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Abstract
We propose a factored approach to mobile robot map-
building that handles qualitatively different types of un-
certainty by combining the strengths of topological and
metrical approaches. Our framework is based on a com-
putational model of the human cognitive map; thus it al-
lows robust navigation and communication within several
different spatial ontologies. This paper focuses exclu-
sively on the issue of map-building using the framework.

Our approach factors the mapping problem into natu-
ral sub-goals: building a metrical representation for lo-
cal small-scale spaces; finding a topological map that rep-
resents the qualitative structure of large-scale space; and
(when necessary) constructing a metrical representation
for large-scale space using the skeleton provided by the
topological map. We describe how to abstract a symbolic
description of the robot’s immediate surround from lo-
cal metrical models, how to combine these local symbolic
models in order to build global symbolic models, and how
to create a globally consistent metrical map from a topo-
logical skeleton by connecting local frames of reference.

∗This work has taken place in the Intelligent Robotics Lab at the
Artificial Intelligence Laboratory, The University of Texas at Austin.
Research of the Intelligent Robotics lab is supported in part by grants
from the Texas Advanced Research Program (3658-0170-2007), from
the National Science Foundation (IIS-0413257, IIS-0713150, and IIS-
0750011), and from the National Institutes of Health (EY016089).

1 Introduction
A map is a description of an environment allowing an
agent—a human, or in our case a mobile robot—to plan
and perform effective actions. From a single location, an
agent’s sensors can not observe the whole structure of a
complex, large environment. For this reason, the agent
must build a map from observations gathered over time
and space. We distinguish between large-scale space,
with spatial structure larger than the agent’s sensory hori-
zon, and small-scale space, with structure within the sen-
sory horizon.

Most metrical approaches to mobile robot map-
building define a single, global frame of reference in
which to create the map. Range measurements are used
to perform probabilistic inference about the location of
features or about the occupancy of discretized cells in
the map [Thrun et al., 2005]. Existing SLAM (simulta-
neous localization and mapping) methods are highly ef-
fective for building local metrical models of small-scale
space and for providing reliable localization in the frame
of reference of the local map; however, maintaining global
consistency over large-scale environments is difficult, par-
ticularly when closing large loops in the environment. A
popular approach is to use particle filters, where each par-
ticle represents a hypothesized exploration trajectory. The
researcher must hope that with enough particles the dis-
tribution will include one that closes the loop correctly.
Since the space of trajectories can be enormous, this hope
is often optimistic.

The fundamental problem is representational: loop-
closing hypotheses are alternative topological structures
for the map, not alternative metrical structures. To be able
to solve complex, multi-hypothesis loop-closing problems
in a tractable manner, the robot must reason with sym-
bolic topological maps. The space of metrical maps in
a single frame of reference does not appropriately repre-
sent the states of incomplete knowledge that arise during
exploration and map-building in complex, large-scale en-
vironments.

Our factored mapping framework is based on the Spa-
tial Semantic Hierarchy (SSH) [Kuipers, 2000, 2008],
which uses multiple coordinated representations for
knowledge of large-scale space. The Hybrid SSH (HSSH)
[Kuipers et al., 2004; Beeson, 2008] extends the basic
SSH by including representations for small-scale space
and defining the relationship between large-scale and
small-scale spatial representations. Symbolic topologi-
cal mapping methods such as the SSH provide a concise
representation for the structural alternatives that arise in
investigating loop closures. Topological maps provide
the ability to store and access multiple local maps with
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separate frames of reference and topological connections
annotated with weak metrical constraints. By separating
small-scale from large-scale space, we postpone the prob-
lem of coordinating the local frames of reference until the
global structure of the topological map has been identi-
fied. At that point, the global metrical map can be con-
structed, efficiently and accurately.

Therefore, our approach factors the mapping problem
into four natural sub-goals: (1) building a metrical repre-
sentation for local small-scale spaces; (2) detecting places
and determining their symbolic descriptions; (3) finding a
topological map representing the qualitative structure of
large-scale space; and (4) constructing a metrical repre-
sentation for large-scale space in a single global frame of
reference, building on the skeleton provided by the topo-
logical map. While the global metrical map is useful for
some purposes, it is worth noting that many autonomous
planning and navigation goals can be achieved effectively
using only the global topological map and/or the local
metrical maps. Therefore, this approach to hybrid map-
ping is more robust than one that extracts topological re-
lations from a global metrical map that must be built first
[Thrun and Bücken, 1996].

The multiple representations of the HSSH are described
independently, while their semantic dependencies imply
that they build on each other. However, this does not im-
ply a simple serial processing pipeline. In fact, processing
of sensory input to build representations of the different
kinds is interleaved, providing various sorts of synergies.
Two are particularly important. First, the local metrical
map of small-scale space is a useful “observer” both for
detecting and describing places and for low-level control
with obstacle avoidance. And second, it may be useful
to order candidate topological models by using the rela-
tive displacement of nearby places or even by using the
global layout of places within a single frame of reference.
Nonetheless, in order to clarify the distinct representa-
tional ontologies, we will describe them in this paper as
though they operate independently.

The Hybrid SSH improves mobile robot capabilities in
a variety of ways: efficient and robust map-building and
navigation, “natural” human-robot interaction due to the
multiple representations of space [Beeson et al., 2007],
and hierarchical control. This paper cannot cover the full
breadth of benefits obtained from using a hybrid topologi-
cal/metrical framework; thus, this paper focuses solely on
the issue of using the Hybrid Spatial Semantic Hierarchy
framework for map-building. Here we describe the HSSH
theory and demonstrate key points of HSSH map-building
using a particular implementation that focuses on percep-
tion using range sensors, though other sensory modali-

ties can also be utilized in the HSSH framework—the hy-
brid, hierarchical framework is largely independent of the
sensors used to create the local metrical model of small-
scale space (cf. [Murarka et al., 2006]). A more detailed
description of the HSSH benefits to control, place de-
tection/description, and human-robot interaction are dis-
cussed by Beeson [2008].

2 Background

2.1 Metrical Mapping

Powerful probabilistic methods have been developed for
range-sensing mobile robots to perform simultaneous lo-
calization and mapping (SLAM) within a single frame of
reference [Thrun et al., 2005]. These methods are accu-
rate and reliable for online incremental localization within
local neighborhoods. Sensing with sufficiently high fre-
quency relative to local motion guarantees large overlap
between successive sensory images. Current sensory in-
formation can be compared to the current map in order to
improve localization. By analogy with radar signal inter-
pretation, finding the correct match between observations
and model is called the data association problem. Af-
ter improved localization occurs, the sensory information
is used to update the map for the next SLAM iteration. In
local regions, many data association problems, such as the
closing of large loops, can be excluded. The absence of
large loops means that the problem of large-scale struc-
tural ambiguity does not arise in the local metrical map.

While metrical SLAM methods work in small spaces,
they do not extend well to larger environments. Global
metrical maps become more expensive to update and ac-
cess without clever storage schemes. More important is
the difficulty that arises when closing large loops (Fig-
ure 1). Even with local SLAM methods that use percep-
tion to improve the accuracy of localization, odometry er-
ror accumulates in the relation between the map’s global
frame of reference and the ground-truth reference frame
of the real-world environment. This global error becomes
even more pronounced in environments with long paths
that have few distinguishing features. Without proper data
association along paths, localization often drifts from the
ground-truth, both in the robot’s distance along the path
and in the robot’s heading, causing straight paths to com-
press, stretch, or curve in the map.

There are ad hoc methods for hypothesizing loop clo-
sures when the global odometry error is small. When a
large loop is closed, accumulated error will often result in
the robot’s current observations clashing with older por-
tions of the map. Methods exist that search for a nearby
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(a) (b)

(c) (d)

Figure 1: Closing large loops reveals problems with cumulative errors when attempting to build metrical maps of
large-scale environments in a single global frame of reference. (a) This environment and the robot’s trajectory through
it are used as an example throughout. (b) The data comes from a Magellan Pro research robot with differential-
drive odometry and a SICK-brand lidar device for precise, planar range-sensing. (c) This robot-made map of the
environment in image (a) shows the effect of accumulated raw odometry error. (d) This map shows the improvement
in pose estimation over image (c) by using metrical SLAM methods, but it also shows that significant errors still
accumulate with respect to the real environment.
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pose in the older portions of the map where perceptions
match the prediction (propagating detected global error
backwards through the exploration trace) [Lu and Milios,
1997; Hähnel et al., 2003a]; however, these solutions can
fail in sufficiently large or complex environments. For
example, Cummins and Newman [2008] discuss closing
loops over kilometers of travel, where small rotational er-
rors lead to large positional errors, and the correct loop
closure may never be considered by odometry-based so-
lutions. Additionally, if the environment is subject to per-
ceptual aliasing (different locations look the same), then
the matching process may close the loop incorrectly, dis-
torting the map as a whole. Depending on the amount
of symmetry in the environment, a single incorrect match
can lead the mapping agent down an arbitrarily long “gar-
den path” before the error is discovered. It is still unclear
how probabilistic methods applied to metrical maps can
properly discover an incorrect map and how they might
efficiently backtrack to hypothesize a different loop clo-
sure [Hähnel et al., 2003b].

Some research on map-building avoids loop-closing is-
sues by explicitly assuming that the correct data asso-
ciation is known [Leonard and Newman, 2003; Paskin,
2003]. In some cases, even without an explicit assump-
tion about data association, impressive feats of large-scale
map-making depend on locations in the environment be-
ing sufficiently distinguishable based on local cues [Mon-
temerlo et al., 2002; Konolige, 2004]. Others accept false
negative matches in order to avoid false positives, some-
times improperly hypothesizing that a previously visited
location is a new place [Bosse et al., 2003]. This can elim-
inate the possibility of closing a loop correctly and finding
the correct map, which leads to poor planning and navi-
gation performance. In a rich environment with noise due
to dynamic changes, it could be that every location is in
principle distinguishable, but it is difficult or impossible
to know which features identify the place, and which are
noise. Methods created to distinguish between percep-
tually aliased states can get confused under scenarios of
perceptual variability (the same place looks different on
separate occasions) [Kuipers and Beeson, 2002] causing a
single physical location to be represented multiple times
in the same map.

Early approaches to probabilistic localization and map-
ping used particles to represent a distribution over robot
poses for localization, but a single shared map was
updated from the maximum-likelihood pose hypothesis
[Thrun et al., 2000b]. This could produce an incoher-
ent map due to an incorrect and premature commitment
to a maximum-likelihood pose hypothesis that turned out
to be incorrect. A more principled approach uses Rao-

Blackwellized particle filters to explicitly represent the
distribution of trajectories and maps by maintaining mul-
tiple metrical map hypotheses [Montemerlo et al., 2003;
Eliazar and Parr, 2003; Hähnel et al., 2003a]. These meth-
ods are run offline (due to computational demands) af-
ter exploration is completed, forgoing useful active ex-
ploration techniques capable of eliminating some loop-
closing hypotheses. Additionally, in large, symmetric en-
vironments, intractably large numbers of particles may be
required to avoid particle depletion when closing large
loops. Particle depletion is a failure to have a particle in
the distribution that adequately models the correct map.

2.2 Topological Mapping

Topological mapping is the other major paradigm stud-
ied in mobile robotics. Cognitive map research sup-
ports the creation of topological maps of large, com-
plex environments [Lynch, 1960; Siegel and White, 1975;
Kuipers, 1978; Chown et al., 1995; Kuipers, 2000]. A
topological map, in its most basic form, represents an
environment as a graph where nodes represent places
and edges represent connections between places. Sev-
eral groups of robotics researchers have presented dis-
tinct topological implementations that differ in their se-
mantics for the graphs—how they define/describe places
and actions between them [Kuipers and Byun, 1991;
Mataric, 1992; Shatkay and Kaelbling, 1997; Duckett
and Nehmzow, 1999; Choset and Nagatani, 2001; Mor-
ris et al., 2005]. Some implementations build topologi-
cal maps autonomously, some are given topological maps
a priori [Koenig and Simmons, 1996], and some let the
robot explore autonomously while the researcher provides
place names to overcome perceptual aliasing issues [Ko-
rtenkamp and Weymouth, 1994].

Topological maps are more compact representations
than global metrical maps, allowing efficient large-scale
planning. Additionally, since the environment is dis-
cretized into a graph, movement errors do not accumulate
globally. Possibly the most important difference for fu-
ture robotics research is that topological maps allow com-
pact, efficient hierarchical models that support multi-level
symbolic reasoning for robust navigation, planning, and
communication.

The major hurdle for topological map-building has
been the reliable abstraction of useful symbols from con-
tinuous, noisy perceptions of the environment: i.e. how to
reliably detect and recognize places and paths. This is an
instance of the more general symbol grounding problem
[Harnad, 1990] that has troubled the AI community for
many years. Probabilistic approaches are good at over-
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coming the kinds of local uncertainty and systematic noise
that can hinder reliable symbol extraction. Incorporating
probabilistic data association techniques into the topolog-
ical map-building paradigm has sparked interest in hybrid
map-building, including the HSSH approach presented in
this paper.

2.3 Hybrid Approaches

Metrical and topological representations for space are
very different in character, or more precisely, in ontology.
The topological map describes the structure of large-scale
space. It abstracts away the specific nature of sensory in-
put and the specific methods used for matching sensory
images when the topological map is created. Metrical
mapping techniques that rely on local overlap of succes-
sive sensations, on the other hand, precisely capture the
structure within the local sensory horizon: small-scale
space.

Recently, robotics researchers have begun to look at hy-
brid topological/metrical representations in order to try to
leverage the benefits of both approaches. There are too
many hybrid implementations to mention here, many with
only very subtle differences, but publications about hybrid
metric/topological representations fall into three basic cat-
egories, all of which are addressed by the work in this pa-
per. We refer the reader to the survey of specific hybrid
mapping implementations by Buschka [2005], as we refer
to well-known or prototypical examples in this discussion.

In one category of hybrid map-building approaches, a
robot uses local metrical models as local observers that
help filter out sensor noise, aggregate observations over
time, and create plans that avoid nearby obstacles. Much
of this research is specifically interested in using metri-
cal models to try to determine qualitatively distinct or in-
teresting places as the robot explores a new environment
[Yeap and Jefferies, 1999; Lankenau et al., 2002; Tomatis
et al., 2002; Ko et al., 2004]. This is related to our work
on grounding places and paths in local metrical models.

