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Abstract 

Shortcomings of qualitative simulation and of quantitative simulation motivate combining them 
to do simulations exhibiting strengths of both. The resulting class of techniques is called semi- 

quantitative simulation. One approach to semi-quantitative simulation is to use numeric intervals to 
represent incomplete quantitative information. In this research we demonstrate semi-quantitative 
simulation using intervals in an implemented semi-quantitative simulator called Q3. Q3 pro- 
gressively refines a qualitative simulation, providing increasingly specific quantitative predictions 
which can converge to a numerical simulation in the limit while retaining important correctness 
guarantees from qualitative and interval simulation techniques. 

Q3’s simulations are based on a technique we call step size re$nement. While a pure qualitative 
simulation has a very coarse step size, representing the state of a system trajectory at relatively 
few qualitatively distinct states, Q3 interpolates newly explicit states between distinct qualitative 
states, thereby representing more states which instantiate new constraints, leading to improved 
quantitative inferences. 

93’s techniques have been used for prediction, measurement interpretation, diagnosis, and even 
analysis of the probabilities of qualitative behaviors. Because Q3 shares important expressive and 
inferential properties of both qualitative and quantitative simulation, 43 helps to bridge the gap 
between qualitative and quantitative simulation. @ 1997 Elsevier Science B.V. 
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An object is fired upward fast enough to escape a gravitational field 

:;I TO=O jll T1=~ :jl 
(a) (b) Cc) 

Gravity(t) Velocity(f) Distance(f) 

Fig. I. Qualitative simulation of an object fired upward at greater than escape velocity shows that the gravitation 
experienced by the object produces a negative acceleration (a), reducing its velocity (b), As distance increases 
(c), gravitation decreases. Qualitative simulation also produces another behavior in which the object falls back 
to Earth (not shown). 

1. Introduction 

Systems that change over time are often so complex that analytical solutions, equations 
predicting future system states as a function of time, cannot be found. In those cases 
simulation is useful for prediction. Given a model of system structure and initial state, 
simulation determines the system’s trajectory through its state space. 

When accurate numerical information about structure and initial state is available, 
a large body of numerical simulation techniques is available. When only qualitative 
information about a model is available, a significant body of work describes methods 
for qualitative simulation. But what about the many cases in which accurate numerical 
information is unavailable, preventing traditional numerical simulation, yet incomplete 
numerical information is available, providing the potential for stronger predictions than 
pure qualitative simulation provides? That question motivates semi-quantitative sim- 
ulation, in which numerical and qualitative techniques are combined to make more 
informative inferences than either alone would make. 

As an example consider a nonlinear, second-order system, a rocket fired straight up 
in a gravitational field that decreases with height. Compared to the simple case of 
movement in a gravitational field that remains constant with height, this example is 
more interesting for qualitative simulation due to its nonlinear and second-order nature. 

To illustrate the point that qualitative and numerical simulation have relative strengths 
and weaknesses, here is a limitation of each: 

l Numerical simulation cannot infer that the final height could be infinite. More 
generally, unlike qualitative simulation (Fig. 1)) numerical simulations cannot infer 
infinite values at all. 

. Qualitative simulations cannot infer whether or not the rocket rises to infinity 
as shown in Fig. 1, or instead falls back to the ground. More generally, unlike 
numerical simulation, qualitative simulation cannot infer which qualitative behavior 
will be the one to actually occur in a given instance. 

Semi-quantitative simulation combines both qualitative and quantitative simulations 
so as to compensate for weaknesses in each with strengths of the other. This leads to 
significant guarantees which semi-quantitative simulation can provide. 
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! All qualitative behaviors that are consistent with available quantitative information 
can be found. 

! Each qualitative behavior can either be annotated with intervals providing quantita- 
tive bounds on system trajectories conforming to that qualitative behavior, or ruled 
out entirely. 

In an earlier system, Q2 [ 591, we showed how a qualitative behavior’s symbolic values 
can be annotated with intervals that bound their quantitative values. While Q2 provides 
useful results and has been used in other work [ 35,36,39,53], it relies on simulations 
that contain only the few time points at which qualitatively significant events occur, 
which limits the quantitative inferences it can provide. 

The present system, Q3, extends Q2 with step size refinement and auxiliary tech- 
niques. Step size refinement interpolates new states into an existing sequence of states 
in a simulation trajectory, adaptively reducing the size of the time steps in the simula- 
tion. Step size refinement constitutes a pragmatic contribution because it allows better 
inferences than either qualitative or quantitative simulation alone. From a theoretical 
perspective, it inherits important guarantees from both qualitative and quantitative sim- 
ulations. 

This paper significantly revises and expands a preliminary account [ 91, and provides 
a proof of convergence and stability for step size refinement. 

2. Q3 and step size refinement 

43 builds on the tree of qualitative simulation trajectories (behaviors) produced by 
Q2 [ 591. That tree of qualitative simulation trajectories is annotated with intervals that 
constrain the values of model variables at qualitatively significant simulation time points 
in each trajectory. While these intervals allow better predictions about model trajectories 
than are possible with pure qualitative simulation, and better pruning of the tree of 
qualitative behaviors, Q2 often suffered from weak quantitative inferences in the form 
of very wide inferred intervals. 

Somewhat better inferences might be obtained by augmenting 42’s simple constraint 
propagation with more sophisticated approaches, such as quantity lattices [78], Ql 
[8912 or BOUNDER [ 7 11. However while such sophisticated methods would help, 
a critical issue would still remain. This issue is the size of the time periods between 
explicitly represented time points in the simulation trajectories, and it is a variant of 
the well known issue of step size in numerical simulations of ordinary differential 
equations. 

For typical numerical models, numerical simulation results are poor when step sizes 
are large, becoming progressively more accurate as the step size of the simulation 
becomes smaller. (A large step size means that qualitative features of a trajectory, such 
as slope of one or more model variables, change significantly from one time point to the 
next.) This basic characteristic of standard numerical simulation algorithms [46] is a 

2 The name Ql has no connection with the names 42 and Q3. 
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serious problem for numerically annotated qualitative simulations because the qualitative 
features of qualitative simulation trajectories do change significantly from one time point 
to the next. Therefore step sizes for qualitative simulations are large by definition and 
so numerical inferences on them tend to be weak. 

Augmenting a 42 simulation so that it has smaller step sizes can lead to greatly 
improved quantitative inferences, just as numerical simulations can be improved by 
reducing the step size (within limits imposed by the accuracy of floating point arith- 
metic). Step size refinement is our algorithm for doing this. Q3 augments Q2 with the 
theoretically and pragmatically significant capability of smaller step sizes. 

43 first generates qualitative behaviors via QSIM which are annotated with quan- 
titative information via Q2. Then, better inferences are obtained by progressively re- 
ducing the step size using step size refinement and auxiliary algorithms. Step size 
refinement is an adaptive discretization technique. Adaptive discretization techniques 
reduce numerical error in simulation methods that represent a continuous system at 
a finite number of discrete points, usually time points, by varying the step size de- 
pending on the current status of the simulation. Previously described adaptive dis- 
cretization techniques include adaptive step size control [ 46,701, and multigrid methods 
[16,17]. 

Because the two main phases in the operation of Q3 are generating a simulation and 
refining it, we next describe each phase in turn. 

2.1. Phase I: generating the simulation trace 

Creating the simulation trace involves qualitative simulation in close coordination 
with quantitative inference. Q3 does this by calling Q2 [59] as a subroutine. The 
coordination consists of iterating over (a) using qualitative simulation to incrementally 
grow the behavior tree, then (b) performing quantitative inference on the incrementally 
extended tree. In more detail: 

( 1) Qualitative simulation. Incrementally grow a tree of qualitative behaviors. 
The tree of behaviors is guaranteed to include the actual behavior of any real 
system conforming to a given qualitative model [58]. Q3 represents each be- 
havior as a constraint network relating each model variable at the time value 
of each qualitative state in the simulation. This constraint network is anno- 
tated with intervals representing the quantitative information that is given or 
has been previously inferred about various landmark values of various model 
variables. Fig. 2 illustrates this constraint network concept with an elementary 
example. 

(2) Propagate quantitative information. The new qualitative state creates new con- 
straints which initiate new quantitative inferences from given and previously in- 
ferred intervals. The effects of these inferences ripple through the network, using 
constraint propagation (i.e. Waltz filtering on interval labels [ 271). Propagation 
through an add constraint (Figs. 3 and A.l) exemplify this. 

(3) Iterate. But if the qualitative simulation does not provide further incremental 
growth, go on to Phase II. 

We now examine how quantitative information is propagated in detail. 
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TIMi = t 

N&flow(t) = Inflow(t) -OUtfloW 

Amount(l) = JrNetflo”(r) 

(a) Diagram and equations of a model 

Overflow behavior of the tank 

Amount ( T I ) = capacity 

/ Inflqw(T1) 

I Outflow(T1) 
I 

Outflbw(T0) 
I 

Inf low(T0) 

\t (TO) 

Netflow(T1) = Inflow(T1) - Outflo”(T1) 

Netflow(TO)=Inflow(TO) -Outflo”(TO) 

Amount CT11  -Amount  c  

Tl -TO  
_ 

[min(Netflow(TO),Netflow(Tl)), 

(b) Diagram and equations of a behavior 

Inflow(t) Outflow(t) Netf low( t) Amount(t) 

(c) Overflow behavior: graphical representation 

Fig. 2. A simple tank model and its overflow behavior. The model consists of two constraint templates, shown 
in (a). Those templates hold at all times. Instanriaring the templates at qualitatively distinctive time points TO 
and Ti leads to representations of its behaviors. A constraint network representation of the overflow behavior 
is shown in (b) A larger mode1 or one with more time points would be unwieldy to depict graphically, but 
can easily exist as a data structure in memory. The same behavior represented graphically is shown in (c) 
Amount (TO) is the initial quantity of fluid in the tank. Overflow occurs at TIME = Tl, when the value of 
Amount (Tl) is the capacity of the tank. The mean value constraint (Section 2.1.3) relates six values, two 
each of Amount. Netf low, and TIME. 
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[x31 

r4T51 

Z:=Zn(X+Y)=[0,7]n([2,5]+[4,6 1) = CO,71 n [6, 111 = [6,7] 
x:=xn(Z-Y)=[2,5]n([6,7]-[4,61)=[2,5ln[O, 31 =[2,31 
Y:=Yn(Z-X)=[4,6ln([6,7]-[2,31)=[4,6ln[3, 51=[4,51 

Fig. 3. Consfraint propagation of interval labels through an add constraint. The interval at each terminal 
is narrowed by using the constraint to propagate the intervals currently at the other terminals, so an add 
constraint actually enforces three relations, one addition, Z c X + Y, and two subtractions, X 2 Z - Y and 
rcz-x. 

