
Introductory P2 System Manual

Edition 0.8, August 1994

Don Batory
Bart J. Geraci
Je� Thomas

Copyright c 1994, The University of Texas at Austin.

Edition 0.8

For P2 Version 0.9.5

August 1994

For information, questions, and to report inaccuracies, please contact: dsb@cs.utexas.edu

Preface 1

Preface

This manual documents the use of the P2 system. It also outlines how programmerrs can

customize the system for sophisticated applications. First-time users are encouraged to read this

manual. Advanced users are encouraged to read `Advanced P2 System Manual'.

In addition to the usual index of concepts, this manual provides separate indices of all functions

and variables.

This manual is available in both a printed format and on on-line format. The on-line format

can be browsed by the using the GNU info program or the GNU emacs info command.

2 Introductory P2 System Manual

Chapter 1: Agreement 3

1 Agreement

Copyright (C) 1994, The University of Texas at Austin, UTA. All rights reserved.

By using this software, you, the user, indicate you have read, understood, and will comply with

the following:

1. Nonexclusive permission to use, copy and/or modify this software for internal, noncommercial,

research purposes is granted. Any distribution, including commercial sale, of this software, copies,

associated documentation and/or modi�cations is strictly prohibited without the prior written

consent of UTA. Appropriate copyright notice shall be placed on software copies, and a full copy

of this license in associated documentation. No right is granted to use in advertising, publicity

or otherwise any trademark of UTA. Any software and/or associated documentation identi�ed as

"con�dential" will be protected from unauthorized use/disclosure with the same degree of care user

regularly employs to safeguard its own such information.

2. This software is provided "as is", and UTA makes no representations or warranties, express

or implied, including those of merchantability or �tness for a particular purpose, or that use of the

software, modi�cations, or associated documentation will not infringe on any patents, copyrights,

trademarks or other rights. UTA shall not be held liable for any liability nor for any direct, indirect

or consequential damages with respect to any claim by user or any third party on account of or

arising from this Agreement.

4 Introductory P2 System Manual

Chapter 2: Distribution 5

2 Distribution

The P2 program and manuals can be retrieved via anonymous ftp. See Chapter 3 [Installation],

page 7.

CONTACT INFORMATION:

Don Batory
University of Texas at Austin
Department of Computer Science
Taylor Hall 2.124
Austin TX 78712.

dsb@cs.utexas.edu

6 Introductory P2 System Manual

Chapter 3: Installation 7

3 Installation

The P2 distribution consists of two compressed tar �les available via anonymous ftp. One tar

�le contains the P2 system code, the other contains the P2 system manuals.

As a rule, we have tried to make P2 as portable as possible. One exception to this rule is that

P2 requires GNU make.

Standard UNIX make will not work.

Besides GNU make, the code distribution requires an ANSI C compiler, lex and yacc (or their

GNU equivalents). The manuals distribution includes PostScript and dvi versions of the manual,

and thus requires only a PostScript or dvi viewer.

To install the code distribution, you should get the �le via ftp, uncompress it, un-tar it, cd

into it, run con�gure, and make. This distribution should install without modi�cation ("out of the

box") on at least the following systems:

AIX 3.2

Solaris 2.4

SunOS 4.1

ULTRIX 4.2

Here is a step-by-step example of how to get the code distribution and make it on your system.

This example assumes your login is dsb@cs.utexas.edu, and you wish to install P2 in the directory

/u/dsb/foo/p2.

% ftp ftp.cs.utexas.edu

Name (ftp.cs.utexas.edu:dsb): anonymous

Password: dsb@cs.utexas.edu

ftp> binary

ftp> cd pub/predator

ftp> get p2-0.9.5.tar.Z

ftp> bye

% uncompress p2-0.9.5.tar.Z

% tar xf p2-0.9.5.tar

% cd p2-0.9.5

% ./configure --prefix=/u/dsb/foo/p2

% make

% make install

8 Introductory P2 System Manual

Once compiled, the code distribution (source plus object �les) requires about 35 megabytes of

disk space.

To install the manuals distribution, you should get the �le via ftp, uncompress it, and un-tar it.

Here is a step-by-step example of how to get the manuals distribution. This example assumes

your login is dsb@cs.utexas.edu.

% ftp ftp.cs.utexas.edu

Name (ftp.cs.utexas.edu:dsb): anonymous

Password: dsb@cs.utexas.edu

ftp> binary

ftp> cd pub/predator

ftp> get p2-manuals-0.9.5.tar.Z

ftp> bye

% uncompress p2-manuals-0.9.5.tar.Z

% tar xf p2-manuals-0.9.5.tar

The manuals distribution requires about 1 megabyte of disk space.

Chapter 4: Introduction 9

4 Introduction

P2 is a state-of-the-art generator for data structures. It is an extension of ANSI C that allows

programmers to interact with complex data structures using high-level and easy-to-use abstrac-

tions. With minimal speci�cations from programmers, P2 replaces program references to these

abstractions with C code that implements them. The number of potential implementations of the

basic P2 abstractions is already large and is open-ended.

The goals of this manual are (1) to show how powerful programs can be written in terms of P2

abstractions and (2) to show how implementations of P2 abstractions are speci�ed.

4.1 The Conceptual Basis for P2

P2 is among a new breed of generators that rely on software components to synthesize software.

P2 is based on the GenVoca model of software system construction. In essence, the premise of

GenVoca is that fundamental programming abstractions underly all mature software domains.

By standardizing abstractions and their implementations, one can realize a software components

technology for a domain.

Although the number of fundamental programming abstractions in a domain is rather small,

there is a huge number of possible implementations. The GenVoca approach also advocates a lay-

ered decomposition of implementations, where each layer (or component) encapsulates a primitive

software building block. The number of primitive building blocks in a domain is generally small

(i.e., on order of 100); however the number of ways in which building blocks can be combined is

exceedingly large.

The model of data structures that is implemented by P2 relies on a small number of simple but

powerful programming abstractions that have been standardized. Moreover, the P2 library consists

of over thirty components that encapsulate many of the common data structure building blocks.

In this manual, we will explain in detail the standardized programming abstractions of P2 and

the current set of building blocks in the P2 library.

4.2 The Organization of the P2 Generator

P2 consists of a series of three interconnected preprocessors:

10 Introductory P2 System Manual

� P2 - a shell script that converts a .p2 program into a format understandable by ddl.

� ddl - a preprocessor that repackages implementation speci�cations for P2 abstractions into a

format understandable by pb.

� pb - a preprocessor that translates P2 constructs into C code

As a .p2 �le is being "compiled", di�erent intermediate formats of the �le (e.g., .ddl, .pb) are

produced. Errors are detected and reported at all stages of translation, where di�erent classes of

errors are detected during each translation phase.

There is a fourth preprocessor that is not part of the .p2 to .c translation pipeline. This is xp, a

special language/preprocessor that is used to write P2 components. We will not discuss xp further

in this manual; readers interested in writing P2 components are urged to read section \xp Manual"

in Advanced P2 System Manual.

The �gure below illustrates the P2 system organization:

-------- -------- -------- --------

| | | | | | | |

| P2 | | ddl | | pb | |ANSI C|

------>| |------>| |------>| |------>| |------>

.p2 | | .ddl | | .pb | | .c | | executable

-------- -------- -------- --------

To compile the program `foo.p2', simply type:

P2 foo.p2

P2 understands several command-line options. These are explained in Section 8.3 [P2 options],

page 60. A sample program is listed and dissected in Appendix A [Example P2 program], page 69.

4.3 How to Use this Manual

We assume that the reader is familiar with C, UNIX, and GNU make.

This manual has several chapters. The ones which are worth reading depends on your goals:

For P2 novices:

Chapter 4: Introduction 11

� Introduction - This chapter.

� P2 Language - The syntax for a `foo.p2' �le. See Chapter 5 [P2 Language], page 13.

� P2 Operations - The list of functions in the P2 system to provide the container/cursor opera-

tions. See Chapter 6 [P2 Operations], page 39.

� P2 Layers - The di�erent layers that can be used to describe the method elements are organized

in containers. See Chapter 7 [P2 Layers], page 43.

� Invoking P2 - How to run P2 and the arguments for the P2 system. See Chapter 8 [Invoking

P2], page 55.

People who intend to write layers should �rst read this manual and then the Advanced P2

System Manual (see section \xp Manual" in The Advanced P2 System Manual) which contains

information about how to write a layer in xp.

For people who are installing the P2 system, please read the section

� Installation - This chapter provides a brief, but useful, introduction to installing P2. See

Chapter 3 [Installation], page 7.

People who are responsible for maintenance of the P2 hierarchy should be familiar with GNU

autoconf and make.

12 Introductory P2 System Manual

Chapter 5: P2 Language 13

5 P2 Language

P2 is a superset of ANSI C. Thus, a P2 source �le has the format of a C �le with support for the

container/cursor abstractions. These will be discussed in detail below. In addition, P2 supports

C++ style comments (where everything to the right of a // is ignored).

5.1 The Container/Cursor Overview

The paradigm used in P2 is the container/cursor model. A container is a collection of objects

called elements. Elements are referenced by a structure called a cursor. With respect to the

container, a cursor can:

� move backwards and forwards through the container

� start at the beginning or the end of the container

� add, delete, swap, and update elements

A quali�ed cursor points only to elements that share some characteristic. Quali�ed cursors have

two properties: a predicate, which restricts the cursor to point only to elements that satisfy the

predicate, and an orderby clause, which speci�es the order in which the cursor retrieves elements

from the container.

The power of quali�ed cursors is the ability of the P2 system to optimize operations based

on their quali�cations. If a cursor is restricted to all even numbers, then the procedure that is

generated by P2 for searching that container will have this test embedded. The disadvantage is

that to a certain extent, we cannot have dynamically (run-time) cursor predicates that are common

in interactive environments.

P2 programs are written in terms of operations on cursors and containers and without regard

to how they are implemented. This, in principle, enables di�erent implementations of cursors and

containers to be "plugged in" without requiring program modi�cations.

Ultimately, however, a speci�cation of how cursors and containers are to be implemented must

be provided to the P2 compiler, as the compiler replaces cursor and container declarations and

operations with their corresponding C implementation. An implementation speci�cation comes in

two parts: a type expression and its annotations.

