Data Structure Components
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formed preliminary benchmarks on P3-generated code to assure us that P3 is on a trajectory that is comparable with
its predecessors [Sir93, Bat93-94]. In this section, we review some of our preliminary results on P3’s performance.

The Container and Algorithm Library (CAL) [X3M97] and the Java Generic Collection Library (JGL) [Jer97] are
two popular and publicly available Java data structure libraries. Both are based on STL [Mus96] and are optimized
for performance. Pizza (a dialect of Java that supports parametric polymorphism [Ode97]) and Sun’s Java Develop-
ment Kit (JDK) also provide simple data structures, so we also included them in our study. Presently, CAL and JGL
support features (adaptors for stacks, queues, etc.) that P3 does not yet offer. (Adaptors can be encapsulated as P3
components that will be stacked on top of P3 containers to give them non-container interfaces; so there is no a priori
reason why such capabilities/componentry cannot eventually be added to P3).

We performed a number of experiments that benchmarked productivity and performance; the most revealing of which
are presented in Tables 2 and 3. The benchmark of [Bat93] was used to evaluate the performance of the Booch Com-
ponents, libg++, and the P1 and P2 generators. We used this program for our studies. The program spell-checks a doc-
ument against a dictionary of 25,000 words. The main activities are inserting randomly ordered words of the
dictionary into a container, inserting words of the target document into a second container and eliminating duplicates,
and printing those words of the document container that do not appear in the dictionary. The document that we used
was the Declaration of Independence (~1600 words).

We used JDK, CAL, JGL, Pizza, and P3 to implement this program using four different container implementations:
doubly-linked lists, binary search trees, red-black trees, and hash tables. The benchmarks were executed on a Pentium
Pro 200 with 64 MB of memory, running Windows NT Workstation version 4.0. The programs were compiled and
executed using JDK version 1.1.3, with the -O optimization option. We also recompiled the CAL beta 2 and JGL
2.0.2 libraries using JDK version 1.1.3 to ensure the validity of comparison.

Table 2 shows the program sizes for different libraries. (Sizes were obtained by removing comments and using the
Unix wc utility to count the words). P3 programs are slightly longer than the corresponding CAL, JGL, Pizza, and
JDK programs because P3 declarative specifications are more verbose than class references to Java packages. Such
differences are not significant, because P3 can generate vast numbers of data structures that have no counterpart in the
CAL, JGL, Pizza, and JDK libraries. In such cases, these libraries would not be of much help as the target data struc-
ture would have to be written by hand. The brevity of the corresponding P3 programs and the speed at which their
Java source is produced would be unchallenged. So too would the ability to alter container implementations quickly
and easily (by merely redefining the P3 type equation and recompiling); significantly more work would be needed
using Pizza, CAL, JGL, and JDK.

Table 3 lists the execution times for each program. In general, P3 programs outperform their hand-coded counterparts
for two reasons. First, both CAL and JGL are based on STL, but since Java does not support templates, both have to
rely extensively on inheritance. This introduces additional dispatches and down-casts which slows execution. Second
and more significant, there is inherent overhead in the JDK, CAL, Pizza, and JGL designs. These libraries are
designed for generic applications, whereas the programs generated by P3 are produced for a specific task. Consider
element comparisons. P3 directly inlines comparison expressions, whereas CAL and JGL programs have to use a
“predicate” object that encapsulates a function to evaluate that predicate on a given element. (This is a common way
to work around the lack of function pointers in Java). Note that this function can not be optimized by the Java com-

dlist bstree rbtree hash

JDK 541 N/A N/A 506

CAL 540 561 561 562

JGL 534 N/A N/A 540

PIZZA 565 N/A N/A 509

P3 570 572 572 574

Table 2  Code size of dictionary benchmark programs (in words)
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piler (because Java knows nothing about query optimization). There are other inefficiencies that preclude significant
optimizations that generators can provide. 

