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Abstract

Access-Limited Logic (ALL) is a language for knowledge representation which formalizes the access
limitations inherent in a network-structured knowledge base. Where a classical deductive method or logic
programming language would retrieve all assertions that satisfy a given pattern, an access-limited logic
retrieves all assertions reachable by following an available access path. The complexity of inference is thus
independent of the size of the knowledge-base and depends only on its local connectivity. Access-Limited
Logic, though incomplete, still has a well defined semantics and a weakened form of completeness, Socratic
Completeness, which guarantees that for any query which is a logical consequence of the knowledge-base,
there exists a series of queries after which the original query will succeed. This chapter presents an
overview of ALL, and sketches the proofs of its Socratic Completeness and polynomial time complexity.

1 Introduction

It has long been a guiding principle in work on semantic networks that by imposing a network structure
on large knowledge bases one can increase the efficiency of reasoning. Intuitively, in a semantic network
related concepts are located ”close together” in the network and thus search and inference can be guided by
the structure of the knowledge-base. However, formalisms for semantic networks have generally treated the
semantic network notation as a variant of predicate calculus, and have regarded the access limitations inherent
in a network to be an extra-logical indexing mechanisms. In Access-Limited Logic (ALL) we incorporate
these access limitations directly into the logic. One benefit of this approach is that we can assess the impact
of access limitations on the completeness and complexity of reasoning. ALL is, in fact, not complete, but it
is Socratically Complete — that is, for any query which is a logical consequence of the knowledge-base, there
exists a series of queries after which the original query will succeed. Further, the complexity of inference in
ALL 1s independent of the size of a knowledge-base and depends only on the size of the accessible portion
of the knowledge-base.

*This work has taken place in the Qualitative Reasoning Group at the Artificial Intelligence Laboratory, The University of
Texas at Austin. Research of the Qualitative Reasoning Group is supported, in part, by NSF grants IRI-8602665, IRI-8905494,
and IRI-8904454, by NASA grants NAG 2-507 and NAG 9-200, and by the Texas Advanced Research Program under grant no.
003658-175. This paper appeared in John Sowa (Ed.), Principles of Semantic Networks, San Mateo, CA: Morgan Kaufmann,
1991, pp. 299-330.

tSupported in part by a fellowship from GTE.
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Reasoning is hard. If a knowledge representation language is as expressive as first-order predicate calculus,
then the problem of deciding what an agent implicitly knows (i.e. what an agent could logically deduce from
its knowledge) is unsolvable [Boolos & Jeffrey, 80]. Thus a sound and decidable knowledge representation and
reasoning system must either give up expressive power, or use a weak inference system with an incomplete set
of deduction rules or artificial resource limits (e.g. bounds on the number of applications of modus ponens).
However, such inference systems tend to be difficult to describe semantically and tend to place unnatural
limits on an agent’s reasoning ability [Levesque, 86].

As an example of non-trivial inference, consider the following problem (from [Wylie, 57]):

In a certain bank the positions of cashier, manager, and teller are held by Brown, Jones and
Smith, though not necessarily respectively. The teller,; who was an only child, earns the least.
Smith, who married Brown’s sister, earns more than the manager.

What position does each man fill 7

A person looking at such a problem cannot come up with a solution immediately (though the positions follow
from a fairly small amount of common-sense knowledge about families, partial orders, and co-reference). A
certain amount of conscious thought is required; one has to ask oneself just the right questions. Similarly,
we do not expect our knowledge-representation system to be able to solve such a problem immediately, since
intuitively we expect it to be able to reason only about as well as a person could reason without conscious
thought. We do, however, expect it to be able to solve such a problem after being given an appropriate set
of leading questions. If we ask:

1. If Smith were the manager then how could he earn more than the manager 7
2. If Smith were the teller then how could he earn more than the manager 7

3. If Brown were the teller then how could he have a sister 7

then one can see immediately that Smith must be the cashier, Brown the manager, and Jones the teller.
Similarly, a knowledge-representation system, after being ask by the user (or heuristically generating) such
a series of questions should be able to determine which man holds which position. We have translated this
problem into ALL and given it (along with appropriate common-sense knowledge) to our lisp implementation,
Algernon. Inference in Algernon is incomplete, and Algernon fails initially to solve the problem. However,
after we ask it the questions given above, it is able to determine which position each man fills.

More abstractly, ALL has an important property we call Socratic Completeness' — for any query of a
proposition which is a consequence (in predicate calculus) of the knowledge-base, there exists a preliminary
query after which the original query will succeed. ALL also has a more technical weakened completeness
property which we call Partitional Completeness. Roughly, Partitional Completeness says that if all facts
and rules needed to prove a query are located ‘close enough’ (see section 3) to the query, then it will succeed
immediately.

The rest of this chapter is organized as follows. In section 2 we discuss our general approach to knowledge-
representation. Section 3 gives an overview of the formalization of ALL, and the proofs of Socratic and
Partitional Completeness. We outline the argument for the polynomial time complexity of ALL in section
4. In section 5 we briefly discuss related work, and section 6 1s our conclusion.

2 Overview of Access-Limited Logic

In the broadest sense the study of knowledge-representation is the study of how to represent knowledge in
such a way that the knowledge can be used by a machine. From this vague definition we can conclude that
a knowledge-representation system must have the following properties:

I'We have since discovered that the idea of Socratic Completeness is also used in [Powers, 78] where it is referred to as
Socratic Adequacy.
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1. It must have a reasonably compact syntax.

2. It must have a well defined semantics so that one can say precisely what is being represented.
3. It must have sufficient expressive power to represent human knowledge.

4. Tt must have an efficient, powerful, and understandable reasoning mechanism.

5. It must be usable to build large knowledge-bases.

It has proved difficult, however, to achieve the third and forth properties simultaneously.

Our approach in ALL begins with the well known mapping between atomic propositions in predicate
calculus and slots in frames; the atomic proposition that the object a stands in relation r to the object b
can be written logically as r(a,b) or expressed, in frames, by including object b in the r slot of object a

[Hayes, 79].

Pla,b) = values: { ...b... }

We refer to the pair {(a,r) as a frame-slot. Thus r(a,b) is equivalent to saying that the value b is in the
frame-slot {a,r). The frames directly accessible from a frame-slot are those which appear in the frame-slot.?
Extending this idea, we define an access path, in a network of frames, as a sequence of frames such that each
is directly accessible from a frame-slot of its predecessor. It is useful to generalize this definition and allow
access paths to branch on all values in the frame-slots. A sequence of propositions defines an access path
if any variable appearing as the first argument to a proposition has appeared previously in the sequence
(operationally, this means that retrieval always accesses a known frame-slot). For example, “John’s parent’s
sister” can be expressed in ALL as the path:

(parent(John, ), sister(x, y))

This defines an access path from the frame for John to the frames for John’s parents (found by looking in
the frame-slot (John, parent)), to John’s parents’ sisters.

i From access paths we build the inference rules of ALL. A rule is always associated with a particular
slot in the network. Backward chaining if-needed rules are written in the form: 3 « « (the structure of «
and 3 is discussed below) and applied when a value for the slot is needed. Forward chaining if-added rules
are written in the form: o — § and applied when a new value for the slot is inserted. In either case the
antecedent of a rule must define an access path (beginning with the slot the rule is associated with). For
example, using the access path above we can write the if-needed rule:

aunt(John,y) < parent(John, x), sister(z,y)
But we cannot write the (logically equivalent) rule:
aunt(John,y) < sister(z,y), parent(John, z),

since the antecedent does not define an access path.3

2Slots in ALL contain only frames and rules (defined below).

