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Abstract

Shortcomings of qualitative sinul ation and of quantitative sinulation notivate conbining

themto do sinul ations exhi biting strengths of both. The resul ting class of techniques is called
semi-quantitadive simdion One approach to sem-quantitative simul ationis to use nuneric
intervals torepresent inconplete quantitativeinformation. Inthis research we denonstrate se
quantitative simul ationusing intervals inaninplenented sem-quantitative simul at
Q3 progressively refines a qualitative simulation, providing increasing
predi ctions which can converge to a nunerical simul ationin the
correctness guarantees fromqualitative and interval si
Q3’s simul ations are based on a techni que w
1tative simil ation has a very coarse step siz
relativel yfewqualitativel y distii
qualitative states,
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1

Int roduct ion

Systens that change over tine are often so conpl ex that anal ytical sol utions, equations predicting
future systemstates as a function of tine, cannot be found. In those cases similationis useft
prediction. { vena nodel of systemstructure andinitial state, simil ation determni n
trajectory throughits state space.
When accurate nuneri cal i nfornati on about structure andinitial stat
of nuneri cal siml ationtechni ques is available. Wen onl y qual
availabl e, a significant body of work descri bes nethods
the many cases in which accurate nunerical ir
nunerical simul ation, yet inconplete n
for stronger predictions than
quanti tative sinmul ati
informative inf
As an ex
tion



An object is fired upward fast enough to escape a gravitational field
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Figure 1: Qualitative simul ation of an object fired upward at greater than escape vel ocity shows
that the gravitation experienced by the object produces a negative acceleration (a), reducin
velocity (b). As distance increases (c), gravitation decreases. Qualitative sinulat]

anot her behavi or in which the object falls back to Earth (not shown).

Thi s paper signi ficant] y revi ses and expands a prelim nary account
and provi des a proof of convergence and stability for stepsiz

2 Q3 and Step Size Refinement

Q3 inproves on pure qualitative simlation by augner
inferences when quantitative information i

ing behaviors, and in providi ng nuns

that quantitative informatio

boundi ng spaces of po

extracting as 1

explici



tative similations because the qualitative features of qualitative simulationtrajectories do change
significantl y fromone tine point to the next. Therefore step sizes for qualitative sinul at
l arge by defini ti on and so nuneri cal inferences on themtend to be weak.
Augrenting a Q2 simulation so that it has smaller step sizes can lead te
quantitative inferences, just as nunerical simulations can be inprovec
(withinlimts inposed by the accuracy of floating point arith
al gori thmfor doing this. Q3 augments Q2 with the the
capability of smaller step sizes.
Q3 first generates qualitative behaviors
mation via Q2. Then, better inferes
step size refinenent and at
techni que. Adaptiv
represent a
t he



Model of a Tank wth Flui d F ow | Overflow Behavi or of the Tank

Amount (T1) =capacity
Inflow(T1)
Amount(t) of flud Outflow(T1)
T|1 \\
Inflow(?) rreaé\letflow(Ti) state at
Outflow(?) vhind | — — —/—= _ _ t=T1_
tate at
ton st. 5 =
[ - Netflow(Tp) t =TO
/ Netflow(?) _|_ TO
I Outflow(TO)
TIME =1 Inflow(TO)
Amount (TO)

Netflow(T1) =Inflow(T1) — Outflow(T1)

Netflow(TO) =Inflow(T0) — Outflow(TO)

Netflow(t) =Inflow({) — Outflow(t) Amount 11, fmounti 10 ~

Amount(t) = [, Netflow(() [min(Net£low(TO), Netflow(T1)),

me(Netflow(TO), Netflow(T1))]

(a) Diagram& equations of a m#l | (b) T agram&equations of a behaior

(¢) Overflowbehavior: graphical representation
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Figure 2: Asinple tank nodel and its overflow behavior. The nodel consists of two const
tenplates, shown in (a). Those tenplates hold at all tines. Instantiating the tenplat
tatively distinctive tine points TO and T1 leads to representations of its be
netvwork representation of the overflowbehavior is shownin (b). Al:
tine points would be unwi el dy to depict graphically, but can
nenory. ‘The sane behavior represented graphically is
quantity of fluid in the tank. Overflowoccurs at
capacity of the tank. The nean val ue const
Amount, Netflow, and TIME.
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4 [0,7]
[2,3]  [4,6] y
! [6,7]
[4,5]
Z:=70 (X Y) =[0,7] N([2,5] +[4,6]) =[0,7] N[6,11] =[6,7]
X=X(2=Y) =[2,5] n([6,7] —[4,6]) =[2,5] N[0, 3] =[2,3]
YVi=YNn(Z-§ =[4,6] N([6,7 —[2,3]) =[4,6] N[3, 5] =[4,5]