The point of our experiments was to provide minimal confirmation that P3 generates code comparable to that written
by hand. Clearly, many more experiments are needed. We have no illusions that this simple example is sufficient in
any way; our goal at this stage of our research is to demonstrate that the performance of P3-generated code conforms
to that observed in earlier generators, which it does.

5  The P3 Design Wizard

A fundamental problem in all component-based generators is: given a workload specification and a set of compo-
nents, how should one select and assemble components to define an appropriate application? In the case of P3, what
type equation (data structure) would efficiently process a given workload? This is a difficult problem for two reasons.

First, software designers are rarely aware of the actual workload that an application will subject a data structure. A
designer will know the kinds of queries asked (e.g., since these queries will be specified as cursor declarations), but
the actual frequency with which particular cursor classes are instantiated and elements are retrieved will not be
known until run-time. At best, only educated guesses can be made (and often, these estimates are determined instinc-
tively).

Second, even if a workload is known precisely, it can be a challenging problem to determine an efficient data struc-
ture. When a workload is simple, the problem is easy. For example, if elements of a container are to be accessed only
via the predicate N == <value>, then a hash table with elements hashed on field N is likely to be an optimal choice.
However, if workloads become slightly more complicated, it is hard to tell what data structure would be best. For
example, if there are 20,000 elements, 3000 elements are inserted and deleted per time period, fields S and N are
updated 1000 times per period, elements are retrieved using predicate N == <value> && A==“b” 2000 times per
period, and all elements are retrieved in S order 50 times per period, what data structure would most efficiently sup-
port this workload? The answer is not obvious even to experienced programmers.

To solve the first problem, one can instrument generated code so that it collects workload statistics at run-time. So ini-
tially, one fields an application knowing full well that its data structures are not optimal. After a period of time,
enough statistics will have been collected so that a more appropriate data structure can be determined. The application
cursor and container classes are then regenerated and the old classes discarded. A new cycle of collect-statistics-
and-regenerate then begins. Normally, a programmer is in the loop to close the cycle (i.e., a programmer decides how
long to collect statistics, how to use these statistics to deduce a better data structure, and when to initiate the class
regeneration and replacement). However, this loop could be closed without programmer intervention. That is, the
application determines when enough statistics have been collected, a tool called a design wizard finds a more efficient

dlist bstree rbtree hash

JDK 82.5* N/A N/A 8.2

CAL 117.4 19.4 17.3 13.5**

JGL 116.9 N/A N/A 8.1

PIZZA 99.2 *** N/A N/A 8.7

P3 74.9 13.8 12.8 7.9

* JDK Vector data structure is used here.
** CAL does not have explicit support for hash tables;
the Set container is used instead. Internally, CAL imple-
ments Set by hash table.
*** Pizza Vector data structure is used here.

Table 3  Execution times of dictionary benchmark programs (in secs)
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data structure given this workload, and if regeneration is warranted, class regeneration and replacement is performed
automatically. Such software is called self-adaptive [Lad97, Sti98, Ore98, All98], and may be the ultimate way to
minimize software development and maintenance costs through component reuse.

The key to achieving self-adaptive software requires a solution to the second problem — deducing an efficient type
equation for given a workload. This requires a kind of knowledge that is not present in GenVoca domain models (and
domain models in general). Knowledge of when and how to use a component effectively to maximize performance or
to meet a design objective is quite different than that of design rules (i.e., requirements that define the correct usage of
a component [Bat97a]). What form this knowledge will take, what is a general model to express such knowledge, and
how to optimize type equations remain open problems. Short of proposing a general-purpose theory, it is possible to
develop ad hoc techniques for given domains, and in particular, for data structures. By abstracting from specific solu-
tions in different domains (i.e., performing a “domain analysis” on these solutions), a general theory may result.

For now, however, we outline an approach that we have found effective to optimize and critique P3 type equations
automatically given a workload specification. While the solution itself is domain-specific, it does constitute a valu-
able first step toward self-adaptive software and a general model of design wizards.