14 Introductory P2 System Manual

A type expression is a composition of P2 building blocks; it speci�es a stacking of layers that de-

�nes the general characteristics of the data structure that P2 is to generate. Additional information,

such as key �elds, array sizes, etc., are called annotations. The combination of type expressions

and annotations is the sole means for specifying data structure implementations. Among the char-

acteristics that can be de�ned by type expressions and annotations are:

� Whether elements are ordered or not, and if so, under what �eld is the element ordered.

� If the container uses transient or persistent storage.

� Details of searching and deletion strategies.

� Whether or not the container should contain a maximal number of elements

As mentioned earlier, the power of P2 programs stem from the separation of cursor and container

abstractions and their implementations; by altering a P2 program's type expression(s), containers

and cursors can be assigned radically di�erent implementations. This signi�cantly simpli�es tuning.

5.2 Operation Usage

For example, suppose we have a container called primes with the elements `2 3 5 7 11 13 17 23

29'. We declare a cursor c that ranges over all elements of the container. After we initialize the

cursor, we can perform a reset which positions the cursor on the �rst object:

c

2 3 5 7 11 13 17 23 29

We can iterate through the list using successive advance (adv) operations. Three advances

positions the cursor at `7'.

c

2 3 5 7 11 13 17 23 29

We can backtrack using the reverse (rev) operations. A reverse and cursor is pointing at `5'.

c

2 3 5 7 11 13 17 23 29

Two more reverses and cursor is pointing at `2'.

Chapter 5: P2 Language 15

To test whether a cursor has gone past the end of the container, the operations end_adv and

end_rev are provided. end_adv returns true (1) if an advance operation positions the cursor past

the end of the container; end_rev does the same for the reverse operation. If another reverse is

attempted, then end_rev returns true (0).

Normally, programmers do not call the adv and end_adv operations directly, but use the P2

foreach(c) loop construct. foreach(c) uses cursor c to iterate over elements of a container. If c is

quali�ed, then only those elements that satisfy c's predicate are examined. P2 expands foreach(c)

into calls to adv(c) and end_adv(c). The rofeach(c) loop construct does the same, except it

traverses elements of the container in the opposite order, using rev(c) and end_rev(c) operations.

Using the primes container, a cursor q quali�ed over all numbers ending in the digit `7' will

either point to `7' or `17'. Therefore if q is initialized and then a reset start operation is performed

on it, q will point to `7'. A single advance would point q next to `17'.

Cursors are also used to delete objects. In the previous example, if the delete operation is

invoked, then `17' would be removed from the container, but the cursor would still point to the

location occupied by the `17'. If an advance is performed, the cursor would be positioned on the

next quali�ed element, which in this case would be NULL, since there are no elements ending in the

digit `7' past `17'.

q

2 3 5 7 11 13 23 29

An insert operation performed with the number `47' would insert the element somewhere in the

container. It is up to the particular type expression of the container as how to elements should be

added (whether it places it at the head of the list, the tail of the list, or keyed by some �eld).

q

2 3 5 7 11 47 13 17 23 29

More details will be given in subsequent sections.

16 Introductory P2 System Manual

5.3 Container Declarations

A container is a collection of elements of element type that is implemented by some type ex-

pression. The type expression may need additional information, which is the annotation list. The

syntax is:

container_declaration : container < element_type >

stored_as type_expression_name

with { annotation_list }

identifier_declarator_list ;

annotation_list : { annotation ; }*

For example, let us declare two types that we will use in our examples. A type for storing prime

numbers called prime num type and a type for storing employee data, emp type.

typedef struct {

int num;

} prime_num_type

typedef struct EMPLOYEE {

char name[20]; // last name

int age;

} emp_type;

Next, we will de�ne a container storing a linked list of prime numbers:

container < prime_num_type > stored_as linked_list

with { } prime_container, *pointer_to_prime_container;

// alternate way of de�ning the above
typedef container < prime_num_type > stored_as linked_list

with { } PRIME_CONTAINER_TYPE;

PRIME_CONTAINER_TYPE prime_container, *pointer_to_prime_container;

Now for the employees example:

container < struct EMPLOYEE > stored_as linked_list

with { } emp_cont, emp_cont_arr[4]; // array of containers

Note that linked_list is the name of a type expression (whose de�nition we will give later on)

and that it has no annotations.

Chapter 5: P2 Language 17

5.4 Cursor Declarations

A cursor is a structure that points to elements in a container. A cursor can point in only one

container, but a container may have more than one cursor. The syntax for a cursor declaration is:

cursor_declaration: cursor < container_name >

[predicate_specifier]

[ordering_specifier]

identifier_declarator_list ;

predicate_specifier: where predicate

ordering_specifier: orderby orderby_clause

Cursors have two optional properties: a predicate and an orderby clause.

A cursor predicate speci�es a subset of the elements in the container to which the cursor my be

bound. A predicate is speci�ed as a double-quote enclosed C boolean expression with the extensions

that (1) the dollar sign refers to the cursor object and (2) string constants are enclosed within single

quotes. P2 automatically converts string relational operations into appropriate calls to strcmp().

Any expression for the predicate can be speci�ed, but P2 is able to make certain optimizations on

only a subset of predicates known as structured terms. This subset of predicates is de�ned by the

following grammar:

predicate: term

| predicate && term // Blanks are important
term: field relop value // Structured term

| value // Unstructured term
field: $. �eld name // $ is the cursor alias
relop: == | >= | <= | < | > | !=

value: non-blank character sequence |

string-literal

A predicate is a series of terms joined by &&. A term is either a relational expression, which is

called a structured term, or not, which is called an unstructured term. Unstructured terms must

be written in parentheses and without spaces.

An example of a structured term is "$.name == 'Batory, Don' " where an example of an un-

structured term would be "($.age>40||$.age<30)". Anytime a disjunction (||) appears, the

expression is unstructured. So whenever a disjunction is used, the term it appears in must be

written without blanks and in parenthesis. Also note that predicates can contain function calls

such as "(fn($.name,currname))", in which case they are unstructured as well. String literals

are enclosed within single quotes (e.g., 'Batory'). A string literal cannot have embedded quotes,

single or double.

18 Introductory P2 System Manual

Here are more examples of structured P2 predicates on an employee record type with a name

string �eld and an integer age �eld:

"$.age > 15" // age �eld greater than 15
"$.age == 15" // age �eld equals 15
"$.name >= 'B' && $.name < 'C' && $.age > 40"

// name �eld begins with letter 'B'
// and age �eld greater than 40

"$.age > x" // age �eld greater than value of variable x
"$.age > x && $.age < y" // age �eld falls within range (x,y)

Note that spaces are important in the above predicates.

Here are more examples of unstructured P2 predicates:

"($.age>15)" // enclosed within () and without blanks
"(is_old($.age))" // function call where age �eld passed

// as parameter
"($.name>='B'&&$.name<'C'&&$.age>40)"

// same as third structured example above
"(($.name>='B'&&$.name<'C')||$.age>40)"

// name �eld begins with 'B' or age > 40

Here are examples of illegal P2 predicates:

"$.age> 15" // missing blank before >
"($.age>15" // missing right parenthesis

An orderby clause speci�es the �eld and sort direction for retrieved elements. The syntax for

the orderby clause is:

orderby_clause: ascending �eld name
| descending �eld name
| �eld name

The reserved word ascending (descending) speci�es to sort in increasing (decreasing) order.

The �eld �eld name is the ordering key. Depending on the type of the key, the sorting method is

numeric or lexicographic. Sorting on multiple keys are not currently supported. The third case

defaults to ascending by the �eld name key.

Chapter 5: P2 Language 19

For our �rst example, the following cursor declaration declares a cursor variable over the prime

number container. The cursor is quali�ed to match only numbers ending in the digit `1' and to

return the elements in increasing order.

cursor < prime_container >

where "($.num%10) == 1" // Unstructured Predicate
orderby ascending num // Orderby clause

prime_cursor; // cursor variable

The next example is a cursor for the employees container, which will range over all employee

elements whose name begins with an M. In addition, these elements are retrieved in reverse order

(larger numbers appear �rst) by their ages.

cursor < emp_cont >

where "$.name >= 'M' && $.name < 'N'"

orderby descending age

5.5 Type Expressions

5.5.1 Type Expression Declarations

A type expression is a composition of layers which represents an implementation for the con-

tainer. A type expressions is de�ned using a typex declaration which is a sequence of zero or

more type assignments. The typex declaration assigns a symbolic name to type expressions. These

names may be subsequently referenced to specify the container implementation. Type expression

names can not end with a digit, but are otherwise ordinary C identi�ers.

typex_declaration : typex { typex_assignment* } ;

typex_assignment : typex_name = typex_definition ;

For example, the following typex declaration declares two type expressions, named s and t:

typex {

s = conceptual[slist[delflag[array[transient]]]];

t = conceptual[odlist1[odlist2[malloc[transient]]]];

}

Interpreting type expressions requires some background on what they actually mean. A term

of a type expression is a P2 layer (or component). Every P2 component encapsulates a consistent

20 Introductory P2 System Manual

data type and operation mapping for cursors, containers, and their elements. A type expression is

a composition of layers that de�nes a sequence of mappings that transforms a P2 program into a C

program. Thus, to understand what a type expression means requires understanding the mapping

that is performed by each layer of the type expression.

With this as a background, let's analyze these expressions to see what they mean. The full

meanings of the individual layers are given in detail in See Chapter 7 [P2 Layers], page 43. For s:

� The conceptual layer is actually a built-in composition of many P2 layers that accomplish

sorting, loop rewrites etc. It is typically the �rst layer of every type expression.

� The slist layer links together elements of a container onto a singly linked list in order of

insertion.

� The delflag layer the delag layer rewrites an element delete operation into an element update

that marks an element deleted; the storage space for an element is not reclaimed.

� The array layer provides storage for the elements in a preallocated array. The implementation

of array ignores deletions, so the delflag layer is needed above the array layer.

� The transient layer stores the element in main memory. This is di�erent than the mmap_

persistent layer which stores the element to disk.

In summary, s is a layer which stores its elements in an array (which are also linked in a list) in

main memory. Let us analyze t similarly:

� The conceptual layer is actually a built-in composition of many P2 layers that accomplish

sorting, loop rewrites etc. It is typically the �rst layer of every type expressions.

� The odlist1 layer links together elements of a container via an ordered doubly-linked list.

The ordering for this layer depends on the annotation.