The second category of hybrid approaches focuses on
using “places” in order to reduce the number of locations
in the world that must be considered when hypothesizing
metrical loop closures. That is, the goal of most hybrid
mapping techniques is still to achieve a global metrical
map; however, they use some “topological” (i.e. graph)
constraints to make the closing of loops more efficient.
Many of these implementations record places arbitrarily
[Duckett and Saffiotti, 2000; Zimmer, 2000; Blanco et al.,
2008], e.g., every 5 meters traveled, in order to reduce
the number of locations in the world where loop closures
can occur. Others use a feature buffer, so the robot cre-

ates a new place at every n corners or wall segments
[Bosse et al., 2003]. Some approaches simply have the
researchers press a button to define places in the world
[Thrun et al., 1998]. Our research is related to these ap-
proaches as well, in that given autonomous place detec-
tion at qualitatively distinct and metrically distant places,
we can provide a compact graph representation of an en-
vironment that makes global metrical mapping extremely
efficient.

Finally, a third category of hybrid mapping has only re-
cently been investigated. There has been research looking
at modeling the full Bayesian distribution over topologi-
cal hypotheses [Ranganathan et al., 2006; Blanco et al.,
2008]. These methods are still strongly grounded in us-
ing odometry knowledge (which can be unreliable over
large distances [Cummins and Newman, 2007]) and/or
aligning raw lidar measurements. As mentioned above,
the “places” they utilize are determined by ad hoc means:
by the researcher via button presses or by using distance
thresholds or finite-sized feature buffers. We believe our
topological representation is useful here as well. Sec-
tion 10.2 discusses how this new area of hybrid research
should mesh with the HSSH framework.

The Hybrid Spatial Semantic Hierarchy (HSSH) is, to
our knowledge, the first framework and implementation
to fully describe the process of going from metrical sensa-
tions to both metrical and symbolic models of both small-
scale and large-scale space—moving from metrical mod-
els of small-scale space to symbolic representations of
small-scale space, inferring large-scale structure via sym-
bolic inference, before producing a consistent global met-
rical model from the symbolic structure. Our approach
autonomously detects and describes qualitatively distinct
places, creating far fewer places than other “hybrid” ap-
proaches. Additionally, these places are meaningful to hu-
mans as the SSH representations are inspired by human
cognitive maps.

3 The Spatial Semantic Hierarchy
This section overviews the basic Spatial Semantic Hierar-
chy (SSH) [Kuipers, 2000; Remolina and Kuipers, 2004;
Kuipers, 2008].1 The concepts and notations introduced
here will be important for extension to the Hybrid SSH,
which is presented starting in Section 3.5.

The Spatial Semantic Hierarchy (SSH) represents
knowledge of large-scale space with four distinct repre-
sentations. Figure 2 illustrates the framework. At the

1In order to combine the SSH theory with a probabilistic mapping
framework, it is necessary to use a slightly different vocabulary and sym-
bol set than in previous SSH publications.
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Figure 2: The Spatial Semantic Hierarchy. Closed-
headed arrows represent dependencies; open-headed ar-
rows represent potential information flow without depen-
dency. (From Kuipers [2000].)

SSH Control Level, control laws provide reliable motion
among distinctive states (dstates) qi. At the SSH Causal
Level, state-action-state schemas 〈q,a,q′〉 explain how the
distinctive states are linked by turn and travel actions,
and relations o(q) = v between a state and its observable
view describe the potential experiences of the robot. Thus
the Causal Level abstracts the continuous world to a de-
terministic finite automaton [Rivest and Schapire, 1989;
Dean et al., 1995], related to the way humans utilize route
instructions in navigation. At the SSH Topological Level,
a map consisting of discrete places, paths, and regions, de-
scribes the connectivity, order, containment, and bound-
ary relations of large-scale environments. At the SSH
Metrical Level, local metrical information about the loca-
tion of obstacles, the magnitudes of actions, the lengths of
path segments, and the directions of paths at place neigh-
borhoods are incorporated into local and global metrical
maps. One contribution of the Hybrid SSH is to clarify the
relation between the metrical information and the sym-
bolic abstractions of the basic SSH levels.

The Spatial Semantic Hierarchy factors spatial uncer-
tainty into distinct components, controlled in distinct
ways. Movement uncertainty is controlled by the behavior
of feedback-driven motion control laws. Pose uncertainty

is controlled in the basic SSH by hill-climbing to dstates
(and in the Hybrid SSH by incremental localization within
a local metrical map). Structural ambiguity about the
large-scale topology of the environment is controlled by
search in a space of alternative topological maps. Global
metrical uncertainty is controlled by relaxing metrical in-
formation from separate local frames of reference into a
single global frame of reference, guided by the topologi-
cal map.

3.1 The SSH Control Level
The SSH Control Level describes the system consisting
of the agent and its environment as a piecewise continu-
ous dynamical system. The agent’s experience is repre-
sented at a fine-grained sequence of time-steps 0≤ t ≤ N.
At any time t, the agent-environment system is described
by the state vector xt (the agent’s pose in a static world),
the agent’s sense vector zt , and its motor vector ut . We
assume that both the environment and the agent’s sensory
system are very rich, so the sense vector zt is very high-
dimensional.

The dynamical system is described by the following
equations, in which the functions F and G represent the
physics of the agent’s body in the environment and its
sensorimotor system, respectively. These two functions
are not explicitly known or available to the agent. The
control law Hi, on the other hand, can be selected by the
agent.

xt+1 = F(xt ,ut)
zt = G(xt)
ut = Hi(zt)

The agent acts by selecting a control law Hi to deter-
mine its motor output signals as a function of its sensor
input. In the basic SSH [Kuipers, 2000], motion is con-
trolled by alternating between two types of controllers.
Trajectory-following control laws take the robot from one
distinctive state (dstate) to the neighborhood of another.
A hill-climbing control law guides the robot to the desti-
nation dstate x̄ from anywhere in its surrounding neigh-
borhood.

Hill-climbing localizes the agent by moving it reliably
to a distinctive state within the local neighborhood, pre-
venting the accumulation of position error, and paving the
way for a discrete abstraction of the continuous space.
Furthermore, hill-climbing control makes very weak as-
sumptions about the properties of the sensors and the
agent’s knowledge of those properties. For example, a
robot may hill-climb to a distinctive state, or follow a tra-
jectory down a hallway, based on features extracted from
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sonar or laser range-finders, from monocular or stereo vi-
sion, or from sensors for luminance or electromagnetic
fields. The robot’s map is determined by the behaviors of
its hill-climbing and trajectory-following control laws. It
need never know how its sensory features correspond with
environmental states.

Despite their simple conceptual definition, hill-
climbing control laws can be difficult to define and may
vary across domains. An agent often does have stronger
knowledge of the properties of its sensorimotor system,
and physical motion to distinctive states seems awkward
and unnecessary in light of that knowledge. A key in-
sight behind the Hybrid SSH is that accurate localization
in the small-scale space model of a place neighborhood
can substitute for the physical motion of hill-climbing to
a particular distinctive state in that neighborhood. In Sec-
tion 4, we discuss how the Hybrid SSH exploits metrical
knowledge of small-scale space to build local perceptual
maps of place neighborhoods, within which localization
is reliable and effective.

3.2 The SSH Causal Level

Given pairs of trajectory-following (TF) and hill-climbing
(HC) controls that represent motion between neighbor-
ing dstates at the Control Level, we begin to represent
the robot’s experiences as a set of symbolic abstractions
(Figure 3). First, we define an action a ∈ A, to represent
a pair of trajectory-following and hill-climbing controls
that connect dstates. Since the sensory image at a dstate
z̄ = G(x̄) is a point in a very high-dimensional space, it
will, in general, never be experienced twice. We will
therefore assume that each distinctive state x̄ has an as-
sociated view, o(x̄) = v ∈ V , which is an abstracted de-
scription of the sensory image z̄.

The actual content of a view will depend on the proper-
ties of the environment and of the robot’s sensors. Views
could include such things as the direction and distance
to nearby obstacles as detected by a range sensor; color,
texture, and category of nearby objects as identified in
a camera image; the number and identity of accessible
wireless routers or cell towers; or any of a number of
other sensory features. Kuipers and Beeson [2002] de-
scribe a bootstrap-learning method for learning a view
representation suitable for high-performance place recog-
nition; however, for this paper, we will not require that
the observation function o be discovered autonomously.
As discussed in Section 5, the Hybrid SSH defines views
by extracting a specific symbolic description of the local
environmental structure.

The SSH Causal Level describes the agent’s experi-

Figure 3: SSH Control/Causal Level abstraction. In the
SSH, dstates are defined by pairs of trajectory-following
and hill-climbing control laws. These sequences are ab-
stracted into actions, and the observations at dstates are
abstracted into views. (Adapted from Kuipers [2000].)

ence as a deterministic finite automaton (DFA) [Rivest
and Schapire, 1989; Dean et al., 1995]. The Causal Level
deterministic finite automaton

MC = 〈Q,A,V,R,o〉

consists of sets of states Q, actions A, observable views V ,
a transition function R : Q×A→ Q, and an observation
function o : Q→ V . As the robot travels from one dis-
tinctive state x̄ to the next, its experience is an alternating
sequence of views and actions. Some actions are turns,
while others are travels.

v0 a1 v1 a2 v2 · · · vn−1 an vn

At the SSH Control Level, a view vi is experienced only
when the agent is at a distinctive state x̄i, so the view vi is
an observable manifestation of the distinctive state: vi =
o(x̄i).

x̄0 a1 x̄1 a2 x̄2 · · · x̄n−1 an x̄n
| | | | |

v0 v1 v2 · · · vn−1 vn

At the Causal Level, each state q ∈Q represents an equiv-
alence class of distinctive states x̄ in the physical world.2

Two distinctive states x̄i and x̄ j are equivalent if they rep-
resent different experiences of the same distinctive state
q ∈ Q. (We use the notation [x̄i] = [x̄ j] = q for this.)
The set Q of distinctive states thus represents a specific

2The term distinctive state, abbreviated dstate, is thus overloaded.
It refers both to the state x̄ resulting from a hill-climbing control law
at the SSH Control Level, and to the state q = [x̄] at the SSH Causal
Level which is part of the discrete abstraction of the continuous envi-
ronment. It is this abstraction from continuous to symbol that facilitates
causal/topological mapping in the basic SSH.
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hypothesis about which experiences x̄i represent repeated
encounters with the same state q in the environment; that
is, Q specifies data association for loop closures.

All distinctive states in the same equivalent class q must
have the same view.3

[x̄] = [x̄′]→ o(x̄) = o(x̄′)

Thus, o(q) is well-defined, and we can write

q = q′→ o(q) = o(q′)

The full sensory input from high bandwidth sensors in a
realistically complex environment is so rich that sensory
images will never match exactly. Views must be defined in
terms of some observation function that allows the same
dstate to be reliably detected on separate occasions. Thus,
an experience with repeated states such as

q0 a1 q1 a2 q2 · · · q0 an q1
| | | | |

v0 v1 v2 · · · vn−1 vn

can only be consistent if vn−1 = v0 and vn = v1. However,
abstracted views are subject to perceptual aliasing (differ-
ent places look the same), leading to ambiguities about the
topological structure of the map: o(q) = o(q′) 6→ q = q′.

The transition function R : Q×A→ Q is represented
as a set of schemas r = 〈q,a,q′〉, where context(r) =
q, action(r) = a, and result(r) = q′. As new observa-
tions are added to the robot’s experience, new schemas
〈[x̄n],an+1, [x̄n+1]〉 are learned by the transition function
R. The causal map is constructed by searching for an ap-
propriate set Q of states (i.e. equivalence classes of dis-
tinctive state observations), such that MC has a determin-
istic transition function R, predicted and observed views
are consistent, and MC is consistent with the axioms for
topological maps [Remolina and Kuipers, 2004].

For the purpose of building the SSH Causal Level from
exploration experience, building and using a DFA is far
more tractable than building and using a probabilistic state
model, such as a hidden Markov model (HMM).4 The
key benefit of a DFA over HMMs (or stochastic finite au-
tomata in general) are that both the transition function and

3The axioms provided here describe the nature of the spatial knowl-
edge represented at each SSH level, but we omit auxiliary axioms re-
quired for logical completeness (e.g., unique names axioms, etc). A
complete set of axioms is provided by Remolina and Kuipers [2004]. For
clarity and conciseness, we use a typed logic in which variable names
encode their types, and we assume that all free variables in axioms are
universally quantified.

4Finding the minimal DFA in the general case, like finding the min-
imal HMM, is NP-Complete [Gold, 1978; Angluin, 1978]. However,
given non-symmetries in the environment, it is possible to use active
exploration routines to eliminate many DFA hypotheses. Active ex-
ploration routines that eliminate ambiguity among DFA hypotheses are

the observation function are deterministic. The determin-
istic transition function follows from the nature of the ab-
straction that results from moving reliably between dstates
via TF and HC control laws. The deterministic observa-
tion function follows from the abstraction that defines the
observation function o. One improvement of the HSSH
over the SSH is that local small-scale space models make
place detection and observational classification of states
deterministic without the need for hill-climbing (Section
5).

The effect of the SSH hill-climbing (and HSSH place
detection and localization) is that the Causal Level repre-
sentation can assume that actions are deterministic. The
determinism of the observation function rests on the ab-
straction from sensory images to views being sufficiently
aggressive to eliminate perceptual variability. Although
observations are deterministic, they are not necessarily
unique since there may still be perceptual aliasing. This
ambiguity is handled by creating multiple hypotheses of
topological (thus causal) models, as explained in Section
3.3. In general, it is not possible for a robot to recover
the complete spatial structure of any arbitrary environ-
ment [Dudek et al., 1991]; therefore, keeping around the
tree of possible maps allows the robot to continue naviga-
tion when the best hypothesis is refuted by an experienced
counter example.5

3.3 The SSH Topological Level
In the SSH, a topological map is an instantiated model for
two sets of axioms: one that describes topological maps in
general and another that describes the exploration experi-
ence of the agent in a particular environment. We identify
the global topological map by generating potential models
of these axioms, discarding those that violate the axioms,
and applying an ordering on the remaining ones so that
a single best model can be selected. If there is no single
best model, then a few closely competing models can be
identified and can be used to make an exploration plan to
help discriminate between models.