5.1  P3 Workload Specifications

Data structure optimization is a well-studied problem. Because P3 presents a relational-like interface to data struc-
tures, relational database optimization models are an obvious starting point (e.g., [Mit75]). A workload on a database
relation (or P3 container) is characterized by the type and cardinality of individual attributes of an element, plus the
frequency with which each container or cursor operation is performed. Figure 5 illustrates a workload specification
file produced by the ContainerStore applet. (The information of Figure 5 was provided by a ContainerStore client
when he/she filled in the operation frequency slots in the ContainerStore specification tabs, or it might be the result of
a statistical analysis of running instance of the target application). It states that there are 5,000 elements in a container.
Each element has two fields, one is a String called name that has 5,000 unique values, etc. 300 elements are inserted
per time period, all elements are retrieved in name order 100 times per period, and so on. The type equation (which
implements the container whose workload is defined in Figure 5) that is to be critiqued is odlist(age, mal-
loc()).

workload { 
cardinality = 5000;

attributes { 
#id type cardinality
#---------------------------
name String 5000;
age int 60;

}

work {
#operation frequency
#---------------------------
insertion 300;
deletion 300;
ret orderby name 100;
ret where name() == "Don" && 

             age() > 20 
orderby age 100;

}

Equation = odlist(age, malloc());
}

Figure 5: P3 Workload Specification
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5.2  Cost Model

Given a workload W and a container implementation (type equation) T, we want to estimate the cost of processing W
using T. This is accomplished by synthesizing cost functions.3 The cost function we seek, Cost(T,W), is the sum of the
costs of processing each individual cursor and container operation times its execution frequency. The cost of an indi-
vidual operation is the sum of the costs contributed by individual layers of T. For example, every layer performs some
action when an element is inserted into a container. Thus, the cost of an element insertion is equal to the sum of the
costs of insertion actions that are performed by each layer (see Figure 6). The same holds for attribute update and ele-

ment deletion. Retrieval costs are estimated a bit differently, as query optimization is involved. A retrieval predicate
is processed by traversing a single data structure. The data structure that is to be traversed (i.e., the structure whose
traversal algorithms are to be generated) is the one that returns the minimum cost estimate for processing that predi-
cate. This “polling” of layers/data structures by P3 is called query optimization. Selected functions that define
Cost(T,W) are summarized in Table 4, where n denotes the number of elements in a container, b the number of hash
buckets, and c is a constant. Different data structures will have different values for c for different operations, where
particular values are determined by benchmarking P3 data structures on a specific platform.4,5

Cost(T,W), again, is used to evaluate a particular design T for a workload W. Ideally, a design wizard must walk the
space of all legal type equations and find the equation T that minimizes Cost(T,W). In the next section, we explain
how this space is defined, and later, how our wizard walks this space.

3.  The method by which cost functions are produced is exactly the same as that used in P3 code synthesis and type
equation explanations.
4.  Equality retrieval are predicates of the form key == value; range retrieval are predicates of the form low-value
< key < high-value; scan retrievals do not qualify elements on key values.
5.  Although we list only the higher-order terms in Table 4, we included lower-order terms in our prototype. It turns
out that basic problems which plague database researchers for obtaining accurate estimates of query processing costs
also hinder us (see [Poo96]). For example, it is well-known that accurate estimates of query and subquery selectivity
are difficult to obtain. While we could use more advanced techniques of estimation, experience has shown that this is
overkill for typical P3 applications. When designing data structures, most programmers do not sit down with a calcu-
lator to determine the most efficient data structure; rather, they apply heuristics learned in their data structure courses
to design and implement their container. These heuristics are captured by these equations when n, the number of ele-
ments in a container, is “sufficiently large”. When the number of elements is not known (which is generally the case),
these heuristics are reasonable. See [Bat93-94] for examples.

