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ModelBuilding QualitativeSimulationPhysical Situation ! QDE ! Behaviors� Model-building creates a qualitative di�erentialequation (QDE) as a model of a physical situation.� Qualitative simulation starts with a QDE, andpredicts the possible behaviors following from themodel.The QSIM research e�ort (surveyed in [Kuipers,1989]) has focussed primarily on the qualitative simula-tion task: predicting the possible qualitative behaviorsconsistent with a given QDE and initial state:QSIM ` (QDE & State(t0)! or(Beh1; : : :Behn))Research into the mathematics underlying the sim-ulation of qualitative di�erential equations has beenvery fruitful, yielding higher-order derivative con-straints, phase space representations, integral repre-sentations, energy constraints, algebraic and quantita-tive reasoning methods, and more [Weld and de Kleer,1990].Qualitative reasoning methods based on component-connection descriptions [de Kleer and Brown, 1984] orview-process descriptions [Forbus, 1984] also lead tobehavioral predictions, but in ways that mix elementsof the model-building and model-simulation tasks, ob-scuring their relationship.This paper describes QPC, which assembles a QDEmodel of a physical situation by drawing on a libraryof model-fragments (e.g. views and processes); QSIMis then used to predict the behaviors consistent withthe model.1 QPC is based on the model-building as-pects of Qualitative Process Theory [Forbus, 1984;Forbus, 1990; Falkenhainer and Forbus, 1988], a majorapproach to the creation and simulation of qualitativemodels. (Franke and Dvorak have previously reportedon CC, a compiler from component-connection modelsinto QSIM QDEs [Franke and Dvorak, 1989].)1This approach was originally proposed by Kuipers inhis 1986 AAAI Tutorial on Qualitative Reasoning, and wasexplored in [Vincent, 1988].



Algernon, our implementation of Access-LimitedLogic [Crawford and Kuipers, 1989], serves as theknowledge representation language for implementingQPC. It combines the clarity, rigor, and expressivepower of predicate logic with the e�ciency and intu-itive appeal of a frame-based semantic network. Sucha foundation will be necessary for the application ofqualitative reasoning to non-trivial scenarios and largeknowledge bases with a realistic library of views andprocesses.There are several bene�ts which we hope QPC willprovide. First, comparison and contrast between QPCand QPE will shed additional light on the model-building ideas in Qualitative Process Theory. Second,a clear decomposition at the QDE representation al-lows qualitative reasoning generally to bene�t from in-dependent advances in model-building and qualitativesimulation. Third, the incremental model-building ca-pability provided by QPC avoids the use of total en-visionments, which can be intractable in some cases.This is especially important in tasks such as monitor-ing and control where many \possible" situations neednever be examined because knowledge about the stateof the system is available [Dvorak and Kuipers, 1989].After describing the model-building methods inQPC, its relationship with QSIM, and presenting a de-tailed example, we discuss the di�erences in philosophyand implementation between QPC and QPE, Forbus'[1989] implementation of Qualitative Process Theory.Overview of QPCThe basic QPC algorithm consists of four steps:1. Assemble a view-process structure from a descrip-tion of the scenario.2. Apply the closed world assumption and build theQDE.3. Form an initial state.4. Simulate using QSIM.Two kinds of complexity add iterative paths to thissimple sequence (�gure 1). First, when the initial stateis formed, additional variable values are learned whichmay activate additional views and processes. This maynecessitate re-building the QDE. Second, when simula-tion reaches a boundary of the QDE being simulated,control is returned to QPC so that a new model canbe created.Representing Views and ProcessesThe QPC knowledge-base has three components. The�rst consists of background knowledge about scenarios,models, views, and processes, as well as basic informa-tion about the physical world (e.g. that materials canbe in three possible states: solid, gas, or liquid). Thesecond component is a domain library of processes andviews. The third contains instantiated processes andviews for speci�c entities in the world.
