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2 OVERVIEW OF ACCESS-LIMITED LOGIC 2Reasoning is hard. If a knowledge representation language is as expressive as �rst-order predicate calculus,then the problem of deciding what an agent implicitly knows (i.e. what an agent could logically deduce fromits knowledge) is unsolvable [Boolos & Je�rey, 80]. Thus a sound and decidable knowledge representation andreasoning system must either give up expressive power, or use a weak inference system with an incomplete setof deduction rules or arti�cial resource limits (e.g. bounds on the number of applications of modus ponens).However, such inference systems tend to be di�cult to describe semantically and tend to place unnaturallimits on an agent's reasoning ability [Levesque, 86].As an example of non-trivial inference, consider the following problem (from [Wylie, 57]):In a certain bank the positions of cashier, manager, and teller are held by Brown, Jones andSmith, though not necessarily respectively. The teller, who was an only child, earns the least.Smith, who married Brown's sister, earns more than the manager.What position does each man �ll ?A person looking at such a problem cannot come up with a solution immediately (though the positions followfrom a fairly small amount of common-sense knowledge about families, partial orders, and co-reference). Acertain amount of conscious thought is required; one has to ask oneself just the right questions. Similarly,we do not expect our knowledge-representation system to be able to solve such a problem immediately, sinceintuitively we expect it to be able to reason only about as well as a person could reason without consciousthought. We do, however, expect it to be able to solve such a problem after being given an appropriate setof leading questions. If we ask:1. If Smith were the manager then how could he earn more than the manager ?2. If Smith were the teller then how could he earn more than the manager ?3. If Brown were the teller then how could he have a sister ?then one can see immediately that Smith must be the cashier, Brown the manager, and Jones the teller.Similarly, a knowledge-representation system, after being ask by the user (or heuristically generating) sucha series of questions should be able to determine which man holds which position. We have translated thisproblem into ALL and given it (along with appropriate common-sense knowledge) to our lisp implementation,Algernon. Inference in Algernon is incomplete, and Algernon fails initially to solve the problem. However,after we ask it the questions given above, it is able to determine which position each man �lls.More abstractly, ALL has an important property we call Socratic Completeness1 | for any query of aproposition which is a consequence (in predicate calculus) of the knowledge-base, there exists a preliminaryquery after which the original query will succeed. ALL also has a more technical weakened completenessproperty which we call Partitional Completeness. Roughly, Partitional Completeness says that if all factsand rules needed to prove a query are located `close enough' (see section 3) to the query, then it will succeedimmediately.The rest of this chapter is organized as follows. In section 2 we discuss our general approach to knowledge-representation. Section 3 gives an overview of the formalization of ALL, and the proofs of Socratic andPartitional Completeness. We outline the argument for the polynomial time complexity of ALL in section4. In section 5 we brie
y discuss related work, and section 6 is our conclusion.2 Overview of Access-Limited LogicIn the broadest sense the study of knowledge-representation is the study of how to represent knowledge insuch a way that the knowledge can be used by a machine. From this vague de�nition we can conclude thata knowledge-representation system must have the following properties:1We have since discovered that the idea of Socratic Completeness is also used in [Powers, 78] where it is referred to asSocratic Adequacy.



2 OVERVIEW OF ACCESS-LIMITED LOGIC 31. It must have a reasonably compact syntax.2. It must have a well de�ned semantics so that one can say precisely what is being represented.3. It must have su�cient expressive power to represent human knowledge.4. It must have an e�cient, powerful, and understandable reasoning mechanism.5. It must be usable to build large knowledge-bases.It has proved di�cult, however, to achieve the third and forth properties simultaneously.Our approach in ALL begins with the well known mapping between atomic propositions in predicatecalculus and slots in frames; the atomic proposition that the object a stands in relation r to the object bcan be written logically as r(a; b) or expressed, in frames, by including object b in the r slot of object a[Hayes, 79]. P (a; b) � a: P: values: f : : :b : : : gWe refer to the pair ha; ri as a frame-slot. Thus r(a; b) is equivalent to saying that the value b is in theframe-slot ha; ri. The frames directly accessible from a frame-slot are those which appear in the frame-slot.2Extending this idea, we de�ne an access path, in a network of frames, as a sequence of frames such that eachis directly accessible from a frame-slot of its predecessor. It is useful to generalize this de�nition and allowaccess paths to branch on all values in the frame-slots. A sequence of propositions de�nes an access pathif any variable appearing as the �rst argument to a proposition has appeared previously in the sequence(operationally, this means that retrieval always accesses a known frame-slot). For example, \John's parent'ssister" can be expressed in ALL as the path:(parent(John; x); sister(x; y))This de�nes an access path from the frame for John to the frames for John's parents (found by looking inthe frame-slot hJohn; parenti), to John's parents' sisters.>From access paths we build the inference rules of ALL. A rule is always associated with a particularslot in the network. Backward chaining if-needed rules are written in the form: �  � (the structure of �and � is discussed below) and applied when a value for the slot is needed. Forward chaining if-added rulesare written in the form: � ! � and applied when a new value for the slot is inserted. In either case theantecedent of a rule must de�ne an access path (beginning with the slot the rule is associated with). Forexample, using the access path above we can write the if-needed rule:aunt(John; y) parent(John; x); sister(x; y)But we cannot write the (logically equivalent) rule:aunt(John; y) sister(x; y); parent(John; x);since the antecedent does not de�ne an access path.32Slots in ALL contain only frames and rules (de�ned below).3The restriction to access paths limits the syntax of ALL, but is not a fundamental limit on its expressive power since onecould always add a new constant and make it the �rst argument to every predicate. This would amount to making the entireknowledge-base a single frame.