The SSH Topological map MT describes the environ-
ment in terms of dstates, places, paths, regions, and the
qualitative relations among them such as connectivity, or-

closely related to adaptive distinguishing sequences, which can be com-
puted in polynomial time [Yannakakis and Lee, 1991], and should allow
the robot to find a minimal DFA in polynomial time [Schapire, 1991] in
future work on active exploration.

5Long-term experience with the HSSH has yielded deterministic ac-
tions and views in research settings, but we can envision rare scenarios,
e.g., an intersection crowded with people, that could lead to an unde-
tected or misclassified place. Detecting and understanding these unusual
events should allow us to still assume deterministic actions (100− ε)%
of the time.
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der, and containment. A dstate q ∈ Q represents a dis-
tinctive state or pose of the agent in the environment, a
place p∈ P represents a zero-dimensional location, a path
π ∈ Π represents a one-dimensional structure, and a re-
gion r ∈ R represents a two-dimensional subset of the
environment. In this paper, we will not discuss regions
or their relations, which are described by Remolina and
Kuipers [2004].

We formalize a topological map as

MT = MC ∪Ob jects∪Relations.

Here Ob jects = 〈P,Π,R〉, where P is a set of places, Π is
a set of paths, and R is a set of regions. MT thus includes
(via MC) the sets of states, actions, and views. Relations
encodes the relations over this set of objects. These rela-
tions, including at, along, on, order (and the local topol-
ogy “star” relations introduced in Section 5), allow for a
richer description of the connectivity of places and paths,
and are introduced below as needed.

At the SSH Causal Level, the experience is represented
as an alternating sequence of states (qi ∈ Q) and actions
(a j ∈ A).

q0 a1 q1 a2 q2 · · · qn−1 an qn

At the Topological Level, each distinctive state q ∈Q cor-
responds to being at a place, and facing along a path in
some direction. Since a path is one-dimensional, it has
two directions d ∈ {+,−}, for which opp(+) = − and
opp(−) = +. We define a directed path, πd , to represent
facing along a path in a particular direction.

∀q ∈ Q ∃p ∈ P, π ∈Π,

d ∈ {+,−} [at(q, p) ∧ along(q,π,d)] (1)

along(q,πd)≡ along(q,π,d)

Additionally, there are two kinds of basic actions, turns
and travels, and there is a TurnAround action.

A = Turns∪Travels TurnAround ∈ Turns

A place p ∈ P corresponds to a set of states linked by
turn actions.

〈q,a,q′〉 ∈ S∧a ∈ Turns∧at(q, p)→ at(q′, p) (2)

Similarly, a path π ∈ Π corresponds to a set of states
linked by travel actions, or by a TurnAround.

〈q,a,q′〉 ∈ S∧a ∈ Travels∧
along(q,π,d)→ along(q′,π,d) (3)

〈q,a,q′〉 ∈ S∧a = TurnAround∧
along(q,π,d)→ along(q′,π,opp(d)) (4)

The relation on(π, p) means that the place p ∈ P is on the
path π ∈Π.

at(q, p)∧along(q,π,d)→ on(π, p) (5)

A path defines an order relation over the places on it:

〈q,a,q′〉 ∈ S∧a ∈ Travels∧at(q, p)∧
at(q′, p′)∧along(q,π,d)→ order(π,d, p, p′) (6)

order(π,d,a,b)→ on(π,a)∧on(π,b) (7)

¬order(π,d, p, p) (8)

order(π,d,a,b) ⇐⇒ order(π,opp(d),b,a) (9)

order(π,d,a,b)∧order(π,d,b,c)→
order(π,d,a,c) (10)

In order to create a Topological Level map from a Causal
Level experience, such as 〈q1, travel,q2〉, 〈q2, turn,q3〉,
〈q3, travel,q4〉, the agent uses abduction to hypothesize
the existence of several places and paths at which these
distinctive states occur. Figure 4 shows an example of the
abduction process.

Remolina and Kuipers [2004] provide a non-monotonic
axiomatization of the SSH topological map, including ad-
ditional elements of the theory (regions, boundary rela-
tions, and metrical relations), along with more details and
motivating examples. This theory provides a precise spec-
ification of the possible logical models (topological maps)
that are consistent with the axioms and the sequence of
actions and views observed while exploring. A prioritized
circumscription policy (expressed as a nested abnormality
theory [Lifschitz, 1995]) specifies how distinct consistent
logical models are ordered by simplicity. Furthermore,
Savelli and Kuipers [2004] have developed the non-local
planarity constraint, which enforces the requirement that
a topological map is a graph embedded in the plane. Fig-
ure 5 presents an algorithm for constructing all possible
topological maps by generating all possible sets Q.

3.4 The SSH Metrical Level
The SSH, often thought of as a framework for creating
purely topological maps, has always allowed for local
metrical knowledge to be utilized at the Control Level

9



Causal schema Equation # Topological relation

〈q1, travel,q2〉 ∈ S (1)→ at(q1, p1), along(q1,π
+
a )

(5)→ on(πa, p1)
(3)→ along(q1,π

+
a ), along(q2,π

+
a )

(1)→ at(q2, p2)
(5)→ on(πa, p2)
(6)→ order(π+

a , p1, p2)
(8)→ p1 6= p2

〈q2, turn,q3〉 ∈ S (2)→ at(q3, p2)
(1)→ along(q3,π

−
b )

(5)→ on(πb, p2)

〈q3, travel,q4〉 ∈ S (3)→ along(q4,π
−
b )

(1)→ at(q4, p3)
(5)→ on(πb, p3)
(6)→ order(π−b , p2, p3)
(8)→ p2 6= p3

Figure 4: Topological abduction example. Here we illustrate the abduction process, using the topological axioms to
model exploration. Starting at dstate q1, the agent reaches dstate q2 at a place p2 having traveled along directed path
π+

a . It then turns to dstate q3, still at place p2, and is ready to travel along another path, say π
−
b , from q3 to dstate q4

at some other place.

(Figure 2, right column). Additionally, the SSH Metri-
cal Level has always supported a global metrical map to
be created after the topological map—it is our belief that
such a global metrical map is often unnecessary for nav-
igation in and communication about large-scale environ-
ments. However, the SSH theory has lacked a formal de-
scription of exactly how metrical information influences
the hierarchical abstractions of space. One contribution
of this paper is to clarify the relationships between metri-
cal and symbolic knowledge in a navigational agent.

In work leading to the development of the SSH,
Kuipers and Byun [1991] created a “patchwork metrical
map”. Their mapping implementation annotated topologi-
cal places and paths with metrical data gathered during ex-
ploration. Given a topological map hypothesis, the global
place layout was relaxed to minimize errors with respect
to the annotated metrical data before adding stored range
information to create the obstacle map. This approach is
similar to the probabilistic techniques we define formally
in Section 7.3.

3.5 Extending the SSH
The Spatial Semantic Hierarchy depends on the assump-
tion that the environment naturally decomposes into place
neighborhoods, connected by path segments, which can

then be abstracted to a topological map. That is, it uses the
sparse structure of man-made environments (or man-made
paths in natural environments) to define a small number of
discrete places and connecting paths. Obviously, topolog-
ical structure may be imposed even in unstructured en-
vironments. Defining places at visually distinctive loca-
tions along a single path (e.g., a water tower on the side
of a highway) or even based on metrical path-integration
in wide-open spaces (as the Puluwat navigators do when
piloting dugout canoes between distant islands [Gladwin,
1970]) are currently not handled by our SSH hill-climbing
controllers or the HSSH place detection methods. We be-
lieve these type of places can be represented within the
SSH framework, but we leave this problem for future
work.

The basic SSH makes weak (i.e. very general) assump-
tions about the sensory capabilities of the navigational
agent; thus, abstraction from continuous sensations to dis-
crete models of the environment depends on well-crafted
control laws that move the robot reliably between distinc-
tive states. The Hybrid SSH makes stronger (i.e. more
specific) assumptions about the types of sensors available
to the agent, for example, range sensors. This allows the
HSSH to extend the basic SSH by using existing metrical
mapping techniques to create precise observational mod-
els of the local surround.
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0. Perform initial action a0 that brings the robot to a place along a directed path. Initialize the tree of maps with the
map hypothesis 〈M0,q0〉, where MC

0 contains the single dstate q0 with its observed view v0, and MT
0 contains the

single place p0 and path π0.

After performing a new action a and observing the resulting view v, for each consistent map 〈M,q〉 on the fringe of
the tree:

1. If MC includes 〈q,a,q′〉 in R and v′ = o(q′),

• if match(v,v′), then 〈M,q′〉 is the successor to 〈M,q〉, extending the tree;

• if not, then mark 〈M,q〉 as inconsistent.

2. Otherwise, MC does not include 〈q,a,q′〉 in R. Let M′ be M extended with a new distinctive state symbol q′ and
the assertions v = o(q′) and 〈q,a,q′〉. Consider the k ≥ 0 dstates q j in M with v j = o(q j), such that match(v j,v).
Then 〈M,q〉 has k +1 successors:

• 〈M′j,q′〉 for 1≤ j ≤ k, where M′j is M′ extended with the assertion q′ = q j.

• 〈M′k+1,q
′〉, where M′k+1 is M′ extended with the k assertions that q′ 6= q j, for 1≤ j ≤ k.

3. Mark a new successor map inconsistent if it violates the axioms of topological maps.

4. Define a preference order on the consistent maps at the leaves of the tree.

In the Basic SSH:

M = MT .
A view is a simple symbol.
match(v,v′) iff v = v′.
Both a ∈ Turns and a ∈ Travels can reach step 2 and cause a branch.
Preference order from prioritized circumscription policy [Remolina and Kuipers, 2004].

In the Hybrid SSH (Section 6):

M = 〈MT ,MP〉.
A view is a structure 〈Sp, π̃

d〉, where p = place(q), consisting of a local topology and the directed
local-path the robot arrived upon.

match(v,v′) iff there exists an isomorphism φ : Sp→ S′ where φ(q) = q′.
Only a ∈ Travels can reach step 2 and cause a branch.
Future work: Preference order from map probabilities (Section 10.2).

Figure 5: Building the tree of topological maps. This pseudo-code framework describes the algorithm for building a
tree of all possible topological consistent with a sequence of actions and observations at discrete places. The different
instantiations of this framework for the basic and hybrid SSH are also described.
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The HSSH has four major levels of representation that
correspond to the four SSH levels (Figure 6). At the Local
Metrical Level, the agent builds and localizes itself in the
Local Perceptual Map (LPM), a metrically accurate map
of the local space within its sensory horizon. The LPM is
used for local motion planning and hazard avoidance. At
the Local Topological Level, the agent identifies discrete
places (e.g., corridor intersections, rooms, etc.) in the
large-scale continuous environment, and symbolically de-
scribes the configuration of the paths through the place—
its local decision structure. At the Global Topological
Level, the agent resolves structural ambiguities and deter-
mines how the environment is best described as a graph
of places, paths, and regions. The Global Metrical Level
specifies the layout of places, paths, and obstacles within
a single global frame of reference. It can be built on the
skeleton provided by the topological map. Figure 6 dia-
grams the basic flow of data in the HSSH, from sensors,
through the local metrical model of small-scale space and
the local and global symbolic models of the large-scale
environment, finally creating the global metrical model if
desired.

Having small-scale space models of the local surround
creates several advantages when implementing the HSSH
versus the basic SSH. First, the robot represents the local
environment using a local perceptual map (LPM) (Sec-
tion 4). The robot can therefore use algorithms for lo-
cal metrical motion planning and obstacle avoidance in-
stead of relying on behavior-based controllers. Second,
metrical localization can be done quickly after entering
a place neighborhood, rather than requiring physical hill-
climbing to a distinctive pose.

A symbolic description of the local topology is ex-
tracted from this precise small-scale-space model of the
local surround via gateways (Section 5). Thus, the view
of a distinctive state no longer need be some user-defined
function of the perceptual inputs. Instead, the method re-
lies on the local topology extracted from the LPM to de-
scribe places, thus describing all distinctive states at each
place. Using local topology to detect and describe places
allows the robot to model more complicated intersections
of paths than with hill-climbing. Additionally, using local
topology constrains the global topological model search
(Section 6), as branching in the tree of possible maps oc-
curs only when arriving at a place, not when visiting the
various dstates of a place (Section 8).

Stored metrical information along topological connec-
tions between places can be used to efficiently obtain a
global metrical layout of places (Section 7), which pro-
vides the “backbone” for a global map if desired. The
HSSH also improves navigational behaviors and facili-
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Figure 6: HSSH description. The HSSH is an integrated
framework of multiple, distinct representations of spatial
knowledge. Each level of abstraction uses its own ontol-
ogy with concepts motivated by human cognitive abilities
and grounded to the environment via local metrical obser-
vations. The four major components here correspond to
the four levels of the basic SSH shown in Figure 2.
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tates multi-modal human-robot interaction [Beeson et al.,
2007; MacMahon et al., 2006].

The rest of this paper is focused on discussion of the in-
dividual components of the HSSH. Section 4 describes lo-
cal metrical modeling of small-scale space using existing
SLAM methods, as well as local motion planning. Section
5 describes how the local topology of a place is abstracted
from the local metrical model and how this abstraction
leads to reliable place detections and descriptions. Section
6 describes how the global topological map is created and
maintained as exploration provides a sequence of actions
and local topologies of places encountered during travel.
Section 7 describes how the global metrical map is built
on the qualitative skeleton provided by the global topolog-
ical map. Section 8 discusses computational complexity
issues for each level of the HSSH. Section 9 summarizes
the paper, and Section 10 discusses future research on op-
timizing the HSSH.

4 HSSH Local Metrical Level
The critical difference between the basic SSH and the Hy-
brid SSH is the use of a local metrical model of small-
scale space surrounding the robot. In our current work,
we call this model a local perceptual map (LPM). The
LPM is currently built using sensor input from laser range
sensors that see walls, but the LPM could be built from
visual sidewalk (or road) detection or other sensor modal-
ities. Similarly, the current LPM representation models
occupied, free, and unknown regions of space. Work by
Murarka et al. [2006] investigates incorporating semantic
labels into the LPM to denote drop offs, pedestrians, and
other types of hazards.