� The odlist2 layer is exactly like odlist1, though the ordering key may be di�erent.

� The malloc layer provides storage from the heap for each new element allocation.

� The transient layer stores the element in main memory.

So t allocates space for the elements on demand and links the elements together using two keys.

5.5.2 Type Expression Annotations

Besides the layer parameters, a layer may have additional parameters called annotations. The

only layer of type expression s that has an annotation is array. The array needs the size of the

Chapter 5: P2 Language 21

array to allocate. If we wish to set that value to 200, then we could declare a container that can

store up to 200 primes as:

typex {

s = conceptual[slist[delflag[array[transient]]]];

}

container < prime_num_type > stored_as s with {

array size is 200;

} prime_container;

In expression t, only the odlist layer has an annotation. This layer stores elements onto an

ordered, doubly-linked list. The key or sort �eld is the annotation of odlist. Note that odlist

appears twice in t, and each instance can have its own distinct key. To ensure that the proper

annotation is associated with the proper instance of odlist, layer names are followed by a unique

digit. Therefore a layer can appear at most 10 times in a type expression (there is a way around

this limit in Section 5.5.3 [Automatic Repetition], page 21). Using the employee example, we can

declare:

typex {

t = conceptual[odlist1[odlist2[malloc[transient]]]];

}

container < emp_type > stored_as t with {

odlist1 key is name;

odlist2 key is age;

} emp_cont1;

cursor < emp_cont1 > orderby age emp_curs1;

cursor < emp_cont1 > orderby name emp_curs2;

5.5.3 Automatic Repetition

One more feature in type expressions is automatic repetition. If a layer takes a single annotation,

and two annotations are given, then the layer is automatically repeated. If no annotations are given,

then the layer is automatically deleted.

For instance, let us de�ne type expression u:

typex {

u = conceptual[bintree[odlist[malloc[transient]]]];

}

22 Introductory P2 System Manual

The actual type expression will change with respect to these container declarations:

container < emp_type > stored_as u with {

bintree key is name;

odlist key is age;

} emp_cont1;

container < emp_type > stored_as u with {

bintree key is name;

bintree key is age;

} emp_cont2;

container < emp_type > stored_as u with {

odlist key is name;

odlist key is age;

} emp_cont3;

In emp_cont1, the annotations will preserve the type expression u as before. However, emp_

cont2 will cause the bintree layer to be duplicated and the odlist layer to disappear since there

are two bintree annotations and no odlist annotations. Therefore the type expression is changed

to the equivalent of: conceptual[bintree[bintree[malloc[transient]]]]. The last container

declaration has no bintree annotations but two odlist annotations, therefore the type expression

is equivalent to: conceptual[bintree[bintree[malloc[transient]]]].

Automatic repetition can be combined with the method of distinguishing layer instances by

their last digit, so declarations like the one below are legal:

typex {

u = conceptual[bintree1[odlist[bintree2[malloc[transient]]]]];

}

container < emp_type > stored_as u with {

bintree1 key is name;

bintree1 key is age;

bintree2 key is name;

} emp_cont1;

The above example means that for container emp_cont1, the �rst bintree layer is duplicated,

the odlist layer is deleted, and the second bintree layer appears only once.

Chapter 5: P2 Language 23

5.6 Generic Containers/Cursors

A generic container is a proxy for a concrete (i.e. non-generic) container. The motivation for

generic containers is to enable the de�ntion of procedures that operate over several containers that

share the same element type.

The syntax for the declaration is:

generic_container_declaration: generic_container

< element_type_specifier >

Suppose we wish to write a print_size function which returns the number of elements in the

container. Additionally, we have several di�erent containers of emp types; each with a di�erent

type expression. This means that the C struct type for each container would be di�erent, thus

causing one print_size() function to be written for each container type. This is awkward.

Generic containers were introduced to eliminate this problem. One print_size() function can

be written, which takes any container of prime_num_type elements as an argument. Here is how

such a container would be written:

container < emp_type > stored_as linked_list with {

} emp_cont

typedef generic_container < emp_type > GK;

void print_size(GK cont, char *name)

{

printf("Size of container %s = %d",

name, cardinality(cont));

}

main()

{

...

print_size((GK) &emp_cont,"Employee #1 Container");

}

will declare a type GK that can be used in the procedure print_size. This procedure will

work for all containers based on the emp_type. The cardinality procedure is one of P2's special

container operations.

24 Introductory P2 System Manual

A generic cursor is a proxy for a concrete cursor in the same way as a generic container is a

proxy for a concrete container. The syntax is similar as well:

generic_cursor_declaration: generic_cursor

< element_type_specifier >

identifier_declarator_list ;

Notice that generic cursors have neither a predicate nor an orderby clause. Also note that

generic cursors are based on the element type and not on the container name like ordinary cursors.

Suppose we have two cursors for our prime container: one points to elements ending in the digit

`1' while the other one points to elements ending in the digit `7'. Generic cursors allow us to write

one procedure that will print out the full list of elements that are quali�ed by these cursors.

cursor < prime_container > where "($.num%10==1)" prime_one;

cursor < prime_container > where "($.num%10==7)" prime_seven;

typedef generic_cursor < prime_num_type > GC;

void print_primes(GC gc)

{

foreach(gc)

printf("%d\n",gc.num); // print prime number

}

main()

{

...

print_primes ((GC) &prime_one);

print_primes ((GC) &prime_seven);

}

The print_primes procedure will work for all cursors whose containers are of type prime_num_

type, regardless of the concrete cursor's ordering or quali�cation.

5.7 Element Keyword

The element keyword refers to the element type of the given container or cursor k or c name.

This is useful, for example, when we need to know the size of the element after it has been trans-

formed by P2.

Chapter 5: P2 Language 25

element < k_or_c_name >

For instance, if we want to �nd out the overhead for storing the prime number elements in the

container prime container, we can determine this using:

element < prime_cursor > e_prime;

int orig = sizeof(prime_num_type);

int new = sizeof(e_prime);

printf("Size of prime_num_type: %d\n",orig);

printf("Size of element in prime container: %d\n",new);

printf("Overhead for storing primes: %d\n",new-orig);

In addition, if we want to assign values directly from the cursor objects, we can use element to

do this:

{

...

element < emp_curs1 > *c1;

c1 = emp_curs1.obj;

printf("%s %d\n",c1->name, c1->age);

}

Here, c1 is declared as a pointer to the object type of emp_curs1. Once the assignment has

been made in the second line, c1 can reference the �elds of emp_type.

5.8 Comprehensive Example

Let us see how everything �ts so far with an example involving the previous sections. The

program is called `prime.p2'.

/* Generated automatically by make from /u/jthomas/p2/src/info/../paces/prime.p2 /*

// $Id: prime.p2,v 43.0 1997/08/07 02:42:28 jthomas Exp $

// Copyright (C) 1997, The University of Texas at Austin.

// This example program was written by BJG. It is used as an example

// in the manual, so don't change this file without also changing the

// manual, particularly info/language.texi (JAT)

// PART I

26 Introductory P2 System Manual

#define MAX_ARRAY 10 // Size of prime_cont2

#define MAX_NUM 250 // Default max_num

typedef struct {

int num;

} prime_num_type;

typex {

ta = conceptual[cardinality[dlist[malloc[transient]]]];

tb = conceptual[cardinality[odlist[array[transient]]]];

}

// PART II

container < prime_num_type > stored_as ta with {

} prime_cont1;

container < prime_num_type > stored_as tb with {

odlist key is num;

array size is MAX_ARRAY;

} prime_cont2;

typedef generic_container < prime_num_type > GK;

// PART III

cursor < prime_cont1 > orderby ascending num c11;

cursor < prime_cont1 > where "($.num%10) == 1" orderby ascending num c12;

cursor < prime_cont2 > orderby descending num c21;

cursor < prime_cont2 > where "($.num%10) == 1" orderby descending num c22;

typedef generic_cursor < prime_num_type > GC;

// PART IV

element < prime_cont1 > prime_cont1_type;

element < prime_cont2 > prime_cont2_type;

// PART V

int max_num; // We will find all primes <= max_num (default is MAX_NUM)

// PART VI

void print(GC gc, char *name)

Chapter 5: P2 Language 27

{

printf("\nContainer %s:\n",name);

foreach(gc) {

printf("%3d ",gc.num);

}

printf("\n");

}

void print_cardinality(GK gk, char *title)

{

printf("cardinality of %s container = %d\n",title,cardinality(gk));

}

void init_primes(GC gc)

{

int i,j;

int div;

prime_num_type node;

for(i=3;i<max_num;i+=2) {

div = 0;

for(j=2;j<(i/2) && !div;j++)

if (i%j == 0)

div=1;

if (!div) {

node.num = i;

insert(gc, node);

}

}

node.num = 2;

insert(gc, node);

}

// PART VII

int main (int argc, char *argv[])

{

if (argc > 2)

printf("Usage: prime [max_num]");

if (argc == 2)

max_num = atoi(argv[1]);

else

max_num = MAX_NUM;

open_cont(prime_cont1);

open_cont(prime_cont2);

28 Introductory P2 System Manual

init_curs(c11);

init_curs(c12);

init_curs(c21);

init_curs(c22);

init_primes((GC)&c11);

// Insert all primes ending in 1 into the 2nd container.

foreach(c12) {

prime_num_type p;

if (overflow(prime_cont2)) {

printf("reached container 2 capacity\n");

break;

}

p.num = c12.num;

insert(c21,p);

}

printf("size of container #1 structure is: %d\n",

sizeof(prime_cont1_type));

printf("size of container #2 structure is: %d\n",

sizeof(prime_cont2_type));

printf("size of elements are: %d\n",

sizeof(prime_num_type));

print((GC)&c11, "#1");

print_cardinality((GK)&prime_cont1, "all primes");

print((GC)&c22, "#2 -- 1s only");

print_cardinality((GK)&prime_cont2, "primes ending in 1");

close_cont(prime_cont2);

close_cont(prime_cont1);

return(0);

}

The �rst part of the program de�nes the prime element structure, which is just a single integer.

Next comes the two type de�nitions. Both of these type expressions includes the layer cardinality

because it is this layer that will de�ne the cardinality operation that will be used in print_

cardinality.

The second part de�nes two containers. The �rst one will be used to hold all the prime numbers

while the second one will be used to hold all prime numbers ending in the digit `1'. The second

Chapter 5: P2 Language 29

container is, however, constrained to hold only 10 primes due to the array size is MAX_ARRAY

statement. A generic container is de�ned and will be used in the print_cardinality procedure.