2.1.1. Propagating quantitative information 
The constraint network composing each qualitative behavior consists of constraint 

templates (Fig. 2(a)) defining the model which are instantiated into actual constraints 
on the values of the model variables concerned at particular points in time (Fig. 2(b) ) . 
These constraints relate intervals that quantitatively bound the qualitative landmarks of 
model variables. The constraints often support narrowing of one or more intervals [ 271, 
where a narrower interval expresses less uncertainty about quantitative value. When an 
interval is narrowed (or assigned an initial value), the constraints directly affected can 
often narrow other interval(s) conected to them (Figs. 3 and A. 1) . Thus the effect of 
narrowing an interval can propagate, narrowing other intervals throughout the constraint 
network. 

There are a number of different kinds of constraints that can be expressed in a model 
description. 

l Arithmetic and monotonicity constraints among variables. 
l Greater and less than constraints among the different qualitative landmark values 

of a given model variable. 
l Mean value constraints relating values in states at adjacent time points in the 

simulation trajectory. 
Propagation of intervals using some of these constraints is simple, but for others it is 

less so. 
To illustrate the greater and less than constraints, suppose some landmark topHeight 

is greater than some other landmark bottomHeight, and we are given that topHeight 
E [ 100,200] and bottomHeight E [O,oc)). Then we can infer bottomHeight E 
[0,200]. 

To illustrate arithmetic constraints, inferencing is exemplified by Fig. 3 and is con- 
sistent with previous work [49]. Subtraction is modeled using the add (Fig. 3), and 
division relations are modeled analogously with the mult constraint. 
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The interval Y 

Interval for X 

Intersection = new interval for X 

Interval propagation across an M+constraint: Y = M+(X) 
Given Y, find a new range for X: 
1) Project Y across the envelopes. 
2) Intersect the projection with the old interval for X. 

Fig. 4. Propagation through an M+ (positive monotonic) function with quantitative envelopes. Hatched regions 
of the axes represent intervals, and the upper and lower envelopes bound a space of monotonic functions. 
Propagation shown is from an interval on the y-axis to the x-axis. Propagation the other way, from x to y is 
analogous. 

The monotonicity and mean value constraints are more involved, and are explained 
next. 

2.1.2. The monotonic@ constraint 
Monotonicity implies that a change in one variable leads to a change in the other 

variable, in the same direction for positive monotonicity and in the opposite direction for 
negative monotonicity. If two variables are monotonically related, the highest and lowest 
points of an interval on one of them imply highest and lowest points of the projection 
of that interval on the other.” 

A qualitative monotonic function represents a large set of quantitative functions 
consisting of all those that are monotonic in the direction specified by the qualitative 
monotonic function. A middle ground between qualitative monotonic functions and 
specific numeric monotonic functions is upper and lower monotonic envelopes which 
bound a space of numeric monotonic functions. This is illustrated by Fig. 4, which 
shows a simple propagation method justified by the definition of monotonicity. 

2.1.3. The mean value constraint 
The mean value constraint is designed to allow propagation of quantitative information 

from one time point to another. It derives directly from the mean value theorem of 
elementary calculus, which states: 

3 See e.g. [49, pp. 89-901. Nonmonotonic envelope functions and relations call for different analysis tech- 
niques I 121. 



222 D. Berleanr, B.J. Kuipers/Artijicial Intelligence 95 (1997) 215-255 

3t*: rute(t*) = 
level(t,) - level(t,_l) 

t,-tt,_l ’ (1) 

where time t* E (t,_i, t,,). rate designates a derivative quantity and level an integral 
quantity [45] related by 

rate = d(leveO 
dt 

We do not know the value of t*, but can conservatively infer that 

rute(t*) E [min(rute(t,_1>,rute(t,)),max(rate(t,_,),rate(t,))], (2) 

because t* E (t,,_ 1, t,,), because a closed interval I = [a, b] is a superset of the open 
interval (a, b), and because the qualitative simulation module (QSIM) ensures that 
rute( t) and all other varying quantities are monotonic between states at adjacent time 
points t,_ I and t,. 

From (1) and (2), 

/eve/( t,,) - level( &_I) 

t,, - t , , -1 

E  [min(rute(t,_~),rate(t,)),max(rute(t,_1>,rate(t,))]. (3) 

When quantities are known only to within intervals, this equation must be intervalized 
in the obvious ways. Real variables xi are replaced by corresponding interval variables 
Xi, real functions f(xi) are replaced by corresponding interval functions F(Xi), real 
arithmetic operations such as “-” are given the corresponding interval interpretations, 
the natural interval extension [66] of E is 2, and functions min() and max() are 
applied respectively to the low and high bounds of intervals. Intervalizing (3) gives 

LEVEL(T,) - LEVEL(T,,_l) 

r,, - Tn-1 

!Z [min(RATE(T,-l),RATE(T,)),max(RATE(T,_,),RATE(T,))], 

where the low bound of an interval X is denoted by X and the high bound by x [ 661. 
The right-hand side simplifies to the convex hull of the set RATE(T,_l) U RATE(T,), 

or RATE( T,,-1 ) u RATE( T,), where the convex hull includes everything in either interval 
or between them. This results in the mean value constraint: 

LEvEL(T$ Iy_vEL(T”‘) C RATE(T,,_,) uRATE(T,). 
n n 1 

(4) 

Eq. (4) can be solved algebraically for each variable on the left hand side. The 
resulting right-hand side can then be evaluated to give an interval, which is intersected 
with the quantity’s current interval as in Fig. 3. 

Quantitative inferences provided by the mean value constraint tend to be weak when 
the values T,_l and T, are widely separated, as is often the case with qualitatively 
distinct time points (as in Fig. 6(a)). Much better results are typically obtained from 
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the mean value constraint after step size refinement, which makes adjacent time points 
closer together (as in Fig. 6(b) ) . 

Alternatives to the mean value constraint. The mean value constraint is based on 
Euler’s method. An obvious improvement over the relatively weak Euler’s method is 
the Runge-Kutta method, a mainstay of numerical simulation. For interval problems, 
Lohner [ 601 shows that any l-step method (such as Runge-Kutta) can be extended 
to interval simulation. Another direction would be to use an existence and convergence 
theorem for interval operator equations [ 66, Theorem 5.71. Moore [ 66, pp. 94-971 also 
describes a Taylor series based method for interval simulation. Eijgenraam [37] and 
Lohner [60] describe other methods. Missier and TravC-Massuyes [64] demonstrate 
the feasibility of a Taylor series based approach in semi-quantitative simulation. 

2.2. Phase II: progressive refinement 

A quantitatively annotated qualitative simulation was generated in Phase I, and is 
now progressively refined in Phase II. The mainstay of this refinement process is the 
step size refinement algorithm, which gradually reduces the size of the time steps by 
interpolating new time points between existing ones (auxiliary techniques are behavior 
splitting, Section 3, and target interval splitting, Section 3 and Appendix A). Step size 
refinement is presented next. 

2.2.1. Step size refinement: overview 
Standard numerical simulation algorithms estimate system state at the next time point 

by extrapolating from current trends. It is better to extrapolate only a short distance 
along the system trajectory and then to reassess current trends before extrapolating 
further, than to extrapolate over a longer distance. This means keeping the step size of 
the simulation small and, intuitively, is why small step sizes typically lead to less error 
in the predicted trajectory of a numerical simulation. 

For most interval generalizations of numerical simulation methods [60] smaller step 
sizes lead to narrower but correct interval predictions. This is the case for step size re- 
finement. In step size refinement, the step sizes of the simulation are decreased gradually, 
leading to increasingly sharp predictions in the form of narrower intervals. 

These intuitions about step size refinement are described precisely in Section 4.2 and 
formally proven in Appendix B. We now describe the algorithm. 

2.2.2. Step size rejnement: algorithm 
We are given a finite ordered sequence TO, Tl, . . , Tn of time points Ti, each with 

an associated interval range [$,c] representing uncertainty about its value. The range 
for TO is [0, 0]  .  The ranges may overlap, and a range upper limit C may be infinite. 

Iterating over the following three steps progressively sharpens the predictions of the 
simulation. 

Example. Twenty-five iterations were done to produce Fig. 6(b) from Fig. 6(a). 
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--- t Ti-1 r--)‘7 T, _ _ _ IL/ _ _ _ _ - _ - *time 

Y 

s 
Fig. 7. Ti-1 and Ti are time points, but their values are known only to within intervals, indicated by solid line 
segments. Between them is a gap. Ti-1 and Ti are the endpoints of a time step whose size is in [ w( gap), 31, 
where w(gap) is the width of the gap. ? is the maximum possible step size from Ti-1 to T,. 