4.1 Local Perceptual Map (LPM)
The local perceptual map (LPM) is a bounded-size met-
rical description of the small-scale space surrounding the
agent. It functions as an observer, integrating sensor val-
ues over time to determine the locations of obstacles and
other hazards, for localization, motion planning, and the
derivation of local features for larger-scale mapping. The
LPM represents the small-scale space within the robot’s
sensory horizon, not just what is currently in view. It is
small enough to avoid the problem of closing large loops.
The frame of reference of the LPM is local. Its relation
with the world frame may be unknown, and will drift over
time due to accumulating errors.

When the agent travels from one place to another, the
LPM acts as a scrolling map, m̃, that describes the robot’s
immediate surround. Information that scrolls off the LPM

is discarded, and new cells that scroll onto the map are
initialized as unknown.6 Because the LPM has a fixed,
bounded size, the cost of updating it is constant in both
time and space.

The full task of building metrical maps from explo-
ration data can be described as finding the joint posterior
over maps m and trajectories x = (x,y,θ) in P(x,m|z,u)
with the following symbol definitions.

t : The time-steps 0≤ t ≤ N of the agent’s experience.

x = x0:N : The sequence of agent poses xt at each time-
step t.

z = z0:N : The sequence of observations zt .

u = u1:N : The sequence of actions ut between time-
steps.

m : The set of map elements, which may be landmarks
or occupancy grid cells. m̃ (the scrolling local per-
ceptual map) is a particular example of a metrical
map m.

The joint probability of the pose history x and the metrical
map m can be decomposed as

P(x,m|z,u) = P(m|x,z,u) ·P(x|z,u)

by the chain rule for probabilities.
For simple, local regions, the maximum-likelihood map

can be estimated incrementally given knowledge of x and
z, so we really just need to solve for P(x|z,u). Addition-
ally, we are not concerned with the full distribution over
pose trajectories, as we are updating the map from the
maximum-likelihood pose at each time step. Thus, for
our online metrical mapping we only need to determine
the distribution over the current pose.

Bel(xt) = P(xt |z0:t ,u1:t)

= η P(zt |xt ,m)
∫

P(xt |xt−1,ut)Bel(xt−1) dxt−1,

where η is a normalization constant. Figure 7 illustrates
the basic structure of Markov localization [Fox et al.,
1999], which allows us to determine in an efficient and
incremental algorithm, the distribution of poses that best
fit the current map.

Though multiple metrical mapping methods might be
used for the LPM, we utilize the well-known occupancy
grid representation [Moravec, 1988; Elfes, 1989], along

6Our rectangular LPM scrolls, horizontally or vertically, as needed to
keep to keep the robot’s pose in a central cell. Information in the occu-
pancy grid is only shifted by integral numbers of cells to avoid blurring
the model by rotations or partial-cell translations.

13



Figure 7: Markov localization. The standard graphical
dynamic Bayesian network (DBN) for Markov localiza-
tion within a single frame of reference: combines belief
about actions P(xt |ut ,xt−1) and observation P(zt |xt ,m).
Simultaneous localization and mapping (SLAM) algo-
rithms combine localization, P(x|z,u), with one of a num-
ber of mapping methods to estimate P(x,m|z,u).

with particle filter Markov localization [Fox et al., 1999]
to overcome noisy odometry information. Stated more
plainly, we model the world as a discretized grid, where
each cell contains a probability of being occupied by an
obstacle, as measured by a lidar sensor. Localization is
performed by comparing hypothesis poses to the current
map, and the map is updated accordingly. This is a well-
known version of simultaneous localization and mapping
(SLAM) [Thrun et al., 2005]. Discussions in this pa-
per that refer to this implementation generalize to many
SLAM implementations.

4.2 LPM Benefits

LPMs provide the HSSH with various information that al-
lows both local and global abstractions of space. In Sec-
tion 5, we discuss how the LPM supports the abstraction
of a symbolic small-scale space description of the local-
paths in the surround. Section 7 discusses how the local
metrical information is used, along with the topological
map, to find the global metrical place layout of an ex-
ploration trace and, if desired, the entire global metrical
map of an explored environment. In addition to providing
useful local metrical information for place detection, cat-
egorization, and layout, the LPM is a reliable observer for
local control at the SSH Control Level.

Given a target pose in the LPM, the robot can com-
pute a trajectory to reach the target without colliding into
obstacles. This can be done using the Vector Field His-
togram [Borenstein and Koren, 1991], the Dynamic Win-
dow approach [Fox et al., 1997], gradient methods [Kono-

lige, 2000], or even a simple search (using A∗ or RRTs
[Kuffner and LaValle, 2000]) over the cells of the occu-
pancy grid. The potential function (for gradient methods)
or the cost function (for A∗) reflects the distance of the
agent from an obstacle or other hazard represented in the
LPM. Object tracking may be implemented at this level,
but our current robot implementation simply avoids obsta-
cles by taking the first few steps along the planned trajec-
tory before replanning. We discuss the selection of target
poses as they apply to Causal Level Travels and Turns in
Section 5.3.

In the basic SSH [Kuipers, 2000], an agent localizes it-
self in a place neighborhood by hill-climbing to a distinc-
tive state. Localization by physically moving to maximize
a “distinctiveness measure” requires very little knowledge
about the nature of the environment or the sensors. In
the Hybrid SSH, on the other hand, the agent uses an
online SLAM method to localize itself unambiguously
within the local perceptual map. SLAM methods depend
on stronger knowledge about the relation between sen-
sor input and the agent’s location in the local frame of
reference—P(zt |xt , m̃). In return for these stronger as-
sumptions, the agent does not need to move to a particular
location to be adequately localized.

Finally, when the agent is in the neighborhood of a
particular topological place p, a snapshot of the LPM
m̃ serves as a small-scale space description of the place
neighborhood that is stored as a place annotation mp in
the topological map. When a place p is first encountered,
the local map mp for its neighborhood is initialized with
the information from the scrolling map m̃. The frame of
reference defined for mp may be different from that of m̃,
appropriate to the characteristics of the place neighbor-
hood. When the neighborhood of p is encountered on
subsequent occasions, the agent may localize itself with
respect to the stored map mp and may update mp with the
more recent information in m̃.

5 HSSH Local Topological Level
As the robot and its scrolling LPM move continuously
through the environment, the robot identifies a discrete
set of isolated places and the path segments that connect
them. In the small-scale space of the LPM, a place neigh-
borhood is an extended region. In the large-scale space
representation, a place is a node in the topological graph,
and is connected by paths to other places. These are the
local elements from which a global topological map is
constructed. We abstract the structure of a place neighbor-
hood to the local topology description of the place. Just as
a path describes the linear order of places on it, a place de-
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scribes the circular order of directed paths radiating from
it. We call this the local topology Sp of a place p, and
describe the circular order with a structure called a star
[Kuipers et al., 2004]. This section discusses how this
symbolic representation of a place (in large-scale space)
is grounded in the metrical description mp of the place
neighborhood (in small-scale space).

A local-path π̃ at a place p is the fragment of a topolog-
ical path that is visible within the stored local perceptual
map, mp, of the neighborhood of p. A directed local-path
is of the form π̃d , where d ∈ {+,−} represents the di-
rection along π̃ moving away from p. Upon arriving at
a new place, a local-path and its directions may not yet
have been matched with a global topological path and its
directions.

A star S is a set of directed local-paths such that π̃+ ∈
S ⇐⇒ π̃− ∈ S. There are two functions that describe
stars.

next : S→ S induces a clockwise circular order over
π̃d ∈ S. next(π̃d) is the next element from π̃d in the
clockwise order.

α : S→ {0,1} associates an attribute value α(π̃d) to
π̃d ∈ S, where α(π̃d) = 1 means that travel is pos-
sible along π̃d away from p, and α(π̃d) = 0 means
that travel away from p along π̃d is not possible.

The star is naturally encoded as a sequence of pairs, where
the sequence encodes the next relation (next of the last el-
ement being the first element), and the second element of
each pair is the value of α applied to the first element. For
example, consider the following local topology (star) de-
scriptions of familiar intersection types7 including local-
paths π̃a, π̃b, and sometimes π̃c. (For ease of visualization,
the first directed local-path in the circular order is the one
directed upward.)

+ [〈π̃+
a ,1〉,〈π̃+

b ,1〉,〈π̃−a ,1〉,〈π̃−b ,1〉]
T [〈π̃−a ,0〉,〈π̃+

b ,1〉,〈π̃+
a ,1〉,〈π̃−b ,1〉]

L [〈π̃+
a ,1〉,〈π̃+

b ,1〉,〈π̃−a ,0〉,〈π̃−b ,0〉]
Y [〈π̃−a ,0〉,〈π̃+

b ,1〉,〈π̃−c ,0〉,〈π̃+
a ,1〉,〈π̃−b ,0〉,〈π̃+

c ,1〉]
K [〈π̃+

a ,1〉,〈π̃+
b ,1〉,〈π̃+

c ,1〉,〈π̃−a ,1〉,〈π̃−b ,0〉,〈π̃−c ,0〉]
ψ [〈π̃+

a ,1〉,〈π̃+
b ,1〉,〈π̃−c ,0〉,〈π̃−a ,1〉,〈π̃−b ,0〉,〈π̃+

c ,1〉]

An isomorphism φ : S→ S′ between two stars S and S′

7Note that we do not have a fixed set of equivalence classes for local
topology abstraction. Although there is an upper bound on the number
of paths that can fit into an LPM, this is determined by the path width and
the LPM size. Thus, many types of intersections can exist that cannot be
“named” using a letter.

is a bijective function such that

next(φ(π̃d)) = φ(next(π̃d))
α(φ(π̃d)) = α(π̃d)

path(φ(π̃d)) = path(φ(π̃opp(d))),

where path(π̃d) = π̃ . An isomorphism means that the two
stars have the same local topology under a suitable rota-
tion of the circular order. Note that two stars may have
multiple distinct isomorphisms. For example, there are
four distinct isomorphisms between two + intersections.

The local topology description provides a purely qual-
itative account of “left” and “right”, avoiding the need to
define them in terms of thresholds on some angular vari-
able. A particular directed local-path at a place p, π̃+, and
its opposite, π̃−, partition the other directed local-paths in
the star into two groups. Those that are between π̃+ and
π̃− in the clockwise direction can be described as being
“to the right” of π̃+. Those between π̃+ and π̃− in the
counter-clockwise direction can be described as “to the
left” of π̃+. This also defines the appropriate destination
for a route instruction such as “turn right” when the agent
is at a place p, facing along a directed path π̃+

a . The prag-
matics of natural language requires that “turn right” must
uniquely specify a directed local-path π̃d

b that is “to the
right” of π̃+

a , such that α(π̃d
b ) = 1 (i.e. π̃d

b is navigable
from p).

5.1 Grounding Local Topology in the Local
Perceptual Map

We have illustrated how to describe a place symbolically
as a circular order of directed local-paths. Here we discuss
how to use gateways to ground local-paths in the LPM.
Gateways allow the robot to ground large-scale actions in
the small-scale metrical models, abstract a symbolic lo-
cal topology description from the small-scale model, and
detect and compare places in the environment.

5.1.1 Gateways

The term “gateway” is adapted from Chown et al. [1995],
who define gateways as the locations of major changes in
visibility.

In buildings, these [gateways] are typically
doorways. . . . Therefore, a gateway occurs
where there is at least a partial visual separation
between two neighboring areas and the gate-
way itself is a visual opening to a previously
obscured area. At such a place, one has the op-
tion of entering the new area or staying in the
previous area. [Chown et al., 1995, p. 32]
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We define a gateway as a boundary in the local percep-
tual map that separates the local place neighborhood from
the larger environment. That is, a gateway is the boundary
where control shifts between localization within the local
place neighborhood and travel from one place neighbor-
hood to another. A gateway has two directions, inward
(looking into the place) and outward (looking away from
the place), according to the direction of that shift. The lo-
cation, extent, and orientation of gateways at a place are
saved as annotations of the local place neighborhood map
mp.

In much of human experience with large-scale environ-
ments (both natural and man-made) local place neighbor-
hoods are separated from each other (either by boundaries
or by distance), and they are connected by travel actions
along paths. Navigation in large-scale space is thus typ-
ically an alternation between motion along travel paths
and motion within place neighborhoods. The existence
of gateways, as interfaces between the two types of travel,
is therefore a requirement for the abstraction from small-
scale to large-scale space. Certainly extreme situations
occur, such as place neighborhoods that overlap or are im-
mediately adjacent, or environments with (apparently) no
distinctive states at all. These will be discussed in appro-
priate sections below.

Schröter et al. [2004] and Yeap [1988] discuss find-
ing gateways by looking for occlusions from laser data
or local models.8 Schröter [2006] also details a visual
door recognition system for determining gateways. Be-
low, we describe an alternative algorithm for identifying
gateways within the small-scale space of the local per-
ceptual map. This algorithm relies on a Voronoi skeleton
computed from the free space in the LPM. Our implemen-
tation first prunes the Voronoi skeleton, using the fact that
we have a bounded LPM to determine the true skeleton of
free space in the local surround. It then defines the “core”
of the local region by grouping nearby Voronoi junctions,
if they exist. Walking along the graph, from the core, to
the frontiers of the local map, the algorithm looks for con-
strictions as locations for gateways. Constrictions can be
defined several ways, e.g., local minima in the distances
to the closest obstacles (what Thrun and Bücken [1996]
call “critical points”). Gateways are then defined as line
segments that separate distinct regions of free space in the
LPM.

Pruning the Voronoi graph. A Voronoi graph is the
set of points equidistant from the two (or more) closest
obstacles. It lies on the boundaries of Voronoi regions

8Gateways are called exits by Yeap [1988]; Yeap and Jefferies
[1999].

[Fortune, 1992]. Using a Voronoi graph to describe the
free space of a metrical model can be useful; however,
given noisy measurements, a Voronoi graph can contain
many branches and spurs that do not contribute to the
“base” skeleton that describes the “backbone” of the mod-
eled environment. As a result there has been work on
pruning of Voronoi graphs [Choset and Nagatani, 2001;
Wallgrün, 2005] and on using thinning-based approxima-
tions of Voronoi graphs for mobile robot navigation [Choi
et al., 2002]. Thinned skeletons often have far fewer spurs
into concave corners; thus, they represent an approxima-
tion of a partially pruned Voronoi skeleton.