The third part de�nes several cursors. The �rst two cursors belong to the �rst container and

the second two belong to the second container. Notice that the second container has the values

sorted in decreasing order. Also in these container de�nitions, the expression $.num % 10 has to be

written without spaces and within parentheses because it is an unstructured term (what made it

unstructured was the arithmetic operation %). Finally a generic cursor is declared.

The fourth part de�nes two element types. The prime_cont1_type will be of type whatever

the element of prime_cont1 is.

The �fth part declares a global int called maxnum. This is the maximum value of the number to

search for primes.

The sixth part declares three generic-based procedures. The procedure print will take any

cursor belonging to a container and print out the list of primes that are accessible by the cursor.

For instance, the cursor c12 will print out only those primes that end in `1', even though it belongs

to the container which stores all primes.

The print_cardinality takes a container for an argument and prints out the size of the

container.

The init_primes takes a container and inserts all primes up to but not including the maximum

number. At the end, it inserts the number `2' into the container. Insertions are done via a record

of the original type. This record, called node, is allocated one and the values are overwritten per

iteration of the loop. Insertions work by copying the record �elds and allocating new memory to

store these �elds.

The seventh part is the main program. The �rst eight lines initializes the containers and cursors

and prompts for the maximum value to halt the search for primes.

To call the init_primes procedure to insert elements into the �rst container, the address of

any cursor belonging to the �rst container is passed and it is cast to the generic procedure type.

While the syntax may look clumsy, it works.

Once all the primes are inserted into the �rst container, we wish to insert all primes ending in

the digit `1' into the second container. The cursor c12 points to the only numbers we want and is

a member of the �rst container. Therefore this is the cursor to use in the foreach statement.

30 Introductory P2 System Manual

Within the foreach body, we make a test to see if there are already 10 elements in the second

container with the operation overflow. If the value is true, then the capacity of the container has

been reached meaning it is unable to accept more elements. Therefore, this condition will break the

loop, just like any other C for loop. But as long as it is possible, the number from c12 is copied

to a record and that record is inserted into the second container.

The program next prints the size of some types and then the program prints both the content

and the size of the two containers.

The execution of the program resulted in these output:

%prime 100

size of container #1 structure is: 16

size of container #2 structure is: 16

size of elements are: 4

Container #1:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

53 59 61 67 71 73 79 83 89 97

cardinality of all primes container = 25

Container #2 -- 1s only:

71 61 41 31 11

cardinality of primes ending in 1 container = 5

% prime 250

reached container 2 capacity

size of container #1 structure is: 16

size of container #2 structure is: 16

size of elements are: 4

Container #1:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

53 59 61 67 71 73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173 179 181 191 193 197

199 211 223 227 229 233 239 241

cardinality of all primes container = 53

Container #2 -- 1s only:

191 181 151 131 101 71 61 41 31 11

cardinality of primes ending in 1 container = 10

Notice how in the second run, the second container reached its capacity. Also notice that the

second container orders the numbers backward.

Chapter 5: P2 Language 31

5.9 Type Expression Constraints

For a P2 system equipped with 40 layers, the number of type expressions consisting of exactly 5

layers are approximately (1*37^3*2), representing conceptual [3 layers [(transient | mmap_

persistent)]], which is over 100,000 expressions. There is one test suite case in P2 where a type

expression is composed of 60 layers, so there are a tremendous number of combinations for type

expressions.

However, not all type expressions make sense; only a very small subset does. Type expressions

are constrained by three factors:

� Interface connections

� Semantic constraints

� Layer Ordering

5.9.1 Interface Constraints

For a type expression to have the correct interface connection, the interfaces imported by a layer

must match the interfaces exported by its arguments. For example, the above type expression t =

conceptual[odlist[array[transient]]]] is syntactically correct, because:

� the parameter of conceptual is the same type as the interface exported by odlist,

� the parameter of odlist is the same type as the interface exported by array,

� the parameter of array is the same type as the interface exported by transient,

� and the transient layer has no parameters.

P2 performs simple compositional transformations at compile time. Static composition trades

the disadvantage that implementations cannot be altered (a la schema evolution) at run time,

for the advantage that composition has zero runtime cost. P2 generates code on a per special

operation (see Chapter 6 [P2 Operations], page 39) basis. Speci�cally, P2 composes code fragments

contributed by each layer in the type expression in order down from the top of the type expression

to the bottom, and then back up from the bottom to the top.

32 Introductory P2 System Manual

5.9.2 Semantic Constraints

Once a type expression has the proper interface connections, the next check is for proper semantic

constraints. For example, one cannot perform a retrieval operation on a cursor that is bound

to a container with type expression conceptual[malloc[mmap_persistent]], since none of the

components in this type expression implement retrieval operations. The purpose of P2's built-in

design rule checker is to evaluate additional rules (beyond interface matching) to assure that the

type equations are semantically meaningful. In addition, the built-in checker will explain in some

detail what is wrong with an incorrect type expression.

For further details on the design rule checking algorithm, see section \Layer Composition

Checks" in Advanced P2 System Manual.

5.9.3 Ordering Constraints

Finally, a type expression that satis�es the semantic constraints may work, but the ordering of

the layers in the expression may be crucial. The placement of a layer in a type expression can have

a tremendous e�ect on the algorithms (and consequently, the running times). Consider the two

type expressions below:

typex {

t = conceptual[delflag[odlist[array[transient]]]];

s = conceptual[odlist[delflag[array[transient]]]];

}

One of the routines that is a�ected is the delete operation. This operation in delflag marks

the element and does not execute the operation in the next layer in the type expression. So in

expression t, the delete operation for odlist is not called whereas in s it is.

So how important is this? Well, it depends on the cost for testing every element in every

operation to determine if it has been deleted versus the cost for doing the deletion on an element.

5.10 Composite Cursors

Complex data structures consist of multiple containers whose elements are interconnected by

pointers. A relationship among containers C1, C2, ..., Cn is a set of n-tuples <e1, e2, ..., en> where

Chapter 5: P2 Language 33

element ei is a member of container Ci. Let us assume that for three containers A, B, and C, the

relationship among containers over speci�c elements are:

{(a3,b1,c1), (a3,b1,c3), (a1,b2,c4), (a2,b3,c2), (a2,b3,c4)}

A composite cursor enumerates the n-tuples of a relationship. More speci�cally, a composite

cursor k is an n-tuple of cursors, one cursor per container of a relationship. A particular n-tuple

<e1, e2, ..., en> of a relationship is encoded by having the ith cursor of k positioned on element ei.

By advancing k, successive n-tuples of a relationship are retrieved.

A composite cursor is declared with a list of cursor-container pairs which are the name of the

cursor internal to this one and the name of the container to range over. A given clause speci�es

which of the internal cursors is already bound, a predicate restricts the elements satisfying the tuple,

and a valid clause tests the next tuple before advances. A composite cursor has the syntactical

form:

composite-cursor-declaration : compcurs

< cursor-container-pair-list >

[given < cursor-list >]

[where predicate]

[valid valid-string]

cursor-container-pair-list : cc-pair

| cursor-container-pair-list , cc-pair

cc-pair : internal_cursor_name container_name

There are two new operations which are special to composite cursors. initk(c curs) is the opera-

tion which initializes composite cursors and foreachk(c curs) is the looping construct for composite

cursors.

The type expression of the containers used in composite cursors require a link layer to implement

the joins between containers. If a link layer is not declared, the nested loop link layer (nloops) will

be automatically provided by P2. This example declares a composite cursor goldbach to determine

pairs of prime numbers that di�er by 2.

34 Introductory P2 System Manual

prime_list = top2ds[inbetween[qualify[delflag[array[transient]]]]];

container < prime_num_type > stored_as prime_list with {

array size is 200;

} prime_container;

compcurs < a prime_container, b prime_container >

where "($a.num+2==$b.num)"

goldbach;

The composite cursor goldbach is derived from two internal cursors, a and b, both belonging

to the same container, prime_container. The where clause is an unstructured predicate because

it uses the + operation. Therefore, it is expressed without spaces and in parentheses.

The main program can be written as:

main()

{

... // Initialize the container with primes

initk(goldbach);

foreachk(goldbach) {

printf("(%d, %d) ",goldbach.a.num, goldbach.b.num);

}

}

After prime_container has been �lled with primes (generated by a procedure not shown), the

composite cursor goldbach is initialized and the looping construct begins. The output will look

like this:

(3, 5) (5, 7) (11, 13) (17, 19) ...

The next example uses the given clause. Assuming that the �rst element of the composite

cursor is already bound to a prime, �nd all the primes such that they are within 10 of the �rst

number. This is used in conjunction with a cursor find_num positioned on an element in the prime

container.

Chapter 5: P2 Language 35

cursor < prime_container > where "$.num == input_value" find_num;

compcurs < a prime_container, b prime_container >

given < a >

where "($a.num+10>=$b.num) && ($a.num-10<=$b.num)"

range;

main()

{

...

init_curs(find_num);

initk(range);

printf("Enter a prime number:");

scanf("%d",&input_value);

// position the find_num cursor on <input_value> in the container

reset_start(find_num);

// position the internal cursor a to point to find_num.

range.a = find_num;

printf("%d: ",range.a.num);

foreachk(range) {

printf("%d ", range.b.num);

}

}

Because the internal cursor a is used in the given clause, the program must set a to some speci�c

value before the foreachk operation. This is because the foreachk operation understands that

cursors in the given clause are already bound to some value and it will try make some optimizations

based on that information. If the user entered the number `17', then the output would be:

17: 7 11 13 17 19 23

Now before we demonstrate an example using the valid clause, we need to discuss its operation

in detail.

On every iteration of a foreachk, a new n-tuple of elements will be produced. If no element is

updated or deleted, things remain simple. However, if an element of an n-tuple is updated, then

the next n-tuple that is to be retrieved may be di�erent from the n-tuple that would have been

retrieved had there been no update.