3The restriction to access paths limits the syntax of ALL, but is not a fundamental limit on its expressive power since one
could always add a new constant and make it the first argument to every predicate. This would amount to making the entire
knowledge-base a single frame.
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Where a classical deductive method or logic programming language would retrieve all known assertions
that satisfy a given pattern, an access-limited logic retrieves all assertions reachable by following an available
access path. The use of access paths alone, however, is insufficient to guarantee computational tractability in
very large knowledge-bases. The evaluation of a path can cause an explosive back-chaining of rules which can
spread throughout the knowledge-base. To prevent this, ALL introduces a second form of access limitation.
The knowledge-base in ALL is divided up into partitions and back-chaining is not allowed across partitions
— facts in other partitions are simply retrieved. When used together, these two kinds of access limitations
can limit the complexity of inference to a polynomial function of the size of the portion of the knowledge-base
accessible from the local partition.

3 The Logical Coherence of ALL.

A price must be paid for the efficiency of access limitations. Inference in ALL is weaker than inference in
predicate calculus, since only locally accessible facts and rules can be used in deductions. However, logical
coherence does not necessarily require completeness. Rather it is an informally defined collection of desirable
formal properties. We have proven that a dialect of ALL has the following properties of a logically coherent
knowledge representation system:

e ALL has a well defined syntax and proof theory.

e The semantics of ALL can be defined by a purely syntactic mapping of ALL knowledge-bases, queries
and assertions to predicate calculus.

e In terms of this mapping, inference in ALL is consistent, Socratically Complete, and Partitionally
Complete.

These properties are stated more precisely in theorems below.

We view these formal properties as necessary but not sufficient conditions for logical coherence. There
remains, at least, the less formal claim that knowledge can be organized cleanly into partitions. This claim
is discussed further in sections 3.4.2 and 6.2.

The rest of this section sketches the formal development of ALL. The full account can be found in
[Crawford & Kuipers, 90]. Our formal work in ALL generally lags several months behind our implementation
work and the results presented here only formalize a part of ALL. Specifically, our current formalism does
not allow negation or quantification (though our lisp implementation supports both — see section 6).

3.1 Basic Notation
In the meta-theory of ALL we use the following notation. Quantified expressions are written in the form:
({Quantifiery(Variable) : {Range) : (Expression)).

Thus, for example:
(Va : pred,(x) : predy(z))
is read “For all  such that pred, (), pred,(z)”. Similarly:

(Ul‘ spred(x) : foo(x))

(where foo is a set valued function) denotes the union, over all # such that pred(x), of foo(z).
We delineate lists with the usual () and notate the empty list by nél. If « is a list then:

e head(a) is the first element in o.
e rest(a) is all but the first element in .

We define append(ay, a2) to be the result of appending the list @ to the beginning of the list a.
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3.2 Syntax of ALL

The syntax of ALL is quite similar to the syntax of logic programming. Accordingly we develop the syntax
of ALL generally following the notation in [Apt, 88].

3.2.1 Alphabets, Terms and Propositions

The alphabet of an Access-Limited Logic consists of countably infinite sets of variables, constants, and
relations, the connectives <~ and —, and the operators query and assert. A term is a constant or a variable.
r(t1,...,t,) is a proposition iff r is an n-ary relation and all ¢; are terms.* A fact is a proposition such that
all t; are constants. For a term, proposition, or list of propositions, «a:

e vars(w) is the set of variables appearing in o.
o relations(«) is the set of relations appearing in a.
e constants(«) is the set of constants appearing in o.

If vars(a) = 0 then « is ground. (so a ground propositions is a fact).

3.2.2 Access Paths

An access path (or simply a path) is a pair (V, &) where « is a list of propositions and V is a set of variables.
In general the first argument to each proposition in « must have occurred previously in «. The variables in
V' are exceptions to this rule and may occur as the first argument to propositions without having occurred
previously in «. The need for such exceptions will become apparent when rules are defined below. If V = {}
then we omit it and say « is a path. A path of length one is a primitive path.

3.2.3 Rules

Assume r(t1,...,1,) is a proposition and « is a non-empty list of propositions. r(t1,...,%,) < « is an

if-needed rule iff both of the following hold:
1. Either ¢; is a constant and « is a path, or #; is a variable and ({t1}, a) is a path.
2. vars({ty,.. ., ta}) C vars(a).

Intuitively, the first restriction ensures that when the rule is “fired” (i.e. when the consequent of the rule
has been unified against a primitive path), the antecedent is an access path. The second restriction ensures
that any substitution which grounds the antecedent of a rule also grounds its consequent.

If p = r(t1,...,tn) & « is an if-needed rule, we use the accessor functions: Key(p) = v(t1,...,tn),
Conseq(p) = r(t1,...,tn), and Ant(p) = «. Intuitively, the Key of a rule is the proposition the rule is
indexed under in the knowledge-base.

Assume r(t1,...,t,) is a proposition and « is a non-empty list of propositions. & — r(t1,...,%,) is an

if-added rule iff both of the following hold:
1. {vars(head(a)), &) is a path.

2. vars({ty,.. ., ta}) C vars(a).

4n place relations cause no problems in ALL. Intuitively, r(t1,...,tn) corresponds to putting the value (¢2,...,%,) in the r
slot of ¢7.
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As for if-needed rules, the first restriction ensures that when the rule is “fired” (i.e. when the head of the
antecedent of the rule has been unified against a fact being added to the knowledge-base), the antecedent is
an access path. The second restriction again ensures that any substitution which grounds the antecedent of
a rule, also grounds its consequent.

If p = a — r(ty,...,t,) is an if-added rule, we again use the accessor functions: Key(p) = head(a),
Conseq(p) = r(t1,...,tn), and Ant(p) = a.

3.2.4 Knowledge-Bases
If S'1s a set then sq,...,s, 18 a partitioning of S iff:
e (Vi:0<i<n:s; CS),and

o (Ui:1<i<n:s)=8

A Knowledge-Base, K, is a six-tuple (C, R, Nr, Ar, F, P) where:

C = A set of constants.

R = A set of relations.

Nr = A set of if-needed rules such that (Vp : p € Nr: constants(p) C C A relations(p) C R).
Ar = A set of if-added rules such that (Vp : p € Ar: constants(p) C C A relations(p) C R).
r = A set of facts such that (Yf : f € F: constants(f) C C A relations(f) C R).

P = A partitioning of ' x R.

If K ={(C,R,Nr,Ar, F, P, A) is a knowledge-base and « is a proposition, list of propositions or a rule,
then « is allowed in K iff constants(a) C C A relations(a) C R. Finally, the members of P are referred to
as the partitions of K.

Unless otherwise specified a knowledge-base K; should be understood to have components (C, R, Nr, Ar;, F;, P)
(we subscript Ar and F' because, as will be seen, they are the two components which change when operations
are performed).

