
August 7, 1995
1

TPC-B on Smallbase and P21

Jeff Thomas and Don Batory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{jthomas, batory}@cs.utexas.edu

August 7, 1995

1 Introduction

We ran a version of the TPC-B benchmark [TPC92] modified for main-memory DBMSs as described in
[Hey94] on Smallbase [Hew95] and P2 [Bat94a-b]. The purpose of this experiment was to determine the
relative performance of the current implementations of both systems.

Note that Smallbase and P2 do not currently provide the atomicity and durability properties of transac-
tions. This experiment will help us to plan experiments and explain performance differences of future
implementations of Smallbase and P2 that will provide these properties.

2 Procedure

The benchmark used Smallbase version 4.1, and P2 version 0.3. The benchmark was run on a HP 755 (99
MHz) with 128 MB of memory, and running HP-UX 9.01. Experiments were compiled using the HP-UX
C compiler (/bin/cc) with the -O option. Experiments were run with relation size scale factor configura-
tions of 2 through 122. The database, relation, and index sizes/cardinalities were specified statically based
on the scale factor. Each configuration was run 25 times, once each with random number seeds (the con-
stant SeedVal in demo/tpcb.h) 1 through 25. Each run consisted of 200,000 (the constant NumXacts in
demo/tpcb.h) non-atomic and non-durable “transactions”. The results given are the median of the 25 runs
for each scale factor configuration. The measure of performance we use is total transaction time (the vari-
able totTime in demo/tpcbApiCT.c)

Each experiment used a different implementation of the data management functionality: (1) BASELINE

removes all data manipulation functionality (i.e. all Smallbase and P2 calls are removed, so what remains
is random number generation, statistics and timing maintenance, loop overhead, etc.), (2) SMALLBASE using
the direct (rather than the SQL) interface (demo/tpcbApiCT.c) to the storage manager, and (3) P2 using
various type equations.

1.This research was supported in part by Applied Research Laboratories at the University of Texas and Schlumberger.

2.The TPC-B benchmark requires that for each transaction per second (TPS) that a system claims to provide, there
must be at least 100,000 account records, 10 teller records, and 1 branch record (a total of approximately
10MB). Thus, the relation size scale factor is required to be equivalent to TPS. Following [Hey94], however, we have
de-coupled scale factor and TPS, because if the database were scaled as required (100,000 TPS * 10 MB/TPS =
1,000,000 MB), it would overflow main memory (128 MB).

August 7, 1995
2

The experiments included both persistent (or “permanent”) and transient (or “temporary”) databases.
In BASELINE, the distinction between persistent and transient is irrelevant, since BASELINE does not actu-
ally store, retrieve, or manipulate any data. In Smallbase, persistent databases are specified by the sb_Perm

and transient databases are specified by the sb_Temp argument to sb_dbCreate(). In P2, the distinction
between transient and persistent (like all implementation choices) is specified using a type equation. The
memory layer (mem_layer) is persistent for persistent databases and transient for transient databases.
The persistent layer is implemented using the Unix system calls mmap() and munmap().

AVL uses the type equation top2ds_qualify[avl[array[mem_layer]]]. This type equation describes a
data manager that organizes tuples into an AVL-tree whose nodes are allocated from an array.

QSORT uses the type equation top2ds_qualify[qsort[mem_layer]]. This type equation describes a data
manager that stores tuples in an array, orders the array using the quicker-sort algorithm, and performs
retrievals using binary search in the ordered array.

HASH0 and HASH1 use the type equation top2ds_qualify[hash[array[mem_layer]]]. This type equation
describes a data manager that stores tuples in a hash table which is an array of pointers to singly-linked
lists of colliding tuples. HASH0 uses the default P2 general-purpose hash function. HASH1 uses a hash func-
tion—the identity function—that is customized for the TPC-B benchmark; besides being efficient to com-
pute, the identity function avoids collisions, so the resulting hash table degenerates to an array of pointers
to tuples.

IARRAY uses the type equation top2ds_qualify[iarray[mem_layer]]. This type equation describes a
data manager that stores tuples in an array such that the index of a tuple is its key value. Each element in
the array includes a flag indicating whether or not the element contains a valid tuple. This is probably the
most efficient data structure possible for the TPC-B benchmark.