In order to determine the “critical” skeleton of a noisy
Voronoi graph, we assume that the robot is computing a
Voronoi graph in the LPM. Currently, we also remove “is-
land” obstacles by removing occupied or unknown cells
in the occupancy grid that are completely surrounded by
free cells. This reduces drastic changes in the skeleton due
to pedestrians. The Voronoi graph is computed by treating
occupied cells in the occupancy grid as obstacles.

Because we use a small, bounded LPM, there is always
some region of free space that touches the edge of the oc-
cupancy grid or some region of “unknown occupancy”
(gray cells in the figures) that may provide an option to
leave the current region. We define a terminal point of
the Voronoi graph that reaches the edge of the LPM or
reaches unexplored cells to be an exit. We can then de-
fine the branches of the Voronoi graph that contain exits
to be “critical” branches. Instead of actively pruning away
branches, a better approach is to include only the union of
all shortest paths that connect each exit to all other exits
in the LPM.9 Figure 8 shows how this spanning tree elim-
inates all spurious junctions and branches in these small-
scale models.

Determining Gateways. Gateways can be grounded in
an LPM by using the Voronoi graph. Although the full,
continuous generalized Voronoi graph can be computed
using Fortune’s algorithm [Fortune, 1992], it is usually
more efficient to approximate the Voronoi graph of an oc-
cupancy grid, using pixel-based “brush-fire” algorithms:
imagine a brush fire along all defined obstacle pixels,
burning inward at a constant speed, and the skeleton
is marked by all points where two or more fires meet.
Similarly, there exists a thinning algorithm [Zhang and
Suen, 1984] that gives a pixel-based skeleton, but with
many spurious terminal branches pre-pruned. As both
the brush-fire approaches and the thinning approach are

9Dead-ends are a special case, where only one exit exists. Here we
just keep the branch that connects the exit to the Voronoi junction at the
dead-end.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Pruning a Voronoi graph using the LPM boundary. (a,b,c) Examples of Voronoi graphs at common
places. (d) Pruning the skeleton at an L leaves no junction, which means methods that rely on junctions in pruned
graphs to define places [Choset and Nagatani, 2001] ignore these types of intersections. (e) Small bits of noise around
objects can cause spurs and hierarchical branches in the Voronoi skeleton. Methods that use fixed-depth or distance-
based pruning [Choset and Nagatani, 2001] can leave junctions in the graph, while the LPM pruning eliminates all
non-critical branches. (f) Dead-ends are a special case where we keep the minimal branch that connects the single exit
to the junction closest to the robot.
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linear in the grid size, we utilize the thinned skeleton,
as it speeds up the pruning process due to having fewer
branches that need to be examined.

Figure 9 shows a few steps of the gateway algorithm on
a thinning-based skeleton. The algorithm below has been
tested on both thinned skeletons and true Voronoi graphs,
and works well on both kinds of skeletons. Given a pruned
skeleton, the method for finding gateways is as follows:10

• l is the location of the physical robot w.r.t the LPM.

• c is the point on the Voronoi graph closest to l (Figure
9(a)).

• J is the set of Voronoi junctions j (Figure 9(b)).

• rp is the “Voronoi radius”: the distance from Voronoi
point p to the closest obstacle.

• K = { j ∈ J : dist( j, l) ≤ r j} (the robot is within the
“radius” of the junction point).

• Two junctions j and j′ are neighbors if dist( j, j′) ≤
max(r j,r j′).

• Define the “core” of the place neighborhood as F :
the equivalence class of neighboring junctions that
includes K as the starting set of junctions. See Figure
9(b).

• If F = /0 then define F = {c}.

• Q is the set of all Voronoi points q, where ∃ f ∈ F
s.t. dist( f ,q) = r f ∧∀ f ′ ∈ F dist( f ′,q) ≥ r f ′ . This
selects the set of points on the border of the “core”
of the place.

• For each q ∈ Q, walk along the branch that contains
q in the direction away from the “core” of the place
(Figure 9(c)). Look for a point p that corresponds to
a constriction.

• At each of these constrictions m, define a line seg-
ment g of length 2 · rm, centered on m, oriented nor-
mal to the branch at point m. See Figure 9(d).

A recursive version of this algorithm was implemented
that runs quickly enough to recompute gateways in real-
time (2-3 times a second for a 300x300 cell occupancy
grid with 10 cm cells using an older 450 MHz research

10Symbols used in the discussion of the gateway implementation are
local in scope and have no relation to symbols used elsewhere in this
paper, even if they are spelled the same.

robot computer).11 This implementation was used to pro-
duce Figures 9(d), 10(a), 11(a-c), and 12(b,c), and it was
the implementation used to detect the places in Figure
15(a). A constriction is currently a local minimum over
rp ∈ R. Defining gateways where the change in distance
to nearby obstacles is minimal (or plateaus) provides use-
ful gateways at the beginning of hallways and doorways
in corridor environments.

5.1.2 Local Topology

Given an implementation for detecting gateways in a
stored map of a place, mp, we can ground the local topol-
ogy concepts of local-paths in our small-scale model of
the surrounding environment.

• For each outward-facing oriented gateway 〈g,out〉,
define a directed local-path π̃+

g that leads away from
the current place.

• Initialize a circularly ordered star Sp with a list
(clockwise from an arbitrary starting point) of as-
sociations between directed local-paths and oriented
gateways, (〈π̃+

g ,1〉 ↔ 〈g,out〉). Since these are
traversable paths, each α(π̃+

g ) = 1.12

• Test each pair of gateways, g and g′, via a path conti-
nuity test, to determine whether their directed local-
paths belong to a single continuous path. If so, give
both directed local-paths the same path name (e.g.,
π̃a below and in Figure 10(b,c)), and include the in-
ward oriented gateways in the association. For ex-
ample, change

(〈π̃+
g ,1〉 ↔ 〈g,out〉)

(〈π̃+
g′ ,1〉 ↔ 〈g

′,out〉) to
(〈π̃+

a ,1〉 ↔ 〈g′, in〉,〈g,out〉)
(〈π̃−a ,1〉 ↔ 〈g, in〉,〈g′,out〉)

• For each π̃+
g ∈ Sp such that π̃−g 6∈ Sp, insert the asso-

ciation (〈π̃−g ,0〉 ↔ 〈g, in〉) into the circular order of
Sp, in a position determined by its failure of the path
continuity test.

11Note that the gateway algorithm is useable on LPMs with quite low
resolution Beeson [2008]. Because higher resolution LPMs do not im-
prove the reliability of gateways and because the thinning algorithm is
linear in the number of cells in the LPM, we chose LPM parameters that
facilitate reliable SLAM and local motion planning, while still fitting
nicely within the cache of our robot’s onboard computer.

12In future implementations, α : S → {MIDLINE, LEFTWALL,
RIGHTWALL, DEADEND, NONE} should associate directed local-
paths with attributes representing the control laws for traversing the path
in that direction. (LEFTWALL and RIGHTWALL imply coastal nav-
igation scenarios. For terminating local-paths, DEADEND means that
further travel is blocked, while NONE means that no control law is ap-
plicable.)
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(a) (b)

(c) (d)

Figure 9: Example of gateway detection. Here we show certain steps of the gateway algorithm. We begin with
a model of the local surround. (a) We then calculate a pruned Voronoi skeleton. Here we use a thinning-based
approximation of the Voronoi skeleton [Zhang and Suen, 1984], which we have found to be much faster to calculate
on slower processors. We then locate the closest point on the skeleton to the robot. (b) The robot then determines the
“core” of the local region. (c) The algorithm ignores all portion of the skeleton inside of the core, only looking for
gateways along portions of the skeleton outside of the core. (d) The algorithm looks for a local minimum in the rate
of change of the Voronoi radius. These constrictions define the locations of gateways, while the skeleton itself defines
the orientation of the gateway.
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In our current implementation, the gateways g and g′ be-
long to a single continuous path if: (1) a ray normal to the
orientation of gateway g and centered at the midpoint of
gateway g intersects the line segment that defines gateway
g′; and (2) vice versa for a ray from g′ towards gateway
g. (Note that the failure of this test should determine a
pair of gateways that the non-traversable path continua-
tion falls between.)

At this point, the star Sp is a complete representation of
the local topology of the neighborhood described by the
LPM. Since this representation is expressed completely
in terms of small-scale space (the gateways g and the di-
rected local-paths π̃d

g ), we refer to this as the small-scale
star (Figure 10(c)). Binding the directed local-paths to di-
rected paths in the topological map of large-scale space
implies the appropriate large-scale star (Figure 10(d)).
This binding is part of the HSSH topological mapping
process, and is discussed in Section 6.1.

5.2 Detecting Places

To explain local topology extraction, we provided exam-
ples where the robot was already at a place. Perhaps sur-
prisingly, the method for constructing the local topology
of a place neighborhood does not actually depend on be-
ing at a place neighborhood. Gateways can also be defined
along paths, as they separate the robot from the “frontier”
of the LPM. Therefore, if we recalculate gateways and lo-
cal topology at each time step, we can very easily detect
places.

We define the robot to be on-path when the local topol-
ogy of the LPM contains exactly two gateways and ex-
actly one path (e.g., Figure 11(a)). When the agent is
on-path, it is selecting and executing control laws (and
hence primitive motions) to perform a travel action. The
LPM scrolls as the agent moves, keeping the agent near its
center cell, and serving as an observer for the local small-
scale space.

When the agent is not on-path, it is in a place neighbor-
hood. In this situation, the agent establishes a fixed corre-
spondence between the LPM and the structure of the place
neighborhood. Here, the LPM serves as a local metrical
map mp of the place neighborhood (and does not scroll
with the agent’s motion within the place neighborhood).
Thus, the number and location of places in an environment
depends in part on the predetermined size of the LPM13,
although places are not sensitive to small changes in LPM
size.

When the robot is not on-path, it either has more than

13One interesting avenue of future research is to try adapting the LPM
size by environment characteristics.

one local-path, which occurs at intersections or open door-
ways, or one local-path with only one gateway, which oc-
curs at dead ends. These are all places (Figure 11). There
is a degenerate case where no gateways exist. Due to our
implementation of gateways, this situation means there is
no way out of the current location, so the robot’s entire
world is simply modeled by a single place and LPM.14

When traveling along a path, the robot may see multi-
ple unaligned gateways and suspect it is at a place. Some-
times, false gateways appear in the LPM due to the bound-
ary between observed free space (i.e. white cells in the
occupancy grid) and unknown space (i.e. gray cells in the
grid). This is often the case when the robot’s sensors do
not provide a 360◦ field of view, as with SICK-brand li-
dars. Before the robot commits itself to being at a place,
it must perform some local exploration in the fixed map
of the potential place to eliminate any false gateways. We
have found that for a robot with a 180◦ field of view, sim-
ply rotating in place eliminates most false gateways.

Using the local topology defined by gateways allows
the robot to detect places more reliably than when us-
ing methods that simply look for Voronoi graph junc-
tions. First, Voronoi graphs can have many spurious junc-
tions. This is especially true given noisy sensors or en-
vironments, but even occurs in the face of no noise at
small alcoves and other common architectural features.
Similarly, complex intersections can have multiple junc-
tions. The gateways and local topology can see one place,
whereas a junction-based approach (including Delaunay
triangle approaches [Silver et al., 2004]) must define mul-
tiple strangely connected places. Figures 9(b) and 10(a)
both show multiple junctions at a single place. Addition-
ally, there exist important places detected via the gateway
approach, like L intersections, that contain no junctions at
all after pruning the Voronoi graph (Figure 8(d-f)).

5.3 Selecting Local Motion Targets

Instead of relying on the dynamical system approach to
motion used in the basic SSH, we introduce gateways as
an alternative approach. Gateways provide a geometric
method for control of motion—where midline or coastal
navigation along paths is applicable. The motion of the
robot in large-scale space can be adequately captured by
noting which oriented gateways the robot passes through.
Reconsider the example of abductive inference for a topo-
logical map in Figure 4 that modeled the world as points
connected by lines. Compare this to the Hybrid SSH ap-

14There is another degenerate case when the robot is in the middle
of a featureless environment. As mentioned in Section 3.5, the HSSH
currently does not handle these types of environments.
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(a) (b)

Small-scale star
description

((〈π̃+
a ,1〉 ↔ 〈g4, in〉,〈g1,out〉)

(〈π̃+
b ,1〉 ↔ 〈g2,out〉)

(〈π̃−c ,0〉 ↔ 〈g5, in〉)
(〈π̃+

d ,1〉 ↔ 〈g3,out〉)
(〈π̃−a ,1〉 ↔ 〈g1, in〉,〈g4,out〉)
(〈π̃−d ,0〉 ↔ 〈g3, in〉)
(〈π̃+

c ,1〉 ↔ 〈g5,out〉)
(〈π̃−b ,0〉 ↔ 〈g2, in〉))

An example large-scale
star abstraction

((〈π+
1 ,1〉 ↔ q1)

(〈π+
2 ,1〉 ↔ q2)

(〈π−3 ,0〉 ↔ q3)
(〈π+

4 ,1〉 ↔ q4)
(〈π−1 ,1〉 ↔ q5)
(〈π−4 ,0〉 ↔ q6)
(〈π+

3 ,1〉 ↔ q7)
(〈π−2 ,0〉 ↔ q8))

(c) (d)

Figure 10: Identifying gateways and local topology in the LPM. The local perceptual map (LPM) is implemented
as a bounded occupancy grid. The robot is shown as a circle in the center of the LPM. (a) The gateways separating
the core from the exits are defined. In our implementation this is done using a pruned Voronoi skeleton. (b) Gateway
locations and directions are used to identify the directed local-paths and to determine which pairs satisfy the path
continuity requirements. (c) The small-scale star enumerates directed local-paths in clockwise order, describing their
traversability and association with gateways. Note: the robot entered the place via g5; thus, it arrived on directed local-
path π̃−c . (d) The large-scale star (Section 6.1) replaces local-paths with topological paths from the global topological
map, and defines a distinctive state for each directed path at this place. This environment has five gateways, four paths,
and eight distinctive states.
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(a) (b) (c)

Figure 11: More real-world gateways. Our current gateway algorithm uses a Voronoi skeleton to find the gateways
surrounding a location. (a,b) Even at locations with no Voronoi junction points, the gateway algorithm works. Example
(a) shows the robot on a path, where two gateways on either side of the robot give a stable topology, and (b) shows the
robot at a place. (c) At dead ends, there is only a single gateway.

proach illustrated in Figure 12 where turns and travels cor-
respond to moving towards gateways.