3 THE LOGICAL COHERENCE OF ALL. 4Where a classical deductive method or logic programming language would retrieve all known assertionsthat satisfy a given pattern, an access-limited logic retrieves all assertions reachable by following an availableaccess path. The use of access paths alone, however, is insu�cient to guarantee computational tractability invery large knowledge-bases. The evaluation of a path can cause an explosive back-chaining of rules which canspread throughout the knowledge-base. To prevent this, ALL introduces a second form of access limitation.The knowledge-base in ALL is divided up into partitions and back-chaining is not allowed across partitions| facts in other partitions are simply retrieved. When used together, these two kinds of access limitationscan limit the complexity of inference to a polynomial function of the size of the portion of the knowledge-baseaccessible from the local partition.3 The Logical Coherence of ALL.A price must be paid for the e�ciency of access limitations. Inference in ALL is weaker than inference inpredicate calculus, since only locally accessible facts and rules can be used in deductions. However, logicalcoherence does not necessarily require completeness. Rather it is an informally de�ned collection of desirableformal properties. We have proven that a dialect of ALL has the following properties of a logically coherentknowledge representation system:� ALL has a well de�ned syntax and proof theory.� The semantics of ALL can be de�ned by a purely syntactic mapping of ALL knowledge-bases, queriesand assertions to predicate calculus.� In terms of this mapping, inference in ALL is consistent, Socratically Complete, and PartitionallyComplete.These properties are stated more precisely in theorems below.We view these formal properties as necessary but not su�cient conditions for logical coherence. Thereremains, at least, the less formal claim that knowledge can be organized cleanly into partitions. This claimis discussed further in sections 3.4.2 and 6.2.The rest of this section sketches the formal development of ALL. The full account can be found in[Crawford & Kuipers, 90]. Our formal work in ALL generally lags several months behind our implementationwork and the results presented here only formalize a part of ALL. Speci�cally, our current formalism doesnot allow negation or quanti�cation (though our lisp implementation supports both | see section 6).3.1 Basic NotationIn the meta-theory of ALL we use the following notation. Quanti�ed expressions are written in the form:(hQuantifierihV ariablei : hRangei : hExpressioni):Thus, for example: (8x : pred1(x) : pred2(x))is read \For all x such that pred1(x), pred2(x)". Similarly:([x : pred(x) : foo(x))(where foo is a set valued function) denotes the union, over all x such that pred(x), of foo(x).We delineate lists with the usual () and notate the empty list by nil. If � is a list then:� head(�) is the �rst element in �.� rest(�) is all but the �rst element in �.We de�ne append(�1; �2) to be the result of appending the list �1 to the beginning of the list �2.



3 THE LOGICAL COHERENCE OF ALL. 53.2 Syntax of ALLThe syntax of ALL is quite similar to the syntax of logic programming. Accordingly we develop the syntaxof ALL generally following the notation in [Apt, 88].3.2.1 Alphabets, Terms and PropositionsThe alphabet of an Access-Limited Logic consists of countably in�nite sets of variables, constants, andrelations, the connectives  and!, and the operators query and assert. A term is a constant or a variable.r(t1; : : : ; tn) is a proposition i� r is an n-ary relation and all ti are terms.4 A fact is a proposition such thatall ti are constants. For a term, proposition, or list of propositions, �:� vars(�) is the set of variables appearing in �.� relations(�) is the set of relations appearing in �.� constants(�) is the set of constants appearing in �.If vars(�) = ; then � is ground. (so a ground propositions is a fact).3.2.2 Access PathsAn access path (or simply a path) is a pair hV; �i where � is a list of propositions and V is a set of variables.In general the �rst argument to each proposition in � must have occurred previously in �. The variables inV are exceptions to this rule and may occur as the �rst argument to propositions without having occurredpreviously in �. The need for such exceptions will become apparent when rules are de�ned below. If V = fgthen we omit it and say � is a path. A path of length one is a primitive path.3.2.3 RulesAssume r(t1; : : : ; tn) is a proposition and � is a non-empty list of propositions. r(t1; : : : ; tn)  � is anif-needed rule i� both of the following hold:1. Either t1 is a constant and � is a path, or t1 is a variable and hft1g; �i is a path.2. vars(ft1; : : : ; tng) � vars(�).Intuitively, the �rst restriction ensures that when the rule is \�red" (i.e. when the consequent of the rulehas been uni�ed against a primitive path), the antecedent is an access path. The second restriction ensuresthat any substitution which grounds the antecedent of a rule also grounds its consequent.If � = r(t1; : : : ; tn)  � is an if-needed rule, we use the accessor functions: Key(�) = r(t1; : : : ; tn),Conseq(�) = r(t1; : : : ; tn), and Ant(�) = �. Intuitively, the Key of a rule is the proposition the rule isindexed under in the knowledge-base.Assume r(t1; : : : ; tn) is a proposition and � is a non-empty list of propositions. � ! r(t1; : : : ; tn) is anif-added rule i� both of the following hold:1. hvars(head(�)); �i is a path.2. vars(ft1; : : : ; tng) � vars(�).4n place relations cause no problems in ALL. Intuitively, r(t1; : : : ; tn) corresponds to putting the value (t2; : : : ; tn) in the rslot of t1.



