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Overview of talk

What is the problem?

� Rule-based query optimization.

� Develop a simple, well-defined framework called Prairie to spec-

ify rules in a rule-based query optimizer.

– Abstraction of rule specification to insulate user from rule

engine.

– Support automatic generation of rule sets.

� Test framework by using it to write query optimizers.

� Develop a pre-processor to translate Prairie rule specification to

Volcano.

� Test performance of Prairie vs. Volcano.

Why is it important?

� A simple framework makes it easy to read, write and understand

rules with fewer errors.

� Need to distill the essence of what needs to be specified by the

user.

– Too many details to specify.

– Software Engineering approach.

– Research based on Volcano.
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Motivation
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� Abstract specification of rules – only essential things to be speci-

fied.

� Minimize complexity (i.e., dependence on implementation de-

tails) of rule set specification.

� Admits different types of rule set optimizations:

– Collapsing of rule sets.

– Generate implementation details.

� Allows automatic generation of rule sets to be easier.
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Prairie: Terminology

� Stored files and streams.Stored files are relations. Streams are

produced by computations on stored files or other streams.

� Operators. Abstract computations on streams or files. Describes

what the semantics are, not how they are implemented.

� Algorithms. Concrete implementations of operators.

� Operator Tree. Rooted tree with operators or algorithms as

internal nodes, stored files as leaves.

� Access Plan.Operator tree with algorithms as internal nodes.

� Property. Information used by optimizer to choose between

different operator trees/access plans.
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Prairie: Terminology

� Descriptors. List of hproperty,valuei pairs that encode operator

tree node information.

Example:

Property Meaning

join predicate join predicate for JOIN operator

tuple order tuple order of stream

num records number of tuples in stream

tuple size size of individual tuple in stream

attribute list list of attributes

cost estimated cost of algorithm

� Lot of effort in coding properties. We ultimately may want to

provide with Prairie a library of pre-written implementations of

certain properties.
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Prairie: Terminology

� Expression.Operator tree with descriptor information attached.

SORT(JOIN(RET(R1):D1, RET(R2):D2):D3):D4

SORT:D4

JOIN:D3

,
,
,,
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l
l
ll

RET:D2

R1 R2

Descriptor members are accessed by a structure member relation-

ship. Thus,

D2.num records = # of records returned by RET(R2).

D4.num records = # of records returned by the entire expression.

� Rules. (Largely influenced by Volcano)

Rules transform one operator tree into another. There are two

types of rewrite rules: T-rules (“transformation rules”) and I-

rules (“implementation rules”). Each type has a test and actions

associated with it.
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Prairie: Model

Prairie Rules, Actions
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Prairie Pre-processor

Volcano Rules, Actions'
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� Actions written in C.

� Top-down optimization

� Goal is to generate code with comparable efficiency to a hand-

written version, yet input is much simpler.
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Prairie: T-Rules

General Form: (influenced by Volcano)

E(x1; : : : ; xn) : D1 =) E0(x1; : : : ; xn) : D2

ff pre-test statements gg

test

ff post-test statements gg

Example: JOIN Associativity
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JOIN(JOIN(S1; S2) : D4; S3) : D5 =) JOIN(S1; JOIN(S2; S3) : D6) : D7

ff

gg

! attr in attr list (D5.join predicate.operand1, D2.attributes)

ff

D7 = D5;

D7:join predicate = D4:join predicate;

D6:attributes = union(D2:attributes;D3:attributes);

D6:join predicate = D5:join predicate;

D6:tuple size = estimate tuple size(D2:tuple size;D3:tuple size; )

D6:num records = estimate num records(D2:num records;D3:num records);

gg
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Prairie: I-Rules

General Form: (influenced by Volcano)

E(x1; : : : ; xn) : D1 =) A(x1; : : : ; xn) : D2

test

ff pre-opt statements gg

ff post-opt statements gg

Example: Nested Loops

tuple order = a
6

JOIN : D3

S1 S2

=)

tuple order = a
6

Nested loops : D5

6

tuple order = a

S1 : D4 S2

JOIN(S1; S2) : D3 =) Nested loops(S1 : D4; S2) : D5

TRUE

ff

D5 = D3;

D4 = D1;

D4:tuple order = D3:tuple order;

gg

ff

D5:cost = D4:cost + (D4:num records) � D2:cost;

gg
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Prairie: Null Algorithm

The Null algorithm serves to pass constraints of a node down to its

input. Since operators are explicit in Prairie, we need a way to remove

operators as necessary from operator trees.

tuple order = a
6

SORT : D2

S1

=)

tuple order = a
6

Null : D4

6

tuple order = a

S1 : D3

Example: Null SORT

SORT(S1) : D2 =) Null(S1 : D3) : D4

TRUE

ff

D4 = D2;

D3 = D1;

D3:tuple order = D2:tuple order;

gg

ff

D4:cost = D3:cost;

gg
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Volcano: Model

Volcano Model (Graefe, 1990)

� Top-down query optimization.

Volcano Rules, Actions

?

Optimizer Generator

?

OptimizerOperator Tree - - Access Plan

� Extensibility — can add new operators, algorithms.

� Two types of rules:

– Transformation rules (non-cost-based rewrites).

– Implementation rules (cost-based rewrites).

� Efficient storage of equivalence classes of operator trees.

� Branch-and-bound control of search space.

� Constraint-based generation of “interesting expressions” (ala Sys-

tem R).
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Volcano: Model

� “Hidden” algorithms, rules: enforcers.

RET

R1

Merge sort

File scan

R1

Why do we care?

– Hard to visualize where enforcers will appear in operator tree

since enforcers don’t appear in rules.

– Hard to see how operator trees are rewritten. Also, greater

potential for errors in specifying rewrite rules.

Conclusion: Make all operators and algorithms explicit.
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Volcano: Model

� Operator Tree node information represented using five different

structures:

– Operator/Algorithm arguments

– Logical property

– System property

– Physical property

– Cost

� Adding new operators/algorithms may require repartition of prop-

erties.

Example. Adding a relational project operator changes attribute list

from a logical to physical property.
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Volcano: Model

� Requires writing of functions to map properties between operator

trees.

– derive log prop.

– derive sys prop.

– derive phy prop.

– do any good.

– get input pv.

– cost.

Conclusion: Use one structure to encode node information.

� Volcano implementation rules hard to read, write, understand

because of scattered functions.

– easy to make mistakes.

The Problem

� Translating Prairie input to Volcano.

– Automatic mapping of descriptor to different vectors in Vol-

cano.

– Automatically generate mapping functions in Volcano.
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Preliminary Experimental Results

Specification of a simple centralized optimizer:

� JOIN, RET, SORT operators.

� One JOIN algorithm, Jmerge; one RET algorithm, File scan.

� One SORT algorithm, Merge sort.

Lines of code
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Other experiments: Multiple JOIN algorithms (Jmerge, Jhash), col-

lapsing of multiple rules.
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Future Work

� Encode TI’s OODB optimizer to see if Prairie scales.

� Investigate extending Prairie to build layered query optimizers.

– Each layer consists of a set of rules.

– Layers can be composed in arbitrary ways.

– Rules in different layers can be composed for efficiency.

� May investigate extending Prairie to specify bottom-up query

optimizers.
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