H gure 3: (Orstrairt propagationof interval labels through an add constraint. The interval at
each termnal is narroved by using the constraint to propagate the intervals currently at the other
termmnal s, so an add constraint actually enforces three rel ations, one addi tion, ZC X}V, :
subtractions, XC/Z—Yand YCZ-X

variabl es concerned at particul ar points intine (Figure 2b). These constraints relatein
quantitativel y bound the qualitative ]l andmarks of nodel variables. The const:
narrowi ng of one or nore intervals (Davis 1987), where a narrower int
tainty about quantitative value. Wen an interval is narrowec
constraints directly affected can of ten narrow other
13). Thus the effect of narrowi ng aninterval c
the constraint network.
There are a nunber of di flerent ki nd

e Arithnetic and nonotonic

o Greater and less than
nodel variabl e

e Man val ue co
traje

Props
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Interval propagation across an M+ constraint: Y = M (X)

Given Y, find a new range for X:

1) Project Y across the envelopes.

2) Intersect the projection with the old interval for X.

F gure 4: Propagation through an M (positive nonotonic) function w th quantitative envel opes.
Hat ched regi ons of the axes represent intervals, and the upper and 1 ower envel opes bound a space of
nonotoni ¢ functions. Propagationshownis fromaninterval onthe y-axis tothe z-axis. Propa
the other way, fromzto yis anal ogous.

If two variables are nonotonically related, the hi ghest and l ovest points of an i
themi npl y hi ghest and 1 ovest points of the projection of that interval o
A qualitative nonotoni ¢ function represents a large set of qua
all those that are nonotonic in the direction specified t
m ddl e ground between qualitative nonotonic func
is upper and |l over nonotoni ¢ enwel opes whi ch |
isillustrated by Figure 4, which shows a
nonotoni ci ty.

2.1.3 The nean val ve corstrai 1t

The nean val ue constraint is designed f
tine point to another. It deriv

whi ch states:

where tine t* € (t,4,%,). |
(Forrester 1961) rel:

W do not knowthe val

e

*See e.g, Hyvonen (1992 p. 89-
techn ques (Bol tyanskii 1964).




because t* € (t,4,t,), because a closed interval [ =[ab] is a superset of the openinterval (ab),
and because the qualitative simulation nodule ((PIM ensures that rdet) and all other varying
quantities are nonotonic between states at adjacent tine points ¢, and %,.
From(1) and (2),
lee(t,) —led(t,4)
t, —ta

€ [mird t,), mdt,)), 1l mddt, ), mdt,))] . (3)

Wien quantities are known only to within intervals, this equation must be intervalized in the
obvi ous ways. Real variables g are replaced by correspondi ng interval variables X, real func
f(#%) are replaced by corresponding i nterval functions F(.X), real arithnetic oper:
“2 are given the correspondi ng interval interpretations, the natural inte
1979) of €is C and functions ) and 7mf ) are applied respecti
bounds of intervals. Intervalizing (3) gives

LEA L) “BRS L (i AT 0). BOCE) ), ot T ),

where the 1 owbound of aninterval Xis denoted by Xand the hi gh bound by X( More 1979
The RIS sinpli fies to the convex hull of the set FYKT 4 )URIKT), or KT, 4)URIKT,),
where the convex hull includes everything in either interval or between them This results in the
nean val ue constraint:

IBHT) —IBE T )
b =T B
Fquation (4) can be sol ved al gebrai cally for each variable on the left hand side. The resul ting
right hand side can then be eval uated to gi ve aninterval , whichis intersected with the quantity’s
current interval as in Hgure 3.
Quantitative inferences provided by the nean val ue constraint tend to be weak when the v
T, and I, are widel y separated, as is oftenthe case with qualitatively distinct tine
Fgure 6a). Mich better results are typically obtained fromthe nean val ue
size refinenent, which nakes adjacent tine points closer together (as

BT ) URKT,). (4)

Atermtives to the man val ve comstraint The nean val ue constra
method. An obvious inprovenent over the relatively weak Fuler’s
mnethod, a mainstay of nunerical simulation. For interval proble
1-step nethod (such as Runge- Kutta) can be extended to int
woul d be to use an exi stence and convergence theoremf
THEOREM 5.7). More (1979 p. 94-97) also des«
simlation. Hjgenraam(1981) and Lohne
Mssuyes (1991) denonstrate the feas
simml ation.