36 Introductory P2 System Manual

Suppose there is a container of employees and a container of departments. The composite cursor

below de�nes ordered pairs (i.e., 2-tuples) of department and employee objects that are related (by

sharing the same deptno value):

compcurs < d department_container, e employee_container >

where "$d.deptno == $e.deptno" cc;

foreachk(cc)

{ printf("(%s, %s)\n", cc.d.name, cc.e.name); }

What the above foreachk does is to loop over each (department, employee) pair that satisfy

the join predicate "$d.deptno == $e.deptno". Suppose this sequences of ordered pairs is:

(d1,e1), (d1,e2), (d1,e3), (d2,e4), (d2, e5), (d3, e6)

Now suppose the following foreachk() is executed:

foreachk(cc) { delete(cc.d); }

Note that the department object `d1' is �rst to be deleted; this impacts the sequence of ordered

pairs in the following way:

(d1,e1), (d2,e4), (d3,e6)

Note that the tuples `(d1,e2), (d1,e3), (d2,e5)' are not produced. The reason is that that

once d1 is deleted, all subsequent tuples in which it appeared should be deleted as well.

The main problem is that modi�cations to elements of an n-tuple identi�ed by a composite

cursor will alter the sequence of n-tuples produced. A valid query is a predicate which is used

to determine the validity of elements of an n-tuple. This predicate is generally not the selection

predicate; rather, it is a predicate that merely tests to see if an element has been modi�ed. If

the valid predicate is false, then a new n-tuple will need to be generated on a composite cursor

advancement that does not include the element whose valid test has failed.

Generally, valid predicates are usually limited to testing for deletions (e.g., !deleted($e)) or to

updates of join �elds (e.g., join �eld valid(&$d,&$e)). Our composite cursor should now look like

this:

Chapter 5: P2 Language 37

compcurs < d department_container, e employee_container >

where "$d.deptno == $e.deptno"

valid "!deleted($d)" cc;

38 Introductory P2 System Manual

Chapter 6: P2 Operations 39

6 P2Operations

This is the list of operations understood by P2. An operation is cursor-based if the �rst argument

is a cursor, container-based if it is a container.

6.1 Container Operations

Functionopen (container)

Functionclose (container)

The open procedure performs two tasks:

� Creates the record for the container if this has not already been done. (Persistent

containers would create such a record on open time).

� Initializes the container if it has not already been done.

The close procedure is the counterpart to open. It destroys the container. Most of the

current layers do not do anything for close, but mmap_persistent and mmap_shared

do.

Functionoverow (container)

This operation returns a conditional expression representing the test for a completely

�lled container. This operation is required only in layers, such as array, which allocate

a �xed number of elements.

Note that the name of this operation is a little misleading: overflow is true if container

is full, not over-full. That is, overflow is true if an insertion will cause the container

to be over-full. Thus, the paradigm is to test overflow, before an insert, not after.

Functioncardinality (container)

This operation returns the size of (number of elements in) the container. This operation

may not be provided by all layers.

6.2 Cursor Operations

40 Introductory P2 System Manual

6.2.1 Element Retrieval Operations

A retrieval operation is one that either moves the cursor over the elements in a container or

determines if there are no more elements in the container.

Functionreset start (cursor)

Functionreset end (cursor)

The reset_start (reset_end) operation positions the cursor on the �rst (last) object

in the container. If there are no elements, the operation will point to a value de�ned

in the component (usually `NULL').

Functionadv (cursor)

Functionrev (cursor)

The adv (rev) operation moves the cursor to the next (previous) object. If there is

no next (previous) record, cursor.obj is set to some layer-de�ned value so that the

end_adv (end_rev) function can recognize that no more advances (reverses) can be

made.

Functionend adv (cursor)

Functionend rev (cursor)

The end_adv (end_rev) operation generates a boolean expression which determines

whether or not the cursor has been advanced (reversed) past the end of the container.

Functionforeach (cursor) { code }

Functionrofeach (cursor) { code }

These two operations are looping constructs. These operation will move the cursor to

the �rst (last) element in the container, execute the body of code, and iterate over

the collection forwards (backwards) until the cursor reaches the end (beginning) of the

container.

If a cursor is quali�ed to range over a subset of the elements, then these operations only apply

to the quali�ed elements. For instance, if the cursor is restricted to point to all primes ending in

`1', then reset_start will move the cursor to the �rst element ending in `1', adv will move the

cursor to the next element ending in `1', and so on.

6.2.2 Element Update Operations

Chapter 6: P2 Operations 41

Functiondelete (cursor)

This operation removes the element on which the cursor is positioned. Ideally, there

should be two delete operations: both delete a record, but one positions the cursor for

subsequent advancing, and the other for subsequent reversing. Currently, the semantics

of delete is the former. However, calling delete within a rofeach will do the latter,

which is correct.

Functioninsert (cursor, record)

This operation adds a new element into the cursor's container. If the container main-

tains an ordering, the operation will place it in the proper position.

Functionupd (cursor, �eld, expr)

Functioncursor.�eld = expr

This is the update function, which is equivalent to the expression cursor.field =

expr. Some ordered layers will generate an error if the operation is performed over the

ordering �eld. This is a result of the famous "Halloween problem"1. See `bintree.xp'

layers for an example.

6.2.3 Composite Cursor Operations

Functioninitk (compcurs)

This operation initializes composite cursors.

Functionforeachk (compcurs) { code }

This looping construct is similar to the foreach operation except the argument is a

composite cursor and iterates over each composite tuple.

6.2.4 Miscellaneous Cursor Operations

1 The Halloween Problem arises when the list of elements that are being updated must be kept in

order. Suppose we have a collection `10 20 30' and we wish to add `30' to each element, while

still maintaining the order. After changing `10' to `40', the list looks like this: `20 30 40'. Now

`30' is no longer the last element in the collection, and in fact, this process will not terminate as

the three elements will be continuously updated. P2 will catach the error at runtime (actually,

it should be caught at compile-time).

42 Introductory P2 System Manual

Functiondeleted (cursor)

This operations returns true if the current element the cursor is pointing to has been

marked as deleted. This operation may not be provided by all layers.

Functiongetrec (cursor, record)

This operation copies the data from the cursor into the record variable.

Functiongettime (cursor)

This operation returns the timestamp of the element pointed at by the cursor. This

operation may not be provided by all layers.

Functioninit curs (cursor)

This operation initializes the cursor. This operation should be called before any other

operation is performed on the cursor.

Functionswap (cursor0, cursor1)

This operation swaps the elements referenced by the two cursor arguments. Only layers

that do not maintain an ordering can implement this operation. All layers maintaining

an order report an error at code generation time.

Chapter 7: P2 Layers 43

7 P2 Layers

7.1 Layer Format

The P2 layers are vertically parameterized. Each component imports zero or more standardized

interfaces and exports a standardized interface. A standardized interface is one of these �ve types

called a realm:

`ds' data structures realm - usually things like linked lists, arrays, binary trees.

`top' the conceptual layer - the topmost layers. Usually this is the layer that de�nes foreach

and rofeach in terms of other operations.

`mem' memory allocation - the layers responsible for memory allocation.

`lnk' link layers - layers to do link processing.

`toplnk' conceptual layer for links - the topmost layer in the link sub-realm.

This is the order that they appear in the �le `op-tab.h'. This is important if we wish to add

another operation or another realm.

Below is the list of layer options to describe certain characteristics of the layer. Through the

layer options, the syntactic complexity of the xp �le is reduced.

Layer optionno annotation

Layer optionannotation

Layer optionoptional annotation

Layer optionmultiple annotation

Layer optionoptional multiple annotations

These mutually exclusive options describe the number of annotations a layer expects.

They consecutively represent: zero, one, zero or one, one or more, zero or more.

If none of these options are present, then "no annotation" is assumed.

Layer optionstable

Layer optionunstable

These mutually exclusive options describe the relationship between the delete operation

and the current cursor. A stable option will not move the cursor after performing a

44 Introductory P2 System Manual

delete operation. An unstable option will move the cursor to the �rst element after

the deleted one.

If neither option is present, then "stable" is assumed.

Layer optionretrieval always

Layer optionretrieval never

Layer optionretrieval sometimes

These three mutually exclusive options describe the status of the retrieval operations

(adv, rev, reset_start, etc.) in the layer. A retrieval_always option means the

retrieval operations are always executed, even if the layer is not chosen as the retrieval

layer. A retrieval_never option means that retrieval options are not present in

this layer. A retrieval_sometimes option means that the retrieval operations are

performed only if the layer is chosen as the retrieval layer.

If none of these options are present, then "retrieval never" is assumed.

Layer optioncurs state

Layer optioncont state

These options describes if the layer needs to maintain cursor state and/or container

state information.

Layer optiond2u

This option means that the layer implements the delete operation by using updates. For

instance, the `delflag' layer "deletes" an element by updating the element's "deleted-

�eld" from 0 to 1.

Layer optionindirect only

This option is presently used to indicate whether a layer provides persistent storage

or not. The name comes from the fact that persistent containers cannot be declared

directly, but only indirectly.

To recap, a layer without any options expects no annotations, does not move the cursor on

deletions, has no retrieval operations, does not maintain cursor or container state information, does

not map deletions onto updates, and can declare containers directly.

Finally, to interpret the layer de�nition:

ds array [mem] stable annotation retrieval_sometimes

Chapter 7: P2 Layers 45

the format is:

� The realm of the layer. (`ds')

� The name of the layer. (`array')

� The parameters of the layer surrounded by `'[' ']''. A layer may have zero or more parame-

ters. Each parameter is the the name of a realm, which can be instantiated with a layer from

that realm, e.g., (`[mem]').

� The remaining elements are the layer options that were discussed in the previous subsection.

(`stable' `annotation' `retrieval_sometimes')

7.2 P2 Layer Speci�cations

These are the layers implemented in P2 so far. New layers are likely to be developed, so this

list may change.

layerds array [mem] stable annotation retrieval_sometimes

Annotation: array size is size

Array allocates a linear array of size elements. Space occupied by deleted elements is

not reused. An error is raised if there is an attempt to add more than size elements to

the container.

layerds avail [ds] stable no annotation d2u retrieval_never

Avail keeps a list of all elements that have been deleted so that the space can be reused

for subsequent insertions.

layerds avl [ds] unstable annotation curs_state retrieval_sometimes

Annotation: avl key is �eld.

This layer implements AVL trees ordered on the �eld �eld. AVL trees are height-

balanced binary trees, meaning the maximum height for the tree with N nodes is

log2(N).