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Figure 1: Flow of control in QPCIn QPC, both processes and views are representedby rules which create their instances. A user syntaxlike that of QPE could easily be provided, but in thispaper we focus on the underlying representation usedby QPC. We refer to both views and processes by thegeneral term model fragment. A model fragment iscreated only once, and can then be included in a varietyof models. Figures 2 and 3 shows rules representing thephysical view of a physical object and the 
uid-
owprocess, respectively.Building the View-Process StructureModel-building starts with a scenario which identi�esthe entities in the world one is interesting in modeling,and speci�es their initial conditions. The entities inthe scenario become part of the initial model of thescenario (but may or may not be part of subsequentmodels of the scenario, as entities can be created ordestroyed by region transitions). QPC builds the view-process structure for the initial model by �rst adding,to the initial model, any entities needed to completeit, and then determining which instances of views andprocesses are relevant [Forbus, 1990; Falkenhainer andForbus, 1988].We illustrate QPC with the scenario depicted in �g-



((physical-view ?x ?view)(mass ?x ?mx) (volume ?x ?vx) (pressure ?x ?px)->;; link a view to its variables(variable ?view ?mx) (variable ?view ?vx)(variable ?view ?px);; cd-ineqs are inequalities indexed by view;; Mass not less zero(not (cd-ineq ?view less ?mx zero));; Volume not less zero(not (cd-ineq ?view less ?vx zero));; Mass=0 <-> Volume=0(correspondence ?view ?mx zero ?vx zero))Figure 2: A rule to �ll in the physical view of a physicalobject.ure 4. It consists of two containers, A and B, connectedby a 
uid path. B has a portal located part way up oneside. Initially there is 
uid in container A.The scenario is set up in QPC by creating (in theAlgernon KB) frames for the containers A and B, theopen 
uid path connecting them, and then assertingthat there is 
uid in A and a portal in B. We also assertthat A is an entity in the initial model of the scenario,but do not explicitly link B into the scenario (as QPCwill do so automatically). The Algernon assertions toestablish the scenario are shown in �gure 4.QPC then applies rules to complete the set of entitiesin the initial model. For example, if a container is partof a model and it is connected, via an open connection,to another container, then the second container shouldbe considered part of the model. Instantiated for 
uid-connections this rule reads:((fluid-connection ?obj1 ?path1 ?obj2)(open ?path1 true)(part-of ?obj1 ?model1)->(entity ?model1 ?obj2))where the relation entity links a model to its objects.QPC deduces that B, the portal in B, and the con-tents of A must be included in the initial model. In-stantiation of a 
uid 
ow from A to B implies the needfor a frame for the contents of B, which is created andadded to the model (along with a frame for its physicalview). The initial model thus consists of the physicalviews of A, B, the portal, the contents of A and B, andthe 
uid 
ow process. The in
uences, relations, cor-respondences and inequalities of these views and pro-cesses are shown in �gure 5. Notice that, as yet, noprocess or region transition for portal 
ow has beenadded. Neither the process nor the region transitionsare set up until the relationship between the 
uid levelof B and the portal height is learned.