2. Interpolate a state. Insert a new state with a time point Ta in the gap and assign it 
the zero-width interval [t*, t* 1, where t* is a number within the gap. This reduces 
the step size of the simulation. Q3 by default picks values of t* rounded to the 
nearest integer, to communicate better with the viewer by avoiding visual clutter 
in the display [ 8.51 (see Fig. 6(b)). The multiple to which rounding is done is 
easily customizable and multiples of 200 were used in Fig. 5. The values of the 
other model variables in this newly created state must be between their values in 
the two adjacent previously existing states. This enables initializing the new state 
with qualitative and interval values. 

3. Propagate interval bounds. The newly interpolated time-point T, creates a new set 
of instantiations of the constraint templates defined by the model. Propagation of 
the new interval value T, = [ t* , t* ] and previously existing intervals through the 
newly expanded constraint network can narrow various interval bounds throughout 
the network [ 271. 
Example: Fig. 2 illustrates a model (a) and its instantiated constraints (b). 
Example: A detailed, step-by-step account of how propagation through the ex- 
panded constraint network resulting from an interpolated time point led to markedly 
improved quantitative inferences appears in [ 51. 

3. Detailed example: a nonlinear second-order rocket 

We now step through an example requiring step size refinement and the auxiliary 
techniques Q3 offers. Consider a rocket in a gravitational field which decreases with 
distance. This system is both second-order and nonlinear, and hence makes a useful 
demonstration example. The qualitative model appears in Fig. 8. The simulation for this 
example was initialized with parameters describing known quantitative data about the 
Earth (Fig. 9) and a velocity in [ 3000,3300] m/s, less than the escape velocity of 
11 ,OOOm/s so it must fall back to Earth. 4 

To direct Q3’s operation, we specify a goal. 

Goal: “Prune as many behaviors as possible and numerically bound the remain- 
ing behavior(s) .” 

4 Rotation and atmospheric resistance are ignored. 
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(define-QDE escape-velocity 
(text "Gravity decreases with height as rJ'=-GM/r-Z") 
; Define model variables and their qualitative values. 
(quantity-spaces 

(r (0 sea-level inf) "meters from Earth's core") 
(r-2 (0 inf ) "distance squared" ) 
(h (0 inf ) "meters above surface" ) 
(km CO inf > "kilometers above surface") 
(surface (0 s* > "depth of Earth" ) 
(dr/dt (minf 0 r* inf) "velocity, m/sH ) 
(dZr/dt2 (minf 0 inf) "acceleration, m/s*2" ) 
(G (0 G* ) "Gravitational constant G") 
(Earth-M (0 M* ) "Mass of Earth Ml' ) 
(K (0 K* ) "K (=G*M)" > 
(-K (-K* 0 > II-K" ) 
(=lOOO (0 1000 ) "Thousand" )) 

; The model defines these constraint templates 
(constraints 

((mult km =I000 

((add surface h 
((mult r r 
((mult G Earth-M 
((minus k -k 
((mult d2r/dt2 r-2 

((d/dt r dr/dt 

((d/dt dr/dt dZr/dtZ 
((constant surface)) 
((constant G)) 
((constant Earth-M)) 
((constant k)) 
((constant -k)) 
((constant =lOOO))) ) 

h 1) 
r > (s* 0 sea-level)) 
r-2) > 
K ) (g* m* k*) ) 

) (k* -k*) ) 
-K ) > 

)) 
>I 

Fig. 8. Qualitative model of a second-order nonlinear system. A list of quantity-spaces describes the 
qualitative values the various model variables can have, and a list of constraints describes the relationships 
among those model variables. This model describes an object in free fall in the Earth’s gravitational field, such 
as a rocket or other projectile fired upward or an object falling downward. Gravity decreases with distance 
according to the standard nonlinear second-order differential equation d2r/ dr* = -GM/r’. 

To minimize the potential complexity of numerical inferences on multiple behaviors, 
the first subgoal to pursue, given a tree of behaviors is 

Subgoal 1: “Prune as many behaviors as practicable.” 

Phase I of a simulation with Q3 is to get qualitative behaviors, each annotated with 
rough bounds obtained by constraint propagation throughout its constraint network, of 
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(def-quantitative-info 
(name initial-velocity-about-3000) 
(quantitative-initializations 

;gravitational constant 

(G (G* (6.67e-11 6.67e-II))) 
;Earth's mass 
(Earth-M (M* (5.98e24 5.98e24 )>) 
;radius of Earth 

(r (sea-level (6.37e6 6.37e6 1)) 
;Initial condition, less than escape velocity 
(dr/dt (r* (3000 3300 I>>> 

(envelopes 0)) 

Fig. 9. Quantitative data describing known facts about the Earth, as well as the incompletely specified initial 
velocity dr/dt of a rocket (Fig. 8) fired upward from the Earth’s surface. 

the given quantitative information (Section 2.1) . At this point, both return to Earth and 
the two escape behaviors5 appear plausible. Fig. 6(a) showed what is known at this 
stage about the return behavior and is summarized in Table 1, row (a). The simulation 
has not yet ruled out the escape behaviors, though escape is in fact impossible for the 
given initial velocity of [ 3000,3300] m/s. 

Proceeding to Phase II, step size refinement can be applied because of the gap from 0 
to 305 between TO E [O, 0] and Tl E [ 305, co) for the return behavior (Fig. 6(a) and 
Table 1, row (a) ). There are also gaps between TO and Tl for the escape behaviors, 
which will be refuted later (Table 1 last column and Table 2). Step size refinement 
interpolated one new state between TO and Tl for each behavior. For the return behavior 
this was at time 153. For the escape behaviors, which have Tl = co, it occurred at 
time 1000 (Section 4.2.1). Constraint propagation on the resulting constraint network 
for each behavior pruned the escape behaviors and improved the characterization of the 
return behavior somewhat. The pruning of an escape behavior is described in Table 2, 
and the improved characterization of the return behavior was described in Table 1, 
row (b). 

Subgoal 1 has been fully satisfied but the overall Goal is still only partially satisfied, 
because we still know little about how high the rocket goes or how long it takes to 
return. Thus we wish to narrow existing intervals, and infer new intervals for values of 
model variable at more time points in the return behavior. This requires satisfying two 
additional subgoals: 

Subgoal 2: “Infer the system trajectory between TO and Tl.” 

and 

Subgoal 3: “Infer the system trajectory between Tl and T2." 

’ In one escape behavior the velocity of the rocket decreases asymptotically to zero, and in the other to a 
positive value. 
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(a) Excerpt of a trace showing how constraint propagation eliminated a behavior of the rocket, after a state 
was interpolated at time = 1000. This trace occurred for both escape behaviors. (b) A plot for a pruned escape 
behavior. Note the inconsistency detected in velocity at time 1000. 

Constraint Inference Reason 

Initial conditions 

Previously inferred 

Mean value 

RATE variable: DR/DT 
(velocity, m/s upward) 

LEVEL variable: R 
(radius, meters from 
the Earth’s center) 
TIME: 
T,_I=TO=O,T,=IOOO 

Multiplication 

R x R = R-2, so 

hooo x Rio00 = (R-2)1000 

Multiplication 

(D2R/DT2) x (R-2) = -K, so 
(D2R/DT2) 1000 x (R-2)iooo 
= -Krooo = -K* 

Mean value 
RATE variable: D2R/DT2 
(acceleration of gravity, m/s*) 
LEVEL variable: DR/DT 

RTO = SEA-LEVEL = 6.37e6 meters (i) Given 
(DR/DT)ro E [ 3000.3300 1 m/s (11) 

-K* = -3.99e14 (iii) From G* and M* in Phase I. 
D2R/DT2)Ia = -9.83m/s2 (iv) From (R^2)Io and -K in Phase 1. 

RAT&TO) Q RATE( 1000) Qualitative behavior has DR/DT 
= (--00,3300]; (“) decreasing; use that and cil). 

Decrease Rroaa ; Solve Fq. (4) 
RIOOO E (--co, 9.67e61 for LEVEL( Tn) using 

(i) (ia) , , and (“). 
Increase (DR/DT) race ; Qualitative behavior has 
(DR/DT)iooo E (0,~) (vi) Ricoo > RIO, SO Eq. (4) 

implies that DR/DT is positive. 
Increase b; 
Rraoo E (6.37e6,9.67e6] 

Increase (R-2) ia00 ; 
Decrease (R-2) moo; 

Solve Fq. (4) for 
(vii) LEVEL ( Tn) using 

(i) (ii) , , and tvi), 

Square of Rrcm from (vii). 

(R”2)laao E [4.06el3,9.35e13] (vii’) 

Increase (D2R/DT2) rosa; Divide -K*, from (li’), by 

Decrease (D2R/DT2) roue; (R-2) rocc. from tviii) 
(D2R/DT2)rooo E I-9.83, -4.27 1 (in) 

Prune behavior; 
(DR/DT)~ooo E (0,co) and 
(DR/DT) roco E [ -6830, -965.51 
have a null intersection; 

(ii), (iv), (vi), and (ix) are 

inconsistent with Eq. (4). 

TIME: T,,_ 1 = TO = 0, Tn = 1000 inconsistency detected. 