2.2 Phase II: progress

Aquantitativel yannotated
refined i n Phase 11,
whi ch gradue

ones



2.2.1 Step size refiremrt: overview

Standard nunerical simulation algorithns estimate systemstate at the next tine point by ex-
trapol ating fromcurrent trends. It is better to extrapolate only a short distance al ong the system
trajectoryand then toreassess current trends before extrapol ating further, than toextrapol at
alonger distance. This neans keeping the stepsize of the simmlationsnall and, intu
snall step sizes typicallylead toless error inthe predicted trajectory o
Tor nost interval generalizations of nunerical similation n
sizes lead to narrover but correct interval predictions.
stepsize refinenent, the stepsizes of the sin
sharp predictions in the formof n
These intui tions about st
proven in Appendi x F

2.2.2 Step size refi

W are given a fini te orde
interval range [,

my overl a

Tter
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Figure 5: Arocket is fired upward fromthe Farth’s surface.

, whi ch cont ai ns

Q3 correctly predicts that the rocket coul d ei thes

m
S
The return behavior is the one shown, with graphs for height.

Initial velocityis Rx €[10000,20000]

di stance fromthe Earth’s center (H gure 8).

).

m
3

escape vel oci ty (approxi natel y 11000

to Earth or escape.

tine. Inferences about qualitative tine points TO, T1, and

accel erationvs.

11
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behavior is shown, however 25 tine points vere interpol ated. Consequently, quantitati
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[elelole]e]

are mich stronger — and the 2 i npossi bl e behavi ors have been pruned. Table
internedi ate stages in the simil ation.

quantitative inferences that were unabl e to prune any of the other two behaviors.

The behavi or in which the rocket falls back to the ground is shown in (a), which al so shows weak

Hgure 6: Arocket is fired upward at [3000,3300] neters per second, less than escape velocity.



Variable— H Accel eration Velocity Hei ght Ti ne H # ‘

TIME— H 163 ‘ T1 H 153 ‘ T2 H 153‘ T1 H T1 ‘ T2

[§]
h
swer || || | ] | ]
© (1983, [ (e [ TC0, [ [305, ] {305, [ |
Phase I _ | | 0 | | o] | 9| «9] o9 |3
(®) | [-9.16, | [-9.16, [ [1496, | ., [ [229,][229, [ [316, ] [316, |
Linterp. | —8.44] | 0) || 2009] | | 505] | o9 || o9 | o9 | 1]
(€) [ [-8.99, [ [-8.77, [ [1535, | .. [ [289,] 373 | 1326, | [326, | |
4interp. | —8.57] | 0) || 1948] | | 452] \ H | o9 || 1]
(d) H 29 79 H 29 ‘ 29 29 ‘ H 29 ‘ [5197
| | H | L1 | 9
(€) [ [-8.91, | [-8.65, [ [1558,] ., [ [319,][422, | [331, | [51
Tinterp. || —8.64] | 0) | 1919] | | 424] | o9 |
EU N - [ R R R ETR N
Beh. split || | —.00052] || \ | | 866624] ||
W Tise [ o T(w= [ .. [0
8interp. | | —7.98] || | —1044] || | 69
(%) | [-8.87, [ [-8.56, | [1570, | [—5482, | [334, | [4
25 interp. || —8.68] | -8.06] || 1905] | —1819] | 409]
(0) | [-8.87, [ [-8.53, | [1572, | [—4653, | [
50 interp. || —8.69] |  —8.10] || 1902] | —2137]

Table 1: The returni ng rocket simul ation at vario
variabl es are each shown at TIME=153 (the
al gorithm), and either T1 when the
on the way down. Each techni
interval results get na
the text. )



gap

Ti_ i .
e B ~tine

| N

Figure 7: Tiy4 and T; are tine points, but their val ues are known onl y towi thinintervals, in
by solidline segnents. Between themis a gap. Ti_g and Tj are the endpoints of a timn
size is in[w(gp),9, where wgp is the width of the gap. Sis the naxi mimpos

fromT;4 to Tj.

3 Detailed Exanple: a Nonlinear Second-Order Roc

W nowstep through an exanpl e requiring step size refinenent and the aux
offers. (bnsider arocket ina gravitational fiel d which decreases with
second order and nonlinear, and hence nakes a useful demnor

nodel appears in Figure 8. The simml ation for this ex

scri bi ng known quanti tative data about the Fartl

than the escape velocity of 11,0008 so

To direct Q37s operation, we s

Goal: “Prune as nany beh
havior(s).”