((fluid-connection ?can1 ?path ?can2)(part-of ?can1 ?model) (isa ?model models)(flow-rate ?path ?flow-rate)(pressure-difference ?path ?pressure-diff)(contents ?can1 ?liquid1)(isa ?liquid1 contained-liquids)(mass ?liquid1 ?mass1)(open ?path true)(pressure ?can1 ?pressure-can1)(pressure ?can2 ?pressure-can2)->; Find the process OR Create a new one.(:forc ?process(cd ?model ?process)(isa ?process fluid-flow-processes)(path ?process ?path))(variable ?process ?flow-rate)(variable ?process ?pressure-diff)(correspondence ?process ?flow-rate zero?pressure-diff zero);; pressure-diff = c1.pressure - c2.pressure(ADD ?process ?pressure-can2 ?pressure-diff ?pressure-can1)(influence ?process Q+ ?pressure-diff ?flow-rate)(influence ?process I- ?flow-rate ?mass1)(:forc ?liquid2(contents ?can2 ?liquid2)(same-material ?liquid1 ?liquid2)(same-state ?liquid1 ?liquid2))(influence ?process I+ ?flow-rate (mass ?liquid2)))Figure 3: The rule to instantiate the 
uid-
ow process.The relation fluid-connection links a container, apath, and another container. The relation cd links amodel to a view or process.Applying the Closed-World Assumptionand Building the QDEAt this point, QPC has created a view-process struc-ture comprising a collection of in
uences, relations, in-equalities, and correspondences. The next step is toconvert to a QDE which consists of constraints, quan-tity spaces, landmarks, and corresponding values.The key step is to transform a collection of in
uencesinto constraints. If X in
uences Y then Y will changeas a result of a change in X, all else being equal. Aconstraint between X and Y is a universal law, limitingthe possible joint behaviors of X and Y , independentof context. Thus, in order to transform in
uences intoconstraints, we require a Closed World Assumption,asserting that we know all the relevant in
uences.Intuitively, the indirect in
uence or \qualitative pro-portionality"Q+(X1; Y ), means that an increase inX1will tend to increase Y . More formally:Q+(X1; Y ) � Y = f(X1; X2; : : :Xn) and @f@X1 > 0;for some functional relationship f (with an inde�nitenumber of arguments). The direct in
uence is similar:I+(X1; Y ) � dYdt = f(X1; X2; : : :Xn) and @f@X1 > 0:



;; The U-Tube Scenario(:create ?utube) (current-scenario global-context ?utube);; Create A, B, and the pipe between them.(:create ?A) (isa ?A containers) (entity ?utube ?A)(:create ?B) (isa ?B containers)(:create ?pipe) (open ?pipe true)(fluid-connection ?A ?pipe ?B);; The contents of A has mass greater than zero.(:create ?A-contents) (contents ?A ?A-contents)(state ?A-contents liquid-state)(:create ?A*) (greater ?A* zero);; (tmag var model time mag) ! var = mag at time in model.(tmag (level ?A-contents) ?utube (initial-time ?utube) ?A*);; B has a portal.(:create ?port) (isa ?port portals) (portal b ?port) (open ?port true);; ...and forms to assert that the bottoms of A and B;; are at zero, and the top heights are positive. �������������������������A BFigure 4: Scenario description for the u-tube with portal. (:create ?x) creates a new frame and binds ?x to it.A Physical View:top-height � 
uid-level � bottom-heightA-Contents Physical View:mass � zero; volume � zerovolume � (volume A)mass Q+ volume Q+ level Q+ pressuremass = zero $ volume = zero $level = zero $ pressure = zerolevel = (bottom-height A) $ volume = zerolevel = (top-height A) $ volume = (volume A)Fluid Flow Process:pressure-di� = (pressure A) - (pressure B)pressure-di� Q+ 
ow-rate
ow-rate I� (mass (contents A))
ow-rate I+ (mass (contents B))
ow-rate = zero $ pressure-di� = zeroB-Portal Physical View:(bottom-height B) < height < (top-height B)height � zeroFigure 5: Highlights of the initial views and processesfor the u-tube with portal. The physical views of B andB-Contents are similar to those of A.In
uence resolution on a variable Y identi�es the setsP and N of variables that positively and negativelyin
uence Y . Based on the CWA, this determines thenumber of arguments to the function f . QualitativeProcess Theory makes the additional assumption thatf can be approximated by a linear combination of

single-variable functional relationships. This allows usto assert QSIM constraints to capture the set of indi-rect in
uences on Y :Y = XXi2P M+(Xi)� XXj2NM+(Xj):Resolution of direct in
uences is similar.QPC helps clarify the role of the linear decompo-sition assumption in model-building. This assump-tion does not cause problems durring purely qualitativesimulation, but as we attempt to incorporate quantita-tive information into the model [Kuipers and Berleant,1988], cases where it is invalid will raise di�culties.Such cases will require a qualitative theory of multi-variate functional relations.Inequality information in the view-process structureis represented in several ways in the QDE. Inequal-ity relations between magnitudes are used to order thequantity spaces. Inequalities between variables andvariables, or variables and magnitudes, are representedin the QDE as boundary conditions triggering operat-ing region transitions. For example, if the 
uid-levelreaches the level of the portal and is increasing, thenthe portal-
ow process must be made active (addingadditional in
uences and relations to the model).Highlights of the initial QDE for the u-tube exampleare shown in �gure 6.Building the Initial StateAt this point, we have created a QDE which re
ectsthe current view-process structure, but we do not haveinitial values for all the variables in the model. Wecalculate initial values in three steps:1. Propagate known values through the QDE.2. Apply default assumptions.3. Generate possible completions.