(a) Trace/” 

~~~~~I 
(b) Plot/” 

Radius=r ( t) Velocity=dr/dt ( I) 

0 

Acceleration=d2r/dt2( t) 
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Step size refinement can be applied between TO and Tl to address Subgoal 2. However 
step size refinement cannot yet be applied between Tl E 1316, cc) and T2 E [ 316, co) 
to address Subgoal 3 because there is no gap between Tl and T2. Addressing Subgoal 3 
thus requires first satisfying a subsidiary subgoal: 

Subgoal 3a: “Create a gap between Tl and T2.” 

It is possible that inferences arising from addressing Subgoal 2 will result in a gap 
between Tl and T2, satisfying Subgoal 3a as well. Thus step size refinement is applied 
between TO and Tl to satisfy Subgoal 2 and perhaps Subgoal 3a. 

States were interpolated between TO and JJ three times. The simulation at that point 
is summarized in Table 1, row (c). Observe that little progress has been made toward 
creating a gap between Tl and T2. To get this gap it is necessary to infer a decrease in 
Ti sufficient to produce a gap. Q3 provides two auxiliary techniques for creating gaps: 
target interval splitting (Appendix A), and behavior splitting. Target interval splitting 
should always be tried before behavior splitting because behavior splitting creates new 
branches in the behavior tree and hence can lead to high computational complexity in 
subsequent simulation refinement. Thus, target interval splitting (“TIS”) is used next, 
to try raising n and lowering Ti. 

Starting with the knowledge that T2 E [ 326,001, Q3’s implementation of target 
interval splitting assumed T2 E [326,434], let the simulation settle via constraint 
propagation as usual, and discovered that settling led to an inconsistency (Table 2 
exemplifies detecting an inconsistency). Therefore T2 @ [ 326,434], so [ 326,434] was 
trimmed from the interval for T2, giving T2 E [434, co]. (Before successfully rul- 
ing out [ 326,434], target interval splitting unsuccessfully tried to rule out the larger 
[ 326,65 11. Subsequent to ruling out [ 326,434], target interval splitting unsuccessfully 
tried ruling out the adjacent interval [434,579], successfully ruled out [434,482], 
unsuccessfully tried ruling out [482,536], successfully ruled out [482,500], then 
[ 500,5 191, and finally unsuccessfully tried ruling out [ 5 19,525]. Target interval split- 
ting was not able to reduce Ti from oc although it tried ruling out a sub-interval 
[x, cc) with x very large. More details on target interval splitting appear in Ap- 
pendix A.) 

The results at this stage are summarized by Table 1, row (d). Observe that there is 
still no gap between Tl and T2, because target interval splitting did not reduce 3 from 
CG. Nevertheless, now TJ > Tl, so significant progress has been made in creating the 
desired gap. Since the choice now is between step size refinement, Q3’s main technique, 
and behavior splitting, Q3’s least favored auxiliary technique, step size refinement is 
invoked at this point. 

Three more states were interpolated via step size refinement, summarized by Table 1, 
row (e) . Observe that while TJ is rising, ?;T is not falling, which it must if a gap is to 
be created. Therefore behavior splitting, the remaining technique available to 43, should 
be invoked. 

Behavior splitting involves copying a behavior to produce a pair of independently 
represented, qualitatively identical behaviors, and replacing in each an interval that is 
to be split by a separate sub-interval of it. Each behavior is subsequently processed 
independently. In this example, Tl E [ 331, m) was split into the separate sub-intervals 
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[331, 106] and [ 106, co), here lo6 was an arbitrary high number providing a high 
but finite bound to one of the sub-intervals. (High but finite bounds are significantly 
more useful than infinite bounds because infinite values inhibit inferences, since the 
magnitude of an infinite bound is not reduced by subtracting or dividing it by any 
real number.) Each sub-interval is associated with Tl in one of the otherwise identical 
copies of the original behavior. For each copy, the effects of the new sub-interval 
for Tl propagate throughout the copy’s constraint network representation (Table 1, 
row (f)). 

After interpolating just one more state in each behavior, the behavior for which 
Tl E [ 106, co] is refuted, and the one for which Tl E [331, IO61 now has a gap 
between Tl and T2 (Table 1, row (8)). The new gap satisfies Subgoal 3a, enabling 
step size refinement in support of Subgoal 3. There is now nothing to prevent step size 
refinement from continuing to refine the quality of the simulation for the system’s entire 
trajectory. 

After each new interpolation, better numerical bounds are inferred. After a total of 
twenty-five states have been interpolated, the results are summarized by Table 1, row (h) 
(and were shown in more detail back in Fig. 6(b)). Further step size refinement causes 
further incremental improvement; row (i) summarizes the simulation after a total of 50 
interpolations. 

4. Correctness, convergence, stability, and termination 

Correctness here means that each interval describing a trajectory bounds the range 
of values that could be exhibited by any actual system conforming to the model and 
its initial conditions. Convergence means that with continued step size refinement, the 
inferred intervals will become narrower, approaching point values in the limit if the 
model is specified with real valued initial conditions and model parameters. When the 
model is specified imprecisely with one or more intervals we are interested in stubil- 
ity, which intuitively means that if system specifications are weakened, the widths of 
result intervals will be wider but only to a limited degree. We first discuss correct- 
ness, followed by convergence, stability and finally termination for step size refine- 
ment. 

4.1. Correctness 

Numerical methods estimate answers, and interval methods bound them. Correctness 
here implies that the bounds safely contain the space of possible answers (e.g. [ 37, 
p. 651) . Bounds may also include extraneous values, which may occur for the following 
reasons. 

l Excess width. This is a well-known problem in evaluating many interval expressions 
(see [ 661, [ 1, pp. 84-881 and [ 78, Section 2.2.41). The simplest such expression 
is (X - X) . Its value is obviously 0, but naive evaluation can give a weaker answer. 
For example, given X E [ 1,2] then straightforward calculation gives X - X = 
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[ 1,2] - [ 1,2] = [ - 1 , 1 ] . Excess width can occur in evaluating some expressions 
containing subtractions or divisions in which an interval valued symbol appears 
more than once. Eliminating excess width in the general case is non-trivial. Existing 
algorithms are either limited to linear problems and rather convoluted [56] or 
computationally complex [ 41, although progress on optimizing an apparent tradeoff 
between computational and conceptual complexity is reported by Cornelius and 
Lohner [ 231 and Hyvonen [49]. 

l Impossible values between possible values. Values in the middle of an interval may 
be impossible while values nearer to the endpoints are possible. This problem could 
be solved by allowing value description as disjoint sets of intervals, rather than a 
single interval. This strategy is central in Hyviinen [49]. 

43 uses constraint propagation on interval labels, which is correct because no interval 
will be narrowed too much [27]. However, a full accounting of correctness in Q3 also 
requires that the imprecise nature of machine arithmetic does not introduce incorrectness 
through round-off error. 

4.1.1. Machine round-ofS error 
Inaccurate arithmetic can obviously impact correctness. The finite precision of float- 

ing point calculations often introduces inaccuracy, called round-off error. For example, 
while l/2 can be represented precisely in floating point format, l/3 cannot. One so- 
lution is to use a language such as Pascal-SC [ 1 l] which supports interval operations 
that are correct (have guaranteed inclusion) despite round-off error. This is achieved 
by rounding low bounds downward and high bounds upward. COMMON LISP offers 
another solution by supporting rational arithmetic, which is completely accurate, but 
both slow and not closed under common transcendental functions. Q3 is written in 
COMMON LISP and will work with rationals if a switch is set, but defaults to rounded 
interval arithmetic [66, p. 151, which increments the high bound of each calculated 
interval by a small proportion of its value and decrements the low bound analogously. 
Provided this proportion is large enough to compensate or overcompensate for any 
inaccuracies introduced by round-off error, inclusion and hence correctness are main- 
tained. 

4.2. Convergence 

For numerical simulation, convergence means improving point predictions all the way 
to full accuracy [46]. For interval simulations, convergence means narrowing interval 
enclosures all the way to correct point predictions (see [ 37, p. 571, [ 66, pp. 96-971 
and [ 60, p. 2611). Both senses apply in the limit as the step size of the simulation 
approaches zero. 

As the step size decreases, the total number of steps increases. The computational 
complexity of simulations containing a large number of steps, together with round-off 
error intrinsic to floating point arithmetic or the compensating extra width added inten- 
tionally in rounded interval arithmetic, restricts convergence in practice. Nevertheless, 
the concept is a central tool in validating simulation algorithms. 
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Our analysis builds on traditional analyses of convergence of numerical simulation 
methods such as Euler’s method (see [ 461; also see basic texts such as [ 3 1 ] ). Theo- 
rem B.2 (Appendix B) states: 

Let Y’ = F(Y) be a system of$rst-order differential equations, 6 where F is a vector 
of interval valued functions of Y. We consider some bounded subset [lo, hi] of the reals 
such that for each component qj, of vector Y, qj, (t) C [lo, hi]. ’ We assume that 
F(Y) is defined when each Yc,;) 5 [lo, hi], and that each F; in vector F is the natural 
interval extension of a real rational function fi (y). 8 

Let h be the maximum step size, let ])Y,=t,jl represent the amount of uncertainty in 
the simulated estimate of Y at interpolated time point t = b as measured by its vector 
norm,9 and let ]]Yoll p re resent the amount of uncertainty in the initial conditions. Then 
there are constants K1 and K2 such that 

/(Yr=bI/ < KI IlYoll + Kzh. (5) 

Given precise initial conditions, II&II = 0. Then for any fixed time t = b, I!$. (5) 