3 THE LOGICAL COHERENCE OF ALL. 6As for if-needed rules, the �rst restriction ensures that when the rule is \�red" (i.e. when the head of theantecedent of the rule has been uni�ed against a fact being added to the knowledge-base), the antecedent isan access path. The second restriction again ensures that any substitution which grounds the antecedent ofa rule, also grounds its consequent.If � = � ! r(t1; : : : ; tn) is an if-added rule, we again use the accessor functions: Key(�) = head(�),Conseq(�) = r(t1; : : : ; tn), and Ant(�) = �.3.2.4 Knowledge-BasesIf S is a set then s1; : : : ; sn is a partitioning of S i�:� (8i : 0 � i � n : si � S), and� (S i : 1 � i � n : si) = SA Knowledge-Base, K, is a six-tuple hC;R;Nr;Ar; F; P i where:C = A set of constants.R = A set of relations.Nr = A set of if-needed rules such that (8� : � 2 Nr: constants(�) � C ^ relations(�) � R).Ar = A set of if-added rules such that (8� : � 2 Ar: constants(�) � C ^ relations(�) � R).F = A set of facts such that (8f : f 2 F : constants(f) � C ^ relations(f) � R).P = A partitioning of C � R.If K = hC;R;Nr;Ar; F; P;Ai is a knowledge-base and � is a proposition, list of propositions or a rule,then � is allowed in K i� constants(�) � C ^ relations(�) � R. Finally, the members of P are referred toas the partitions of K.Unless otherwise speci�ed a knowledge-baseKi should be understood to have components hC;R;Nr;Ari; Fi; P i(we subscript Ar and F because, as will be seen, they are the two components which change when operationsare performed).3.2.5 Operations and FormulasIf � is a path then query(�) is a query. If � is a primitive path then query(�) is a primitive query. Iff is a fact then assert(f) is an assertion (assertions of paths are not currently allowed). Any query orassertion is an operation, and any assertion or primitive query is a primitive operation. If O = query(�)or O = assert(�) is an operation and � is allowed in a knowledge-base K, then O is allowed in K. If anoperation O is allowed in a knowledge-base K, then O(K) is an ALL formula.3.3 Mapping ALL to Predicate CalculusWe de�ne the semantics of ALL by mapping ALL knowledge-bases, assertions, and queries to (�rst order)predicate calculus. An alternative approach would be to de�ne a model theory for ALL, in terms of whichALL is complete. This could be done, but we believe that (since the model theory of predicate calculus iswell understood), mapping to predicate calculus and appropriately weakening the notion of completenessgives a more perspicuous picture of the semantics of ALL. Further, we believe that consistency and SocraticCompleteness relative to predicate calculus (or perhaps an appropriate non-monotonic logic) are necessaryproperties for any knowledge representation system.Mapping ALL to predicate calculus is straightforward. Propositions do not change at all. Paths becomeconjunctions. Rules become implications with all variables universally quanti�ed. Knowledge-bases becomethe conjunction of their rules and facts. We notate the Predicate Calculus equivalent of an ALL object, a,by PC(a).