Cost T W,( ) I T( ) InsFreq D T( )+× DelFreq +×=

U T Fieldi,( ) UpdFreqi×( ) R T Reti,( ) RetFreqi×( )
i T∈
∑+

i T∈
∑

I T( ) insertionCost layeri( )
i T∈
∑=

D T( ) deletionCost layeri( )
i T∈
∑=

U T Fieldj,( ) updateCost layeri Fieldj,( )
i T∈
∑=

R T Retj,( ) Mini T∈ retrieval layeri Retj,( )( )=

Figure 6: P3 Cost Model
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5.3  The Space of P3 Type Equations

P3 components are characterized by three kinds of attributes: properties, signatures, and design rules. Together they
define the space of all syntactically and semantically correct P3 type equations. A Layer Declaration File (LDF) is a
specification of this information, an example of which is shown in Figure 7.

Properties are attributes that classify components [Bat97a]. In Figure 7, six different properties are defined.
logical_key is the propositional symbol for the attribute that defines “a key-ordered component”, i.e., a P3 compo-
nent that implements a data structure that stores elements in key order. Red-black trees and ordered doubly-linked
lists have this property. Similarly, hash_key is the propositional symbol for the attribute that defines “a hash compo-
nent”, i.e., a P3 component that implements a data structure that stores elements via hashing. As we will see shortly,
properties are used to express both design rules and type equation rewrite rules (discussed in the next section). Con-
sistent with the experience discussed in [Bat97a], determining these properties is a fairly straightforward task.

Signatures define the export and import interfaces of a component; these properties are used to determine if a compo-
nent usage in a type equation is syntactically correct. In Figure 7, ds = { … } denotes the usual GenVoca syntax for a
realm (i.e., library) of components that implement the interface ds [Bat92]. Three such components are listed:
rbtree, delflag, and malloc. The signature of the rbtree (red-black) tree is circled. rbtree has a keyfield
parameter and ds parameter (which means that rbtree can be composed with other ds components). In contrast, the
malloc component has no parameters.

Not all syntactically correct type equations are semantically correct. Domain-specific constraints called design rules
are needed to define the legal uses of a component. The algorithms that we use for design rule checking are given in
[Bat97a]. Design rules are expressed in two parts. First, properties that are asserted or negated by a component are
broadcast to all layers that lie above it and below it in a type equation. These properties are declared by the asserted
properties and negated properties statements. For example, the malloc component broadcasts the asserted
property transmem when it is used in a type equation. Similarly, the rbtree component broadcasts the asserted
properties retrieval and logical_key.

Second, preconditions for component usage are expressed as conjunctive predicates. Asserted properties are
expressed with the require statement; negated properties with the forbid statement. Thus, if a component X has
the declarations:

require above = { A, B }
forbid above = { C }

they define the predicate A ∧ B ∧  ¬C which must be satisfied by layers that lie above X in a type equation. By replac-
ing “above” with “below”, the predicate must be satisfied by layers that lie below X in a type equation. (Thus, differ-
ent conditions can be imposed on layers above X and below X in an equation). As an example that combines both
property broadcasting with preconditions, the delflag layer in Figure 7 allows only one instance of itself in a type
equation. That is, the first delflag instance will broadcast the delete property, while a second delflag will detect
its presence when its precondition  fails.

Layers insertion deletion update
equality 
retrieval

range 
retrieval

scan
retrieval

dlist c c c c*n c*n c*n

rbtree c*log(n) c*log(n) key: c*log(n)

non-key: c

key: c*log(n)

non-key: c*n

key: c*log(n)

non-key: c*n

c*n

hash c c key: c

non-key: c

key: c(n/b)

non-key: c*n

c*n c*n

Table 4  Selected Individual Cost Equations

delete¬
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5.4  Automatic Optimization of Equations

The space of all P3 type equations is the set of all design-rule-correct type equations that can be composed using the
given components. The size of this space is enormous: if there are k components in the P3 library, the number of type
equations with c components is O(kc). So even for small k and c, an exhaustive search is infeasible. While the number
of components in an equation is theoretically unbounded, we know from experience that domain experts can quickly
identify an efficient equation with few (i.e. typically under 10) components.