T mnimze the potential «
subgoal to pursue, gi ve

Subgoal I:

Phase I of a
bounds o
t



(define-QDE escape-velocity
(text "Gravity decreases with height as r’’=-GM/r"2")
; Define model variables and their qualitative values.
(quantity-spaces

(r (0 sea-level inf) "meters from Earth’s core')
(r-2 (o inf ) ''distance squared" )
(h (0 inf ) "meters above surface" )
(km (0 inf ) "kilometers above surface'")
(surface (0 S* ) 'depth of Earth" )
(dr/dt  (minf O r* inf) ‘"velocity, m/s" )
(d2r/dt2 (minf O inf) ‘"acceleration, m/s"2" )
(G (0 G* ) "Gravitational constant G'")
(Earth-M (0 Mo ) UMass of Earth M" )
(K (0 Kx ) UK (=GxM)" )
(-K (-Kx 0 ) U-K" )
(=1000 (0 1000 ) "Thousand" ))

; The model defines these constraint templates

(constraints
((mult km =1000 h ))
((add surface h r ) (s* 0 sea-level))
((mult r T r°2) )
((mult G Earth-M K ) (gx m*x kx) )
((minus k -k ) (k* -kx*) )
((mult d2r/dt2 r-2 -XK ) )
((d/dt  r dr/dt )

((4/4t dr/dt d2r/dt2 ))
((constant surface))
((constant G))

((constant Earth-M))
((constant k))

((constant -k))

((constant =1000))) )

H gure 8: Qulitative mdel of a second order monlipear system Alist of quantity-spaces
describes the qualitative val ues the various nodel variables can have, and a list of constraints
describes the rel ati onshi ps anong those nodel variables. This nodel describes an object in free
fall in the Farth’s gravitational fiel d, such as a rocket or other projectile fired upvward or an «
falling downward. Gavity decreases with distance according to the standard nonl
order differential equation

fﬁ_—Gﬂl

a2 2

15



(def-quantitative-info
(name initial-velocity-about-3000)
(quantitative-initializations
;gravitational constant

(G (G* (6.67e-11 6.67e-11)))
;Earth’s mass

(Earth-M (M* (5.98e24 5.98e24 )))
;radius of Earth

(r (sea-level (6.37e6 6.37¢6 )))
;Initial condition, less than escape velocity
(dr/dt  (z* (3000 3300 )

(envelopes ()))

Figure 9: Quantitative data describing known facts about the Farth, as well as the inconpletely
specified ini tial velocity dr/dt of a rocket (Figure 8) fired upward fromthe Farth’s surface.

each behavior. Ior the return behavior this was at tine 1563. For the escape behavi ors, whi
Ti=og it occurred at tine 1000 (Section4.2.1). Constraint propagationon the resul
network for each behavi or pruned the escape behaviors and i nproved the ch

return behavi or somewhat. The pruning of an escape behavior is des

inproved characterization of the return behavi or was descri bed

Subgoal 1 has been fullysatisfied but the overall G

still knowlittle about howhigh the rock

narrowexisting interval s, and inf

in the return behavior. T

Subgoal 2
and
Subgo

Step



CONSTRAINT | I NFERENCE | REAS ON |

Initi alCondi tions | RTo = SEA-LEVEL =6.37¢6 neters (@) | Given
| | (DR/DT) g € [3000, 3300] 16 G|
| Previousl yInferred | -K* =—3.99¢l4 (#71) | FromG#* and M* in Ph
| | (D2R/DT2) 19 =—9.83 1’ () T Fom(R"2) g and -K i
RATE(TO)URIK1000) Qualitative behavior |
MEAN VALUE =(—00,3300]; (®) decreasing; use that
HiFEvariable: DRDT Decrease Rygoo; Sol ve equation (4)

(vel ocity, 15 upward) R1000 € (—0g9.676]

for LWH{T,) usin
(0 (i) apd (¥,

IRH variable: R

. I DRADT ;
(radius, neters from nerease (DRADT) 1000;

(DR/DT) 1000 € (0,09

Qual 1 tative be
(i) R1000 > RT0:

the Earth’s center) inplies th
TTME Increase R1goo; Soll;&le%;la
1 =T0 =0, 7;=1000 R1000 € (6.37¢6,9.67¢0] (vit) ), (). and
MULTI PLI CATI ON Increase (R"2)1000;
RXR=R"2, so Iecrease (R"2)1000; | Squ
R1000%R1000 <{E"2) 1000 (B~2) 1000 € [4.06¢13,0.35¢3] """

MULTI PLI CATI ON
(D2R/DT2) x(R"2) =K, so
(D2R/DT2) 1000 % (R"2) 1000

Increase (D2R/DT2) 1000;

Dxcrease (D2R/DT2)1000;

=K41000 = K* (D2R/DT2) 1900 € [ —9.83, —4.27]

ME AN VAL UE Prune behavi or;

HFvariable: D2R/DT2 DR/DT) 1000 € (0,

o) and

(acceleration of graviltyDRABYI) 1000 € [ —6830,—965.5]

IRH variable: DR/DT have a null intersection;
M .1 =T0 =0, },=1000 inconsistency detected.
(a) Tace,/ ~
2
oy g
[ w
: :
[«2]
g g
~ -
4 }
© .rINF = INF
o SEA-LEVEL 6. 37e6[ Rl B Eg?gg’(
0 t————0
3 & H s SMAF
8 o 8 =
(b) Plot,/~ ©
Radi us=r(1?) Vel oci ty=dr/«