3.2.5 Operations and Formulas

If a is a path then query(a) is a query. If o is a primitive path then query(«) is a primitive query. If
f is a fact then assert(f) is an assertion (assertions of paths are not currently allowed). Any query or
assertion is an operation, and any assertion or primitive query is a primitive operation. If O = query(a)
or O = assert(a) is an operation and « is allowed in a knowledge-base K, then O is allowed in K. If an
operation O is allowed in a knowledge-base K, then O(K) is an ALL formula.

3.3 Mapping ALL to Predicate Calculus

We define the semantics of ALL by mapping ALL knowledge-bases, assertions, and queries to (first order)
predicate calculus. An alternative approach would be to define a model theory for ALL, in terms of which
ALL is complete. This could be done, but we believe that (since the model theory of predicate calculus is
well understood), mapping to predicate calculus and appropriately weakening the notion of completeness
gives a more perspicuous picture of the semantics of ALL. Further, we believe that consistency and Socratic
Completeness relative to predicate calculus (or perhaps an appropriate non-monotonic logic) are necessary
properties for any knowledge representation system.

Mapping ALL to predicate calculus is straightforward. Propositions do not change at all. Paths become
conjunctions. Rules become implications with all variables universally quantified. Knowledge-bases become
the conjunction of their rules and facts. We notate the Predicate Calculus equivalent of an ALL object, a,

by PC(a).
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3.4 Knowledge Theory

The knowledge theory of ALL defines the values of ALL formulas by defining the action of ALL operations
(i.e. queries and assertions). Intuitively, the assertion of a fact f, adds f to a knowledge-base and returns the
resultant knowledge-base (i.e. the knowledge-base after f is added, all applicable if-added rules are applied,
and all if-added rules are closed (see section 3.4.5)). A query of ¢ returns the substitutions needed to make
q true in the knowledge-base. Tt also returns a new knowledge-base (since processing the query may change
the knowledge-base by invoking rules).

3.4.1 Substitutions

A substitution is a finite mapping from variables to terms:

9 = {vl/tl,...,vn/tn}

where the v; (1 < ¢ < n) are distinct variables. If all ¢; (1 < ¢ < n) are constants then @ is ground. Let the
variables in the alphabet (see section 3.2.1) be V. A substitution @ is a renaming iff it is a bijection (i.e. a
1: 1 onto mapping) from V to V.

If e is an expression and # is a substitution then ef is the result of applying # to e (simultaneously
replacing each occurrence in e of the variables in {vq,...,v,} with the corresponding term).

If there exists a substitution ¢ such that 7 = 6 o { then 8 is more general than 5. Intuitively, if § is more
general than 7 then 8 does strictly ‘less work’ than . A unifier of two primitive propositions ¢; and g», is
a substitution @ such that ¢160 = ¢20. The most general unifier of two primitive propositions ¢; and ¢- is a
unifier 8 of ¢; and ¢» such that for any other unifier 5 of ¢; and g5, 6 is more general than 5. A unifier 8 of
g1 and g2 1s relevant iff it binds only variables in ¢; and g2, and it maps to only variables in ¢; and ¢2. We
notate the most general relevant unifier of ¢; and g5 as mgru(qi, g2).> It has been shown in [Apt, 88] that
any propositions which are unifiable, have a most general relevant unifier.

3.4.2 The Partitions of ALL Operations

Intuitively, a partition of K corresponds to a part of the knowledge-base which is somehow semantically
cohesive, and distinct from the rest of the knowledge-base. Facts and rules are often thought of as being ‘in’
partitions and operations are thought of as ‘taking place’ in subsets of €' x R (unions of partitions). The
intuition behind this comes from the frame view of ALL knowledge-bases. Recall that ALL constants can be
thought of as frames, and relations as slots in these frames (e.g. the fact r(c1, ¢2) is equivalent to having the
value ¢z in the r slot of the frame ¢1). Thus a pair (r, ¢) can be thought of as a particular slot in a particular
frame in the knowledge-base. Recall that we refer to such a pair as a frame-slot. Partitions are thus sets
of frame-slots. Further, note that any primitive path o« (by the definition of a path) must reference exactly
one frame-slot and thus can be said to be ‘in’ a partition. In fact, since partitions can overlap, it can be in
several partitions and any operation on « is performed ‘in’ the subset of (' x R formed by taking the union
of these partitions. Intuitively, this union defines the rules which are available to the operation.

More formally, if K is a knowledge-base and o = r(e,t1,...,¢,) is a primitive path (i.e. ¢ a constant and
all t;, 1 < i < n, are terms) and p is a subset of C'x R (e.g. a partition or the union of several partitions) then
a€piff (e,r)y €p. If P ={p1,...,pn}® and O = query(a) or O = assert(a) then the union of partitions
for O is:

parg(O) = (Ui: 1 <i<nAa€p;:p)

5The use of most general relevant unifiers (instead of just most general unifiers) is necessary for technical reasons. The basic
problem with most general unifiers is that one can compose a most general unifier with an arbitrary renaming and the result
is still a most general unifier.

6Recall that a knowledge-base K is understood to have components (C,R,Nr, Ar,F, P). Thus P is the set of partitions of
K.
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3.4.3 The Domain and Range of All Operations

Any given sets C, R, Nr, P define a finite set of possible knowledge-bases KB (differing only in facts and
if-added rules), and an infinite set of ground substitutions © (binding variables in the alphabet to constants
n C’).7 For any operation @ allowed in the knowledge-bases in K B (note that an operation allowed in any
knowledge-base in K B is allowed in all knowledge-bases in K B):

O:KB—2° x KB. (1)

We notate these returned values with pairs: ( ‘Set of Substitutions’, ‘Knowledge Base’ ). and use sub and
kb as accessors on the first and second components respectively.

3.4.4 The Values of ALL Operations

Defining the values of ALL operations is primarily a matter of formalizing the action of forward and backward
chaining rules. We use the following basic notation for knowledge-bases and substitutions:
If K1 and K5 are knowledge-bases (differing only in their facts and if-added rules), then:

[(1 UI{Z = <C,R,N7“,A7°1 U Arz,Fl U FQ,P>.
If further, f is a fact allowed in Ky then:
[(1 —|—f: <C,R,N7“,A7°1,F1 U {f},P>,

and f € Ky iff f € Fy. If 8 and 7 are substitutions then 6 o n notates 6 followed by 7. If further, ©; is a set
of substitutions then 0@ = {nof; |6, € O }.

For a primitive operation @, we define O, (K, p) to be the result of the operation O on the knowledge-base
K, in some subset of C' x R, p, with rule chaining cut off at depth n. A certain amount of technical care is
required to formalize O, (as it requires carefully defining forward and backward rule chaining). Details of
the definition are given in the appendix.

We define O to be the union over all n of O, (in the partition of Q). The idea here is to cause O to
be a fixed-point of rule applications. We will eventually show (in section 4) that there is always an n after
which increasing the depth of rule chaining does not affect the result. Thus, intuitively, O chains just far
enough so that chaining any farther would have no affect (one advantage of this approach is that recursive
rules (e.g. rules of form ¢ + ¢) do not cause problems in ALL (or its lisp implementation)).

It will be important that the knowledge-bases resulting from ALL operations are ‘closed’. We guarantee
this by applying the function closure to the knowledge-base which is to be returned. Closed knowledge-bases
and closure are discussed in the next subsection (3.4.5).