The number of equations that are relevant to an application is a subspace of the entire P3 space. One way in which
this subspace can be generated is by applying rewrite rules that transform one equation into an equivalent equation,
starting from an initial feasible solution/equation (e.g., [Gra87]). The rewrite rules that we use are derived from an
analysis of the heuristics that we have personally applied to produce efficient type equations manually. In particular,
our intuitive optimization strategy has been guided by three heuristics:

• when an equation rewrite is attempted, we check that the resulting equation is consistent (i.e., it is syntactically
correct and it satisfies the design rules);

• the cost of the rewritten equation is unchanged or lowered;

• rewrites are considered in an order (we feel) will most likely lead to a new equation with lower cost.

Some of our rules deal with element attributes. Consider the following rewrite that is expressed in two parts:

• (a) if an element attribute A is listed as an orderby key in the workload specification, then try to insert a
logical_key layer (such as a red-black tree or an ordered-list) with A as its key. 

The idea of this rewrite is that it is cheaper to store elements in sorted order rather than sorting an unordered set of
elements on demand. This rewrite will fail if there already exists a logical_key layer with that attribute as key. (The
reason for failure is that the Cost(T,W) of the rewritten equation T will be higher — the rationale is that a single data
structure that maintains element order is always cheaper than two structures maintaining the same order). This leads
to the second part of the rewrite:

properties = {
logical_key "a key-ordered component"
hash_key "a hash component"
transmem "a transient memory component"
inbetween "a component needed for element deletion"
retrieval "a retrieval component"
delete "a component that marks elements deleted"
...

}

ds = {
rbtree [ keyfield ds ] {

asserted properties = { retrieval, logical_key }
require above = { inbetween }

}
delflag [ ds ] {

asserted properties = { delete }
forbid above = { delete }

}
malloc { 

asserted properties = { transmem }
}

...
}

Figure 7: A P3 Layer Declaration File

signature

broadcasted
properties

constraints

properties



12

• (b) If (a) fails, then try to replace the logical_key layer with A as its key with a more efficient logical_key
layer.

The idea of this rewrite is that if there already exists a data structure that maintains elements in key order, there may
be a more efficient data structure to accomplish the same task. This rewrite attempts to find a such a replacement.

Readers may have observed the use of Layer Declaration File properties in expressing rules. To apply the above rule,
our design wizard searches its library for components that assert the logical_key property. These components are
candidates for insertion or replacement in the above rule. Different rules qualify components on different properties.
Consider a second rewrite:

• if element attribute A is used in an equality retrieval predicate (e.g., name == "Dan"), then try to insert a
hash_key component with A as its key; if there already exists such a layer, try to substitute it with a more effi-
cient hash_key layer.6

These and similar rules are growth rules — i.e., they add components to type equations. There are growth rules that
do not involve element attributes. There are also shrink rules — i.e., rules that remove components from type equa-
tions. An example is:

• remove a component from a type equation if it increases Cost.

The optimization of a P3 type equation is similar to an AI planning process [Eas73]. We discovered that optimizing
P3 equations manually followed a best-first (greedy) heuristic; we automated this search to find a correct and efficient
type equation with regard to the given workload, cost models, and layer declarations. Because the equations that are
retained in the search have progressively lower cost, we are guaranteed to find a local minimum. The search can begin
from scratch, starting from a trivial data structure — such as a doubly-linked list in transient memory. However, when
used with the ContainerStore applet, the search begins with the type equation that was specified in the workload. 

Overall, we have about 10 different rewrite rules. The basic algorithm that we use to apply these rewrites to optimize
type equations is:

for each element attribute A {
apply each “attribute growth”

     rewrite for A;
}
apply each “non-attribute growth” rewrite;
apply each “shrink” rewrite;

The algorithm is run to a fixpoint (i.e., the algorithm is continually invoked until no further rewriting is possible), and
thus will identify a local minimum. If the P3 subspace defined by our rewrite rules is well-formed (i.e., has only one
minimum), our algorithm is guaranteed to find it. If the subspace has several local minima, our algorithm will locate
one, but not necessarily the global minimum. We are unaware of any theoretical result that would tell us whether a P3
subspace is (or is not) well-formed. Lacking such information, it is possible that a more powerful search algorithm
might uncover better results7. However, the results we have obtained using this algorithm have been quite good —
occasionally better but never worse than what we would have manually selected. Moreover, we are unaware of a pro-