(define-qde utube-initial-model(quantity-spaces(a-contents-level (minf 0 a* a-top inf))(b-contents-level (minf 0 b-top inf))...)(constraints((m+ a-contents-mass a-contents-volume) (0 0))((m+ a-contents-volume a-contents-level)(frame23 a-top) (0 0))((m+ a-contents-level a-contents-pressure)(0 0))((= a-contents-level a-fluid-level))((= a-contents-pressure a-pressure))((add b-pressure pipe-ab-pressure-diff a-pressure))((m+ pipe-ab-pressure-diff pipe-ab-flow-rate)(0 0))((minus var-1 pipe-ab-flow-rate))((d/dt a-contents-mass var-1))((d/dt b-contents-mass pipe-ab-flow-rate))((constant b-portal-height)) ...)...)Figure 6: Highlights from the initial QDE for the ex-ample. Constraints on B are similar to those on A.Propagation Frequently, initial values are given foronly some of the variables, but other values follow eas-ily from the constraints and relations in the QDE. Itwould be possible to build rules into the knowledge-base to calculate such values, but this would unnec-essarily duplicate the knowledge already in QSIM. In-stead, we use QSIM itself as an e�cient special purposereasoning tool to propagate the known values throughthe QDE. In the u-tube example, propagation con-cludes, among other values, that the mass of the con-tents of A is greater than zero (but concludes nothingabout the mass of the contents of B).Default Assumptions During automatic modelbuilding, it may be impossible to establish values forenough variables to uniquely determine an initial state.Our solution to this problem is to make default as-sumptions which are appropriate for the model. E.g,in the u-tube no initial value is known for the massof the contents of B, and it is not possible to deter-mine a value through propagation. However, QPC as-sumes that the mass of any newly created liquid iszero. Such values are explicitly tagged as assumptionsin the knowledge-base so that they can be withdrawnif they lead to a contradiction. In the examples wehave looked at, propagating known values before mak-ing default assumptions has been su�cient to avoidsuch contradictions.Finding All Completions Even after propagationand the default assumptions, there may be variableswhich do not have known values. At this point weagain use QSIM as a special purpose reasoner to con-struct all possible completions of the current state. Insimple cases, such as the u-tube, there is only one pos-

sible completion. If there are multiple completions, aseparate model must be created for each of them.2In either case it is possible for the new values (frompropagation, default assumptions or state completion)to require additional region transitions, new views, ornew processes. To handle this problem, the result-ing completed state information is asserted back to theknowledge-base, causing the appropriate rules to �re.In the u-tube example, the default assumptions leadQPC to assume that the 
uid level in B is zero. Thissets up a region transition that will instantiate the por-tal 
ow process if the 
uid level ever reaches the portalheight and is increasing.3Simulation and Region TransitionsOnce a complete initial state has been created, QSIMis used to simulate the possible behaviors. In the u-tube example, QSIM predicts three behaviors: one inwhich equilibrium is reached below the portal-height,one in which equilibrium is reached exactly at the por-tal height, and a third in which the 
uid level in tank Breaches the portal and continues to increase. The �rsttwo behaviors can be simulated using only the initialmodel. The third behavior, however, triggers a regiontransition and the building of a new model.When a behavior ends in a region transition, QPCattempts to construct a new set of models. This is doneby creating an empty model and asserting the quan-tity spaces and variable values of the �nal state of thebehavior into it. The new model is then linked to itspredecessor. QPC checks the previously active processand view instances to determine which remain activein the new model. QPC then determines whether newentities need to be included, and whether new views orprocesses need to be activated. Finally, the QDE andinitial state(s) are built as before.In the u-tube example, after the region transition,QPC is able to retain pointers to the old model frag-ments for A, B, B-portal, and Fluid-flow-AB. A newportal 
ow process is created, since its precondition,that the 
uid level in B is greater than or equal tothe portal height, is now satis�ed. This results in anadditional in
uence on B-contents-mass.The expected behavior is, of course, that the levelof liquid in B will increase until the 
ow in from A andthe 
ow out of the portal equalize, and then the liquid2This is the �rst \choice point" in QPC (the secondbeing the case in which a simulation produces several be-haviors ending in region transitions). In such cases the pos-sibilities are queued, and we use a simple search strategyto select the one to follow next.3In complex models, the additional views and processesactivated at this point may invalidate the closed world as-sumption; new views and processes may add in
uences onsome variable v previously assumed to be constant. In suchcases, we must return to the original view-process structureand assert the new in
uence on v, rebuild the QDE, andrecalculate the initial values.