We thus define:

O(K) = closure((U n:n>0:0,(K,parg(0))))

The result of a non-primitive operation can then be defined in terms of the results of its constituent primitive
operations. If O is non-primitive then it must be a query (see section 3.2.5). Assume O = query(a) for some
path «. Further, assume ¢ = head(a), and o = rest(«), then:

If sub(query(q)(K)) = {} (i.e. query(q) ‘failed’):
OK) = ({}.K)
else (query(q) succeeded so we branch on all resultant substitutions and union the results):
O(K) = closure((|J 0 € sub(query(q)(K)) :: { 0 o sub(query(a’0)(K)), (2)
kb(query(q)(K)) U kb(query(a’f)(K))) )

Figure 1 shows a query on a simple knowledge-base.

7Technically, we should write KB¢ rnrp and O¢ g N, p, but we generally omit the subscripts since they are clear from
context.
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Assume K is a knowledge-base such that:

C = A}

R = {ry,rs}
Nr {ri(c, ) < ra(c,2)}
Ar {}

F = {rae,0)}

Po= {{{e,r) (e,m2)}}

Consider query(ri(c,#))(K) (where z is a variable). This is a primitive operation and
parg (ri(e,x)) = {{c,r1), {c,r2)}, so we must first compute:

queryo(m(c, $))([(’ {<C’ 7°1>, <C’ 7°2>})

Rule back-chaining is cut off at depth zero so no rules apply and

queryo(ri(c, ) (K, {{e, 1), (¢, r2)}) = ({}, K)

(an empty list of substitutions is returned since there is no known value of # for which the query
succeeds). However, when we calculate

queryy (ri(e, ) (K, {{e, 1), {c,72)}),

the if-needed rule applies and

queryi (ri(e, 2)) (K, {{¢;r), (¢,m2)}) = ({{z/e}}, K +ri(e, ¢))

({x/c} binds # to ¢). As n is increased further there are no other rules to apply so

query(ri (e, 2))(K) = ({{z/c}}, K + r1(c, ¢)).

Figure 1: A query on a simple knowledge-base.
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Assume K is a knowledge-base such that:

C = A}

R = {7“1,7“2,7“3}
Nr = {}
Ar = {ri(e,2),ro(z,2) = rs(e, 2)}

F = {ric)}
P = {{{c,m1),{e,ra), {c,r3)}}

Assume that we define closure(K) = K. Consider assert(ra(c,¢))(K). After this operation both
r1(c, ¢) and ra2(c, ¢) will be facts in the knowledge-base. However, query(rs(c, ¢))(K) will fail. The
rule ry(z, 2), ro(x, #) = r3(x, x) never applies because r1(c, ¢) was added before ra(c, ¢).

Figure 2: An example of if-added incompleteness.

3.4.5 The Problem of If~-Added Incompleteness

In ALL, the application of an if-added rule 1s triggered by the assertion of a fact which matches the Key of
the rule. One problem with this approach is that, if one is not careful, it can be the case that rules, whose
antecedents are entailed by the knowledge-base, may never fire. Such a case is shown in the figure 2.

Our solution to this problem is to ‘close’ the if-added rules in the knowledge-base. Intuitively this means
that for any fact f and any if-added rule & — ¢, if there is some substitution 6 = mgru(f, head(«)), then we
add to the knowledge-base the rule rest(a)f0 — ¢fl. For a knowledge-base K, we notate by closure(K), the
knowledge-base formed by closing all the if-added rules in K. We also use the shorthand closure({K, A)) for
(closure(K), A).

Consider the example in figure 2. Note that the initial knowledge-base is not closed, since it includes
the rule r1(x, z), ra(x, ) — rs(x, #) and the fact 71(c, ¢), but not the rule ro(c, ¢) — rz(e, ¢). Further, if we
consider assert(ra(c, ¢))(closure(K)), then the resultant knowledge-base does include r3(e, ¢).

3.4.6 Implementation Note

There are three important differences between the formal definitions of ALL operations given here and our
lisp implementation. First, in the formalism, when an operation branches (e.g. when several rules are applied
or when the evaluation of a path branches on several possible instantiations of its variables) the branches
are computed separately (‘in parallel’) and the results are unioned together. In our implementation the
branches are computed serially (i.e. one rule is applied and then the next rule is applied in the resultant
knowledge-base).® There are two advantages of the formalization presented here over a ‘serial’ formalization.
First, the complexity analysis i1s considerably simplified, and second, the formalism given here would also
apply to a parallel implementation of ALL.

The second difference is that our implementation supports limits on the accessibility of rules, which have
been omitted (for simplicity) from the current formalization. In our implementation, a rule can be ‘associated’
with a frame fy, and only accessed from frames known to be in an isa relation with fy. Intuitively, such
rules apply only to members of the set f;.°

8Since ALL operations are monotonic, the serial implementation returns knowledge-bases which are supersets of those given
by the formalism. Hence, our completeness results carry over to the serial case.

9Such access limitations can be formalized. The key idea is that when a rule associated with a set is translated to predicate
calculus (see section 3.3) one must prepend an appropriate ¢sa relation to its antecedent. It should be possible to show that
the completeness results carry over (some care must be taken, however, when defining the closure of a knowledge-base with
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Our implementation of closure demonstrates a useful application of rules associated with sets. One might
worry that closing a knowledge-base might add a large number of if-added rules and thus slow the system
(since we have to try to unify against all of them). However, we associate these if-added rules with very
small sets (sets of size one) and they are thus ignored except when they are needed. Consider a rule added in
the closure of a knowledge-base. Tt must be of form rest(a)f — ¢f. Tt follows from the definition of if-added
rules that rest(a)f must be a path. This implies that head(rest(a)) must be of form r(c,t1,...,¢,). Thus
(in our implementation) we simply associate this rule with a set consisting of the single element (frame) ¢
(creating such a set if it does not exist).

The third difference is also related to our implementation of closure. Consider an assertion of a fact f.
This assertion may trigger an if-added rule which asserts a fact f’ into a partition p’ which is disjoint from
the partitions of f. In our implementation, f’ is queued (in p’) and any if-added rules for f’ are not applied
until ‘attention’ is drawn to p’ (by some operation in p’). This ensures that the complexity of an operation is
a function only of the rules in its partitions. We have not yet incorporated the notion of ‘queuing’ assertions
into our formalism. Thus facts are closed with respect to all if-added rules in the knowledge-base, and the
complexity of an operation (as will be seen in section 4) is a function of the set of all if-added rules in the
knowledge-base.

3.5 Consistency

Consistency is often intuitively thought of as “You can’t derive a contradiction.” Consistency requires that
the substitutions returned by a query must be semantic consequences of the old knowledge-base.!® The
requirements on the new knowledge base are more subtle. Consistency intuitively requires that propositions
do not suddenly become true, or, in model theoretic terms, that models are not suddenly lost. Thus any
model of the new knowledge-base must also be a model of the old knowledge base (and in an assertion a
model of the formula being asserted):

Theorem 1 (Consistency of ALL) For any knowledge-base K, any path o allowed in K, and any fact f
allowed in K:

1. (V0 € © : 6 € sub(query(a)(K)) : PC(K) | PC(ab))
2. PC(K) | PC(kb(query(«)(K)))
3. (PC(K) APC(f)) E PC(kb(assert(f)(K)))

Proof (sketch): The proof of consistency is primarily a matter of carefully working through the definition
of @. One inducts on n to show, for all n, that O,, 1s consistent. One can then induct on the length of a to
show that O is consistent.