6.  At present, P3 has only one hash component. A component for dynamic hashing may be added later.
7.  Since the conference publication of this paper, we have a proof that the P3 search space can indeed have multiple
local minima, and that finding the global minimum is NP-hard. An example that shows the problem involves process-
ing every query of a set of queries using some keyed data structure (e.g., binary-tree). Suppose that creating a keyed
data structure on field A, then another on field B, and a third for field C will allow all queries in the set to be pro-
cessed efficiently by traversing one of these structures. Call these structures the ABC indexing set. Now suppose that
we had created a keyed structure on field E and a second on field F, and all queries of the set could be processed effi-
ciently by traversing either the E structure or F structure. Call this the EF indexing set. Clearly, the ABC indexing set
and the EF indexing set are local minima. If our design wizard selects the ABC as an answer, it will be unable to
“backtrack” to find solution EF (or vice versa), and hence will not find the global minimum.
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posed equation that we could subsequently improve. Although much more work (e.g., using more powerful search
algorithms) remains, we believe that a greedy search algorithm is a reasonable first step.

5.5  Critique and Optimization

Given a workload specification, the P3 design wizard applies its rewrites to the input type equation. If there is no sub-
stantial improvement, the wizard simply reports that no changes to the equation need to be made. A more likely
response is that it will have discovered an implementation/equation that has better performance characteristics.
Figure 8 shows the output of a critique using the workload of Figure 5. 

Both the input and revised equations are presented, along with their cost (i.e., Cost(T,W)) estimates. An explanation is
also presented, which provides reasons why the generated equation is better. The reason is that the original data struc-
ture linked elements together onto an age-ordered list. The workload, on the other hand, demands that all elements of
the container be periodically retrieved in name order, and that individual elements (whose name is “Don”) be retrieved
frequently. The original data structure does not efficiently support this workload at all. The recommended data struc-
ture allows elements to be accessed quickly (via hashing) on name and that elements be stored in order on name (via
an ordered linked list). Furthermore, to speed up the search for elements on name, the hashcmp component is used.
(hashcmp transforms equality predicates on strings (name == “Don”) to include integer comparisons
(hash_of_name == hash(“Don”) && name == “Don”). The idea is that integer comparisons are much faster than
string comparisons). While most programmers would not think to add this enhancement (probably because it is
tedious for a programmer to add by hand), it is quite simple for P3 to do it. The performance enhancements for alter-
ing the type equation are predicted by the design wizard to pay-off handsomely. (The actual percentage reported in
Figure 8 is not particularly important; rather, it gives users some idea of how much better the suggested design would
be).

There are two general contributions that design wizards make to automated software development. First, not all users
of a generator will be domain experts. Even if they have familiarity with a domain, they may not know as much as an
expert, or, in the case of design wizards, a host of domain experts. Design wizards will help avoid blunders and will
help users find more efficient implementations for their target systems. Second, and possibly more significant, type

Original Type Equation is:
        odlist(age, 
         malloc( ))
cost = 19593

Type Equation we recommend is : 
        hashcmp(name, 
         hash(name,5000, 
          odlist(name, 
           malloc( ))))
cost = 1606

Projected improvement: 1119%

Reasons why we choose this type equation: 
hashcmp: field name is hashed because it 

will be faster to compare the values 
of two string fields when they are 
hashed. 

hash: A hash data structure with hash key 
name is used because 11% of the 
operations involve equality retrieval 
on name.

odlist: A doubly linked list ordered by
name is used because many retrievals 
will be ordered by name.