Table 2: (a) Excerpt of a trace show ng howconstrai
rocket, after a state was i nterpol ated at ti ne:

(b) Aplot for a pruned escape behavi



because behavior splitting creates new branches in the behavior tree and hence can lead to high
conputational conplexity in subsequent simulation refinenent. Thus, target interval splittin
(“IS”) is used next, totry raising T2 and l owering T1.
Starting w th the knowl edge that T2 € [326,0d, Q3 ’s i npl enentation of target inte
assuned T2 € [ 326,434], let the simul ati onsettle viaconstraing propagation:
that settling led to an inconsistency (Table 2 exenplifies detecti
T2 ¢ [326,434], so [326,434] was trimed fromthe interva
successfully ruling out [326,434], target interval
[326,651] . Subsequent to ruling out
out the adjacent interval
[482,536], s



approachi ng point values in the linmt if the nodel is specified with real valued initial conditions
and nodel paraneters. Wen the nodel is specified inprecisely with one or nore intervals we
are interested in stability, which intuitively neans that if systemspecifications are wea
wi dths of result intervals will be wider but only to alimted degree. W first ¢
followed by convergence, stability and finally term nation for step si:

4.1 Caretress

Nureri cal nethods estinate answers, andinterval nethods bound the
that the bounds safely contain the space of possible answers (e
may al so incl ude extraneous val ues, whi ch nay occur for

o Fucess width. This is a well-known probl emi
1979; see also e.g. Abelson & Sussmnar

The sinplest such expressionis (X

give a veaker ansver. lor exar

X—-X=[1,2] —[1,2] =]

contai ni ng subtractic

once. Himnat

ei ther
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For nunerical similation, convergence neans inproving point predictions all the way to full ac-
curacy (Cear 1971). Ior interval simlations, convergence neans narrowinginterval enclosures all
the way to correct point predictions (Hjgenraaml1981 p. 57; More 1979 pp. 96-97; Lohner 1987
p. 261). Both senses applyinthe limt as the step size of the sinulation approaches zero.
As the step size decreases, the total nunber of steps increases. The conputatic
of simil ations containingalarge nunber of steps, together with round-offer
point arithnetic or the conpensating extra width added intention
netic, restricts convergence in practice. Nevertheless,
siml ation al gorithns.
Qur anal ysis builds on traditional anal ys
as Enl er’s nethod (CGear 1971; alsose
(Appendi x B) states:
Let Y' =F (Y be a systemof |
val ued functions of Y We con
conponent Y ;) of vector Y Y;)
[la k], and that each k' in vector F
F(y."
Let hbe the naxi mumst ep si ze,
estinate of Yat interpol ated tim
represent the anount of uncertainty
such that

(G ven precise initial conditions
that || ¥, || —0 as h—0. This ¢
can be reduced arbitrarily c
starting at tine ¢

propagation «

be «



particul ar systemsuffers fromexcess wi dth. Ior exanple, as Davis (1987) points out,

x+1 3
—2
6[2,]

z€[1,2] inplies

but straightforward cal cul ation (e.g. by hand or in Q3), gives

a4l (1,21 41 [2,3] .23
z © [1,2] ~ [1,2] =l5 1) =113

Thus this exanpl e demonstrates convergence despi te excess wi dth.

4.2.1 The infinitesiml step size assumption

(onvergence as a theoretical property (both in nunerical simulation and in the present c
assunes that the step size can be nade infinitesinally snall. W discuss this issueir
bel ow.

e If interpol ationof each newtine point can be done so as to reduce the si
Sin the region in which convergence is desired, then continue
strictly nonotonic decrease in the maxi mumstep size it

Bample: if the region of convergence is [0,1] st
and 0. 875 voul d not be al l owed because a
before the gap (0.75,1)if astrictly

o The decrease in naxi mumste
strictly nonotonic, but

two smaller ste

predefined co

Bamle: if

0.1
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290 — 0T -
280 — -
270 — 1 -
260 — 1 -

250 — it T -
I
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220 — I -
210 — -
200 —
190 —

180 —
170 — I
160 — _
150 — -
140 — I.'. —_
130 — -
120 — = -
110 — -
100 — -
090 — -
080 — -
070 = | | | | r

dr z+1
d 7a( )