3.6 Completeness

Completeness can be thought of as “Any true fact is derivable.” Thus completeness requires that all sub-

stitutions which are semantic consequences of the old knowledge-base are returned by query. Completeness
also requires that true facts do not suddenly become false. In model theoretic terms this means that we do
not gain models. Thus any model of the old knowledge-base must also be a model of the new knowledge-
base. Note that the requirements for completeness are essentially the requirements for consistency with their
implications reversed:

respect to an isa relation).
10More precisely, for any query of a path o, if § is returned then PC(a6) must be a consequence of the knowledge-base.
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Assume K = (C, R, Nr, Ar, F, P) is a knowledge-base such that:

C = {c}
R = {ri,re,rs}
Nr {ri(c,z) « ra(c, 2)}
Ar {ri(c,z) = ra(c, 2)}
F = A{ra(c,0)}
Po= {{{e;r) (e, r2), (e, m3)}}
Consider query(rs(c, z))(K). This query must fail since it matches no facts in F' and there are no

if-needed rules for rz(e, ). But, any model of PC(K) must be a model of PC(rz(ec, c)) (by the two
rules and the fact that r2(c, ¢) is in F'). Hence, inference in ALL is not complete.

Figure 3: A form of incompleteness in ALL.

Conjecture 1 (Completeness of ALL) For any knowledge-base K, any path o allowed in K, and any
fact f allowed in K, let ©,, be the set of all ground substitutions binding all and only variables in «. Then:

1. (V8 €Oy : PC(K) = PC(ab) : 0 € sub(query(a)(K)))
2. PC(kb(query(a)(K)) = PC(K)
3. PC(kb(assert(f)(K))) = (PC(K) APC(f))

Unfortunately, part one of this conjecture is false. In some cases, rules necessary for a query to succeed
cannot be accessed. Two such cases are shown in the figures 3 and 4.
Notice, however, that in the example in figure 3:

query(rs(c, x)) (kb(query(ri(c, #))(K)))

would succeed since rz(c,c) is added to kb(query(ri(c,#))(K)) by the if-added rule r1(c,z) — rs(e, z).
Similarly, in figure 4,
query(ry (¢, ) (kb(query(ra(c, 2))(K)))

succeeds. This suggests the idea behind Socratic Completeness. Informally, the Socratic Completeness
Theorem says that for any query of a which ‘should’ succeed in a knowledge-base, there exists a series of
preliminary queries, 7, after which a query of « will succeed. We also show a second type of weakened
completeness result, Partitional Completeness. Partitional Completeness says that if all information needed
to process a query can be located by the if-needed rules in the partitions of the query, then the query will
succeed.

3.6.1 Socratic Completeness

To state the Socratic Completeness theorem we need a shorthand for the result of a series of queries:
If 7 is a series of paths allowed in a knowledge-base K then let:

query(nil)(K) = K (3)
query(?)(K) = query(head(?))(kb(query(rest(?)(K)))) (4)



3 THE LOGICAL COHERENCE OF ALL. 13

Assume K = (C, R, Nr, Ar, F, P) is a knowledge-base such that:

C = {c}
R = {7“1,7“2,7“3}

Nr = {ri(e,z) < ra(c,2),ra(c, z) « ra(e,x)}
A= Q)
F = A{rs(e,0)}

Po= {{{e,;r)},
{<C’ 7°2>, <C’ 7°3>}}

Consider query(ry (c, ))(K). This query must fail since the only rule for ry (e, ) depends on ra(c, ),
which matches no facts in F' and is not in parg (r1(c, %)) (so no rules for ra(c, z) fire). But, any
model of PC(K) must be a model of PC(r1(c,¢)) (by the two rules and the fact that r3(c,¢) is in

Figure 4: Another form of incompleteness in ALL.

Theorem 2 (Socratic Completeness) For any knowledge-base K, any path « allowed in K, and any fact
f allowed i K, let ©, be the set of all ground substitutions binding all and only variables in «. Then:

1. (V0 €®, : PC(K) = PC(ab)

2 (37 0?7 aseries of paths allowed in K : 0 € sub(query(a)(kb(query(?)(K))))))

2. PC(kb(query(a)(K))) E PC(K)
3. PC(kb(assert(f)(K))) = (PC(K) APC(f))

Proof (sketch): Parts 2 and 3 follow relatively easily from the definitions of O, and PC. Part 1 is shown
by induction on the length of a. The tricky part is the base case. We map K to an equivalent logic program
LP(K). One can then show that for any rule in K which would apply on the next iteration of Trp (k)
(where T is the immediate consequence operator in logic programming — see [Crawford & Kuipers, 90] or
[Apt, 88]) there exists a path in ALL the query of which will cause the rule to fire (this result would not hold
for if-added rules if we did not close our knowledge-bases — see section 3.4.5). We know from the study of
logic programming (see [Apt, 88]) that ‘completeness’ with respect to the immediate consequence operator
is sufficient to guarantee completeness.

3.6.2 Partitional Completeness

Intuitively, Partitional Completeness says that if all information needed to prove a query is located ‘close
enough’ to the query then the query will succeed. Formally ‘close enough’ will mean that the information
is reachable using only if-needed rules in the partitions of the query. In order to state the Partitional
Completeness Theorem, we first have to define which rules in the knowledge-base are considered ‘part’ of
which partitions. A rule is considered a part of a partition if it could be triggered by queries to, and assertions
into, the frame-slots in that partition. Counterintuitively, partitions limit access to rules not facts. When
we speak of a fact as being in a partition, we mean that the fact is queried (or asserted) using the rules in
that partition. Theoretically a rule could access facts in every partition of the knowledge-base; it is the use
of access paths, not partitions, which limits access to facts.
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If K is a knowledge-base, p C C' x R, and S is a set of rules from K, then S\,, the restriction of S to p,
is given by:

S\p ={pf | p€SAKey(p) =r(t,....th)A
((t1 a constant NG = O A {t1,7) € p)V
(t1 avariable A (e € C : {e,ry €p: 0 ={t1/c})))}.

Intuitively, S\, is the restriction of S to only the rules in p. The knowledge-base K with its rules
restricted to only the if-needed rules in p C C' x R is given by:

A]\p =(C,R, Nr\p’w’Fa ir}h). (5)

Note that K\, is never computed (in the definition of ALL formula or in our lisp implementation of ALL);
It is only a formal object used to state the partitional completeness theorem.

Theorem 3 (Partitional Completeness) For any knowledge-base K and any primitive path q allowed in
K, let ©4 be the set of all ground substitutions binding all and only variables in q, then:

(V0 € ©4 : PC(K\par,. () = PC(q0) : 0 € sub(query(q)(K)))

Proof (sketch): The proof of this theorem again relies on results from the study of logic programming.
Let ground(q) be the set of all variable free instantiations of ¢. Further, for any logic program pg, and any
set of facts I, let:

Tog 10(I) = 1
Tpg T (n+1)(1) = Tpg(Tpg T n(l))

The key lemma is that for any p C C' x R, and for all n > 0:

ground(q) N Tepirn,) T n(0) C kb(query,(q)(K,p))

Intuitively, this says that if a fact 1s an instantiation of ¢, and is in the knowledge-base produced by n
iterations of the immediate consequence operator, then it is in the knowledge-base produced by query, (¢).
From this lemma the result again follows by the observation (from the study of logic programming, see
[Apt, 88]) that ‘completeness’ with respect to the immediate consequence operator is sufficient to guarantee
completeness.