3 Results

Figure 1 presents the results for persistent databases and Figure 2 presents the results for transient data-
bases. Note that for Smallbase, the TPC-B benchmark runs at exactly the same speed on both temporary
and permanent databases. That is, the sb_Temp and sb_Perm arguments to sb_dbCreate do not change the
performance of the resulting database. For P2, the TPC-B benchmark runs approximately 10 percent faster
on transient databases than the corresponding persistent databases. Figure 3 summarizes the results for per-
sistent versus transient databases.

Overall, the TPC-B benchmark ran faster on P2 than on Smallbase, and this performance advantage of P2
over Smallbase increased with the scale factor. Speedups for P2 over Smallbase ranged from 1.5 to 5,
depending on the scale factor and P2 type expression.

4 Conclusions

These results reinforce our belief in the importance of being able to easily modify the implementation of a
DBMS in order to match the needs of an application [Bat95]. In particular, these results show the impor-
tance of being able to match the indexing strategy to the application.

August 7, 1995
3

Figure 1: Total running time (msec) and speedup (relative to SMALLBASE)
versus scale factor (relation size) for 200,000 transactions on persistent databases.

Scale Factor

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8 9 10 11 12

Total Running Time (msec) for 200,000 Transactions on Persistent DB

SMALLBASE

QSORT
AVL

HASH0

HASH1
IARRAY

BASELINE

0

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10 11 12

Speedup (Relative to SMALLBASE) for 200,000 Transactions on Persistent DB

BASELINE

IARRAY
HASH1

HASH0

AVL
QSORT
SMALLBASE

August 7, 1995
4

Figure 2: Total running time (msec) and speedup (relative to SMALLBASE)
versus scale factor (relation size) for 200,000 transactions on transient databases.

Scale Factor

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8 9 10 11 12

Total Running Time (msec) for 200,000 Transactions on Transient DB

SMALLBASE

QSORT
AVL

HASH0

HASH1
IARRAY

BASELINE

0

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10 11 12

Speedup (Relative to SMALLBASE) for 200,000 Transactions on Transient DB

BASELINE

IARRAY
HASH1

HASH0

AVL
QSORT
SMALLBASE

August 7, 1995
5

Figure 3: Total running time (msec) and speedup (persistent relative to transient)
versus scale factor (relation size) for 200,000 transactions on P2.

Scale Factor

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

2 3 4 5 6 7 8 9 10 11 12

Total Running Time (msec) for 200,000 Transactions on Persistent and Transient DB

QSORT persistent
AVL persistent
QSORT transient
AVL transient

HASH0 persistent
HASH0 transient

HASH1 persistent
IARRAY persistent
HASH1 transient
IARRAY transient

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6 7 8 9 10 11 12

Speedup (Transient DB Relative to Persistent DB) for 200,000 transactions

IARRAY
HASH0
HASH1
AVL
QSORT

August 7, 1995
6

5 References

[Bat94a] D. Batory, B. Geraci, and J. Thomas, “Introductory P2 System Manual”, Technical Report
TR-94-26 , Department of Computer Sciences, University of Texas at Austin, November 1994.

[Bat94b] D. Batory, B. Geraci, and J. Thomas, “Advanced P2 System Manual”, Technical Report
TR-94-27 , Department of Computer Sciences, University of Texas at Austin, November 1994.

[Bat95] D. Batory and J. Thomas, “P2: A Lightweight DBMS Generator”, Technical Report TR-95-26,
Department of Computer Sciences, University of Texas at Austin, June 1995.

[Hew95] “Smallbase API Reference Manual (Smallbase 4.1)”, Database Technology Department,
Hewlett-Packard Laboratories, Palo Alto, April 1995.

[Hey94] M. Heytens, S. Listgarten, M. Neimat, K. Wilkinson, “Smallbase: A Main-Memory DBMS for
High-Performance Applications (Release 3.7)”, Database Technology Department, Hewlett-
Packard Laboratories, Palo Alto, December 1994.

[TPC92] Transaction Processing Performance Council (TPC), “TPC Benchmark B: Standard
Specification (Revision 1.1)”, March 1992.