X

Figure 10: Ixanple of convergence even though the interval cal cul ations produce excess wi dth. A
siml ation for % :%j’l reveals a slightly concave down curve. Before step size refinenent there
are tine points at 0 and oo After refini ng the simil ation by i nterpol ating two newstates at tim
val ues ¢ =0.50 and ¢t =1.00, uncertaintyin zincreases rapidly, as shown by the two tall in
delimters at ¢t =0.50 and ¢ = 1.00. After refinenent with ten interpolations, the t
significantl y nore constrained, as shown by the teninterval delimters of i1
tines 0.10, 0.20, etc. Refinenent with 100 interpol ati ons leads to mic
the 100 mich shorter interval delimters.
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Wiile convergence is uni versally recogni zed as an i nportant theoretical property of simul ation
nethods for continuous systens, it shoul d be noted that pragnatically oriented uses of tine poi:
interpol ation have not had convergence as a goal (Dvorak 1992; IKay 1996; this paper Se
and especially 5.3.2). Pragnatically oriented work shows that even one interpol at
signi ficant]y i nproved quanti tative bounds on nodel trajectories (Berleant
detailed exanple).

43  Stability

In nunerical simul ationstabilityis, intuitively, the desirable ch
starting val ues by a fixed anount produces a bounded ct

a vell-posed probl emand suffeiently small step si:

Cear (1971 p. 56) defines stability nore fc

| Y0 =5

where yp and yp are tvwo sets of initial con
nunerical siml ation after nsteps wit
vector generalization of absol+

equations containizi

SONE POS]

W ad



4.3.1 Gp existence ard creation

Wile step size refinenent is stable, convergent, and correct, it can only run within a gap. The
nost comon and i nportant case is a gap starting at TO € [0,0]. In particul ar:

o Wen the behavi or has tvwo qualitative tine points TO=) and Ti1=oct he gap between TO and
T1includes all positive finite val ues, allowingstates to be interpolated at arbitrary ti ne;
step size refinenent is uni npeded.

e Wen 0 <T1 <og the first gap is the open interval (0,T1), and step size ref
uni npeded for tine val ues in that interval. T1 nmay al so increase as the sir
nore refined, increasing the size of the gap. (This occurred in Table

Wile often the requisite gaps will exist prior to step size re
interval s in Phase I of the progressive siml ation refinenen
nmay not, due to weak initial conditions. Q3 provid

o (ke target interval splitting. See Appen
o (ke behavior splitting toforce a g
e (Be another tine step that

e Interpolate using a gap

Bamle: step size
in Hgure 11.

4.3.2 "Brmmtion

(bnstraint propagation i
have a fini te nunb

or other 1abe

termn
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Figure 11: Piecewi se continuous simil ation of an air conditioned dwelling. The tine points in this
simul ation cone fromthree sources: (1) qualitative simulation, which created tine points TO, T
T2, T3 and T4; (2) interpol ations in the gap between TO and T1, which created tine poin
1000, and 10000; and (3) interpolations in gaps of nodel variable Inside Temper:
created tine points K, KO, K1 and K2 at tenperatures 79.5 and 81.5. Ilscont]
sone of the plots are caused by transitions between nodels.
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5.1 Irpoed peddias

By naki ng quanti tative i nferences, sem - quantitati ve si mul ati on can of ten prune qualitative behav-
iors that are pl ausi bl e froma purel y qualitative standpoint. Abehavior is pruned when quantitative
inference reveal s that nointerval is possible for sone nodel variable at sone tine point (as ve s
inTable 2). Dalle Mlle (1989) and Dalle Mlle and Edgar (1991) used phase I of Q3 (Q2)
purpose w th two nodel s of chenical engineering systens, the rel ativel ysinple but
of tvwo parallel first-order chem cal processes, and the less sinple adiaba
reactor.
Farquhar and Brajnik (1994) used phase I of Q3 inasyste
Physics Conpiler”). They generated sem - quantitative m
vere able to nodel and simul ate a real hydroelectr
levels for diflerent water control scenarios.

52 Diagusis
Semi - quantitati ve si mul ati on can hel p di agnos
Mbdel s for which all behaviors are i1
one renai ni ng faul t nodel
version (Dvorak 1992

53 Mesuran

The concept of interpol ati
neasurenent parti:
pover of th

53.1

Suppose t
1=337"



| Varidie — | el oci ty | tei ght \
\ Tine point— || 400 3000 [Ti] 400 | 3000 | Ti |
N— [6770, | [906, [0, [ [2950, [[10706, |[10924,
18867] | 17870] | 0] || 7862] 55171] oS
E‘fﬁfg?i%gfgmm [6770, | [906, [0, | [2050, |[10706, |[12025,
At i me—3375 18463] | 14295] | 0] || 4558] 12314] o9
iﬁ;ﬁ%fgg&gemm‘ [6770, | [906, [0, | [2950, |[10706, | [12025,
At 103375 18293] | 13844] | 0] || 4058] 11814] o9
‘ Varz’able—>H Acceleration ‘
\ Tine point—|| 400 [ 3000 T1 |
[—4.59, |[-1.37, [[-1.34,
No neasurenent _1.97] —0.105] 0)
Wak neasurenent:
tei ght €[ 12000, 12500] [:§‘§i]’ [j‘i]’ [_1'133
at tine=3375 ' '
Stl:ong neasurenent: [ —4.59, [—1.37, (118,
Hei ght =12000 3.67) 19] 0)
at tine=3375 ' '