4 Complexity

In this subsection we show that a primitive ALL operation can be computed in time polynomial in the size
of the portion of the knowledge-base accessible to it. We focus on primitive operations since non-primitive
operations are defined as sequences of primitive operations (equation 2).

To discuss the complexity of ALL it 1s useful to return to the view of an ALL knowledge-base as a
collection of frames and slots. This view was introduced in section 1 and discussed further in section 3.4.2.
The basic idea is that constants are thought of as frames, and relations are thought of as slots. The fact
r(c1, e2) is equivalent to putting eg in the r slot of the frame ¢;. Recall that if ¢ is a frame and r is a slot then
we refer to the pair {(c,r) as a frame-slot. Recall also that partitions are simply collections of frame-slots.

The definition of the accessible portion of a knowledge-base is fairly technical and is given in [Crawford & Kuipers, 90].
In this section we simply give the intuitions behind the definitions.

For a knowledge-base K, and p C C x R we first define rules(p) = Ar UNr\,. Now, consider a primitive
operation @ allowed in a knowledge-base K, and assume O = query(q) or O = assert(q). We define
the reachy(q,p) to include all frame-slots which can be accessed in the calculation of O, in p, with rule
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backchaining cut off at depth n, and change,(q,p) to include all frame-slots which can be changed in the
calculation of @, in p (with rule backchaining cut off at depth n). We define framesy,(q,p) to include all
frames which O,, can access (with rule backchaining cut off at depth n). frames,(q,p) includes the frames
appearing in frame-slots in reachy(q,p), plus the frames appearing explicitly in rules in rules(p) or in g
itself. Finally, we define closuresg, (O) to include all facts and rules which could potentially be added to
the knowledge-base by O.

We define ops,, (O) to include all operations that O,, ‘potentially depends on’. These include all queries
of frame-slots in reachy, (¢, parg (0)) and all assertions (of frames in frames, (¢, parg(Q))) into frame-slots
in changey, (¢, parg (0)) (some amount of care is required to prove that ops includes all the assertions and
queries which O,, depends on — for details (and a formal definition of ‘the set of all operations which O
depends on’) see [Crawford & Kuipers, 90]).

We then define:

reach(q,p) = (| Jn:n>0:reachn(q,p)) (6)
change(g,p) = (| Jn:n>0: changea(q,p)) (7)
frames(q,p) = ((n:n>0: frames,(q,p)) (8)

ops(0) = (| Jn:n>0:0ps,(0)). (9)

Figures 5 and 6 show reach, change, and ops for two simple queries.

Theorem 4 If O = query(q) or O = assert(q) is a primitive operation allowed in a closed knowledge-base
K then let:

nops(0) = |ops(O) | (10)
nfr(Q) = | frames(q,parg(0)) | (11)
nrules(Q) = | rules(parg(0)) | (12)

Finally, let ma be the mazimum arity of any relation in R, mvars(Q) be the marimum number of variables in
any rule in rules(par, (0)), and len be the mazimum length of the antecedent of any rule in rules(parg (O)).
O(K) can be computed in time of order:

len5 X nops((’))2 % nrules((f))f) % nfr((r))vaars(O)-}ma.

Proof (sketch): O is defined as an infinite union of @,’s thus it is not obvious how it can be computed.
However, one can show that if there is an n at which all the operations which O ‘depends on’ (i.e. all
operations in ops(Q)) return the same value they returned at n — 1, then O(K) = O, (K, parg(0)).

One can further show that such an n exists and can compute a bound for it. Consider the vector of all
operations in ops(Q). There are:

nops(0)

such operations. As we increase n the knowledge-bases returned by these operations may not shrink. Further,
if we ever reach a point where none of them grow then we can quit. Any ALL operation can only add a
fact or complete an if-added rule (there are no operations, for example, which create an entirely new frame).
The facts and rules which can be added must be in the set closuresg, (O), and one can show that the size
of this set is bounded by len x nrules(Q) x nfr(O©)™***©)  Each iteration may increase at worst one
knowledge-base in the set of knowledge-bases returned by the operations in ops(@). Thus if n is greater
than or equal to
nops(0) x len x nrules(0) x nfr((’))mw”(o)
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Recall the knowledge-base, K, from figure 1:

C = A}

R = {ry,rs}
Nr = {r(e,z) + ra(c,2)}
Ar = {}

F = {rae,0)}

P = {{<C’ 7°1>,<C, 7°2>}}

Consider O = query(ri(c, z)) (where x is a variable). Let ¢ = r1(c¢, ) and p = parg (0), then:

reacho(q,p) = {{c,r1)}

reachi(q,p) = {{c,1),{c,72)}

reacha(q,p) = {{c,m1),{c,72)}

reachn(q,p) = {{c,71),{c,72)}
reaCh(Qa p) = {<Ca 7°1>, <C’ 7°2>}

Thus:
change(q,p) = {{c,r1)}
ops(0) = {query(ri(c, ), query(ra(c, x)), query(ri(c, c)),

query(ra(c, ¢)), assert(ri(c,¢))}

Figure 5: The accessible frame-slots and dependent operations for a simple query.
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Recall the knowledge-base, K, from figure 4:

C = {c}

R = {ry,re,rs}
Nr = {ri(e,z) < ra(c,2),ra(c, z) « ra(e,x)}
Ar = {}

F = A{rs(e,0)}

Po= {{{e,;r)}

{<C’ 7°2>, <C’ 7°3>}}

Consider O = query(ri(c, z)) (where x is a variable). Let ¢ = r1(c¢, ) and p = parg (0), then:

.

o

x

)

=

[3v]
P - N
A A NS
ST
NN AN
—— -
i I e

©

3

=
e e S S S

Thus:

{(e,r)}
{query(ri(c, ), query(ra(c, x)), query(ri(c, ¢)),
query(ra(c, ¢)), assert(ri(c,¢))}

change(q, p)
ops(0) =

Figure 6: The accessible frame-slots and dependent operations for a query in a knowledge-base with
two partitions.
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then all knowledge-bases must be ‘full’.
Thus it only remains to find the time to calculate the result of a primitive operation O,, given the results
of all operations @',,_;. We may have to apply at most

nrules(Q)
rules. Each rule may branch on all values in frames(g, parg (Q)) for all variables. Thus we may have
nfr(o)mvars(o)

branches (the results of which must be unioned together). Finding the result of each branch involves taking
at most len unions and closures. There are thus order:

len

unions and closures per branch. Each union is done on a knowledge-base of form K 4 .S where S is of size
| closuresg, (O) | or smaller. Thus each union can be done in time of order:

len x nrules(Q) x nfr((’))mw”(o)
Finally, one can show that each closure can be computed in time:
len® x nrules(0)? x nfr((’))zmw”(o)'l'ma

Multiplying these bounds together gives the time bound in the theorem.