3 THE LOGICAL COHERENCE OF ALL. 73.4 Knowledge TheoryThe knowledge theory of ALL de�nes the values of ALL formulas by de�ning the action of ALL operations(i.e. queries and assertions). Intuitively, the assertion of a fact f , adds f to a knowledge-base and returns theresultant knowledge-base (i.e. the knowledge-base after f is added, all applicable if-added rules are applied,and all if-added rules are closed (see section 3.4.5)). A query of q returns the substitutions needed to makeq true in the knowledge-base. It also returns a new knowledge-base (since processing the query may changethe knowledge-base by invoking rules).3.4.1 SubstitutionsA substitution is a �nite mapping from variables to terms:� = fv1=t1; : : : ; vn=tngwhere the vi (1 � i � n) are distinct variables. If all ti (1 � i � n) are constants then � is ground. Let thevariables in the alphabet (see section 3.2.1) be V . A substitution � is a renaming i� it is a bijection (i.e. a1 : 1 onto mapping) from V to V .If e is an expression and � is a substitution then e� is the result of applying � to e (simultaneouslyreplacing each occurrence in e of the variables in fv1; : : : ; vng with the corresponding term).If there exists a substitution � such that � = � � � then � is more general than �. Intuitively, if � is moregeneral than � then � does strictly `less work' than �. A uni�er of two primitive propositions q1 and q2, isa substitution � such that q1� = q2�. The most general uni�er of two primitive propositions q1 and q2 is auni�er � of q1 and q2 such that for any other uni�er � of q1 and q2, � is more general than �. A uni�er � ofq1 and q2 is relevant i� it binds only variables in q1 and q2, and it maps to only variables in q1 and q2. Wenotate the most general relevant uni�er of q1 and q2 as mgru(q1; q2).5 It has been shown in [Apt, 88] thatany propositions which are uni�able, have a most general relevant uni�er.3.4.2 The Partitions of ALL OperationsIntuitively, a partition of K corresponds to a part of the knowledge-base which is somehow semanticallycohesive, and distinct from the rest of the knowledge-base. Facts and rules are often thought of as being `in'partitions and operations are thought of as `taking place' in subsets of C � R (unions of partitions). Theintuition behind this comes from the frame view of ALL knowledge-bases. Recall that ALL constants can bethought of as frames, and relations as slots in these frames (e.g. the fact r(c1; c2) is equivalent to having thevalue c2 in the r slot of the frame c1). Thus a pair hr; ci can be thought of as a particular slot in a particularframe in the knowledge-base. Recall that we refer to such a pair as a frame-slot. Partitions are thus setsof frame-slots. Further, note that any primitive path � (by the de�nition of a path) must reference exactlyone frame-slot and thus can be said to be `in' a partition. In fact, since partitions can overlap, it can be inseveral partitions and any operation on � is performed `in' the subset of C �R formed by taking the unionof these partitions. Intuitively, this union de�nes the rules which are available to the operation.More formally, if K is a knowledge-base and � = r(c; t1; : : : ; tn) is a primitive path (i.e. c a constant andall ti, 1 � i � n, are terms) and p is a subset of C�R (e.g. a partition or the union of several partitions) then� 2 p i� hc; ri 2 p. If P = fp1; : : : ; png6 and O = query(�) or O = assert(�) then the union of partitionsfor O is: parK(O) = ([i : 1 � i � n ^ � 2 pi : pi)5The use of most general relevant uni�ers (instead of just most general uni�ers) is necessary for technical reasons. The basicproblem with most general uni�ers is that one can compose a most general uni�er with an arbitrary renaming and the resultis still a most general uni�er.6Recall that a knowledge-baseK is understood to have components hC;R;Nr;Ar; F; P i. Thus P is the set of partitions ofK.



3 THE LOGICAL COHERENCE OF ALL. 83.4.3 The Domain and Range of All OperationsAny given sets C;R;Nr; P de�ne a �nite set of possible knowledge-bases KB (di�ering only in facts andif-added rules), and an in�nite set of ground substitutions � (binding variables in the alphabet to constantsin C).7 For any operation O allowed in the knowledge-bases in KB (note that an operation allowed in anyknowledge-base in KB is allowed in all knowledge-bases in KB):O : KB �! 2� �KB: (1)We notate these returned values with pairs: h `Set of Substitutions', `Knowledge Base' i. and use sub andkb as accessors on the �rst and second components respectively.3.4.4 The Values of ALL OperationsDe�ning the values of ALL operations is primarily a matter of formalizing the action of forward and backwardchaining rules. We use the following basic notation for knowledge-bases and substitutions:If K1 and K2 are knowledge-bases (di�ering only in their facts and if-added rules), then:K1 [K2 = hC;R;Nr;Ar1 [ Ar2; F1 [ F2; P i:If further, f is a fact allowed in K1 then:K1 + f = hC;R;Nr;Ar1; F1 [ ffg; P i;and f 2 K1 i� f 2 F1. If � and � are substitutions then � � � notates � followed by �. If further, �1 is a setof substitutions then � ��1 = f� � �1 j �1 2 �1g.For a primitive operation O, we de�ne On(K; p) to be the result of the operation O on the knowledge-baseK, in some subset of C �R, p, with rule chaining cut o� at depth n. A certain amount of technical care isrequired to formalize On (as it requires carefully de�ning forward and backward rule chaining). Details ofthe de�nition are given in the appendix.We de�ne O to be the union over all n of On (in the partition of O). The idea here is to cause O tobe a �xed-point of rule applications. We will eventually show (in section 4) that there is always an n afterwhich increasing the depth of rule chaining does not a�ect the result. Thus, intuitively, O chains just farenough so that chaining any farther would have no a�ect (one advantage of this approach is that recursiverules (e.g. rules of form q  q) do not cause problems in ALL (or its lisp implementation)).It will be important that the knowledge-bases resulting from ALL operations are `closed'. We guaranteethis by applying the function closure to the knowledge-base which is to be returned. Closed knowledge-basesand closure are discussed in the next subsection (3.4.5).We thus de�ne: O(K) = closure(([ n : n > 0 : On(K; parK(O))))The result of a non-primitive operation can then be de�ned in terms of the results of its constituent primitiveoperations. If O is non-primitive then it must be a query (see section 3.2.5). Assume O = query(�) for somepath �. Further, assume q = head(�), and �0 = rest(�), then:If sub(query(q)(K)) = fg (i.e. query(q) `failed'):O(K) = hfg;Kielse (query(q) succeeded so we branch on all resultant substitutions and union the results):O(K) = closure((S � 2 sub(query(q)(K)) :: h � � sub(query(�0�)(K)); (2)kb(query(q)(K)) [ kb(query(�0�)(K))i ))Figure 1 shows a query on a simple knowledge-base.7Technically, we should write KBC;R;Nr;P and �C;R;Nr;P , but we generally omit the subscripts since they are clear fromcontext.