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ow into B, i.e. pipe-ab-flow-rate - B-portal-flow-rate.will drain out of the portal until a �nal equilibrium isreached, with the level of B even with the portal. Thistype of behavior is di�cult for qualitative simulatorsto reason about because B-net-flow is the di�erencebetween two positive and decreasing values. Simplequalitative subtraction is ambiguous, and the resultcan become negative, zero, or positive any number oftimes. This behavior is known as chatter, and results inan in�nite number of qualitatively distinct behaviors.Fortunately, there is a solution. QSIM automati-cally derives constraints based on the second deriva-tives of the variables [Kuipers and Chiu, 1987]. It isthis sort of advance in qualitative mathematics whichwe were hoping to take advantage of! Instead of pro-ducing an in�nite tree of behaviors, QSIM producesa small number: B-contents-level reaches a maxi-mum somewhere above the portal, or it reaches a max-imum at the top-height, or B over
ows, triggering aregion transition. The �rst two behaviors drop downto our expected equilibrium state; the third causes anew model to be constructed. Figure 7 shows a QSIMplot for a behavior spanning two models and ending inthe �nal equilibrium state in which the level in B is atthe height of the portal.Comparison with QPEWhile we are following the Qualitative Process The-ory approach to model-building,QPC di�ers in numer-ous ways from QPE [Forbus, 1990] and its predecessor,GIZMO [Forbus, 1984]. For simplicity, we will use theterm QPE for both versions.In
uences and ConstraintsSimulation requires a CWA to assert that all in
uenceson all variables are known. Automatic model-building,on the other hand, requires an open-world assumption,so that models can be build by composing model frag-ments which are stated independently of context.

In QPE, the meanings of Q+ and I+ are contextdependent, with an open world assumption holding inthe view-process library, and a closed-world assump-tion holding after in
uence resolution. We believe thatthis use of the same symbols for semantically distinctconcepts has been a source of confusion in the litera-ture.In QPC, in
uences belong only to the model-building phase, while a QDE consists only of con-straints. Since in
uences and constraints are seman-tically distinct, we make them syntactically distinct aswell, using Q+ and I+ for in
uences, andM+ and d=dtfor constraints.Total Envisionment versus IncrementalModel-BuildingQPE simulates the possible behaviors of a mechanismby producing a total envisionment: a graph of all pos-sible states, linked by the transitions between them.The total envisionment representation has several ad-vantages, including a �nite representation for in�nitebehaviors, and support for certain global operationssuch as cycle detection and state aggregation.On the other hand, it also raises signi�cant prob-lems of both semantics and e�ciency. Semantically,the total envisionment representation depends on thefact that all qualitatively important landmark valuesare known statically when simulation begins. Dynam-ically created landmarks are critical to making manyimportant distinctions among behaviors, such as thedistinction between increasing and decreasing oscilla-tions [Kuipers, 1985; Kuipers, 1986].E�ciency can also be a problem. Creation of allpossible states of the mechanism is an up-front cost ofthe total envisionment, required before the transitiongraph can be constructed. For a very complex model,or worse an \unboundedly creative" one [Forbus, 1989],creation of the set of states is intractable. We minimizethis problem in QPC by building models and creating