Table 3: Hiects of diflerent neasurenent strengths on predictions for Vlocity, Height, and :
eration of the rocket, at tine points 400, 3000, and T1. The intervals for the “no 1

condi tionare the sane as in K gure 5. The effects of interpolatingastate witha

neasurenent condi tion are showninthe mddle rows. Astrong neasurene:

the last rows. Notice howpredictedintervals tend to narrowas sti

introduce stronger quantitative infornationinto the simil af
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The i nterpol ati on net hod of neasurenent i nterpretationcontrasts withDe(Cbste’ s DATMI system
(1991) and its precursor ATMI (lorbus 1986). A significant difference is that DATMI abstracts
neasurenents i nto qualitative categories before using them whereas MIMIC and Q3 use the a
neasured quantitati ve infornation. Hence DATMI 1 oses quantitative i nformation retai
by MIMIC and Q3.
DATMI is i ntended for handling [ arge nunbers of neasurenents. The unnodi fie
unwi el dy for 1 arge nunbers of neasurenents, but can be nodi fied to circunv
by propagating forward but not backwardin tine, and propagating forwa
Thi s was the approach taken by MIMIC.

54 Bandigtle pdablities  quitatie bdmias

Qualitative simul ation al one can find all possible behaviors of a systembut not thei:
Addi ng quantitative i nfornation can hel p. Q3 was part of a systemthat ir

the qualitative behaviors of a fault tolerant system(Berleant

functions (pdfs) were used instead of intervals to d

infornative than intervals. Aninterval repre:

zero beyond the interval endpoints,

The pdfs were first discre

interval . Thus problen

interval s and sol

the di



NSIM (kKay and Kui pers 1993) and SQSIM (kay 1996) were devel oped in part to alleviate the
wi de bounds that Q3’s predecessor Q2 ofteninfers. Wile NSIM soneti nes provi des better bounds
than Q2 (Kay and Kui pers 1993; Kui pers 1994), sonetines NSIM's resul ts are poorer than Q2 s
resul t whichled to SQBIMwhi ch conbi nes features of both NSIMand . Kay (1996) desc
SPIMi n detail but no conparison of its inferential ability to that of Q3 exists.

62 Nuwmid wak

Forbus & Fal kenhai ner (1990, 1992) conbi ned nuneri cal and qualitative simulations ir
(SIMul ator GENeration) system building on qualitative process theory (Iorbus
pl ays notabl e advant ages.

1. (ke of qualitatively inferred nodel transitions (e.g. when 1
and boiling comences) enabling autonating siml atic
simml ations.

2. (Causal ordering applied to qualitative nodels

Limtations of SIMGEN include (1) the re
the need for precise nunerical inform
approxi mate outputs and often

Wil e SIMGEN used

(1991) used nune

iors as

<
b
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Nai vel vy conputed fuzzy interval for Z7—Z Afuzzy interval Z
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5 = 5 5 102 104 106 107

Figure 12: HRizzy intervals. Sloping line segnents indicate fuzzy regions. 'The lower the val ue of
nenbershi p function ff2), the less the degree of nenbership for zin the fuzzy interval.

6.3.1 A& vith standard intervals, operatiors on fwzzy intervals can produce excess
wdth
Figure 12 contains a very sinple exanple of how the excess width problemin cal cul ations on
intervals has similar manifestations in calculations on fuzzy intervals. Values of xzin t
terval [104,106] are full nenbers of fuzzy interval Z and those in the sloping :
sible nenbers. Subtraction would give the region of full nenbership in the
[ 104,106] —[ 104,106] =[ —2,2], the regi onof non-zero nenbershi p as [ 102,
and fuzzy edges of constant slope. However, Zis perfectly correl:
has full nenbership at 0 and zero nenbershi p everywhere e
trivial, such situations can be arbitrarily conpl ex
(onsidering gf2) as an upper bound on
addresses the nenbership over-estinat
resul ts containing excess wi dt
(orrel ated fuzzy sinmul a
cost of assunming all
case of My
Fizzy



o Irominterval simul ation: the guarantee that the trajectory of any real systemconformng to

aninconpl etel y specified nodel is encl osed by one of the predi cted sem - quanti tative behavi or
descri ptions.

o Irominterval simulation: h—0 stability.

o Mominterval sinulation: convergence as uncertaintyin the quantitative specificat
maxi mumstep size, both approach zero.

o Iromqualitative and interval representations: the ability to express and 1
frompartial know edge.