3 THE LOGICAL COHERENCE OF ALL. 9
Assume K is a knowledge-base such that:C = fcgR = fr1; r2gNr = fr1(c; x) r2(c; x)gAr = fgF = fr2(c; c)gP = ffhc; r1i; hc; r2iggConsider query(r1(c; x))(K) (where x is a variable). This is a primitive operation andparK(r1(c; x)) = fhc; r1i; hc; r2ig, so we must �rst compute:query0(r1(c; x))(K; fhc; r1i; hc; r2ig)Rule back-chaining is cut o� at depth zero so no rules apply andquery0(r1(c; x))(K; fhc; r1i; hc; r2ig) = hfg;Ki(an empty list of substitutions is returned since there is no known value of x for which the querysucceeds). However, when we calculatequery1(r1(c; x))(K; fhc; r1i; hc; r2ig);the if-needed rule applies andquery1(r1(c; x))(K; fhc; r1i; hc; r2ig) = hffx=cgg;K + r1(c; c)i(fx=cg binds x to c). As n is increased further there are no other rules to apply soquery(r1(c; x))(K) = hffx=cgg;K + r1(c; c)i:Figure 1: A query on a simple knowledge-base.



3 THE LOGICAL COHERENCE OF ALL. 10Assume K is a knowledge-base such that:C = fcgR = fr1; r2; r3gNr = fgAr = fr1(x; x); r2(x; x)! r3(x; x)gF = fr1(c; c)gP = ffhc; r1i; hc; r2i; hc; r3iggAssume that we de�ne closure(K) = K. Consider assert(r2(c; c))(K). After this operation bothr1(c; c) and r2(c; c) will be facts in the knowledge-base. However, query(r3(c; c))(K) will fail. Therule r1(x; x); r2(x; x)! r3(x; x) never applies because r1(c; c) was added before r2(c; c).Figure 2: An example of if-added incompleteness.3.4.5 The Problem of If-Added IncompletenessIn ALL, the application of an if-added rule is triggered by the assertion of a fact which matches the Key ofthe rule. One problem with this approach is that, if one is not careful, it can be the case that rules, whoseantecedents are entailed by the knowledge-base, may never �re. Such a case is shown in the �gure 2.Our solution to this problem is to `close' the if-added rules in the knowledge-base. Intuitively this meansthat for any fact f and any if-added rule �! q, if there is some substitution � = mgru(f; head(�)), then weadd to the knowledge-base the rule rest(�)� ! q�. For a knowledge-base K, we notate by closure(K), theknowledge-base formed by closing all the if-added rules in K. We also use the shorthand closure(hK;�i) forhclosure(K);�i.Consider the example in �gure 2. Note that the initial knowledge-base is not closed, since it includesthe rule r1(x; x); r2(x; x)! r3(x; x) and the fact r1(c; c), but not the rule r2(c; c)! r3(c; c). Further, if weconsider assert(r2(c; c))(closure(K)), then the resultant knowledge-base does include r3(c; c).3.4.6 Implementation NoteThere are three important di�erences between the formal de�nitions of ALL operations given here and ourlisp implementation. First, in the formalism,when an operation branches (e.g. when several rules are appliedor when the evaluation of a path branches on several possible instantiations of its variables) the branchesare computed separately (`in parallel') and the results are unioned together. In our implementation thebranches are computed serially (i.e. one rule is applied and then the next rule is applied in the resultantknowledge-base).8 There are two advantages of the formalization presented here over a `serial' formalization.First, the complexity analysis is considerably simpli�ed, and second, the formalism given here would alsoapply to a parallel implementation of ALL.The second di�erence is that our implementation supports limits on the accessibility of rules, which havebeen omitted (for simplicity) from the current formalization. In our implementation, a rule can be `associated'with a frame f0, and only accessed from frames known to be in an isa relation with f0. Intuitively, suchrules apply only to members of the set f0.98Since ALL operations are monotonic, the serial implementation returns knowledge-bases which are supersets of those givenby the formalism. Hence, our completeness results carry over to the serial case.9Such access limitations can be formalized. The key idea is that when a rule associated with a set is translated to predicatecalculus (see section 3.3) one must prepend an appropriate isa relation to its antecedent. It should be possible to show thatthe completeness results carry over (some care must be taken, however, when de�ning the closure of a knowledge-base with