As discussed in Section 4.2, local motion planning con-
sists of selecting a target pose in the LPM, computing a
safe trajectory to it, executing the first step of that tra-
jectory, sensing the environment, updating the LPM, and
repeating the cycle. The selection of target poses for lo-
cal motion control corresponds to the action or goal being
pursued. There are three distinct cases.

• If the agent is not in a place neighborhood, it is on-
path, in which case it is moving along the local-path
in the LPM toward one of the two gateways. Just
beyond the forward gateway, in the outward orienta-
tion, is an appropriate target for local motion plan-
ning; however, a more robust approach with respect
to obstacle avoidance is to aim at a point well beyond
the gateway, like the edge of the LPM. As the LPM
scrolls, the gateway location is constantly refreshed.
The robot never reaches the gateway until its location
becomes stable (which only happens when the agent
arrives at a place).15

• If the agent is in a place neighborhood, the LPM is
fixed to the local environment, so motion planning is
confined to the small-scale space of the place neigh-
borhood. The agent may have a pragmatic destina-
tion within the place neighborhood, for example an
intelligent wheelchair may have the goal of bring-

15Lee [1996] calls control algorithms that continuously re-plan for a
moving point ahead as “red wagon” controllers.

ing its driver to her desk after entering her office, in
which case the local motion target is a pose associ-
ated with that destination. Such motion targets can
also be generated when exploring the fixed LPM of
a potential place.

• The agent may be executing a turn action as part of
a route through large-scale space. In this situation,
the LPM is fixed in the local frame of reference, and
a large-scale turn action corresponds to moving from
an inward-facing oriented gateway to a location just
beyond an outward-facing oriented gateway. After
passing through the outbound gateway, the robot is in
position to begin following another path. Note, that
the TurnAround action simply corresponds to travel-
ing past the same gateway the robot entered the place
through, facing the outward instead of the inward ori-
entation. Continuing along a path that passes through
a place (no turn) also falls into this case.

In certain scenarios, such as two large rooms connected
by a doorway, it may be possible for an agent to move
directly from one place neighborhood to another, mov-
ing between two distinct local topologies, without ever
being significantly on-path. The SSH can accommodate
this transition with a dummy travel action whose effect is
simply to transition between the reference frames of two
adjacent, or even slightly overlapping, places.16

16Taking this idea to an extreme, the Atlas system [Bosse et al., 2003]
creates new frames of reference based on feature counts, building a
“patchwork” map of overlapping frames of references. However, if the
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(a) (b)

(c) (d)

Figure 12: Grounding control using gateways. (a) The example from Figure 4 is further examined in a simulated
3D office environment with obstacles. The gateways are found and drawn on the LPM in real-time, with arrows
representing the outward orientations that leave the current area. The gateway associated with the robot’s past motion is
depicted using an arrow pointing in the inward orientation. (b) Traveling along directed path π+

a corresponds to aiming
for an oriented gateway, e.g., 〈g2,out〉, in the appropriate direction. The gateway is continually recomputed, which
keeps moving the local motion target along the path, until it becomes stable at the entrance to a place. (c) Arriving
at dstate q2 at place p2 corresponds to arriving at a gateway 〈g3, in〉 associated with a directed local-path π̃+

a in the
LPM for place p2. The turn action from dstate q2 to q3 corresponds to local motion within the LPM through outward-
facing oriented gateway 〈g6,out〉 on directed local-path π̃

−
b . (d) In calculating local topology, “island” obstacles that

are surrounded by free space are removed to ensure reliable gateway detection. Planning to move through a gateway
requires consideration of these obstacles. Once the robot moves past gateway 〈g6,out〉, two new aligned gateways
appear that will flank the robot throughout the next travel action, as in image (b).
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6 HSSH Global Topological Level

The next two sections will address the problems of build-
ing a global topological map to describe the qualitative
structure of large-scale space and building a global metri-
cal map to describe its geometric structure within a single
global frame of reference. We describe these two map-
building problems separately, but their solutions benefit
from each other and should be interleaved in future re-
search (Section 10.2).

The first problem is to identify the best global topo-
logical map consistent with exploration experience. The
process of generating possible topological maps from ex-
perience and testing them for consistency can provide for-
mal guarantees that the correct map is generated and never
discarded [Dudek et al., 1993]. A logic-based theory of
topological maps [Remolina and Kuipers, 2004] makes
explicit the assumptions upon which those guarantees de-
pend.

If the robot knows it is in an environment with no
loops, creating a topological map is quite easy. This is
especially true given deterministic actions, as the robot
simply moves deterministically between known places
when it revisits parts of the environment. Even with non-
deterministic actions, creating the topology of such en-
vironments is still possible [Tomatis et al., 2002]. The
difficulty in map-building arises from closing loops: de-
termining when a newly-encountered place is the same as
a previously-experienced place, and creating a hypothe-
sized new loop in the topological map. When large loops
in the environment result in structural ambiguity, a topo-
logical representation can concisely represent the loop-
closing hypotheses by generating a single topological map
for each qualitatively distinct alternative.

6.1 From Small-Scale to Large-Scale Star

In small-scale space, the LPM is used for the detection
of gateways, local-paths, and places, and to create the lo-
cal map mp that is stored at places. The small-scale star
describes both a circular order on the set of directed local-
paths in a place neighborhood and also the correspon-
dence between directed local-paths and oriented gate-
ways. A place p in large-scale space is associated with
the local map mp, a model of the place neighborhood in
small-scale space. At a place, each directed local-path π̃d

in small-scale space corresponds to a directed path πd in

entire environment is described in terms of overlapping place neighbor-
hoods, the benefit of the topological map as a concise description of
large-scale space is decreased. Likewise, the local and global distinc-
tiveness of places is sacrificed.

large-scale space. This allows us to determine the large-
scale star that describes the circular ordering of topologi-
cal directed paths at the place.

Assimilating the local topology of a place into the
global topological map requires a 1-1 mapping between
the directed local-paths in the small-scale star and a set of
directed paths from the global topological map. In Figure
10(c,d), we illustrate such a mapping between the local-
paths, π̃a, π̃b, π̃c, and π̃d , and the corresponding global
topological paths π1, π2, π3, and π4, respectively. To keep
this example simple, we specified + and− on the directed
paths to correspond consistently, but of course this need
not be true in general.

In large-scale space, a distinctive state q corresponds
uniquely to a place, a path, and a direction on that path
(Equation 1). Thus, the dstate q is at a particular place p,
and there is a bijective association between a dstate and a
directed local-path: ψp(q) = π̃d where π̃d ∈ Sp. This im-
plies that in the case where the directed local-path passes
through the place, the distinctive state q will correspond
with two different oriented gateways, one 〈g, in〉 entering
the place neighborhood, and the other 〈g′,out〉 departing
from it.

An isomorphism φ : S→ S′ between two stars implies a
bijective mapping between the associated dstates as well.
We will extend φ to write these implied mappings as
φ(q) = q′. For a topological map MT , and the set P of
places in MT , we can now define the set of local place
maps,

MP = {〈p,mp,Sp,ψp〉 : p ∈ P}

associating each place p ∈ P with its local metrical map
mp, its local topology Sp, and ψp, the association between
dstates and directed local-paths in the local topology.

Assuming that the LPM is sufficiently well explored,
the set of directed local-paths and gateways in the small-
scale star is complete, so the description of the distinctive
states and directed paths in the circular order of the large-
scale star is also complete. A turn action in large-scale
space corresponds to motion in small-scale space within a
place neighborhood from the inward-facing oriented gate-
way the robot arrived upon to an outward-facing oriented
gateway (Figure 12(c)). Thus, for every pair of dstates qi
and q j at the place, a causal schema for the turn action
〈qi, turn,q j〉 is implicitly defined. Exploration experience
can now be described as an alternating sequence of travel
actions and place neighborhoods, which simplifies con-
struction of the global topological map (Figure 5).
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6.2 The Tree of Possible Topological Maps
The topological map-builder maintains a tree whose nodes
are pairs 〈M,q〉, where M is a topological map (aug-
mented below for the HSSH) and q is a distinctive state
within M representing the robot’s current position. The
leaves of the tree represent all possible topological maps
consistent with current experience [Dudek et al., 1993].
The algorithm for growing the tree of possible topologi-
cal maps was presented in Figure 5. This figure also de-
scribes the differences between map-building in the basic
SSH and Hybrid SSH.

After each action a and resulting view v, we extend
each map hypothesis at a leaf of the tree. If the current
action moves within known territory, the map 〈M,q〉 will
predict the resulting dstate q′ and the view to be observed,
so the hypothesis can be updated or refuted according
to whether the prediction was correct or not. If the cur-
rent action explores new territory, then either the resulting
dstate is also new, or the action closes a loop and con-
nects with a previously known dstate. Since there may
be multiple possibilities that all match view v, the tree of
topological map hypotheses will branch. For purposes of
generating and testing candidate topological maps in the
HSSH, we will extend the basic SSH topological map MT

with MP = {(p,mp,Sp,ψp) : p∈ P}, the set of local met-
rical maps and local topologies of individual place neigh-
borhoods.

M = 〈MT ,MP〉

In the SSH, a view v is an abstracted description of the
agent’s perception of the local environment from a dis-
tinctive state q. We select the level of description to en-
sure that the view is a deterministic function of the dstate
(v = o(q)), although we allow perceptual aliasing (dif-
ferent states with the same view) [Kuipers and Beeson,
2002]. In the basic SSH, a view is a symbol, abstracting
away the nature of the perceptual system, and views are
matched only for equality. In the Hybrid SSH, we define
a view to be the local topology Sp of the current place p
and the current directed local-path the robot is on; thus,
the new view description is derived from the local topol-
ogy, which is grounded in local perceptual map mp.

v = 〈Sp, π̃
d〉 where d ∈ {+,−}

= 〈Sp,ψp(q)〉

Given two views v and v′, we say that match(v,v′) holds
iff there is an isomorphism φ : S→ S′ such that φ(q) = q′.
That is, from the perspectives of the specified dstates, the
local topologies match.

As exploration progresses, the map M is extended with
new information. For example, after an exploration step

that closes a loop in the map, the resulting map M′ is M
extended with a new dstate q′ and assertions 〈q,a,q′〉, v =
o(q′), and q′= q j. A new version of MC = 〈Q,A,V,S,o〉 is
created, and the implications of the loop-closing assertion
q′ = q j propagate through new versions of MT and MP to
unify place and path labels as necessary. Because we are
matching complete local topologies in the HSSH, the tree
of maps only branches on travel actions. Turn actions are
already fully described by the large-scale star.

6.3 Topological Mapping Example

We applied an implementation of the Hybrid SSH map-
building to a pre-specified route through an office envi-
ronment including multiple nested loops. This office had
a large number of cubicles and office doorways. To re-
spect student and faculty privacy, we prune the Voronoi
skeleton so that Voronoi branches, thus gateways, were
defined only for large hallway intersections, not at door-
ways or cubicle openings. The environment, as defined by
the robot, contained 6 paths and 9 places with 4 distinct
local topologies. Figure 13 shows the exploration route
as a sequence of place visits, the sequence of LPMs ob-
served at successive place neighborhoods, and the unique
simplest topological map that resulted from the mapping
algorithm, with LPMs overlaid at corresponding places in
the correct topological map.

After a sequence of 14 travel actions, the topological
mapper finds 83 possible configurations of the environ-
ment that are consistent with the observed local topologies
and the topological axioms—that is there exist 83 leaves
in the tree of maps. The prioritized circumscription [Re-
molina and Kuipers, 2004] on this set of maps produces 4
minimal models. All but one of these can be eliminated
with further exploration or by simply matching LPMs us-
ing the alignments specified by the four minimal maps.
This final map model is the correct topological represen-
tation of the environment.

If we assume planarity of the environment, we can
use a more sophisticated version of the topological map-
building algorithm [Savelli and Kuipers, 2004] that rules
out many more models as inconsistent. Here, there are
only 46 consistent configurations of the exploration ex-
perience, and the circumscription policy produces a sin-
gle minimal model, which is the correct topological map
of the environment (Figure 13(c)). Currently, our imple-
mentation can build the complete tree of maps for this ex-
ploration trace and determine the unique minimal map of
this environment in ∼200 ms on the robot’s Pentium III
450 MHz processor. Notably, the results presented on this
office environment would be unchanged if the path seg-
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Figure 13: An environment with multiple nested loops. In the CAD drawing (a), we show the path traveled between
places in the environment. We enumerate the sequence of places as experienced by the robot. (This exploration trace
was also used for Figure 1.) In (b), we show the LPMs created at the places during the travel. We constrained the
gateway algorithm in order to ignore open office doors and cubicle openings, which ensures places only at hallway
intersections. The stars generated from these LPMs are used to search through the space of consistent topological
maps. In (c), we show the unique topological map generated after matching local stars and LPMs. The map is overlaid
with the LPMs generated at the places, with the gateways, and with the connections between gateways which lie on
the same path.

ments were longer or even very convoluted, as the number
of places and paths would not change. Additionally, the
tree of maps ensures the correct map is never discarded.

6.4 Levels of Spatial and Temporal Granu-
larity

At this point, we summarize the three different levels of
granularity, with different ontologies, that we are using to
describe space and time.

The agent’s experience is a trajectory through the envi-
ronment. At the SSH Control Level and in the LPM, the
trajectory is represented using a fine-grained representa-
tion for time t, pose x, motor signal u, and sensory image
z. These are used both for control laws, and for simul-
taneous localization and mapping to build the LPM. Ex-
panding Figure 7, the agent’s exploration experience is
described by

· · · ut−1 ut ut+1 · · · uN
↓ ↓ ↓ ↓

x0 → ·· · → xt−1 → xt → xt+1 → ·· · → xN
↓ ↓ ↓ ↓ ↓
z0 · · · zt−1 zt zt+1 · · · zN

At the SSH Causal Level (which is part of the topo-
logical map), exploration experience is described by an

alternating sequence of actions and distinctive states, with
each distinctive state associated with a view.

q0 a1 q1 a2 q2 · · · qn−1 an qn
| | | | |

v0 v1 v2 · · · vn−1 vn

In both the basic and hybrid versions of the SSH, dis-
tinctive states q correspond to being at a place, facing
along a directed path. In the basic SSH, the distinctive
states q are grounded by isolated distinctive states x̄ where
hill-climbing control laws terminate. In the Hybrid SSH,
dstates are grounded by a directed local-path extracted
from the LPM of a place neighborhood.