implies that llYnll + 0 as h -+ 0. This constitutes convergence, and assumes that the 
maximum step size can be reduced arbitrarily close to zero. In Q3, satisfying this 
assumption requires having a gap starting at time t = 0. A gap may have been created 
by qualitative simulation plus constraint propagation of quantitative information (Phase 
I of simulation refinement). If not, it will need to be created (Section 4.3.1). Within 
the gap, there is nothing to prevent continued interpolation, thus allowing convergence 
within that region. 

This convergence result may be generalized to gaps starting at arbitrary times by 
observing that any state that is fully specified (e.g. by a measurement vector) can be 
considered an initial state with precise initial conditions. 

Example. Fig. 10 illustrates convergence for a system which plots x versus time ac- 
cording to 

dx x+1 
dt=x. 

The predictions become much narrower as additional times are interpolated, and would 
result in full convergence given an infinitesimal step size and perfect machine arithmetic. 
Note that this particular system suffers from excess width. For example, as Davis [27] 
points out, 

x+1 
x E [1,2] implies - 

X 
E $2 

[ 1 
d However, 43 uses constraint network representations. Appendix B discusses equivalence of equations and 

constraint networks. 
7 Y G [lo, hi] is not a major restriction because physical variables in real systems remain finite. However, in 

the case of a model where a variable diverges to infinity, the theorem only applies within a bounded region. 
R Common notation is to use upper case for interval valued variables and functions and lower case for real 

valued variables and functions. 
‘) Vector norm here means the width of the widest interval in the vector. 
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Fig. 10. Example of convergence even though the interval calculations produce excess width. A simulation for 
dx/ dt = x + I/x reveals a slightly concave down curve. Before step size refinement there are time points at 
0 and co. After refining the simulation by interpolating two new states at time values r = 0.50 and t = I .OO, 

uncertainty in x increases rapidly, as shown by the two tall interval delimiters at r = 0.50 and t = 1.00. After 
refinement with ten interpolations, the trajectory is significantly more constrained, as shown by the ten interval 
delimiters of intermediate height at times 0.10, 0.20, etc. Refinement with 100 interpolations leads to much 
better results as shown by the 100 much shorter interval delimiters. 

but straightforward calculation (e.g. by hand or in Q3), gives 

X+1 [1,21 + 1 [2,3] 2 3 
X  E  [I ,21 

=[1,21= Yj>i  =[1,31. [ 1 
Thus this example demonstrates convergence despite excess width. 
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4.2.1. The in$nitesimal step size assumption 
Convergence as a theoretical property (both in numerical simulation and in the present 

case) assumes that the step size can be made infinitesimally small. We discuss this issue 
in the bullets below. 

l If interpolation of each new time point can be done so as to reduce the size of 
the largest step S in the region in which convergence is desired, then continued 
interpolation will lead to a strictly monotonic decrease in the maximum step size 
in the region of convergence. 
Example: If the region of convergence is [ 0, 11 successive interpolation points of 
0.5, 0.75, and 0.875 would not be allowed because a time point must be interpolated 
in the gap (0,0.5) before the gap (0.75, 1) if a strictly monotonic decrease in 
maximum step size is to be achieved. 

l The decrease in maximum step size within the region of convergence should not 
only be strictly monotonic, but also an interpolated time point should divide the 
enclosing step into two smaller steps such that the width of each is smaller than 
P (width( S) ) , where P is some predefined constant in (0.5,1) . 
Example: If as before the region of convergence is [ 0, 11, successive interpolation 
points of 0.1, 0.  1 1, 0.111, . would lead to strictly decreasing maximum step size 
but not to convergence. 

l If there is no gap, as might occur when initial conditions are weak, step size 
refinement can be run only after a gap is created. This may be done using the 
techniques of Section 4.3.1. 

l The region of convergence starts at time = 0 but may have a finite width, if the 
upper bound of the gap is finite. 
Example: In Fig. 5, the region of convergence is some finite value time > 3671 
because while the low bound of Tl is 3671 (shown below the plots) it rises with 
continued interpolation, because the interpolated states lead to better knowledge of 
Tl’s possible values. 

l In a few cases, as when Tl = 00, the gap has infinite width. In such cases, the 
value of the first interpolated time point can be any number. This first interpolated 
point will divide the gap into a finite region starting at 0, and an infinite region. 
Subsequent interpolations can be in either the finite or the infinite region. 
Example: The behavior shown in Fig. 10 has qualitative time points TO = 0 and 
Tl = 03. The first interpolated time point was at 1.0, which therefore divided the 
initial time step between TO and Tl into two steps, one with width = 1.0, and the 
other with width = 00. In Fig. IO further interpolations were in the region (0,l) . 
However, any time point tk > 1 could be interpolated later, increasing the region 
Of Convergence to tk. 

While convergence is universally recognized as an important theoretical property 
of simulation methods for continuous systems, it should be noted that pragmatically 
oriented uses of time point interpolation have not had convergence as a goal (see 
[ 36,521 and Section 5-especially Section 5.3.2--of this paper). Pragmatically ori- 
ented work shows that even one interpolation can lead to significantly improved quan- 
titative bounds on model trajectories (Berleant [5] provides a simple, detailed exam- 
pie). 
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4.3. Stability 

In numerical simulation stability is, intuitively, the desirable characteristic that ‘<. . .a 

change in the starting values by a fixed amount produces a bounded change in the 
numerical solution.. .” given a well-posed problem and sufficiently small step sizes [ 46, 
P.91). 

Gear [46, p. 561 defines stability more formally as 

IIY,, - Y,,ll G KIIYIJ - JtOll> (6) 

where y0 and j0 are two sets of initial conditions, y, and j, are the corresponding results 
of numerical simulation after n steps with a one-step method, 1) ]I is the norm operator 
which here is a vector generalization of absolute value, the numerical simulation is of a 
set of Lipschitz differential equations containing the variables in vector y, and Eq. (6) 
holds for all step sizes in [O, ha] for some positive constants ha and K. 

We adapt this notion of stability to interval simulation by replacing the idea of the 
difference between two solutions with the idea of a single interval valued solution with 
a width. Observe that while the difference of two solutions concept of stability provides 
no correctness guarantee, the interval approach does. lo 

Thus, a reasonable stability criterion for a correct interval valued simulator is: 

llYn]l < KIIYoIl. 

We show that this stability property holds in the limit as h + 0 (see Appendix B). 
Therefore, employing the concept of h + 0 stability described by Henrici [48] and 
Young and Gregory [ 921 and named by Young [ 911 we have that, given interval initial 
conditions, step size refinement possesses h + 0 stability. ” 

The pragmatic implications of this stability property are twofold. 
(1) 

(2) 

4.3.1. 

Simulation results benefit from step size refinement, even when initial conditions 
and model parameters are only incompletely specified via intervals. (Fig. 5 
illustrated how significant inferences result after step size refinement reduces the 
maximum step size h sufficiently, even though initial velocity was only weakly 
specified.) 
More precise initial conditions lead to more precise predictions. 

Gap existence and creation 
While step size refinement is stable, convergent, and correct, it can only run within a 

gap. The most common and important case is a gap starting at TO E [0, 01. In particular: 

“’ For example, both numerical solutions could underestimate the value of some model variables leading to a 
genuine solution y( I~) not between numerical solutions y, and I,. 
” This may seem like a weak stability criterion but is reasonable because, due to the K2 h term of Theorem B.2, . \ 

the predicted intervals contain the discretization error of the simulation algorithm. The discretization error of 
commonly used one-step numerical simulation methods, such as Runge-Kutta, can be accounted for explicitly 
by representing the nominal predictions 4~ calculated error bounds, yielding intervals. Then such numerical 
methods possess no better than h 
stability properties. 

-+ 0 stability even though their real valued results have nominally stronger 



238 D. Berleant, B.J. Kuil?ers/Ar@cial Intelligence 95 (I 997) 215-255 

Thermostat Setting 

Heat pumped outside 

Fig. Il. Piecewise continuous simulation of an air conditioned dwelling. The time points in this simulation 
come from three sources: (I) qualitative simulation, which created time points TO, Ti, T2, T3 and T4; (2) 
interpolations in the gap between TO and Ti, which created time points 100, 1000, and 10000; and (3) 
interpolations in gaps of model variable Inside Temperature, which created time points K, KO, Kl and K2 
at temperatures 79.5 and 81.5. Discontinuities visible in some of the plots are caused by transitions between 
models. 

 When the behavior has two qualitative time points TO = 0 and Tl = cc the gap be- 
tween TO and Tl includes all positive finite values, allowing states to be interpolated 
at arbitrary times, so step size refinement is unimpeded. 

 When 0 < u < 00, the first gap is the open interval (O,a), and step size 
refinement is unimpeded for time values in that interval. n may also increase as 
the simulation becomes more refined, increasing the size of the gap. (This occurred 
in Table 1.) 

While often the requisite gaps will exist prior to step size refinement due to prop- 
agation of intervals in Phase I of the progressive simulation refinement process (Sec- 
tion 
deal 

 

 

. 

. 

2.1)) sometimes they may not, due to-weak initial conditions. Q3 provides ways to 
with lack of a gap. 
Use target interval splitting. See Appendix A and Section 3 for details. 
Use behavior splitting to force a place to interpolate. See Section 3. 
Use another time step that does have a gap. 