3 THE LOGICAL COHERENCE OF ALL. 11Our implementation of closure demonstrates a useful application of rules associated with sets. One mightworry that closing a knowledge-base might add a large number of if-added rules and thus slow the system(since we have to try to unify against all of them). However, we associate these if-added rules with verysmall sets (sets of size one) and they are thus ignored except when they are needed. Consider a rule added inthe closure of a knowledge-base. It must be of form rest(�)� ! q�. It follows from the de�nition of if-addedrules that rest(�)� must be a path. This implies that head(rest(�)) must be of form r(c; t1; : : : ; tn). Thus(in our implementation) we simply associate this rule with a set consisting of the single element (frame) c(creating such a set if it does not exist).The third di�erence is also related to our implementation of closure. Consider an assertion of a fact f .This assertion may trigger an if-added rule which asserts a fact f 0 into a partition p0 which is disjoint fromthe partitions of f . In our implementation, f 0 is queued (in p0) and any if-added rules for f 0 are not applieduntil `attention' is drawn to p0 (by some operation in p0). This ensures that the complexity of an operation isa function only of the rules in its partitions. We have not yet incorporated the notion of `queuing' assertionsinto our formalism. Thus facts are closed with respect to all if-added rules in the knowledge-base, and thecomplexity of an operation (as will be seen in section 4) is a function of the set of all if-added rules in theknowledge-base.3.5 ConsistencyConsistency is often intuitively thought of as \You can't derive a contradiction." Consistency requires thatthe substitutions returned by a query must be semantic consequences of the old knowledge-base.10 Therequirements on the new knowledge base are more subtle. Consistency intuitively requires that propositionsdo not suddenly become true, or, in model theoretic terms, that models are not suddenly lost. Thus anymodel of the new knowledge-base must also be a model of the old knowledge base (and in an assertion amodel of the formula being asserted):Theorem 1 (Consistency of ALL) For any knowledge-base K, any path � allowed in K, and any fact fallowed in K:1. (8� 2 � : � 2 sub(query(�)(K)) : PC(K) j= PC(��))2. PC(K) j= PC(kb(query(�)(K)))3. (PC(K) ^ PC(f)) j= PC(kb(assert(f)(K)))Proof (sketch): The proof of consistency is primarily a matter of carefully working through the de�nitionof O. One inducts on n to show, for all n, that On is consistent. One can then induct on the length of � toshow that O is consistent.3.6 CompletenessCompleteness can be thought of as \Any true fact is derivable." Thus completeness requires that all sub-stitutions which are semantic consequences of the old knowledge-base are returned by query. Completenessalso requires that true facts do not suddenly become false. In model theoretic terms this means that we donot gain models. Thus any model of the old knowledge-base must also be a model of the new knowledge-base. Note that the requirements for completeness are essentially the requirements for consistency with theirimplications reversed:respect to an isa relation).10More precisely, for any query of a path �, if � is returned then PC(��) must be a consequence of the knowledge-base.



3 THE LOGICAL COHERENCE OF ALL. 12Assume K = hC;R;Nr;Ar; F; P i is a knowledge-base such that:C = fcgR = fr1; r2; r3gNr = fr1(c; x) r2(c; x)gAr = fr1(c; x)! r3(c; x)gF = fr2(c; c)gP = ffhc; r1i; hc; r2i; hc; r3iggConsider query(r3(c; x))(K). This query must fail since it matches no facts in F and there are noif-needed rules for r3(c; x). But, any model of PC(K) must be a model of PC(r3(c; c)) (by the tworules and the fact that r2(c; c) is in F ). Hence, inference in ALL is not complete.Figure 3: A form of incompleteness in ALL.Conjecture 1 (Completeness of ALL) For any knowledge-base K, any path � allowed in K, and anyfact f allowed in K, let �� be the set of all ground substitutions binding all and only variables in �. Then:1. (8� 2 �� : PC(K) j= PC(��) : � 2 sub(query(�)(K)))2. PC(kb(query(�)(K)) j= PC(K)3. PC(kb(assert(f)(K))) j= (PC(K) ^ PC(f))Unfortunately, part one of this conjecture is false. In some cases, rules necessary for a query to succeedcannot be accessed. Two such cases are shown in the �gures 3 and 4.Notice, however, that in the example in �gure 3:query(r3(c; x))(kb(query(r1(c; x))(K)))would succeed since r3(c; c) is added to kb(query(r1(c; x))(K)) by the if-added rule r1(c; x) ! r3(c; x).Similarly, in �gure 4, query(r1(c; x))(kb(query(r2(c; x))(K)))succeeds. This suggests the idea behind Socratic Completeness. Informally, the Socratic CompletenessTheorem says that for any query of � which `should' succeed in a knowledge-base, there exists a series ofpreliminary queries, �, after which a query of � will succeed. We also show a second type of weakenedcompleteness result, Partitional Completeness. Partitional Completeness says that if all information neededto process a query can be located by the if-needed rules in the partitions of the query, then the query willsucceed.3.6.1 Socratic CompletenessTo state the Socratic Completeness theorem we need a shorthand for the result of a series of queries:If � is a series of paths allowed in a knowledge-base K then let:query(nil)(K) = K (3)query(�)(K) = query(head(�))(kb(query(rest(�)(K)))) (4)