46 Introductory P2 System Manual

layerds bintree [ds] unstable annotation curs_state retrieval_sometimes

Annotation: bintree key is �eld

Binary tree ordered on key �eld.

layertop ccbus [top] stable no annotation retrieval_always

This layer is used only internally by P2 to link containers of di�erent implementa-

tions. This layer will �rst re-route the type expression based on the information in the

container (which has references to all the lower-level type expressions).

layerds delag [ds] stable retrieval_always no annotation d2u

Delag marks deleted elements instead of actually deleting them. Most often used on

top of array.

layertop conceptual [ds]

This layer does not really exist. It is a layer name that is understood by P2 to expand

into a series of layers. The current de�nition of conceptual is:

conceptual[X] ==

top2ds[init_generic[generic[generic_funcall[orderby[

inbetween[qualify[X]],

top2ds[inbetween[dlist[malloc[transient]]]]

]]]]]

layerds deque dlist [ds] stable no annotation retrieval_sometimes

deque deque dlist is an ugly hack of `dlist'; it assumes a global integer variable

"ugly hack", which has the values zero and nonzero. A zero value means that records

are inserted at the head of the dlist. A nonzero value means that records are inserted

at the tail of the dlist. Note: "ugly hack" is reset to zero upon every insertion.

layerds dlist [ds] stable no annotation retrieval_sometimes

Doubly-linked list.

layermem fasttransient [] stable no annotations

Like `transient', but it calls fastmalloc(), (which is built into the P2 runtime sys-

tem) for faster memory allocations.

Chapter 7: P2 Layers 47

layerds generic [ds] stable no annotation retrieval_always

This layer will reroute operations from being inline to calling a procedure through the

operation vector of a container (or a cursor) if the container is declared as a generic

container. If the container is not a generic container, then this layer will not a�ect

the operations. The layer `init_generic' has to come after `generic' in the type

expression.

layerds generic funcall [ds] stable curs_state no annotation

retrieval_always

If the operations are marked as "function expansion", then the calls to the opera-

tions are made through the operation vector of the container (cursor). This layer is

remarkably similar to the generic layer. This layer usually comes after generic.

layerds hash [ds] unstable curs_state annotation retrieval_sometimes

Annotation: hash key is �eldname with size size

Performs hashing. The number of buckets is size and the �eld to hash on is �eldname.

layerds hashcmp [ds] stable multiple annotations

Annotation: hashcmp field �eld.

String equality comparisons are slow operations. This layer will speed that up by

storing the hash value of a string �eld alongside the string �eld. Equality tests between

strings are transformed into an equality test between two hash values|only if the

values are equal will the string comparison be performed.

layerds hlist [ds] stable curs_state annotation retrieval_sometimes

Annotation: hlist timestamp is timestamp_�eld key is �eld with size hashsize.

This layer implements a time-stamp ordered hash-list. Timestamps are assigned in-

creasing values and stored in the �eld timestamp �eld. Inserted elements are placed at

the head of the list. Updates are modelled as insertions followed by deletions. The size

of the hash table is hashsize. The hashing �eld is �eld.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any

other usage.

48 Introductory P2 System Manual

layerds hpredindx [ds] stable annotation retrieval_sometimes curs_state

Annotation: hpredindx timestamp is timestamp_�eld key is �eld with size hash_

size predicate pred with empty_proc with nonempty_proc

This is a timestamp ordered container of quali�ed elements that are hashed into an

array of buckets. The timestamp �eld is timestamp �eld. The key to hash the elements

on is �eld and the size of the hash array is hash size. The predicate pred is used to

allow only all elements satisfying a particular predicate to be in this container. The

procedure empty proc is called when the last element is deleted from the container

whereas the procedure nonempty proc is called when the �rst element is added to the

container. Either one or both procedures can be the string "null" which means no

function is called.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any

other usage.

layerds inbetween [ds] stable curs_state no annotation retrieval_always

This layer is used to point the cursor to the next object after a deletion for unstable

layers. This layer must be used if there are unstable layers in the type expression and

this layer must be above all the unstable layers.

layerds init generic [ds] stable no annotation retrieval_never

This layer initializes the operation vector (of the list of procedures) associated with a

container or a cursor. This layer comes after the generic layer.

layerlnk linkterm [top] stable no annotation retrieval_never

The bottommost link layer. The transition from the link realm to the top realm.

layerds llist [ds] stable curs_state annotation retrieval_sometimes

Annotation: llist timestamp is timestamp_�eld.

This layer implements a time-stamp ordered hash-list. Timestamps are assigned in-

creasing values and stored in the �eld timestamp �eld. Inserted elements are placed at

the head of the list. Updates are modelled as insertions followed by deletions.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any

other usage.

Chapter 7: P2 Layers 49

layerds lpredindx [ds] stable annotation retrieval_sometimes curs_state

Annotation: lpredindx timestamp is timestamp_�eld predicate pred with empty_

proc with nonempty_proc

This is a timestamp ordered list of predicate quali�ed elements. The timestamp �eld

is timestamp �eld. The predicate pred is used to allow only all elements satisfying a

particular predicate to be in this container. The procedure empty proc is called when

the last element is deleted from the container whereas the procedure nonempty proc is

called when the �rst element is added to the container. Either one or both procedures

can be the string "null" which means no function is called.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any

other usage.

layerds malloc [mem] stable no annotations

Allocates space dynamically.

layerds mlist [ds, top] unstable curs_state cont_state multiple annotation

retrieval_sometimes

Annotation: mlist on �eldname.

This is the multi-list indexing layer. This layer accepts any number of �elds and the

container is indexed over all these �elds. The �rst parameter is the type expression of

how the elements are stored and the second parameter is the type expression of how

the index objects are stored.

Note that this layer accepts multiple annotations. That is, several indices can be

performed over the same container and handled by only one invocation of the mlist

layer.

layermem mmap persistent [] stable indirect_only

Annotation: mmap_persistent file is �lename with size size.

This is a layer where the memory is mapped to disk. This layer uses the mmap system

call, which is not implemented for all versions of UNIX. For instance, it does not work

on the Linux, Solaris, and ULTRIX, but it does work on the SunOS. The �le named

�lename is allocated with size characters in order to provide baking store.

50 Introductory P2 System Manual

layermem mmap shared [] stable indirect_only

Annotation: mmap_shared file is �lename with size size.

This layer works like mmap shared, but maps memory transiently, rather than persis-

tently. The primary use of this layer is to allocate a region of memory that will be

shared by two or more processes.

layerds multimalloc [mem] stable optional annotation retrieval_never

Annotation: multimalloc size is size.

If no annotation is speci�ed, the default value of size is 100.

This layer works like malloc, but it allocates size objects at once and keeps track of

the next available location via caching.

layerds named funcall [ds] stable curs_state no annotation

retrieval_always

A type expression without named_funcall inlines the code at the point of invocation.

With this layer, a procedure is generated (based on the name of the container) and the

invocation has been replaced by a procedure call. These are done if the operations are

tagged as "function expansion".

Unlike the generic_funcall layer, there is no operation vector associated with the

container (cursor).

layerlnk nloops [lnk] stable retrieval_never optional multiple

annotations

Annotation: nloop link linkname on pcard p_k_name to ccard c_k_name where link_

pred.

Note that the annotation is optional, in which case the default would be used.

This layer implements link traversals as a series of nested loops. The name of the link

is linkname. The predicate for the link, called link pred, determines how the parent

elements and child elements are connected. The names of the parent and child con-

tainers are p k name and c k name, respectively. The cardinality relationship between

the parent and the child is pcard:ccard.

layerds odlist [ds] unstable annotation retrieval_sometimes

Doubly-linked list ordered by �eld �eld.

Chapter 7: P2 Layers 51

Annotation: odlist key is �eld.

layerds orderby [ds, top] stable curs_state no annotation

retrieval_always

This layer is needed if cursors with orderby clauses are de�ned. The �rst parameter

is the continuation of the type expression of the base type. The second parameter is

the type expression of the container of pointers which maintain the ordering speci�ed

in the cursor declaration. Orderby is smart enough to (1) do nothing if the elements

are already maintained in the correct order or (2) convert advance to reverse and vice

versa if the elements are returned in the opposite of the correct order by some lower

level layer.

layerds qualify [ds] stable curs_state no annotation retrieval_always

This layer modi�es retrieval operations to advance to the next quali�ed object. The

quali�cation is determined by the cursor predicate.

layerds part [top, top] stable curs_state cont_state annotation

retrieval_always

Annotation: part at field �eldname.

This layer partitions the element into two structures, called the primary and the sec-

ondary structures. All �elds in the original element data type which appear before

(and including) �eldname are added to the secondary and all �elds after �eldname are

added to the primary.

layerds predindx [ds] annotation curs_state retrieval_sometimes

Annotation: predindx predicate pred.

This layer maintains a list of all elements satisfying predicate pred in change order

(inserted and updated elements are placed at the head of the list).

layerds qsort [mem] stable annotation retrieval_sometimes

Annotation: qsort key is �eld with size size.

This layer maintains the elements in a �xed size array (at most size elements) ordered

by the �eld �eld. Actually, the array is in sorted order only after a call to reset_start

or reset_end. An error is raised if there is an attempt to add more than size elements

to the container.

52 Introductory P2 System Manual

layerds cardinality [ds] stable no annotation

This layer adds the adhoc operation cardinality which returns the number of elements

in the container.

layerds slist [ds] unstable no annotation retrieval_sometimes

This is the unordered singly-linked list layer.

layerds slow hash [ds] unstable annotation retrieval_sometimes

Annotation: slow_hash key is �eld with size size.

This layer implements a hash function over size buckets on the �eld �eld. This is a

slow version because the current bucket is recomputed for each operation (instead of

`hash' which attempts to cache the value of the current bucket.

layerds timestamp [ds] stable annotation

Annotation: timestamp on counter

This layer adds a �eld counter to the element type which the main program has to

initialize. This �eld is incremented for each insert and update. This layer also adds

the adhoc operation gettime which returns the value of the timestamp of the element

of the current cursor.

layerds tlist [ds] stable annotation retrieval_sometimes

Annotation: tlist key is �eld.

This layer maintains a list of elements in timestamp ordering using the �eld �eld.

layertop top2ds [ds] stable no annotation retrieval_never

This is the interface between the top realm and the data structure realm. The de�ni-

tions of foreach and rofeach are speci�ed here.

layertop top2ds qualify [ds] stable no annotation retrieval_always

The union between `top2ds' and `qualify' layers.

layertoplnk top2link [lnk] stable no annotation retrieval_never

The layer which sits above all link layers. It gathers information such as which layer

will process the link.