5 Related Work

ALL draws from several diverse fields. We attempt only to sketch in general terms the fields from which it
draws and discuss a few particularly relevant past approaches.

ALL draws from semantic networks [Brachman et al.; 83, Bobrow & Winograd, 77, Findler, 79, Quillian, 67,
Shapiro, 89, Vilain, 85] the intuition that retrieval and reasoning can be guided and limited by the structure
of the network. This has long been a key intuition behind semantic networks: “...the knowledge required
to perform an intellectual task generally lies in the semantic vicinity of the concepts involved in the task.”
[Schubert, 79]. In particular, ALL draws from semantic networks its frame based data structures [Minsky, 75]
and the idea of access paths. Qur use of access paths is closely related to previous work on path based infer-
ence. Path based inference can be traced back (at least) to [Raphael, 68] and later to [Schwarcz et al., 70] and
[Shapiro & Woodmansee, 69]. A good discussion of path based and node based inference (both of which are
partially subsumed by inference in ALL and would be totally subsumed if ALL supported full quantification
— see section 6.4) is given in [Shapiro, 78].

One difference between ALL and much recent careful work on knowledge representation is that ALL (along
with first-order logic and the original work on semantic networks) allows the knowledge-base designer to name
the relations used in the knowledge-base. After Woods’ influential “What’s in a Link” paper [Woods, 75],
many knowledge representation languages restricted the allowable relations to a small set which were given
a precise syntax and semantics [Brachman 79, Shapiro, 89]. Our approach in ALL is to define our semantics
by “borrowing” the model theory of predicate calculus (by mapping ALL knowledge-bases to statements in
predicate calculus and proving consistency and weakened completeness results) and to allow relations to be
given any names. The meanings of the relations are thus restricted only by the contents of the knowledge-base
(as in predicate calculus).

ALL also differs from past formal work on semantic networks in that it uses a single general purpose
retrieval /reasoning mechanism which is guided by the structure of the network. Past work has generally
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used the structure of the network only for special purpose reasoning (spreading activation, classification
etc.), and has relied on a first-order logic theorem prover [Brachman et al., 83, Schubert et al., 83] or a
weaker deduction system [Levesque, 84, Patel-Schneider, 85, Vilain, 85] for general reasoning.

A notable exception to this generalization is the recent work of Haan and Schubert [Schubert, 79,
Haan & Schubert, 86]. ALL and the networks of Schubert share several features including the use of ac-
cess limitations to guide reasoning. The most obvious way to use the structure of a semantic network to
limit access would be to perform deduction with facts not more than a few (say maybe two) nodes away in the
network. The problem with this strategy is that some nodes (e.g. the node for your spouse) may have a large
number of links, many of which are irrelevant to the problem at hand. The solution used in ECOSYSTEM
is to maintain a taxonomy of knowledge and use this taxonomy to guide reasoning [Haan & Schubert, 86].
The difference in ALL is that access is limited to known access paths, which access facts many nodes away
in the network, but do so in a controlled fashion. Thus in ALL it is the structure of the knowledge itself (or
more specifically the structure of the access paths in the rules) which controls access and reasoning.

Another relevant line of research is the work on vivid knowledge-bases [Etherington et al., 89]. A vivid
knowledge-base “. .. trades accuracy for speed ...” [Etherington et al., 89] by constructing a complete database
of ground facts, from facts that may be presented in a more expressive language. This approach has some of
the same goals as ALL — particularly in the area of efficiency — but takes a much different approach and
makes different trade-offs. At a very high level, the principal differences are:

e ALL represents all the knowledge that has been asserted (though not all of it may be accessible at a
given time) while a vivid knowledge-base is an approximation of the asserted knowledge (thus weakened
completeness results such as Socratic Completeness do not hold for vivid reasoning).

e To obtain increased efficiency, ALL trades completeness for speed while a vivid approach trades both
consistency and completeness for speed.

The design of the inference mechanism in ALL has been heavily influenced by logic programming. In fact
any function-free logic program (without negation) can be written in ALL. Further, the notation and results
from the proof of the completeness of logic programming [Apt, 88, Lloyd, 84] have been used extensively in
the completeness proofs for ALL. In a sense our use of access-paths is a strategy for ordering conjunctive
queries and as such is related to the more elaborate approach given in [Smith & Genesereth, 85]. In fact, if
one follows a discipline of avoiding frame-slots containing a large number of frames'' then the use of access-
paths enforces an ordering on conjunctive queries much like that discussed in [Smith & Genesereth, 85].

6 Conclusion

Given a knowledge representation system with a model theory and a knowledge-base, one may divide the
set of all possible queries in several ways. For example, one can distinguish the queries which succeed from
those which fail. If this set is exactly equal to the set of all queries which are model theoretic consequences of
the knowledge-base then the knowledge representation system is consistent and complete. In ALL we divide
the set of all queries into three sets:

e Those which succeed immediately.
e Those which will succeed after some appropriate series of preliminary queries.

e Those which will never succeed (without additional assertions).

11E.g. if the set things is very large, then one would like to avoid filling the slot members with all the members of things —
rather, the preferred representation in ALL for “f is a thing” would be to put things in the isa slot of f.
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Socratic Completeness then gives a precise characterization of the second and third sets — the second set is
equal to the set of all queries which are model theoretic consequences of the knowledge-base; and the third
set 1s equal to the set of all queries which are not model theoretic consequences. Partitional Completeness
gives a partial characterization of the first set — a query will succeed immediately if all the information
needed to prove it is located ‘close enough’ to the query in the knowledge-base.

6.1 About Socratic Completeness

One of the questions asked about our work!? was “What good is Socratic Completeness when Socrates is
dead?” Meaning that the hard part of reasoning has simply been pushed off to the problem of posing the right
questions. The first answer to this question is that in a system with the expressive power of first-order logic,
the incomputability never goes away; our approach decomposes the problem of reasoning into two parts:
the (tractable) problem of computing the results of queries and the (intractable) problem of deciding what
queries to ask. Past work has made other divisions — e.g. the T-box and A-box of [Brachman et al., 83].
The second answer is that our goal 1s to develop a knowledge representation system with understandable
inferential power. To this end, Socratic Completeness is a necessary (but not yet sufficient) property. Socratic
Completeness guarantees that there is some hope of eventually finding the right questions (by guaranteeing
that the questions exist).

These answers suggest two directions for future work: first, encoding (in the knowledge-base) common-
sense knowledge about what general types of queries are useful for solving common types of complex reasoning
problems; and second, the identification of other weakened completeness properties which, like Partitional
Completeness, define what queries should immediately succeed.

Socratic Completeness is also a step toward a formal specification of what inferential power a knowledge
representation system should provide. Due to its intractability, full logical completeness is too strong a spec-
ification, but provides an upper bound in the search for an appropriate specification. Socratic Completeness
is a fairly weak specification but i1s arguably a necessary property. Thus it provides a lower bound on the
space of appropriate specifications.

6.2 About Partitional Completeness

Partitioning the knowledge-base is not a new idea. Minsky’s original proposal ([Minsky, 75]) for frames envi-
sioned a structure on the knowledge-base consisting of groups of related frames. Hayes’ Naive Physics Man-
ifesto ([Hayes, 85]) also viewed commonsense knowledge as consisting of clusters of closely related concepts,
loosely related to each other. Closer to the implementation level, blackboard architectures ([Hayes-Roth, 85])
also group inference methods into weakly interacting partitions. While these intuitions about the modularity
of knowledge are persuasive, it must be admitted that it has not yet been empirically demonstrated that the
contents of large-scale commonsense knowledge-bases divide naturally into partitions.