The capabilities of Q3 rely mostly on the folloving.

o Step size refinenent, for adaptive reductionin stepsize byin
nedi ate time points into a predicted behavior.

o Bropagation of interval [abelsin constraint networ

Exanpl es of graphi cal output fromQ3 were
invol vi ng the domains of prediction, diagr
abilities of qualitative behavior

The si gni ficance of Q3 t

because Q3 denonst

quantitative

ner



Target Interval Splitting (TLS): Outline

{d VEN. o Y=X-Xand
Xe [0,1]
THEREFORE: e Y€ [—1,1] by constraint propagation (shownin this Fgure).
OBIECOIVE: e  DNarrowY (the target) further, by testing and

ruling out pieces of its current interval as in Flgure 14.

%

Hgure 13: Aconstraint network for the equation Y=X—X G ven Xc [0,1], constraint propa-
gation concludes Y€ [ —1,1]. This conclusionis correct, but excessively weak, andis streng
in Hgure 14.

an equation aopb=c. Constraints over more than three quantities
inthe mean val ue constraint, Sec
Transformatio



‘ ‘ TIS tests 1 owbounds. . .

| Iteration | Interval (s) | Reason |
1 Ye|[-1,1 constraint propagation
| | (=1 1] | |
| | [-1,0] [0,1] | Split and test |
| 2 | [—1,-0.5] [-0.5,1] | Re-split and test |
| | X | Rule out . ‘
‘ ‘ 3 ‘ ‘ [—0.5 —Hg;g]ﬁvl[]—ﬂ) 25,1] ‘ ﬁrﬁ?mdlgterval ‘ ‘
—0.5,40. .25, plit and test
|4 [-0.5,-0.125] [—0.125,1] | Re-split and test \
|5 [-0.5,-0.3125] [—0.3125,1] | Re-split and test \
| | X | Rule out . ‘
‘ ‘ [ —0.3125,1] | Narroved interval |
|6 | [-0.3125,40.3438]  [40.3438,1] | Split and test
|7 [-0.3125,40.0158]  [40.0158,1] | Split and test
L . B
o . B
L . B
| ‘ [—0.25 — €y, 1] | Conel ude
|
‘ ‘ .. .then hi gh bounds ‘
|
‘ N ‘ [—0.25 — ¢, 1] | G ven

\ | | [‘—0.25—e1,+0.375—521] [40.375 — <, 1] | S]‘plit and test
I . .

‘ ‘ [—0.25 —¢,0 +6] (Conel ude

Figure 14: Brget interval splitting marrovs a target irterval by ruling out piece
The constraint network for Y= X — Xwas shown in Figure 13. Target interval split
tests the lower half of a target interval, Y€ [—1,1] in this exanple, by settin;
propagating. If the network settles successfully (i.e. has asolution),
[—1,—5] inthis case, the lower eighthif necessary, etc.
network has no sol uti on. That sub-interval is
the lowest quarter, Y€ [—1,—-.5], wa
for the highest half, quarte
above. tor Y =_
reaching, [ —
€.



Proof: The proof has similarities withstandard proofs of Euler’s method (Gear |
man 1976) and is also influenced by Moore (1979).
Yo

1. The 1inference method u:



This and equation (12) justify

u( V) < ul Yier) + Al Yo U Yoo +AF( M) ) -

7. Since Fis Lipschitz and a natural interval extension, F(M is bo
absolute value of aninterval 1s the



Theoreml et Y =F(Y) be asystemof first order differential equations, vhere F is a vector of interval
val ued functions of Y. W consider sone bounded subset [ lo, hi] of the reals such that for each conponent
Yijy of vector Y, Y;y(t) C[lo, hi] . W assune that F(Y) is defined uhen each Y(;y C [ lo, hi] , and that each
F invector F is the natural interval extension of a real rational function f;.”
Iet h be the muzinumstep size, let || Yim|| represent the amvunt of uncertainty inthe simul ated estinut
of Y at interpolated tine point t =b as neasured by its vector norm®, and let || Yol|| represent the anou
of uncertainty tnthe inmitial conditions. ‘Then there are constants I and Fg such that

| Yol <K || Yol +Eh.

1. Higher order systems: The proof of Lemma 1 extends to hi gher order syste
describe the higher order systemas a syst

FEach indi vi



HowerBuetope 30 A Fipperweiope d1 ffer onl y in the values of some constants. Then, GouwrBuelope =
GigperFwelope- Call this function G

Consider each constant ¢; whose value differs between Houwrpuedope
the lower of the values and ¢; the higher one.
instead of ¢; or ¢;. B
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