Chapter 7: P2 Layers 53

layerds tpredindx [ds] stable annotation retrieval_sometimes curs_state

Annotation: tpredindx predicate pred with empty_proc with nonempty_proc

This is a timestamp ordered list of predicate quali�ed elements. The predicate pred is

used to allow only all elements satisfying a particular predicate to be in this list. The

procedure empty proc is called when the last element is deleted from the list whereas

the procedure nonempty proc is called when the �rst element is added to the list.

Either one or both procedures can be the string "null" which means no function is

called.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any

other usage.

layermem transient [] stable no annotations

This layer stores elements in memory.

layerds vtimestamp [ds] stable annotation

Annotation: vtimestamp field is �eld counter is countername.

This layer updates the timestamp �eld �eld, which is already de�ned in the base type,

with the value countername, which is already de�ned in the main program.

54 Introductory P2 System Manual

Chapter 8: Invoking P2 55

8 InvokingP2

8.1 Writing P2 programs

Writing a P2 program is like writing a C program, but there are di�erences. We will look at

`sample.p2' bit by bit to analyze what's going on and why are things done that way. The program

reads in employee data into a container and displays them if the meet some propery. The full

program is in Appendix A [Example P2 program], page 69.

8.1.1 p2.sample - Declaring Types

The �rst part of the �le is where the types are declared. Here we declare an employee structure, E,

which contains an employee number, age, temperature, department name, and �nally, the employee

name.

#include <stdio.h>

// Element.

typedef struct {

int empno;

int age;

float temp;

char *dept_name;

char name[20];

} E;

8.1.2 p2.sample - Containers

This portion of the code declares the containers and the types they are based on. Container k

orders the elements by age and allocates space for only 10 elements: attempts to insert an 11th

element will result in a overow warning. The other container, pk, allocates 1000 bytes in the �le

`/tmp/P2_sample-data' for persistent storage. This container orders elements both by age and by

name.

56 Introductory P2 System Manual

// Type expressions.

typex {

p = conceptual[odlist1[odlist2[malloc[mmap_persistent]]]];

t = conceptual[odlist[delflag[array[transient]]]];

}

// Containers.

container <E> stored_as t with {

odlist key is age;

array size is 10;

} k;

container <E> stored_as p with {

odlist1 key is age;

odlist2 key is name;

mmap_persistent file is "/tmp/P2_sample-data" with size 1000;

} pk;

8.1.3 p2.sample - Cursor Declarations

This example shows that cursor c and pointer to cursor pc are declared over the container k.

Both cursors will select only elements where the temperature �eld is greater or equal to 98.6. Both

cursors will also retrieve elements in alphabetical order over the element's name �eld.

// Cursors.

cursor <k>

where "$.temp >= 98.6" // Predicate.

orderby ascending name // Orderby clause.

c, // c is a cursor variable.

*pc; // pc is a pointer to cursor

In the second cursor example below, the cursor structure is used as part of a typedef. The

third example below shows that cursors can match exactly those elements with the department

name "Computer Sciences". The last cursor portion is the declaration of generic cursor, and its

use in typedefs. Generic cursors have neither an ordering nor a predicate. See Section 5.6 [Generic

Containers/Cursors], page 23.

Chapter 8: Invoking P2 57

typedef cursor <k>

where "$.temp >= 98.6"

orderby ascending name

C;

C v;

cursor <k>

where "$.dept_name == `Computer Sciences'"

orderby descending empno

cs;

// Generic cursors.

generic_cursor <E> gc;

typedef generic_cursor <E> GC;

GC gv;

8.1.4 p2.sample - Functions and Data

The macro F iterates over a cursor X, which will point to successive elements in the container.

The next function f uses speci�c cursors, whereas the last function gf uses generic cursors.

// Function body.

#define F(X) \

{ \

foreach(X) { \

printf("%d, %d, %.1f, \"%s\", \"%s\"\n", \

X.empno, X.age, X.temp, X.dept_name, X.name); \

} \

}

// Function with a non-generic formal parameter.

int f(C x)

{

F(x)

}

// Function with a generic formal parameter.

int gf(GC gx)

{

F(gx)

}

58 Introductory P2 System Manual

The employee data used in the program.

// Employee data.

E rawdata[] = {

{ 10000, 60, 99.5, "English", "Akers, Mark" },

{ 10070, 22, 99.4, "Physics", "Andrews, Kay" },

{ 10020, 18, 99.0, "History", "Aaron, Bob" },

{ 10040, 42, 98.5, "Computer Sciences", "Singhal, Vivek" },

{ 10010, 40, 98.7, "Computer Sciences", "Batory, Don" },

{ 10040, 53, 96.3, "Accounting", "Akerson, Mary" },

{ 10060, 65, 98.8, "Nutrition", "Zacks, William" },

{ 10050, 23, 96.1, "Computer Sciences", "Thomas, Jeff" },

{ 10080, 31, 98.7, "Culinary Arts", "Geraci, Bart" },

{ -1 }

};

8.1.5 p2.sample - Main Program

First, the container k is opened, two cursors are initialized, and the elements in the data are

inserted into the container. And any cursor, quali�ed or not, can be used for the insert operation.

// Main.

main()

{

int i;

E *e;

open(k);

init_curs(c);

init_curs(cs);

for (i=0, e=rawdata; e->empno != -1; i++, e++) {

insert(c, *e);

}

These are the examples of legal and illegal assignments. Recall that f(c) will print all those

elements that cursor c can point to, namely, elements where the temp >= 98.6. In addition, the

elements will be printed in alphabetical order, based on name.

Chapter 8: Invoking P2 59

// You may pass c as a actual to formal c

// and assign c to temporary cursor variable v:

printf("f(c):\n");

f(c); // Legal.

v = c; // Legal.

// You may not pass cs as an actual to formal c,

// nor assign cs to temporary cursor variable v:

#if 0

printf("\n");

printf("f(cs):\n");

f(cs); // Not legal.

v = cs; // Not legal.

#endif

These are more example of legal assignments. The code gf((GC) &c); demonstrates that a

generic cursor can take on any cursor and therefore procedures such as gf() can be written to

apply to any cursor.

// You may pass c and cs as actuals to generic formal gx,

// and assign c and cs to generic temporary cursor variable gv:

printf("\n");

printf("gf(c):\n");

gf((GC) &c); // Legal.

printf("\n");

printf("gf(cs):\n");

gf((GC) &cs); // Legal.

gv = (GC) &c; // Legal.

gv = (GC) &cs; // Legal.

close(k);

exit(0);

}

60 Introductory P2 System Manual

8.2 Executing P2

Just type P2 `foo.p2' as in the example below.

% P2 sample.p2

liner ... done

ddl ... done

pb ... done

cat ... done

deliner ... done

compile ... done

link ... done

clean-up ... done

% sample

f(c):

10020, 18, 99.0, "History", "Aaron, Bob"

10000, 60, 99.5, "English", "Akers, Mark"

10070, 22, 99.4, "Physics", "Andrews, Kay"

10010, 40, 98.7, "Computer Sciences", "Batory, Don"

10060, 65, 98.8, "Nutrition", "Zacks, William"

10080, 31, 98.7, "Culinary Arts", "Geraci, Bart" },

gf(c):

10020, 18, 99.0, "History", "Aaron, Bob"

10000, 60, 99.5, "English", "Akers, Mark"

10070, 22, 99.4, "Physics", "Andrews, Kay"

10010, 40, 98.7, "Computer Sciences", "Batory, Don"

10060, 65, 98.8, "Nutrition", "Zacks, William"

10080, 31, 98.7, "Culinary Arts", "Geraci, Bart"

gf(cs):

10050, 23, 96.1, "Computer Sciences", "Thomas, Jeff"

10040, 42, 98.5, "Computer Sciences", "Singhal, Vivek"

10010, 40, 98.7, "Computer Sciences", "Batory, Don"

8.3 P2 options

These are the options that can be set for running P2.

P2 [P2 options] �lename.p2

Chapter 8: Invoking P2 61

P2 Option-c

Suppress loading.

P2 Option--cc = compiler name

Set the CC compiler to compiler name.

P2 Option--cppflags = list

Set the C preprocessor ags to list.

P2 Option-I

P2 Option-D

P2 Option-U

Appended to the C preprocessor ags.

P2 Option--cflags = list

Set the C compiler ags to list.

P2 Option-g

P2 Option-O

Appended to the C compiler ags.

P2 Option--lflags = list

Set the linker ags to list.

P2 Option-l

P2 Option-L

Appended to the linker ags.

P2 Option--datadir = directory

Location of host independent �les (`.h' and `attr.txt').

P2 Option--libdir = directory

Location of host dependent �les (`libp2.a', `ddl', and `pb').

P2 Option--[no-]drc

Do [not] perform design rule checking.

62 Introductory P2 System Manual

P2 Option--[no-]indent

Do [not] indent the `foo.c' generated code.

P2 Option--[no-]keep

Do [not] keep intermediate �les. Not keeping the intermediate �les will save disk storage

space, and keep your directory from �lling up with junk.

P2 Option--[no-]lines

Do [not] keep original line numbers. If --lines is chosen, then errors caught by the C

compiler will refer to the original `foo.p2' line numbers. If --no-lines is chosen, the

errors caught by the C compiler will refer to the `foo.c' generated code.

P2 Option--[no-]verbose

Do [not] print stages of processing. If --no-verbose is selected, then the only thing

the system will display is:

% P2 foo

%

P2 Option-h

P2 Option--help

Print the list of options and exit.

P2 Option-v

P2 Option--version

Print the version number and exit.

Chapter 9: P2 Bibliography 63

9 P2Bibliography

These are a few of the papers which describe the P2 system.

� D. Batory, Vivek Singhal, Marty Sirkin, and Je� Thomas, "Scalable Software Libraries", Pro-

ceedings of ACM SIGSOFT '93: Symposium on the Foundations of Software Engineering, Los

Angeles, California, 7-10 December, 1993.

� Don Batory, Vivek Singhal, Je� Thomas, Sankar Dasari, Bart Geraci, and Marty Sirkin.

"Achieving Reuse with Software System Generators", IEEE Software, September 1994.

� M. Sirkin, D. Batory, and V. singhal, "Software Components in a Data Structure Precompiler",

Proc. 15th Internnational Conference on Software Engineering, May 1993.