Interpolate using a gap in a model variable other than TIME that has a gap. 
Example: step size refinement using a gap in Inside Temperature instead of 
TIME occurs in Fig. 11. 

4.3.2. Termination 

Constraint propagation is guaranteed to terminate when the label sets containing 
candidate values have a finite number of elements [61]. However, in the case of intervals 
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or other label sets containing an infinite number of elements, settling may be asymptotic 
and termination may not occur. In the case of floating point (not real) quantities, there 
are a finite but large number of them, and termination can be impractically slow unless 
measures are taken to speed it up. The measure taken by Q3 is to increase a lower 
interval bound or decrease an upper interval bound during constraint propagation only 
if the bound will change by a proportion of its value greater than some constant F. This 
ensures termination because a bound can change by a factor of F only a finite number of 
times before it must cross the other bound, I2 which if it happens means the qualitative 
behavior can be pruned I3 (as we have seen). 

5. Applications 

Techniques first developed in Q3 have been applied not only to improving simu- 
lation predictions but also to diagnosis, measurement interpretation, and bounding the 
probabilities of qualitative behaviors, as described next. 

5.1. Improved predictions 

By making quantitative inferences, semi-quantitative simulation can often prune qual- 
itative behaviors that are plausible from a purely qualitative standpoint. A behavior is 
pruned when quantitative inference reveals that no interval is possible for some model 
variable at some time point (as we saw in Table 2). Dalle Molle [24] and Dalle 
Molle and Edgar [ 251 used phase I of Q3 (Q2) for this purpose with two models of 
chemical engineering systems, the relatively simple but useful difference of two paral- 
lel first-order chemical processes, and the less simple adiabatic continuous stirred tank 
reactor. 

Farquhar and Brajnik [ 391 used phase 1 of Q3 in a system called SqPC (“Semi- 
Quantitative Physics Compiler”). They generated semi-quantitative models automatically 
and ran them. They were able to model and simulate a real hydroelectric dam, predicting 
power outputs and water levels for different water control scenarios. 

5.2. Diagnosis 

Semi-quantitative simulation can help diagnose which fault model explains observed 
faulty behavior. Models for which all behaviors are inconsistent with observation are 
ruled out, ideally leaving just one remaining fault model [ 57,591. MIMIC in its more 
recent version [ 361 used time point interpolation to help diagnose fault models. 

I2 Except with 0 or &XI bounds. When a bound is moving asymptotically toward zero, termination occurs 
from arithmetic underflow. If toward foe, termination occurs from overflow when the bound is changing 
geometrically, and from failure to change by a proportion greater than E if the bound is changing linearly. We 
have experienced these termination cases only in examples designed specifically to create them. 
I3 A similar approach was taken by Siskind and McAllester 1821. 
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5.3. Measurement interpretation 

The concept of interpolating a state extends naturally to measurement interpretation, 
because a measurement partially specifies a new state, which can often be interpolated. 
We illustrate the power of this concept with a familiar example, then briefly review 
some related work. 

5.3.1. An illustrative example 
Suppose the height of the rocket (Fig. 5) is measured to be within [ 12000, 125001 km 

at time t = 3375. Clearly any state whose time value is 3375 could be interpolated 
between time points 3200 and 3400. This interpolated state would be further defined 
with the measured value for height. That measured height could narrow the heights in 
the neighboring states, all the way from the previous [ 10833,58745] km (Fig. 5) down 
to [ 10833, 125001 km for time 3200. This is because the maximum possible height at 
time 3200 is bounded from above by the measured height at t = 3375. The effects of 
the measurement are then propagated, leading to better predictions for various model 
variables at various time points. 

Results of an experiment are summarized in Table 3. 

5.3.2. Related work 
MIMIC [ 361 does diagnosis by interpolating states containing the measured values, 

just as in the example above. The measured quantitative information is propagated and 
used to rule out alternative models. In MIMIC, the foundation of monitoring and diagno- 
sis is measurement interpretation, and the foundation of measurement interpretation is 
interpolation and propagation. 

Measurements in MIMIC and Q3 lead to new inferences for two reasons. 
( 1) Average step size is decreased. 
(2) Interpolated measurements incorporate newly asserted quantitative information. 
The interpolation method of measurement interpretation contrasts with DeCoste’s 

DATMI system [ 291 and its precursor ATM1 [ 421. A significant difference is that DATMI 
abstracts measurements into qualitative categories before using them, whereas MIMIC and 
Q3 use the actual measured quantitative information. Hence DATMI loses quantitative 
information retained and used by MIMIC and Q3. 

DATMI is intended for handling large numbers of measurements. The unmodified 
Q3 approach is unwieldy for large numbers of measurements, but can be modified to 
circumvent this shortcoming by propagating forward but not backward in time, and 
propagating forward only as far as needed. This was the approach taken by MIMIC. 

5.4. Bounding the probabilities of qualitative behaviors 

Qualitative simulation alone can find all possible behaviors of a system but not 
their probabilities. Adding quantitative information can help. Q3 was part of a system 
that inferred probabilities for the qualitative behaviors of a fault tolerant system [ 81. 
Probability density functions (pdfs) were used instead of intervals to describe model 
input values. Pdfs are more informative than intervals. An interval represents a set of 
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pdfs containing all pdfs with heights of zero beyond the interval endpoints, hence is a 
weaker description of value. 

The pdfs were first discretized using histograms. Note that each bar of a histogram 
spans an interval. Thus problems represented using pdfs are decomposed into subprob- 
lems represented using intervals and solvable using Q3. While discretization often leads 
to approximation, in our approach the discretization leads instead to inferring proba- 
bilities of behaviors expressed as ranges within which the actual probabilities of the 
respective behaviors must reside [ 681. 

6. Other related work 

Considerable work related to semi-quantitative simulation has been reported in addi- 
tion to the works discussed in foregoing sections, including spatial reasoning [ 18,2 1,62, 
801, temporal ordering (e.g. [ 3,22,28,5 1,63,87] ), interval reasoning (e.g. [ 2,27,37, 
49,62,66,69,88,89] ), digital circuits (e.g. [ 19,20,47,74,83] ), phase space mapping 
(e.g. [ 54,67,72,73,90,93] ), discrete event simulation [ 65,77,79-811, and difference 
equations [ 551. 

A review of the aforementioned work is left to the interested reader. Here we review 
domain independent work that addresses the general problem of increasing the power 
of qualitative simulation with intervals, numbers, or fuzzy values. 

6.1. Interval work 

One of the earliest works in qualitative reasoning was de Kleer [ 301, which recognized 
the advantages of using intervals to represent incomplete quantitative information, and 
like the present work chose intervals for that purpose [ 30, pp. 76-771. 

ATM1 [42] and DATMI [29] used intervals describing measurements to find the qual- 
itative path of an evolving system, as discussed earlier. 

NSIM [53] and SQSIM [52] were developed in part to alleviate the wide bounds 
that Q3’s predecessor Q2 often infers. While NSIM sometimes provides better bounds 
than Q2 [ 53,571, sometimes NSIM’s results are poorer than Q2’s, a result which led to 
SQSIM which combines features of both NSIM and Q2. Kay [52] describes SQSIM in 
detail but no comparison of its inferential ability to that of Q3 exists. 

Vescovi, Farquhar and Iwasaki [ 861 describe a method of numerical simulation using 
intervals instead of numbers. Their approach, like other interval simulators (e.g. [ 37, 
601) does not distinguish among different qualitative behaviors. However they were 
able to solve a complex practical problem involving process monitoring of sintering at 
a steel plant. 

6.2. Numerical work 

Forbus and Falkenhainer [43,44] combined numerical and qualitative simulations in 
the SIMGEN ( SIMulator GENeration) system, building on qualitative process theory [ 411. 
SIMGEN displays notable advantages. 
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( 1) Use of qualitatively inferred model transitions (e.g. when water temperature 
ceases rising and boiling commences) enabling automating simulations beyond 
that of ordinary numerical simulations. 

(2) Causal ordering applied to qualitative models to enable automatic explanation 
generation. 

Limitations of SIMGEN include ( 1) the requirement for a comprehensive domain 
model and (2) the need for precise numerical information, which like ordinary nu- 
merical simulation results in approximate outputs and often unsupported precision in 
specifications of initial conditions. 

While SIMGEN used qualitative simulation to control numerical simulation, Bonarini 
and Maniezzo [ 131 used numerical simulation to control qualitative simulation. They 
pruned qualitative behaviors as they became inconsistent with a numerical simulation by 
matching an evolving qualitative simulation against an evolving numerical simulation. 

Bonarini and Maniezzo’s system, in contrast with SIMGEN, has the advantage of not 
requiring comprehensive domain models, but the disadvantage of not addressing sophis- 
ticated model switching and explanation. (43 like QSIM addresses model switching 
though not as comprehensively as SIMGEN, Fig. 11 showing a typical example.) 

6.3. Fuzzy mathematics work 

Extension of qualitative simulation with fuzzy mathematics was first published by 
D’ Ambrosio [ 261, further discussed by Nordvik, Smets and Magrez [ 681, and developed 
and fully implemented by Shen and Leitch [ 75,761. Shen and Leitch used trapezoidally 
shaped fuzzy intervals (Fig. 12) with arithmetic operations as defined by Tong and 
Bonissone [ 841, Bonissone [ 141, Bonissone and Decker [ 1.51, and DiCesare, Sahnoun 