Figure 8: Critique and Optimization of a Type Equation
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equation synthesis is a prerequisite to adaptive software — applications that dynamically change their configuration
as a function of current workload. For most domains — including data structures — manual reconfigurations are
rarely done because of the costs involved. (The problem becomes even more complicated if data structures are persis-
tent; updating data structures requires the additional cost of unloading data from old structures and reinserting it into
the new structures). As a consequence, application users must suffer with degraded performance and application
developers must endure the costs of program maintenance. Design wizards have the potential to change this situation
dramatically.

6  Related Work

It is widely believed that domain-specific languages (DSLs) will significantly impact future software development.
DSLs offer concise ways of expressing complex, domain-specific concepts and applications, which in turn can offer
substantially reduced maintenance costs, more evolvable software, and significant increases in software productivity
[Bat93, Kie96, Due97]. Generators are compilers for DSLs [Sma97]. Component-based generators, such as P2 and
P3, show how reusable components form the basis of a powerful technology for producing high-performance, cus-
tomized applications in a DSL setting (see also [Nov97]).

The automatic selection of data structures is an example of automatic programming [Bal85]. SETL is a set-oriented
language where implementations of sets can be specified manually or determined automatically [Sch81]. SETL offers
very few set implementations (bit vector, indexed set, and hashing), and relies on a static analysis of a SETL program
using heuristics rather than using cost-based optimizations to decide which set implementation to use. AP5 relies
more on user-supplied annotations for data structure selection [Coh93].

Deductive program synthesis is another way to achieve automatic programming [Bal85, Smi90, Man92, Low94,
Kan93]. The idea is to define a domain theory (typically in first order logic) that expresses fundamental relationships
among basic domain entities. A domain theory together with a theorem prover and theorem-proving tactics can find a
constructive proof for a program specification and extract from this proof computational methods from which a pro-
gram can be synthesized. Finding a proof may be fully automatic, but frequently requires guidance from users to help
navigate through the space of possible proofs. Our design wizard is very different. First, finding a “proof” (a P3 type
equation) for a workload specification is trivial — simply implement every container as a doubly-linked list. All con-
tainer and cursor operations will be processed, but not efficiently. The challenge is finding a P3 type equation that
efficiently processes that workload. Second, work on program synthesis has largely focussed on generating algo-
rithms (e.g., algorithms for solving PDEs [Kan93], algorithms for scheduling [Smi90], algorithms for computing
solar incidence angles [Low94], etc.); subroutines are the components from which generated algorithms are built. The
inferences needed for algorithm synthesis tends to be quite sophisticated (thus requiring theorem provers) because
there are very complex relationships among domain entities. In contrast, GenVoca is different both in component
scale and in the simplicity of the relationships among domain entities. GenVoca components are subsystems — suites
of interrelated OO classes. (A P3 component for example encapsulates three classes: a cursor class, a container class,
and an element class). As noted in [Bat97a], scaling the size of components and designing components to be plug-
compatible has a non-obvious effect: the relationships that exist among components tend to be very simple, and ele-
mentary inferencing (i.e., no theorem provers) is adequate.

Our concept of design wizards resonates with recently proposed notions of open implementations (OI) [Kic97a] and
Aspect Oriented Programming (AOP) [Kic97b]. Aspects in AOP are very similar to components in GenVoca; they
encapsulate changes to be made to multiple classes when an aspect (or feature) is added to an application. Aspect
weavers are functions which take a program as input and produce another (more detailed, extended, or refined) pro-
gram as output. P3 components have an almost identical description. The primary difference is that AOP starts with
existing application source, whereas GenVoca decomposes applications into primitive layers and re-expresses them
as a compositions of these layers. P3 relies on general results from GenVoca that address the issues of optimizing
across multiple layers/aspects, and the order in which components/aspects can be legally composed. To our knowl-
edge, there are no corresponding general results for AOP.