At the SSH Topological Level, a particular place p j can
correspond to several distinctive states, say qi−1 and qi
and the turn action ai between them. A travel action ai+1
from qi at p j to qi+1 at a different place p j+1 can be used
to infer the displacement λ j+1, which is the pose of place
p j+1 in the frame of reference of place p j. This lets us
abstract the sequence of distinctive states and actions to
an alternating sequence of place p j and displacements λ j.

p0 λ1 p1 λ2 p2 · · · pm−1 λm pm

As described in Section 7 and illustrated in Figure 14,
in order to define the λi, each place neighborhood must
have its own frame of reference and we must select a set
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of distinguished time-points 0 ≤ t0 < t1 < · · · ≤ tN = N
such that adjacent time-points belong to different place
neighborhoods, and the pose xti at each time-point ti can
be unambiguously localized in its place neighborhood. To
fit this into the SSH causal framework, we select distin-
guished time-points at the termination of each travel ac-
tion: in the basic SSH, this is after hill-climbing termi-
nates, and in the hybrid SSH, this is after a place is de-
tected. In the Hybrid SSH, the dividing poses are near the
incoming gateways in place neighborhoods. The net ef-
fect of the turn and travel actions between these dividing
points are used to estimate the displacements λi between
the frames of reference of adjacent place neighborhoods
connected by path segments.

7 HSSH Global Metrical Level
The topological map identifies a discrete set of places,
each with its own local metrical map within its own frame
of reference. The topological map also encodes decisions
about how loops are closed and which aliased local neigh-
borhoods represent the same places. The global metri-
cal map is built on the structural skeleton provided by
the topological map [Modayil et al., 2004]. The steps in
building the global metrical map are: (1) describe the dis-
placements λ = {λi}, each describing the change in pose
from one place neighborhood to the next in the frame of
reference of the first; (2) describe the layout χ = {χp},
specifying the poses of places in a global frame of refer-
ence; (3) describe the trajectory x = {xt} of robot poses
within the global frame; and (4) create the global map m∗

from sensor readings given the trajectory.

7.1 Terminology
The global topology τ , used below, consists of the set
MP = {〈p,mp,Sp,ψp〉 : p ∈ P} of places with their lo-
cal information, the set of distinguished time-points 0 ≤
t0 < t1 < · · ·< tn≤N that divide the fine-grained sequence
of exploration experience into segments corresponding to
travel between adjacent place neighborhoods, and the re-
lation place(ti) = p j between them. It is convenient to
relabel the variables x, z, and u, defining xi, j ≡ xti+ j. At
each distinguished time-point ti, where place(ti) = p j ∈ P
and place(ti+1) 6= place(ti), the agent is localized in the
local metrical map mp j .

Much of our metrical inference consists of defining an
appropriate set of reference frames, and estimating the
values of local and non-local metrical quantities. Many
of these concepts can be simply understood by examining
Figure 14.

x i,0 x i+1,0

m   at  t +j i          i

x i,j L i+1
Li

~

i+1
place(t  )

place(t     )

i

Figure 14: Defining local frames of reference. The
agent creates the local scrolling map m̃i when traveling
between places. The agent’s poses at the distinguished
time-points ti and ti+1 are Li = [xi,0]place(ti) and Li+1 =
[xi+1,0]place(ti+1). The displacement between the two place
frames of reference is λi+1 = Li⊕ [xi+1,0]m̃i ⊕ (	Li+1).

[x]p : The coordinates of the pose x in the frame of
reference of place p.

Op : The pose x such that [x]p = (0,0,0).

Li ≡ [xti ]place(ti) : The coordinates of the pose xti in the
reference frame of place(ti).

m̃i : The scrolling map that models the agent’s sur-
roundings between distinctive time-points ti and ti+1.
The map’s origin is defined as the agent’s pose at
time ti. That is, Om̃i = xti .

λi ≡ [Oplace(ti)]place(ti−1) : The location of Oplace(ti) in
the reference frame of place(ti−1), estimated using
the experience from ti−1 to ti.

χp ≡ [Op]m∗ : The pose of Op in the global reference
frame of m∗.

m∗ : The global metrical map.

7.2 The Theory of the Global Metrical Map
To build a global metrical map m∗, we want to find the
maximum-likelihood path the robot traveled, using the
topological skeleton in addition to odometry. As dis-
cussed in Section 4.1, the joint probability of the pose
history x and the global map m∗ can be decomposed as

P(x,m∗|z,u) = P(m∗|x,z,u) ·P(x|z,u)

by the chain rule for probabilities. This decomposition is
valuable since P(m∗|x,z,u) (map-building given accurate
localization) can be computed analytically and incremen-
tally for popular map types, so we can focus our attention
on P(x|z,u) (pose estimation).

27



To include the effect of possible global topologies τ on
pose estimation, we marginalize over the space of topolo-
gies. If we assume that the correct global topology τ̄ has
been identified, only one topological hypothesis τ = τ̄ has
nonzero probability.

P(x|z,u) = ∑
τ

P(x|z,u,τ) ·P(τ|z,u)

= P(x|z,u, τ̄)

On the other hand, suppose there are multiple topologies
τ with significantly non-zero values of P(τ|z,u). While
the weighted sum provides a mathematically correct char-
acterization of the probability distribution P(x|z,u), it can
easily lead to a nonsensical metrical map due to the dra-
matic qualitative impact of topological structure on the
metrical map. Thus the summation should be regarded
as describing a disjunction over topological maps, with
P(τ|z,u) being the likelihood of each map. This is exactly
the tree of possible topological maps we have already con-
structed. Therefore, even in the case where there are mul-
tiple plausible topological maps, we will construct global
metrical maps for each one individually.

Given a particular topology τ̄ , we can marginalize over
the global poses of all topological places χ = χi and their
estimated relative displacements λ .

P(x|z,u, τ̄) =
∫ ∫

P(x|χ,λ ,z,u, τ̄) ·

P(χ|λ ,z,u, τ̄) ·P(λ |z,u, τ̄) dλ dχ

Because x is conditionally independent of λ given χ , and
χ is conditionally independent of z,u given λ , we can sim-
plify this equation.

P(x|z,u, τ̄) =
∫

P(x|χ,z,u, τ̄) ·∫
P(χ|λ , τ̄) ·P(λ |z,u, τ̄) dλdχ

We divide this equation into simpler components, defining
the following functions representing probability distribu-
tions over their arguments.17

F(λ ) = P(λ |z,u, τ̄)

G(χ) =
∫

P(χ|λ , τ̄) F(λ ) dλ

H(x) =
∫

P(x|χ,z,u, τ̄) G(χ) dχ

Thus, we use the topological map τ̄ to factor the lo-
calization term P(x|z,u) = H(x) into three separate prob-
ability distributions: place-to-place displacements F(λ )

17We assume that there is no opportunity for confusion between these
probability functions F , G, and H, and the dynamical system functions
F , G, and Hi used in Section 3.1.

derived from local metrical maps; the metrical layout
G(χ) of places in the global topological map; and the
global metrical layout H(x) of the robot’s pose trajec-
tory. Finally, we can combine the pose trajectory with
P(m∗|x,z,u) to define the joint distribution P(x,m∗|z,u).

7.3 Global Mapping Example

Here we detail each step of creating the global map and
discuss our current implementation, which runs offline.
Figure 15 demonstrates the stages of creating an accurate
global metrical map of a large, complex environment us-
ing these methods.

7.3.1 Estimating F(λ )

Given the topology τ , we can compute F(λ ). Each λi cor-
responds to a single experience of a path segment. Since
closing large loops is not a problem when considering a
single path segment, traditional SLAM methods may be
employed to estimate F(λ ) by decoupling it into a set of
independent probabilities.

Di = zi,0, . . . ,zi,ni ,ui,1, . . . ,ui+1,0

Fi(λi) = P(λi|Di−1,Li−1,Li)

F(λ ) =
n

∏
i=1

Fi(λi)

See Figure 14 to understand L. Our current implementa-
tion is an incremental maximum-likelihood method [Fox
et al., 1999], modeling each Fi(λi) as a Gaussian.

Using the notation of the compounding operator [Smith
et al., 1990], we compute the distribution of λi by com-
posing three uncertain vectors: the vector Li−1 from
Oplace(ti−1) to xi−1,0; the vector [xi,0]m̃i−1 from xi−1,0 to xi,0;
and finally the vector −Li from xi,0 to Oplace(ti).

18

Fi(λi) = P(λi = (Li−1⊕ [xi,0]m̃i−1 ⊕ (	Li)))

The essential connection is that the pose xi,0 at the end of
a path-segment is described in the frame of reference of
place pi−1 by the expression Li−1⊕ [xi,0]m̃i−1 , and simul-
taneously in the frame of reference of place pi by Li.

The problem of estimating [xi,0]m̃i−1 is relatively simple
along individual path segments, since loops cannot be in-
volved. The more difficult problem arises from determin-
ing 	Li after a loop closure. Here we need to align the

18Given two poses a and b, we write [b]a for the coordinates of b in
the frame where a lies at the origin and faces along the positive x-axis
[Smith et al., 1990]. Then, [c]a = [b]a ⊕ [c]b. The inverse operator is
[b]a =	[a]b.
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Figure 15: Global map-building process. (a) The sequence of local place maps mp experienced. (b) The unique
topological map consistent with topological and planarity constraints. (c) We determine λi for loop closures by finding
the offset between the current pose and the place origin (defined on the initial place visit). (d) The layout χ derived
from the topological map and the place-to-place displacements λ . (e) The pose trajectory x(t) anchored at points
where the robot is localized in place neighborhoods in the layout χ . (f) Given the localized pose trajectory x(t) in the
global frame of reference, the global metrical map m∗ is created accurately and efficiently. Compare with Figure 1.
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map mpi with a previously stored map mph in order to de-
termine [Oph ]pi , which allows us to solve 	Li. Matching
maps can be expensive and can lead to false positives due
to local minima (e.g., two LPMs of a + intersection can be
matched four ways). To eliminate this problem, we first
align the LPMs based on the locations of corresponding
gateways, consistent with mh,Sh,ψh and mi,Si,ψi, before
refining the alignment using the obstacles and free space
of the LPMs. (Figure 15(c) omits this gateway alignment
step in order to better illustrate the process of LPM align-
ment.)

7.3.2 Estimating G(χ)

The layout χ = {χp} represents the poses of the places
in the topological map, with respect to the frame of refer-
ence of the global metrical map m∗. G(χ) is a probability
density function over possible layouts χ . Among other
things, it reflects the distortion in the place layout due to a
loop-closing hypothesis, compared with the observed dis-
placements λ .

Given the topological map, which specifies the data as-
sociation between observations and places, we can evalu-
ate G(χ) for an arbitrary distribution of F(λ ). For a par-
ticular value of χ , P(χ|λ , τ̄) will only be non-zero for a
single value of λ , namely when each λi = (	χplace(ti−1))⊕
χplace(ti). Hence, P(χ|λ , τ̄) is a Dirac delta function,
which gives us a simple expression for G(χ).

G(χ) =
∫

P(χ|λ , τ̄) F(λ ) dλ

=
n

∏
i=1

Fi((	χplace(ti−1))⊕χplace(ti))

When F(λ ) is represented as a Gaussian, an Extended
Kalman Filter (EKF) is a simple way to approximate
G(χ). The idea is to consider place p to be a landmark
with pose χp. These landmarks are observed one at a
time, linked by actions λi. This is essentially the classic
approach of Smith et al. [1990]. Given Gaussian uncer-
tainty along each action ui connecting the n robot poses,
along with constraints that give Gaussian uncertainty be-
tween poses taken from multiple visits to the same place
(to associate poses after loop closures), we can solve for
H(x) in time O(n logn) using the sparse matrix methods
of Konolige [2004]. However, often we may only want
G(χ), which can be computed in O(m logm) time for m
places, where m� n.

In our current implementation, we utilize a hill-
climbing search to quickly converge to a local maximum
of G(χ) (Figure 15(d)). The Levenberg-Marquardt algo-
rithm for nonlinear optimization [Press et al., 1992] treats

the λi as “springs” between the poses of the places pk in χ ,
and relaxes their configuration to reach a local minimum-
energy configuration. Efficient estimations of this non-
linear optimization also exist [Olson et al., 2006]. A good
initial layout χ for this hill-climbing search can be de-
rived from the displacements λi, which represent SLAM-
corrected odometry from the scrolling map. We use the
term χ̂ to denote the computed estimate of G(χ).

7.3.3 Estimating H(x)

An extended Kalman filter can be used to estimate H(x)
using G(χ) and individual pose covariances from the ex-
perienced trajectory. Alternatively, if accurate pose co-
variances are not available, a simple method can estimate
the maximum-likelihood trajectory through the environ-
ment. We calculate the independent trajectory Hi(x) along
each path segment, as each place location is fully deter-
mined by a global layout χ . In most cases, there will
be some discrepancy between the measured distance λi
along the path segment and the fixed distance between the
places in χ . We transform the experienced motion along
the path segment to fit the global path segment distance
using a simple affine transformation. This process is sim-
ilar to methods of distributing odometry error after closing
a loop in a global metrical map [Thrun et al., 2000a].

For each trajectory between adjacent places pi and
pi+1, we transform the relative, incremental displace-
ments ∆(x,y,θ) from the pose estimates in the scrolling
LPM m̃i into relative displacements ξi, j in the global
frame of reference. This uses a simple affine transforma-
tion Ti to anchor the beginning of the LPM experience to
the global frame of reference.

[xi,0]m∗ = χplaceti
⊕Li

[xi, j]m∗ ≡ Ti([xi, j]m̃i)
ξi, j ≡ [xi, j]m∗ − [xi, j−1]m∗

We compute a final trajectory for x from the set of incre-
mental displacements ξ̂ by satisfying the constraint that
the travel experience between the places must fit the glob-
ally defined distance between the places. This uses an-
other affine transformation T ′i to map the final pose along
the path segment (xi,ni ) to the global frame of reference.