and Bonissone [ 321. DiCesare et al. [ 321 claim without explanation that these operations 
are consistent with Dubois and Prade’s [34] more general and rigorously developed 
account. If so, their multiplication (and hence division) operation is more closely related 
to Dubois and Prade’s relatively easily computed approximation [ 34, Eq. 31 than to the 
exact method [ 34, p. 6201. These approximations are claimed to produce “very good” 
results [ 15, p. 2301 with “very little error” [ 141. Exact multiplication of trapezoidal 
fuzzy intervals is computationally more complex, typically yielding a product with 
curved sides [ 50, Fig. 1.121 which is therefore not trapezoidal. Since computationally 
practical multiplication and division of fuzzy intervals requires approximate formulae, 
the quality of such formulae is critical. 

6.3.1. As with standard intervals, operations on fuzzy intervals can produce excess 
width 

Fig. 12 contains a very simple example of how the excess width problem in calcula- 
tions on intervals has similar manifestations in calculations on fuzzy intervals. Values of 
x in the interval [ 104,106] are full members of fuzzy interval Z, and those in the slop- 
ing areas are possible members. Subtraction would give the region of full membership 
in the difference Z - Z as [ 104,106] - [ 104,106] = [ -2,2], the region of non-zero 
membership as [ 102,107] - [ 102,107] = [ -5,5], and fuzzy edges of constant slope. 
However, Z is perfectly correlated with itself, so Z - Z actually has full membership at 
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- 

Ax) 
4 

Nai’vely computed fuzzy interval for Z - Z 
r 

A fuzzy interval Z 

n 

Fig. 12. Fuzzy intervals. Sloping line segments indicate fuzzy regions. The lower the value of membership 
function p(x), the less the degree of membership for x in the fuzzy interval. 

0 and zero membership everywhere else. While this particular example is trivial, such 
situations can be arbitrarily complex, just as with ordinary intervals. 

Considering ,u( x) as an upper bound on the membership, rather than the actual mem- 
bership, addresses the membership over-estimation problem. This provides a sensible 
interpretation for results containing excess width, such as Z - Z in Fig. 12. 

Correlated fuzzy simulation [ 401 eliminates the excess width problem, but at the cost 
of assuming all operands are fully correlated. Correlated fuzzy simulation reduces to a 
special case of Monte Carlo simulation. 

Fuzzy values generalize fuzzy intervals, and have also been suggested for qualitative 
reasoning [ 331. The excess width problem in fuzzy and non-fuzzy interval calculations is 
a special case of membership over-estimation, which can occur in constraint propagation 
of fuzzy values [33, Eq. 61. 

7. Conclusion 

We have presented a semi-quantitative approach to simulation based step size re- 
Jinement, an implementation, 43, and work by ourselves and others employing that 
technique. The implementation provides much better predictions than its subset and 
predecessor Q2, by employing strengths of both qualitative and interval reasoning algo- 
rithms such as the following. 

l 

. 

. 

. 

. 

From qualitative simulation: the guarantee that all qualitative behaviors will be 
found. 
From interval simulation: the guarantee that the trajectory of any real system 
conforming to an incompletely specified model is enclosed by one of the predicted 
semi-quantitative behavior descriptions. 
From interval simulation: h ---f 0 stability. 
From interval simulation: convergence as uncertainty in the quantitative specifica- 
tions, and maximum step size, both approach zero. 
From qualitative and interval representations: the ability to express and make 
predictions from partial knowledge. 

The capabilities of Q3 rely mostly on the following. 
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l Step size rejinement, for adaptive reduction in step size by introducing newly explicit 
intermediate time points into a predicted behavior. 

l Propagation of interval labels in constraint network representations of behaviors. 
Examples of graphical output from Q3 were provided and varied applications were 

reviewed, involving the domains of prediction, diagnosis, monitoring, measurement in- 
terpretation, and probabilities of qualitative behaviors. 

The significance of Q3 to qualitative reasoning is both pragmatic and theoretical. 
Pragmatic, because Q3 demonstrates an effective method of obtaining better quantitative 
bounds on semi-quantitative simulation trajectories, step size refinement, which often 
leads to significant improvement in quantitative inferences after interpolating only one 
state. Theoretical, because step size refinement has the important theoretical guarantees 
of ( 1) convergence, (2) stability, and (3) correctness. 
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Appendix A. Brief overview of Target Interval Splitting (TIS) 

Target interval splitting, or TJS [7], narrows a target interval by ruling out sub- 
intervals of it. The method is described by the example of Figs. A.1 and A.2. A related 
technique called divide-and-conquer-force is claimed (albeit with insufficient sup- 
port) to allow inferential “completeness” [ 821. 

Appendix B. Proof of convergence and stability for step size refinement 

This proof takes a system described as a set of first-order differential equations, which 
is the standard form for convergence proofs [46]. Q3, however, utilizes a constraint 
network. Fortunately, a network of arithmetic constraints is easily transformed into a 
set of equations [49, p. 811. Each binary constraint (op a b) may be expressed as an 
equation op( a) = b and each ternary constraint (op a b c> as an equation a op b = c. 
Constraints over more than three quantities are expressed as a longer equation (as in 
the mean value constraint, Section 2.1.3). 

Transformation in the other direction, from equations to constraint networks, is 
also easily done (see [49, p. 761). For example, the equation y’ = x’(y + x’) be- 
comes the constraints (add y dxdt w), (mult dxdt w dydt), (d/dt x dxdt), and 
(d/dt y dydt 1. Unary operations are expressed as binary constraints and binary oper- 
ations as ternary constraints. Thus equations and networks of algebraic constraints can 
be interchangeable. 
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Target Interval Splitting (TIS) : Outline 

Given: l Y=X2-X,andXE [O,l] 
Therefore: l Y E [ -1, l] by constraint propagation (shown in this figure). 
Objective: l Narrow Y (the target) further, by testing and 

ruling out pieces of its current interval as in Fig. A.2. 

Fig. A.I. A constraint network for the equation Y = X2 - X. Given X E [O, 11, constraint propagation 
concludes Y E [ - 1, I]. This conclusion is correct, but excessively weak, and is strengthened in Fig. A.2. 

Lemma B.l (Bounded uncertainty). Let Y’ = F(Y) be a first-order differential equa- 
tion, where F is an interval valued function of Y. We consider some bounded subset 
[lo, hi] of the reals such that Y(t) C [lo, hi]. I4 We assume F(Y) is deJined when 
Y C [lo,hi],15 and F(Y) is the natural interval extension l6 of a real rational function 
f(Y). ” 

Let h be the step size, and let w( I&,) be the width of the simulated estimate for Y at 
time point t = b. Let w( Yo) represent the width of the initial condition. Then there are 
constants KI and K2 such that 

w(I&,) 6 Klw(Yo) + F&h. (A.1) 

I4 See Footnote 7. 
I5 In cases where F specifies division, there is the possibility of F being undefined in cases where the divisor 

is an interval having 0 as a member or endpoint. In such cases f does not satisfy the Lipschitz property over 
intervals containing zero, putting it outside the scope of this proof. Qualitative constraints deriving from QSIM 
quantity spaces will disambiguate the sign of a quantity so that division by intervals containing zero does not 
occur in practice. However, an interval divisor can still have 0 as an endpoint, in which case intervals with 
infinite endpoints can result, F may not be Lipschitz, and convergence is not guaranteed. Fortunately, such 
convergence problems can often be handled by behavior splitting, as exemplified by the rocket of Section 3, 
because a behavior split can always put an infinite endpoint in one behavior, usually making the other one 
Lipschitz. 
‘s The term natural interval extension was defined in Section 2.1.3. 
t7 See Footnote 8. 
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TIS tests low bounds . . . 

Iteration Interval(s) Reason 

1 Y E [-1,ll 
L-l,01 LO, 11 

2 [ -1, -OS] [ -0.5, 1] 
X 

[ -0.5, I] 
3 [ -0.5, f0.251 [ $0.25, 1] 
4 [-0.5,-0.1251 [-0.125, l] 
5 [ -0.5, -0.31251 [ -0.3125,1] 

X 
[ -0.3125,1] 

6 [ -0.3125, f0.34381 [ +0.3438,1] 
7 [ -0.3125, +O.OlSS] [+0.0158,1] 

Constraint propagation 
Split and test 
Re-split and test 
Rule out 
Narrowed interval 
Split and test 
Re-split and test 
Re-split and test 
Rule out 
Narrowed interval 
Split and test 
Split and test 

[ -0.25 - cl, 11 Conclude 

. . . then high bounds 

N [ -0.25 - cl, 1] Given 
[ -0.25 - et, +0.375 - &t/2] [ f0.375 - et /2,1] Split and test 

[ -0.25 - el, 0 + ~21 Conclude 

Fig. A.2. Targer interval @ring narrows a target interval by ruling out pieces of if. The constraint network 
for Y = X2 - X was shown in Fig. A.l. Target interval splitting first tests the lower half of a target interval, 
Y E 1 - 1, I] in this example, by setting Y to ] - I, O], then propagating. If the network settles successfully 
(i.e. has a solution), then it tests the lower quarter, [ - 1, -0.5 ] in this case, the lower eighth if necessary, etc., 
until a sub-interval is found for which the network has no solution. That sub-interval is therefore inconsistent, 
and ruled out. In the example, the lowest quarter, Y E I -I, -0.51, was the first inconsistent sub-interval 
found. Repeat the process for the highesr half, quarter, etc. of the target. Inconsistent sub-intervals are marked 
with an “x” above. For Y = X2 - X, target interval splitting gradually narrows Y toward, yet never quite 
reaching, [ -0.25,0] Termination is ensured by testing a sub-interval only if its width exceeds some E. 

Proof. The proof has similarities with standard proofs of Euler’s method [ 3 1,461 and 
is also influenced by Moore [66]. We will abbreviate l&(,-t),, as Yn_t and Y&h as Y,. 

(1) The inference method used by Q3 to propagate quantitative information from 
one time step to the next is the mean value constraint. This and the other constraints 
representing the states at times t,-1 and t, are applied according to 

K := r, n (m4 + w0h) u wm3 (A.21 
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where “:=” signifies assignment and F is the natural interval extension of f. F is 