3 THE LOGICAL COHERENCE OF ALL. 13Assume K = hC;R;Nr;Ar; F; P i is a knowledge-base such that:C = fcgR = fr1; r2; r3gNr = fr1(c; x) r2(c; x); r2(c; x) r3(c; x)gAr = fgF = fr3(c; c)gP = ffhc; r1ig;fhc; r2i; hc; r3iggConsider query(r1(c; x))(K). This query must fail since the only rule for r1(c; x) depends on r2(c; x),which matches no facts in F and is not in parK(r1(c; x)) (so no rules for r2(c; x) �re). But, anymodel of PC(K) must be a model of PC(r1(c; c)) (by the two rules and the fact that r3(c; c) is inF ). Figure 4: Another form of incompleteness in ALL.Theorem 2 (Socratic Completeness) For any knowledge-base K, any path � allowed in K, and any factf allowed in K, let �� be the set of all ground substitutions binding all and only variables in �. Then:1. (8� 2 �� : PC(K) j= PC(��): (9� : � a series of paths allowed in K : � 2 sub(query(�)(kb(query(�)(K))))))2. PC(kb(query(�)(K))) j= PC(K)3. PC(kb(assert(f)(K))) j= (PC(K) ^ PC(f))Proof (sketch): Parts 2 and 3 follow relatively easily from the de�nitions of O, and PC. Part 1 is shownby induction on the length of �. The tricky part is the base case. We map K to an equivalent logic programLP(K). One can then show that for any rule in K which would apply on the next iteration of TLP(K)(where T is the immediate consequence operator in logic programming | see [Crawford & Kuipers, 90] or[Apt, 88]) there exists a path in ALL the query of which will cause the rule to �re (this result would not holdfor if-added rules if we did not close our knowledge-bases | see section 3.4.5). We know from the study oflogic programming (see [Apt, 88]) that `completeness' with respect to the immediate consequence operatoris su�cient to guarantee completeness.3.6.2 Partitional CompletenessIntuitively, Partitional Completeness says that if all information needed to prove a query is located `closeenough' to the query then the query will succeed. Formally `close enough' will mean that the informationis reachable using only if-needed rules in the partitions of the query. In order to state the PartitionalCompleteness Theorem, we �rst have to de�ne which rules in the knowledge-base are considered `part' ofwhich partitions. A rule is considered a part of a partition if it could be triggered by queries to, and assertionsinto, the frame-slots in that partition. Counterintuitively, partitions limit access to rules not facts. Whenwe speak of a fact as being in a partition, we mean that the fact is queried (or asserted) using the rules inthat partition. Theoretically a rule could access facts in every partition of the knowledge-base; it is the useof access paths, not partitions, which limits access to facts.



4 COMPLEXITY 14If K is a knowledge-base, p � C �R, and S is a set of rules from K, then Snp, the restriction of S to p,is given by:Snp = f�� j � 2 S ^Key(�) = r(t1; : : : ; tn)^((t1 a constant ^ � = ; ^ ht1; ri 2 p)_(t1 a variable ^ (9c 2 C : hc; ri 2 p : � = ft1=cg)))g:Intuitively, Snp is the restriction of S to only the rules in p. The knowledge-base K with its rulesrestricted to only the if-needed rules in p � C �R is given by:Knp = hC;R;Nrnp; ;; F; fpgi: (5)Note that Knp is never computed (in the de�nition of ALL formula or in our lisp implementation of ALL);It is only a formal object used to state the partitional completeness theorem.Theorem 3 (Partitional Completeness) For any knowledge-base K and any primitive path q allowed inK, let �q be the set of all ground substitutions binding all and only variables in q, then:(8� 2 �q : PC(KnparK (q)) j= PC(q�) : � 2 sub(query(q)(K)))Proof (sketch): The proof of this theorem again relies on results from the study of logic programming.Let ground(q) be the set of all variable free instantiations of q. Further, for any logic program pg, and anyset of facts I, let: Tpg " 0(I) = ITpg " (n + 1)(I) = Tpg(Tpg " n(I))The key lemma is that for any p � C �R, and for all n > 0:ground(q) \ TLP(Knp) " n(;) � kb(queryn(q)(K; p))Intuitively, this says that if a fact is an instantiation of q, and is in the knowledge-base produced by niterations of the immediate consequence operator, then it is in the knowledge-base produced by queryn(q).From this lemma the result again follows by the observation (from the study of logic programming, see[Apt, 88]) that `completeness' with respect to the immediate consequence operator is su�cient to guaranteecompleteness.4 ComplexityIn this subsection we show that a primitive ALL operation can be computed in time polynomial in the sizeof the portion of the knowledge-base accessible to it. We focus on primitive operations since non-primitiveoperations are de�ned as sequences of primitive operations (equation 2).To discuss the complexity of ALL it is useful to return to the view of an ALL knowledge-base as acollection of frames and slots. This view was introduced in section 1 and discussed further in section 3.4.2.The basic idea is that constants are thought of as frames, and relations are thought of as slots. The factr(c1; c2) is equivalent to putting c2 in the r slot of the frame c1. Recall that if c is a frame and r is a slot thenwe refer to the pair hc; ri as a frame-slot. Recall also that partitions are simply collections of frame-slots.The de�nition of the accessible portion of a knowledge-base is fairly technical and is given in [Crawford & Kuipers, 90].In this section we simply give the intuitions behind the de�nitions.For a knowledge-base K, and p � C�R we �rst de�ne rules(p) = Ar[Nrnp. Now, consider a primitiveoperation O allowed in a knowledge-base K, and assume O = query(q) or O = assert(q). We de�nethe reachn(q; p) to include all frame-slots which can be accessed in the calculation of On in p, with rule