[xi+1,0]m∗ = χplaceti+1
⊕Li+1

[xi+1,0]m∗ − [xi,0]m∗ ≡ T ′i ([xi,ni ]m∗ − [xi,0]m∗)

≡ T ′i (
ni

∑
j=1

ξi, j)

ξ̂i, j ≡ T ′i (ξi, j)
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7.3.4 Creating a map m∗

The trajectory above can be used as a starting trajec-
tory for gradient descent methods to align the pose
positions with map estimates to converge upon a lo-
cally optimal map [Lu and Milios, 1997; Thrun et al.,
2000a]. A more principled approach is to run a
Rao-Blackwellized particle-filtering algorithm, using the
maximum-likelihood trajectory as the mean of a proposal
distribution: P(x,m|z,u) = P(m|x,z,u) ·H(x). However,
we have found that in practice the x values defined by the
above scaling method adequately approximate the mode
of the posterior [Modayil et al., 2004]; thus the global
map can be built by projecting the recorded range mea-
surements from poses in the new global coordinates. The
final map produced from the topological skeleton is shown
in Figure 15(f). Compare this to Figure 1(d) to see the im-
proved map.

8 Complexity in the HSSH

The different components of the HSSH fulfill different
complexity requirements. The algorithms that pertain to
small-scale space operate in real-time on the robot, and
are designed for constant run-time complexity at each
time step. The algorithms that pertain to large-scale space
depend on the number of places and paths in the en-
vironment, and thus require more computation with in-
creased topological ambiguities. Nonetheless, the topo-
logical complexity terms are functions of variables with
far smaller values than the number of poses during ex-
ploration, due to the coarse granularity of the topological
map.

The theoretical run-time complexity for all small-scale
space operations is bounded by a constant due to the fixed
size of the LPM. Updating the map is a function of the ob-
servation size and the resolution of the grid, but these are
constant with respect to the number of actions and obser-
vations gathered during exploration. Localization with the
fixed-sized LPM takes a constant amount of time since in-
cremental localization within a fixed size LPM requires a
bounded number of particles. Computing the local topol-
ogy for an LPM (generating a thinned skeleton, pruning
the skeleton, and finding gateways) is linear in the num-
ber of grid cells, so for a fixed-size LPM, this algorithm
also has a constant run-time complexity.

In practice, the robot is able to update the LPM, use
the LPM for local motion planning, and compute the lo-
cal topology from the LPM in real-time for a grid size of
300x300 with 10 cm cells. Although the LPM must have
enough resolution to support control, localization, and

topological identification, it must also be small enough to
allow these algorithms to run in real-time. Highly detailed
models of the small scale space for visualization or other
purposes can be generated along with the LPM, but they
are not required for the mapping process.

Topological maps for metrically large spaces can be
computed efficiently in practice since the complexity
grows with the size of the topological exploration instead
of the distance traveled; however, in general, the complex-
ity of learning the topological map can be exponential.
Let n be the number of poses in the exploration trajectory;
let m (m� n) be the number of topological places; let k
(k < m) be the maximum number of places matching an
observed local topology; and let l be the maximum num-
ber of directed local-paths in the local topologies (often
l ≤ 4). For example, for the environment in Figure 13,
n≈ 7300, m = 9, k = 4, and l = 4. In the Hybrid SSH, the
maximum branching factor in the tree of maps is k + 1.
Branches only occur when the robot travels between two
connected places for the first time, which can only hap-
pen at most ml/2 times. This means the size of the tree
of maps is O(km); thus, computing the tree of maps is
exponential in m (not in n). In the HSSH, the exponent
decreases by at least a factor of 3 compared with the ba-
sic SSH version due to branching only on travels, not on
turns, and matching local topologies of places.19

Savelli and Kuipers [2004] show that the planarity con-
straint gives an additional improvement in the branching
factor k by rejecting many loop-closing hypotheses. They
also point out that for each map mi in the tree to be ex-
panded, the reduction of the branching factor ki due to
the planarity constraint is proportional to the number of
closed loops already present in mi. In other words, “the
more loops [that] have been closed, the more topologi-
cally compact the map must be, and therefore the fewer
ways there are to close new loops while preserving pla-
narity,” which reduces the branching factor further.

Once the topological map is known, the computation of
a global metrical map will be linear in the number of poses
n in the exploration trace. The work in generating the lo-
cal perceptual maps has a constant run-time, so is linear
in n for the complete trace. Computing the distribution of
the relative place displacements F is linear in n. Comput-
ing the layout of the places G uses an iterative non-linear
optimizer whose computation is O(m logm), which, for
m� n, is bounded by O(n). Computing the pose layout
H, and inserting the scans along the poses in the final map
is again linear in n.

19There are at most ml/2 unique travel actions. There are at most l
turns at each of the m places. Thus, in the worst case environment, we
have ml turns and ml/2 travels, resulting in 3ml/2 actions in the basic
SSH.
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To summarize, the computation of the LPM and the lo-
cal topology is done in constant time per pose. Addition-
ally, for a specific global topological map, exploration and
the construction of the global metrical map is linear in the
length of the exploration. When constructing the global
topological map, the worst-case number of loop-closing
hypotheses is the hyper-exponential Bell’s number [Ran-
ganathan and Dellaert, 2005], but this is a function of the
number of topological places, not the number of poses. In
practice, this number can be made much smaller by ex-
ploration strategies that close smaller loops earlier. A de-
tailed examination of how exploration strategy affects the
number of topological hypotheses is proposed for future
work (Section 10.2).

9 Summary
We have presented a hybrid metrical/topological frame-
work that processes information at both small-scale and
large-scale abstractions. Our Hybrid Spatial Semantic
Hierarchy is inspired by human cognitive maps; thus, it
represents the environment using human-like concepts,
such as places and paths, which support hierarchical
navigation, human-robot interaction, and logical reason-
ing. Specifically, we focused on the problem of map-
building—discussing how the HSSH builds metrical rep-
resentations for local small-scale spaces, finds a topolog-
ical map representing the qualitative structure of large-
scale space, and constructs a metrical representation for
large-scale space in a single global frame of reference by
building on the skeleton provided by the topological map.

Unlike many robotic implementations that attempt to
build a monolithic, Cartesian global metrical map, we pro-
pose an alternative approach that handles closing large
loops by hypothesizing symbolic place matches. This en-
sures all possible loop closures are considered, not just
ones where the robot, with accumulated odometry error,
happens to be near some older portion of the map. The
minimal topological map that results from large-scale ex-
ploration is sufficient for navigation and necessary for ef-
ficient planning, especially to rule out alternative topolog-
ical structures during exploration.

The thrust of this paper has been to formally describe
how concepts of large-scale space can be grounded in the
robot’s low-level observations. This problem has hindered
topological map-building research, as it is an example of
the hard AI problem of symbol grounding [Harnad, 1990].
Our innovation has been to utilize metrical approaches to
model the immediate, local surround of the robot in or-
der to ground gateways in small-scale space. Gateways
provide the robot with local motion targets that facilitate

control along paths. They also provide a local topology
description of the local surround, useful for detecting and
describing places and the paths that emanate from places.

We demonstrated an implementation of the HSSH
within an environment with fairly large, nested loop clo-
sures. The results support our claims of efficient, online
map-building in the presence of multiple loop closures.
We demonstrated that a global layout of places is easily
achieved given a topological map hypothesis, and a full
global metrical map can be accurately achieved by fill-
ing in exploration experience along the path segments that
connect places in the environment.

10 Future Work
There are obvious avenues of future work at all levels of
the Hybrid SSH: creating semantically labeled LPMs us-
ing vision, demonstrating a Hybrid SSH interface that im-
proves human-robot navigation tasks, and exploring very
large environments to demonstrate claims about scalabil-
ity. Below we discuss several specific issues that relate
directly to the issues in the paper.

10.1 Gateways for Coastal Navigation
In Section 5.1.1, we describe an initial “constriction-
based” algorithm for gateway detection that works in
well-structured LPMs with boundaries on both sides
of the underlying paths. We are currently utilizing a
new “anchor-based” gateway algorithm that is essentially
functionally equivalent to our constriction-based algo-
rithm in corridor environments; however, it also handles
coastal navigation scenarios, where constrictions do not
exist, as well as improving certain boundary cases that
can occur at places with no Voronoi junctions. We re-
fer the reader to the dissertation work by Beeson [2008,
Chapter 6] for a detailed discussion of the “anchor-based”
gateway algorithm, including an empirical evaluation that
shows the robustness of this new gateway algorithm under
noisy conditions and using low-resolution LPMs.

Given gateways that define paths along the perimeter
of walls, our robot can explore and map the areas around
the outside of building or rooms that are larger than the
LPM size. When using the new gateway algorithm, upon
entering a large room, there will be paths to follow, at
least around the edge of the room (see Figure 16(a)). Even
without a global metrical map, the robot could find places
at the corners of the room, and paths between them (Fig-
ure 16(b-d)). By using the LPM and the symbolic local
topology of the detected places, the robot has enough evi-
dence from local information along the paths to know that
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(a) (b)

(c) (d)

Figure 16: Coastal navigation gateways. In regions of the environment where corridors cease to exist, the traditional
Voronoi graph will lead the robot away from all nearby obstacles.Instead we utilize the extended Voronoi graph (EVG)
[Beeson et al., 2005], which is equivalent to the Voronoi graph in corridors but switches to perimeter following at
a maximum distance threshold. (a) The “constriction-based” gateway algorithm described in Section 5.1.1 is not
applicable in coastal navigation scenarios, because branches of the EVG may have no nearby constrictions. Our new
“anchor-based” gateway algorithm Beeson [2008], handles these situations in addition to any corridor situations a
robot will encounter. (b-d) The anchor-based algorithm works when the path is defined by a single wall, and in the
convex and concave corners encountered in large rooms or when navigating the exterior of buildings.

33



it was circumnavigating a large space.
For many navigation tasks such a model may be suffi-

cient; however, by, using the relative displacements λ to
calculate a global layout χ̂ , a metrical map of the obsta-
cles near the walls of large rooms can be created. Starting
with a global metrical map near the walls of a large room,
it should be possible to define control laws that set off
into unknown space, using SLAM and/or dead reckoning
to stay localized the global frame of reference. Such a
strategy could estimate where the robot should intersect
the far side of the room, and compare that with its ob-
servation when it actually arrived, in order to create a new
kind of “path” across the open space. This strategy should
make it possible to find “islands” of interest in the middle
of unexplored space in the middle of large open rooms.
The perimeter of these islands may also be explored using
coastal navigation.

10.2 Efficient Expansion of the Tree of
Maps

Currently, the tree of maps contains every topological map
consistent with exploration experience and the topological
axioms. This guarantees soundness, which is useful in the
case where observations refute the current best map and
the next best map must be identified. However, there re-
main two related problems that need to be addressed in
future work. First is the need for a reliable method to
identify the best candidate among a set of possible topo-
logical maps, given odometry and perceptual information
[Ranganathan et al., 2006]. Second, is the need to reduce
the tree of maps from a “breadth-first” search to a more
focused search that tracks a small number of maps at a
time.

In Section 6.3, we identified the “best” map as the sim-
plest one based on a prioritized circumscription policy
over the models generated by the non-monotonic theory
of topological maps [Remolina and Kuipers, 2004]. This
is sufficient for the environment in Figure 15, but Savelli
and Kuipers [2004] describe larger environments where
extreme symmetry and aliasing cannot so easily be re-
solved by purely qualitative methods, as the tree of maps
grows too large to maintain in real-time.20 These are not
entirely unrealistic examples, since large grid-structured
neighborhoods in real cities provide opportunities for vast
topological ambiguity [Lynch, 1960].

20Ranganathan and Dellaert [2005] claim that because (in the worst
case) the number of aliased places grows with the amount of exploration
experience, the number of possible topological maps is given by Bell’s
number, which grows hyper-exponentially with the number of perceptu-
ally aliased places.

In the example of Section 6.3, the exploration sequence
was provided to the robot. One obvious improvement that
will limit the number of map hypotheses in future work
is to perform active exploration that occasionally exploits
knowledge of asymmetries in the environment to elimi-
nate entire branches from the tree of maps. Such strate-
gies are similar to the localization procedures advocated
by proponents of DFA-style maps [Kuipers and Byun,
1991; Dean et al., 1995; Rekleitis et al., 1999]. Dudek
et al. [1991] propose an exploration algorithm that finds
the correct topological structure in polynomial number of
travel actions, but this requires the robot to drop markers
and backtrack to determine which loop-closing hypothe-
sis was correct.

Along with utilizing intelligent exploration strategies,
we would like reduce the tree of maps by drawing on per-
ceptual information currently unused in the topological
map-building process. We should be able to use obser-
vational data, such as the likelihood of the global metrical
layout P(χ̂|λ , τ̄), probabilistic local topology matching,
or the likelihood of visual observations at places [Cum-
mins and Newman, 2008], to define weights on the tree
of maps. These weights should allow us to have a quan-
titative ordering on the map hypotheses, and should al-
low best-first expansion of the tree that focuses on a lim-
ited number of highly ranked candidates at a time. This
should allow the robot to map larger environments includ-
ing those with large amounts of symmetry and perceptual
aliasing.

References
D. Angluin. On the complexity of minimum inference

of regular sets. Information and Control, 39:337–350,
1978.

P. Beeson. Creating and Utilizing Symbolic Representa-
tions of Spatial Knowledge using Mobile Robots. PhD
thesis, The University of Texas at Austin, 2008.

P. Beeson, N. K. Jong, and B. Kuipers. Towards au-
tonomous topological place detection using the ex-
tended Voronoi graph. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), pages 4373–4379, Barcelona, Spain, April
2005.

P. Beeson, M. MacMahon, J. Modayil, A. Murarka,
B. Kuipers, and B. Stankiewicz. Integrating multiple
representations of spatial knowledge for mapping, navi-
gation, and communication. In Proceedings of the Sym-
posium on Interaction Challenges for Intelligent As-

34



sistants, AAAI Spring Symposium Series, pages 1–9,
Stanford, CA, March 2007. AAAI Technical Report
SS-07-04.

J.-L. Blanco, J.-A. Fernández-Madrigal, and J. González.
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