determined by the constraint model of the system of interest. X, has an initial interval 
value provided when the state containing it was interpolated (Section 2.2.2). 

(2) Constraint propagation means Eq. (A.2) is applied iteratively, until a fixed point is 
reached with no further changes to Y,l. Iteration will eventually terminate (Section 4.1), 
with 

Yn=G-I +~[F(Y,-I)UF(K)I. (A.3) 

X7 will be consistent with the direction of change of Y specified by some qualitative 
behavior(s) because Q3 uses QSIM for behavior generation, and QSIM generates all 
possible behaviors [ 581. 

(3) Since F is a natural interval extension, F is inclusion monotonic, meaning 
F(A) C F(B) if A C B [66, Section 3.21. We know that Y, and X,_, are subsets 
of (X7-I U X7), so 

because F(K-I) C F(X,-I U Y,) 

and F(K) C F(Y;,-I UK), 

consequently F(L]) U F(X,) 2 F(Y,_l U Y,). 

From this and (A.3) we conclude 

I;, C K-I + hF(K-I U X,1. 

(4) We now shift our concern from intervals to widths of intervals: 

(A.4) 

w(G) 6 w(Y,-I + hFtY,-I U r,)) 
Width of an interval < width of a superset. 

< w(K-1) + hw(F(Y,-I U Y,)) 

Evaluating terms separately may lead to excess width. (A.5) 

(5) Since F is a natural interval extension defined for YO = Y(O), it satisfies the 
Lipschitz property for interval functions: I8 

w(F(Y,-I U XT)) < Lw(Y,-I U Y,), 

where L is the Lipschitz constant for F. Substituting into (AS), we have 

w(G) G w(K,-1) + hLw(Y,-I U Y,). 

(6) We get Y, out of the right-hand side as follows: 

(A.6) 

‘* A function f satisfies the Lipschitz condition if there is a constant L such that I~(~JI) -f(n) 1 < L~YI -.~21 

for all JZ,, y2 in the domain of f. This property extends straightforwardly to interval extensions of functions. 
F(Y) will be Lipschitz if it is a real rational function defined for any & & Y [ 66, p. 34, Definition and 
Lemma 4.1 I. 
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X C M, all i, where M E [lo, hi] (see lemma statement) 

:. F( Y> C F(M) as F is inclusion monotonic (this proof, step (3)) 

. K, C Y;,-1 + h[F(M) U F(M)] (from Eq. (A.3)) 

. K, C Y,-I -t- hF( M). 

This and equation (A.6) justify 

w(Y,) < w(K-I) + hLw(Y:,-l U (Y,-, + hF(M))). 
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(7) Since F is Lipschitz and a natural interval extension, F(M) is bounded. Let 
m = 1 F(M) /, where the absolute value of an interval is the maximum of the absolute 
values of its endpoints. Then 

w(K) G w(G-I) + hLw(X,-I U (K-I + h[-m,ml)) 

= w(Y,_l) +hLw(Y,_1 +h[-m,m]) 

= ~(Y,_I) + hL(w(Y,_l) + 2hm) 

= w(Y,_l) +hLw(Y,_l) +2h2Lm 

= (1 + hL)w(Y,_I) + 2h*Lm. (A.7) 

(8) Eq. (A.7) describes the width w( Y,) for the “worst” case, that is, the widest 
possible Y’S, and is a first-order linear difference equation which can be solved by 
applying a standard formula [ 3 1, Section 2.61: 

n-1 ,I-- I n-l 

w(K) =w(Y,,(II(l +hL)) +x( n (1 +hL))2h*Lm 
k=O k=O ./=k+ 1 

= w(Yo) (1 + hL)” 

+ 2h*Lm[ (1 + hL)“-’ + ( 1 + hL)“-* + . . . + ( 1 + hL)‘]. 

We eliminate intermediate powers of (1 + hL) by multiplying both sides by (1 + hL) 
and then subtracting. 

(1 + hL)w(Y,) =w(Yo)( 1 + hL) “f’+2h2Lm((l+hL)“+.~~+(1+hL)1) 

-w(G) = -w(Yo) (1 + hL)” - 2h*Lm( ( 1 + hL)“-’ + . . . + ( 1 + hL)‘) 

hLw(Yn)=w(Yo)hL(l+hL)“+2h2Lm((l+hL)”-1) 

(9) From elementary calculus texts, e ‘IL = 1+hL+(hL)2/2!+(hL)3/3!+.... Hence 
eh”- > 1 + hL, so 

hLw(Y,) < hL(e’*L)“w(Yo) + 2h*Lm( (e/IL)” - 1) 

= hLe”hLw(&) + 2h2Lm(e”“L - 1). 

(10) Recall that Y, is the interval calculated to contain y at time t = nh, and let b be 
time nh. Then 
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hLw(Y,) < hLe”.w(&) +2h2Lm(ebL - l), 

w(Y,) < eb’w(Ya) + 2hm(ebL - 1). 

(11) Let K1 = ebL and K2 = 2m(ebL - 1) . For any fixed time b = nh, K1 and K2 are 
constant regardless of changes to the value of h, since II can vary to compensate. Then, 

w(k) < Klw(Yo) + &h. (A.8) 

Recall w(Yn) represents the amount of uncertainty in the initial condition of state 
variable Y. As this uncertainty approaches zero, w(Yo) + 0. When in addition h A 0, 
then w(Y,), the uncertainty in Y,, also approaches 0. This constitutes convergence. 
Eq. (A.8) also shows stability: The uncertainty in the predictions is bounded by the 
uncertainty in the initial conditions times constant K1, as h -+ 0. 

Theorem B.2. Let Y’ = F(Y) be a system offirst-order difSerentia1 equations, where F 
is a vector of interval valued functions of Y. We consider some bounded subset [lo, hi] 
of the reals such that for each component Yc,i) of vector Y, Y(j) (t) C [lo, hi]. We assume 
that F(Y) is defined when each r(,;) C [lo, hi], and that each Fi in vector F is the 
natural interval extension of a real rational function fi. I9 

Let h be the maximum step size, let ]IY,=blj re p resent the amount of uncertainty in 
the simulated estimate of Y at interpolated time point t = b as measured by its vector 
norm, *O and let 11 YO 11 represent the amount of uncertainty in the initial conditions. Then 
there are constants KI and K2 such that 

tIYt=bll 6 KI llyoll + K2h. 

Higher-order systems 
The proof of Lemma B. 1 extends to higher-order systems as follows. First, we describe 

the higher-order system as a system of first-order equations [ 46, Section 3.21. *’ 
Each individual equation Fi in the system F may be a function of several variables 

and interval valued constants Y(j), each a component of vector Y. We must push through 
the proof of Lemma B.l for Y and F in place of Y and F. 

Steps ( 1) and (2) of the proof of Lemma B. 1 now involve a mean value constraint 
for each component Fi of vector F. The algorithm now needs to terminate for a fixed 
point to be reached. Termination was discussed in Section 4.3.2. Step (3) generalizes 
to F because it applies to each component Fi. Step (4) uses interval widths, which 
do not apply to vectors of intervals. Norms may be used instead, defining the norm of 
a vector as the width of its widest component interval. Since Moore [66] proves his 

I9 See Footnote 8. 
2” See Footnote 9. 
21 Gear assumes that the higher-order equation can be algebraically manipulated such that the highest-order 
derivative is on the left of the “=” and everything else is on the right. While Gear makes this assumption 
without further comment, there are instances in which a higher-order equation cannot be so manipulated, for 
example the nonseparable equation .T”(x’)~ = 0. Although Q3 can simulate this equation, in such cases the 
theorem reduces to a conjecture. 
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Theorem 4.1 and Lemma 4.2 for interval vectors, and both widths and norms are single 
numbers, the remaining steps work without modification. 

Variable h 
In step size refinement, step sizes can vary from one step to the next, yet Lemma B.l 

assumes all steps have the same size h. Lemma B.l extends to variable step sizes by 
taking h as the size of the largest step instead of the size of each step. Then, most of 
the proof of Lemma B.l becomes conservative since each step size is < h. 

Theorem B.2 does not apply to models containing monotonic function (M+ and 
M-) constraints bounded by envelopes (Section 2.1.2), because two separate functions 
defining upper and lower envelopes are not a single natural interval extension (Sec- 
tion 2.1.3), as specified in the theorem statement and required by step (1) of the proof 
of Lemma B.1. For example, propagation of a number through non-identical envelopes 
results in an interval, yet natural interval extensions, which are generalizations of real 
valued functions, produce real results when passed real arguments. Thus, we wish to 
extend our results for convergence and stability to models containing envelopes. 

Corollary B.3. Theorem B.2 applies to systems containing monotonic function con- 
straints if for each monotonic function constraint, the space of plausible monotonic 
,functions can be bounded by two envelope functions that difSer only in the values of one 
or more constants ci. For such systems we define IlYT I/, the norm at time point t = b, 
as the greater of llYr/l f rom Theorem B.2 and the largest amount by which any pair of 
envelope functions differs in its values for any Ci. Then, 

IIY:+,ll 6 KI IlY;II + k-h. 

Proof. A function E defined by an algebraic expression can be rewritten in a generalized 
form G, such that all of the constants in E are arguments of G. Then G is equivalent to 
E when passed values corresponding to the values of the constants in E. 

We apply this generalization idea to monotonic function spaces which are bounded 
by two explicitly specified envelope functions Et,,wer~,,,,rtC,,,e and EL,p,,rr~nvrtopr, with gen- 
eralized forms Gl,lwrr~,,,,elc)Pe and Gu,,,,~~~,,Yel~~P,pe. We distinguish two cases: 

Case 1: 4owrr~nve~op~ and GrpprrEnvelope differ only in the values of some constants. 
Then, G~~,,wer~nve[r,l,~ = Gupprr~nvel~~,,~. Call this function G. 

Consider each constant ci whose value differs between Etower~,,vrtoPe and Eu,,,,er~,,vetC,PC. 
Let 2 be the lower of the values and q the higher one. We define an interval Ci = [ 2, FJ , 
and pass Ci to G instead of 5 or c. By inclusion monotonicity, 

G(...,C, ,...I 2 G( . . . . 2 ,... ), G( . . . . C ,,...) > G( . . . . c, ,... ). 

The norm llGl[ is defined as max,+ ,,,. W( C,). If we substitute G(. . . , Cit. . . , Cj, . . .) for 
E towrr~nvrto,,r and EuP,,er~nvetoP~, the two envelopes are now described by a single function 
and the system is now subject to Theorem B.2, but with its norm IIY,‘il at each time 
point defined by max( [[G/l, l)Y,,II). 
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This reasoning is extended to systems containing more than one pair of envelopes by 
using IlY,~II =max(maxall~(llGII), IIYnll). Th e envelopes have now been accounted for. 

As a special case, if the system is fully specified then for each E[rJwerEnvr[o),le E 
E u/>/>rr~,wr~o/m IlGll = 0, so IlYojl = IlY;ll = 0, an convergence applies (Section 4.2). d 

Case 2: The argument above applies only if, for the envelopes in each pair, both have 
the same generalized form, i.e. G~owrr~nve~~~Pe z Grtp,,er~n,Zelo,,,r. When is this not true? 

l When some pair of envelopes differ in more ways than just values of constants. 
l When an envelope has no natural interval extension. For example, it might be a 

function defined using a lookup table. 
In such cases, we push the proof through by enclosing Elower~nvelope and Eu,,,,rr~,,,Belcj,,e 

with less constraining envelopes that do have the same generalized form G. Then we 
can apply Case 1 above. Since the corollary now applies to a less constraining version 
of the original system, the actual situation is at least as good. 
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