states incrementally, as needed by the simulation. Thismakes a critical di�erence when external constraints,such as observations, can focus the simulator's atten-tion to a tractable \beam search" within a potentiallyin�nite behavior tree. In particular, in applicationssuch as monitoring and control, many \possible" statesof the system need never be considered and only lim-ited look-ahead is needed [Dvorak and Kuipers, 1989].The QPE implementation is based on an ATMS [deKleer, 1986], whereas QPC is built in Algernon, aframe-based knowledge representation language basedon Access-Limited Logic [Crawford and Kuipers, 1989].The ATMS is used in QPE as an e�cient tool forimplementing several exhaustive search or generationtasks, such as creation of all possible states for thetotal envisionment, or search for a combination ofconsider statements capable of answering a givenquestion. However, as discussed above, we believe thatthe total envisionment is often more di�cult to com-pute, and less useful, than the set of possible behaviors.We also believe that the inference involved in model-building will require the service of a full knowledgerepresentation language.A Layered Representation for ModelRevisionSince QPC builds models incrementally, we must dealwith a version of the frame problem: what must changeand what remains the same after a region transition?Rather than build the new model from scratch, we havestructured the representation so that chunks of the oldmodel may be incorporated in the new model. Therepresentation is structured in layers, as shown below,so that each layer changes more slowly than the onebelow it. Individuals and their RelationshipsViews and ProcessesModels (QDEs)Variable Values� At the lowest level are the values of variables in themodel. These values generally change at every stepof the simulation.� One step up are the models (QDEs) built by QPC.Models are likely to remain valid for several simula-tion steps, but still change whenever a region tran-sition occurs.� Changing more slowly, are the views and processes.When region transitions occur, they generally causeone or more view or process instances to becomeinvalid and one or more new ones to be activated.In general, however, most of the views and processesfrom the previous model are still valid. For example,in the u-tube example, when the portal 
ow begins,a new \portal 
ow" process is created, but the viewsof the containers, and the old 
uid 
ow process, areunchanged.

� Finally, the set of individuals and their relationshipschange the most slowly. For example, initiation of aboiling process would create a new individual to rep-resent the steam produced. Our framework handlesthe creation or deletion of individuals naturally.ConclusionWe have demonstrated QPC as a model-building toolthat takes the Qualitative Process Theory view of themodeling task, and compiles models into QDEs for sim-ulation by QSIM.This approach clari�es several aspects of the struc-ture of qualitative reasoning. First, the tasks of model-building and qualitative simulation can be treated asessentially independent, communicating in the lan-guage of qualitative di�erential equations. Second, thecomparison between QPC and QPE helps us distin-guish between the fundamental ideas in QualitativeProcess Theory and the design decisions of QPE.In addition to theoretical clarity, QPC provides uswith several more tangible bene�ts. First, we believethat a history-based approach to model-building aswell as simulation will be essential for qualitative rea-soning about complex mechanisms that would over-whelm a total-envisionment-based approach. Second,we believe that the mathematical methods developedfor use with the QSIM representation are essential toreasoning qualitatively about models of complex sys-tems. Finally, QPC provides a bridge between Alger-non, a general-purpose knowledge representation lan-guage designed for large-scale knowledge bases, andQSIM, an e�cient special purpose reasoning systemin the domain of qualitative simulation. We expect toexploit this combination to work in the following areas:� Answering questions and explaining the predictedbehaviors. We expect QPC to support explanationswhich draw on descriptions of the system at mul-tiple levels of detail: the scenario description, theview-process structure, the QDE, and the predictedbehaviors of the system.� Resolving discrepancies between prediction and ob-servation by considering alternative views of the ob-jects in the model. For example, the nail does notfall (as predicted by the physical view) because it isattracted by the magnet.� Using QPC (and thus QSIM and model-based rea-soning) as a component of very large knowledge-bases [Porter et al., 1988; Lenat and Guha, 1990].
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