The idea OI is that when interfaces largely hide implementation details, it should be possible for clients to annotate
abstract declarations with profiling (or other implementation-specific) information so that a compiler or server can
automatically select the most appropriate implementation that is available. The OI guidelines address design issues,
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but implementation details are not discussed. When the space of implementations is restricted to a small handful of
choices, the solution is straightforward [Bal85, Sch81, Cho93]. However our experience with P3 shows that declara-
tive specifications can map to vast numbers of implementations. While design issues are indeed important, additional
difficult problems remain: (1) creating a model that defines the space of possible implementations, (2) using the
model to produce efficient implementations, (3) the ability to rank individual implementations in this space, and (4)
efficiently walking the space. GenVoca and design wizard provides a systematic way to address all of these concerns.

The techniques we used for optimizing type equations are very similar to those of rule-based query optimization
[Das95, War97]. A query is represented by an expression where terms correspond to relational operators (e.g., join,
sort, select). Query optimization progressively rewrites a query expression according to a set of rules, where the goal
is to find the expression with the lowest cost. Since we model data structures as expressions and our design wizard
progressively rewrites expressions until no further rewriting produces a more efficient expression, the problems seem
identical. However, there are differences. First, constraints among relational operators can be expressed simply by
algebraic rewrite rules. In contrast, we do not yet have an algebraic representation for our rules. (In fact, the imple-
mentation of our “rules” is pure Java code). Moreover, the correct usage of layers requires design rule checking which
we also have been unable to express as algebraic rewrites. Second, query optimization deals with a rather small set of
operators (e.g., join, sort, select), whereas type equation optimization potentially may deal with a much larger set of
operators (i.e., tens or hundreds of layers). For these reasons, type equation optimization may be more difficult than
query optimization. 

7  Conclusions

P3 is a GenVoca generator for container data structures. Although its basic technology was developed earlier [Bat93-
94], P3’s novelty is that it has been implemented as a modular extension to the Java language that introduces data-
structure-specific statements. These statements enable P3 users to compactly and declaratively specify a family of
data structures whose size dwarfs that of hand-coded Java libraries (e.g., CAL, JGL, JDK, Pizza). Besides offering
broader coverage, P3 is additionally attractive because it generates efficient code. The basic reason for its efficiency
— beyond the fact that the generation techniques are powerful — is that P3 produces data structures for a specific
application (where all kinds of optimizations can be performed) whereas conventional libraries only offer generic
data structures (where these optimizations have not been applied).

The P3 generator, however, is not sufficient for a practical software development environment. In this paper, we pre-
sented the ContainerStore applet, a visual domain-specific programming language that integrates an important suite
of tools and services that P3 alone does not provide.8 The particular services that we discussed are: English-generated
explanations of P3 component compositions (which are important as P3 novices will not be familiar with component
semantics), automatic validation of compositions with messages suggesting how to repair errors (if errors are
detected), automatic generation of P3 code (so that users can study correct P3 specifications), automatic translation of
P3 specifications into Java code (i.e., the P3 generator is called), and the automatic critique and optimization of a
user-defined P3 component composition given a workload specification (i.e., the P3 design wizard is called).

Among all these services, our design wizard is the most novel. Although its optimization strategies and component
rewrite rules are indeed specific to the domain of container data structures, we believe it is the first example of a much
more general technology for automatic component selection and composition. The idea of optimizing component
compositions by applying domain-specific rewrite rules is certainly not limited to container data structures. The rea-
son is that GenVoca provides a general way in which to create vast “product-lines” from components; applications of
GenVoca product-lines are expressed as type equations, and the improvement of a particular equation/design is
always through component replacement, insertion, and removal (i.e., equation rewrite rules).

Our initial success with the P3 design wizard is encouraging. However, it is essential that design wizards for other
(GenVoca-modeled) domains be created. We believe that analyzing design wizards for different domains may lead to
a general model for expressing type equation rewrite rules. Such a model may offer a general-purpose technology for
achieving adaptive software — i.e., software that automatically reconfigures itself upon noticing a change in its

8.  The capabilities described in this paper were demonstrated at the DARPA EDCS Workshop in Seattle, July 1997.
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usage/workload. Adaptive software may be the ultimate way to minimize software development and maintenance
costs through component reuse.
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