� M. Sirkin, A Software System Generator for Data Structures, Ph.D. dissertation, Department

of Computer Science, University of Washington, Seattle, Washington, 1994.

� D. Batory and S. O'Malley. "The Design and Implementation of Hierarchical Software Systens

with Reusable Componets, ACM Transactions on Software Engineering and Methodology,

October 1992.

� D. Batory, J. Thomas. and M. Sirkin, Reengineering a Complex Application Using a Scalable

Data Strcutre Compiler, Department of Computer Science, University of Texas at Austin, May

1994.

64 Introductory P2 System Manual

Concept Index 65

Concept Index

A
agreement . 3

annotation . 13

automatic repetition . 21

B
big picture of P2 . 9

C
component . 9

composite cursor . 32

concrete cursor . 23

container declaration . 16

container, de�ned . 13

container-based . 39

container-based operations . 39

container/cursor paradigm . 13

cursor declaration . 17

cursor orderby clause . 13, 18

cursor predicate . 13

cursor, concrete . 23

cursor, de�ned . 13

cursor, generic . 23

cursor-based . 39

cursor-based operations . 39

cursors, composite . 32

D
ddl . 10

E
element keyword . 24

execution . 55

F
format . 13

functions . 39

G
generic container . 23

generic cursor . 23

GenVoca. 9

H
halloween problem . 41

I
installation . 7

interface connection . 31

invocation of P2 . 55

L
layer . 9

layer options . 43

layers . 43

O
operations . 39

options . 60

ordering . 13

P
p2 . 10

P2 bibliography . 63

P2 execution. 55

P2 language . 13

P2 layers . 43

P2 references . 63

P2, agreement . 3

P2, installation . 7

P2, writing . 55

pb . 10

predicate . 13

primes . 14

Q
quali�ed cursor . 13

66 Introductory P2 System Manual

R
realm . 43

running . 55

S
semantic constraints . 32

structured predicate . 17

T
term . 19

type expression . 13

type expressions . 19

typex declaration . 19

U
unstructured predicate . 17

V
vertical parameterization . 43

X
xp . 10

Functions and Variables Index 67

Functions and Variables Index

-
--[no-]drc. 61

--[no-]indent . 62

--[no-]keep. 62

--[no-]lines . 62

--[no-]verbose . 62

--cc = compiler name . 61

--cflags = list . 61

--cppflags = list . 61

--datadir = directory . 61

--help . 62

--lflags = list . 61

--libdir = directory . 61

--version .. 62

-c . 60

-D . 61

-g . 61

-h . 62

-I . 61

-l . 61

-L . 61

-O . 61

-U . 61

-v . 62

A
adv . 40

annotation .. 43

array. 45

avail. 45

avl . 45

B
bintree .. 45

C
cardinality .. 39, 52

ccbus. 46

close. 39

conceptual .. 46

cont state . 44

curs state . 44

cursor.field = expr . 41

D
d2u . 44

delete . 41

deleted . 42

delflag . 46

deque dlist . 46

dlist. 46

ds . 43

E
end adv. 40

end rev. 40

F
fasttransient . 46

foreach . 40

foreachk .. 41

G
generic . 46

generic funcall . 47

getrec . 42

gettime . 42

H
hash . 47

hashcmp . 47

hlist. 47

hpredindx .. 47

I
inbetween .. 48

indirect only . 44

init curs . 42

68 Introductory P2 System Manual

init generic .. 48

initk. 41

insert . 41

L
linkterm .. 48

llist. 48

lnk . 43

lpredindx .. 48

M
malloc . 49

mem . 43

mlist. 49

mmap persistent . 49

mmap shared .. 49

multimalloc .. 50

multiple annotation. 43

N
named funcall . 50

nloops . 50

no annotation. 43

O
odlist . 50

open . 39

optional annotation. 43

optional multiple annotations. 43

orderby .. 51

overflow .. 39

P
P2 FLAGS . 60

part . 51

predindx .. 51

Q
qsort. 51

qualify . 51

R
reset end . 40

reset start . 40

retrieval always . 44

retrieval never . 44

retrieval sometimes .. 44

rev . 40

rofeach . 40

S
slist. 52

slow hash . 52

stable . 43

swap . 42

T
timestamp .. 52

tlist. 52

top . 43

top2ds . 52

top2ds qualify . 52

top2link .. 52

toplnk . 43

tpredindx .. 53

transient .. 53

U
unstable .. 43

upd . 41

V
vtimestamp .. 53

Appendix A: Example P2 program 69

AppendixA Example P2 program

Below is the complete P2 program, `sample.p2'.

/* Generated automatically by make from /u/jthomas/p2/src/info/../paces/sample.p2 /*

/* $Id: sample.p2,v 43.0 1997/08/07 02:42:36 jthomas Exp $ */

/* Copyright (C) 1997, The University of Texas at Austin. */

// This example program was written by BJG. It is used as an example

// in the manual, so don't change this file without also changing the

// manual, particularly info/intro-invoking.texi, info/language.texi,

// and info/p2-intro.top.texinfo (JAT)

#include <stdio.h>

#include "P2_paces.h"

// Element.

typedef struct {

int empno;

int age;

float temp;

char *dept_name;

char name[20];

} E;

// Type expressions.

typex {

p = conceptual[odlist1[odlist2[malloc[mmap_persistent]]]];

t = conceptual[odlist[delflag[array[transient]]]];

}

// Containers.

container <E> stored_as t with {

odlist key is age;

array size is 10;

} k;

container <E> stored_as p with {

odlist1 key is age;

odlist2 key is name;

mmap_persistent file is "/tmp/P2_sample-data" with size 1000;

} pk;

// Cursors.

70 Introductory P2 System Manual

cursor <k>

where "$.temp >= 98.6" // Predicate.

orderby ascending name // Orderby clause.

c, // c is a cursor variable.

*pc; // pc is a pointer to cursor

typedef cursor <k>

where "$.temp >= 98.6"

orderby ascending name

C;

C v;

cursor <k>

where "$.dept_name == 'Computer Sciences'"

orderby descending empno

cs;

// Generic cursors.

generic_cursor <E> gc;

typedef generic_cursor <E> GC;

GC gv;

// Function body.

#define F(X) \

{ \

foreach(X) { \

printf("%d, %d, %.1f, \"%s\", \"%s\"\n", \

X.empno, X.age, X.temp, X.dept_name, X.name); \

} \

}

// Function with a non-generic formal parameter.

int f(C x)

{

F(x)

}

// Function with a generic formal parameter.

int gf(GC gx)

{

F(gx)

}

Appendix A: Example P2 program 71

// Employee data.

E rawdata[] = {

{ 10000, 60, 99.5, "English", "Akers, Mark" },

{ 10070, 22, 99.4, "Physics", "Andrews, Kay" },

{ 10020, 18, 99.0, "History", "Aaron, Bob" },

{ 10040, 42, 98.5, "Computer Sciences", "Singhal, Vivek" },

{ 10010, 40, 98.7, "Computer Sciences", "Batory, Don" },

{ 10040, 53, 96.3, "Accounting", "Akerson, Mary" },

{ 10060, 65, 98.8, "Nutrition", "Zacks, William" },

{ 10050, 23, 96.1, "Computer Sciences", "Thomas, Jeff" },

{ 10080, 31, 98.7, "Culinary Arts", "Geraci, Bart" },

{ -1 }

};

// Main.

main()

{

int i;

E *e;

open_cont(k);

init_curs(c);

init_curs(cs);

for (i=0, e=rawdata; e->empno != -1; i++, e++) {

insert(c, *e);

}

// You may pass c as a actual to formal c

// and assign c to temporary cursor variable v:

printf("f(c):\n");

f(c); // Legal.

v = c; // Legal.

// You may not pass cs as an actual to formal c,

// nor assign cs to temporary cursor variable v:

#if 0

printf("\n");

printf("f(cs):\n");

f(cs); // Not legal.

v = cs; // Not legal.

#endif

72 Introductory P2 System Manual

// You may pass c and cs as actuals to generic formal gx,

// and assign c and cs to generic temporary cursor variable gv:

printf("\n");

printf("gf(c):\n");

gf((GC) &c); // Legal.

printf("\n");

printf("gf(cs):\n");

gf((GC) &cs); // Legal.

gv = (GC) &c; // Legal.

gv = (GC) &cs; // Legal.

close_cont(k);

exit(0);

}

i

Table of Contents

Preface . 1

1 Agreement . 3

2 Distribution . 5

3 Installation . 7

4 Introduction . 9

4.1 The Conceptual Basis for P2 . 9

4.2 The Organization of the P2 Generator . 9

4.3 How to Use this Manual . 10

5 P2 Language . 13

5.1 The Container/Cursor Overview. 13

5.2 Operation Usage . 14

5.3 Container Declarations . 16

5.4 Cursor Declarations . 17

5.5 Type Expressions . 19

5.5.1 Type Expression Declarations . 19

5.5.2 Type Expression Annotations . 20

5.5.3 Automatic Repetition . 21

5.6 Generic Containers/Cursors . 23

5.7 Element Keyword . 24

5.8 Comprehensive Example . 25

5.9 Type Expression Constraints . 31

5.9.1 Interface Constraints . 31

5.9.2 Semantic Constraints . 32

5.9.3 Ordering Constraints . 32

5.10 Composite Cursors . 32

6 P2 Operations . 39

6.1 Container Operations . 39

6.2 Cursor Operations . 39

6.2.1 Element Retrieval Operations. 40

6.2.2 Element Update Operations . 40

ii Introductory P2 System Manual

6.2.3 Composite Cursor Operations . 41

6.2.4 Miscellaneous Cursor Operations . 41

7 P2 Layers . 43

7.1 Layer Format . 43

7.2 P2 Layer Speci�cations . 45

8 Invoking P2 . 55

8.1 Writing P2 programs . 55

8.1.1 p2.sample - Declaring Types . 55

8.1.2 p2.sample - Containers . 55

8.1.3 p2.sample - Cursor Declarations . 56

8.1.4 p2.sample - Functions and Data . 57

8.1.5 p2.sample - Main Program . 58

8.2 Executing P2 . 60

8.3 P2 options . 60

9 P2 Bibliography . 63

Concept Index . 65

Functions and Variables Index . 67

Appendix A Example P2 program 69