If we accept the intuition that knowledge can be meaningfully divided into partitions (or perhaps before
we commit to accepting this intuition), we would like to know what effect partitions have on reasoning.
Intuitively, one would expect that the rules in the partition of a query would somehow be more easily
accessible to the query. The Partitional Completeness Theorem gives a partial formalization of this intuition,
by saying that if a query 1s a logical consequence of the if-needed rules in its partitions then the query will
succeed 1immediately. The theorem also gives us an empirical way to test a partitioning of a large knowledge-
base — if simple queries depend on many rules in other partitions (and thus require many preliminary queries
before they succeed) then the partitions are not well chosen.

2By Rich Thomason at the 1989 Workshop on Formal Aspects of Semantic Networks.
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6.3 About the Complexity Results

The expression given in theorem 4 for the complexity of inference in ALL involves too many variables to be
easily comprehended. In a ‘typical’ knowledge-base one might expect that:

nrules(Q) = nfr(0) (13)
nops(0) = nfr(0)m° (14)

Let n = nfr(0). If we further assume that len is small, then ALL operations can be computed in time of

order:
n3ma+5+5mvars(0)

Certainly a tighter bound could be computed (with somewhat more work). In general we have found
that our examples run much faster than the worst case bound. However, the complexity analysis is still a
useful exercise. Our implementation of ALL originally used an algorithm which was exponential in the worst
case. Replacing it with an algorithm similar to the one given here greatly improved its run time. Further,
the complexity result gives some guidance in the design of knowledge-bases. For example, it suggests that
while the length of rules makes little difference, rules with many variables should be avoided.

6.4 Implementing ALL

Our lisp implementation of ALL is considerably more powerful than the formalism presented in this paper
and can express definite descriptions, full negation, some types of defaults, and quantification. Beyond
simple examples of forward and backward-chaining we have investigated some standard examples of default
inheritance (essentially implementing the inferential distance rule of Touretzky [1986]), the Yale shooting
problem [Hanks & McDermott, 86], several examples which involve reasoning about sets of similar objects,
and some examples of reasoning from quantified information (e.g. From “Every man loves a woman” conclude
that there must be some woman that George loves).. We have also solved the bank problem mentioned in
the introduction. Our most recent work involves the use of ALL to express the ideas of Qualitative Process
Theory [Forbus, 84]. The result [Crawford, Farquhar, & Kuipers, 90] is a system which compiles qualitative
descriptions of physical situations into qualitative differential equations which can be simulated by QSIM
[Kuipers, 86].13

Ultimately we are working towards a formal theory which has the expressive power of predicate calculus,
and is consistent and Socratically Complete, but is still computationally tractable. It is straightforward to
add to ALL the ability to express full classic negation (i.e. not negation by failure), but then inference in
ALL (using rules alone) is no longer Socratically Complete. We are currently working to formalize in ALL
the notion of reasoning by Reductio Ad Absurdum (used in our implementation). Reasoning by Reductio Ad
Absurdum involves adding assumptions to the knowledge-base and then reasoning about their consequences
(and if the consequences of an assumption include ‘false’ concluding the negation of the assumption). We
believe that such a mechanism will allow Socratically Complete reasoning in the presence of classic nega-
tion. Further, the queries determine what assumptions are made, so the complexity of ALL should still be
polynomial (though some hard problems may require an exponential number of preliminary queries).

There is also no way to express existential quantification in our current formalism. We have incorporated
definite descriptions, which define a type of existential quantification, into the implementation of ALL, but
their formalization is not straight-forward (as they do not seem to translate naturally into predicate calculus).
Our most recent work has been on adding, to the implementation, the ability to represent, and do some
kinds of reasoning with, arbitrarily nested quantified expressions. Our approach to nested quantification is
based on the idea of arbitrary objects [Fine, 85]. One may, for example, reason about a large class of objects
by reasoning about an ‘arbitrary object’ having the properties common to all objects in the group. Future
papers will discuss this work in more detail.

13 This is joint work with Adam Farquhar.
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A Appendix — Formal Definition of O,,.

In this appendix we give the formal definition of @,. This amounts to defining with great care the familiar
behavior of forward and backward chaining rules in a knowledge-base. This is a non-trivial exercise, but it is
necessary in order to carefully prove the theorems. Further, a careful formulation of forward and backward
chaining reveals at least one interesting and unexpected problem — the problem of if-added incompleteness
discussed in section 3.4.5.

Formally, for any n, and any operation O allowed in the knowledge-bases of K B:

O, KB x29"% —= 9% x KB. (15)

We define O, in the following 3 cases. In all cases assume K is a knowledge-base, a a (non-empty) path
allowed in K, ¢ a primitive path allowed in K, f a fact allowed in K| and p a subset of C' x R. We use the
shorthand:

lookup(q)(K) ={6 € ©|(3f € K :: 0 = mgru(q, f))}. (16)

Case 1: Base case: O is a primitive operation, and O & p or n = 0.
If O = query(q) then
On (K, p) = (lookup(q)(K), K) (17)

else O = assert(f) and
O, (K, p) = ({{}},closure(K + f)). (18)

Case 2: O is a primitive operation, n > 0, and O € p.

First we find the rules which apply. Let 1 be a renaming which maps variables in rules in N7 to
variables not used in @ or K (this must be possible since the alphabet contains a countably infinite
number of variables).

If O = query(q) then:

R={pmb|p€NrAb=mgru(Key(p)n, q)} (19)
Else, O = assert(f) and:
R={p0|p€ Arnb =mgru(Key(p), f)} (20)
If R =0 then let:
K' = kb(O,-1(K,p)) (21)

Otherwise, we apply the rules and union the results. Applying a rule consists of querying its antecedent
and then asserting its consequent. The consequent is asserted with all substitutions under which the
antecedent succeeds.

If O = query(q) then:

K = closure(U p € R kb(query,_1(Ant(p))(K,p)) U (22)

(U 0 € sub(query,_1(Ant(p))(K,p)) =
kb(assert,_1(Conseq(p))(K,p))))
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On(K, p) = {lookup(g)(K"), K') (23
Else, O = assert(f) and:

K' = closure(U p € R kb(query,_1(Ant(p))(K + f,p)) U (24)

(U@ € sub(queryn—1(Ant(p))(K + f,p)) =
kb(assert,_1(Conseq(p))(K + f,p))))

On(K,p) = ({{}}, K) (25)

Case 3: Non-primitive queries. O = query(a) where « a path of length greater than 1. Assume head(«) = ¢,
and rest(o) = o. If sub(query, (¢)(K,p)) = {} (i.e. query,(g) ‘failed’),

On(K,p) = ({}, K) (26)

else (queryy (q) succeeded so we branch on all resultant substitutions and union the results):

O, (K, p) = closure((| 0 € sub(query,(q)(K, p)) (27)
22 {6 o sub(query, (o’0)(K, p)),
kb(queryn (9)(K, p)) U kb(query, (o'0)(K,p)) ) ))
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