4 COMPLEXITY 15backchaining cut o� at depth n, and changen(q; p) to include all frame-slots which can be changed in thecalculation of On in p (with rule backchaining cut o� at depth n). We de�ne framesn(q; p) to include allframes which On can access (with rule backchaining cut o� at depth n). framesn(q; p) includes the framesappearing in frame-slots in reachn(q; p), plus the frames appearing explicitly in rules in rules(p) or in qitself. Finally, we de�ne closuref&r (O) to include all facts and rules which could potentially be added tothe knowledge-base by O.We de�ne opsn(O) to include all operations that On `potentially depends on'. These include all queriesof frame-slots in reachn(q; parK(O)) and all assertions (of frames in framesn(q; parK(O))) into frame-slotsin changen(q; parK(O)) (some amount of care is required to prove that ops includes all the assertions andqueries which On depends on | for details (and a formal de�nition of `the set of all operations which Odepends on') see [Crawford & Kuipers, 90]).We then de�ne: reach(q; p) = ([n : n > 0 : reachn(q; p)) (6)change(q; p) = ([n : n > 0 : changen(q; p)) (7)frames(q; p) = ([n : n > 0 : framesn(q; p)) (8)ops(O) = ([n : n > 0 : opsn(O)): (9)Figures 5 and 6 show reach, change, and ops for two simple queries.Theorem 4 If O = query(q) or O = assert(q) is a primitive operation allowed in a closed knowledge-baseK then let: nops(O) = j ops(O) j (10)nfr(O) = j frames(q; parK (O)) j (11)nrules(O) = j rules(parK(O)) j (12)Finally, let ma be the maximum arity of any relation in R, mvars(O) be the maximum number of variables inany rule in rules(park(O)), and len be the maximum length of the antecedent of any rule in rules(parK (O)).O(K) can be computed in time of order:len5 � nops(O)2 � nrules(O)5 � nfr(O)5mvars(O)+ma:Proof (sketch): O is de�ned as an in�nite union of On's thus it is not obvious how it can be computed.However, one can show that if there is an n at which all the operations which O `depends on' (i.e. alloperations in ops(O)) return the same value they returned at n� 1, then O(K) = On(K; parK(O)).One can further show that such an n exists and can compute a bound for it. Consider the vector of alloperations in ops(O). There are: nops(O)such operations. As we increase n the knowledge-bases returned by these operations may not shrink. Further,if we ever reach a point where none of them grow then we can quit. Any ALL operation can only add afact or complete an if-added rule (there are no operations, for example, which create an entirely new frame).The facts and rules which can be added must be in the set closuref&r (O), and one can show that the sizeof this set is bounded by len � nrules(O) � nfr(O)mvars(O). Each iteration may increase at worst oneknowledge-base in the set of knowledge-bases returned by the operations in ops(O). Thus if n is greaterthan or equal to nops(O) � len � nrules(O) � nfr(O)mvars(O)



4 COMPLEXITY 16
Recall the knowledge-base, K, from �gure 1:C = fcgR = fr1; r2gNr = fr1(c; x) r2(c; x)gAr = fgF = fr2(c; c)gP = ffhc; r1i; hc; r2iggConsider O = query(r1(c; x)) (where x is a variable). Let q = r1(c; x) and p = parK(O), then:reach0(q; p) = fhc; r1igreach1(q; p) = fhc; r1i; hc; r2igreach2(q; p) = fhc; r1i; hc; r2igreachn(q; p) = fhc; r1i; hc; r2igreach(q; p) = fhc; r1i; hc; r2igThus: change(q; p) = fhc; r1igops(O) = fquery(r1(c; x)); query(r2(c; x)); query(r1(c; c));query(r2(c; c)); assert(r1(c; c))gFigure 5: The accessible frame-slots and dependent operations for a simple query.



4 COMPLEXITY 17
Recall the knowledge-base, K, from �gure 4:C = fcgR = fr1; r2; r3gNr = fr1(c; x) r2(c; x); r2(c; x) r3(c; x)gAr = fgF = fr3(c; c)gP = ffhc; r1ig;fhc; r2i; hc; r3iggConsider O = query(r1(c; x)) (where x is a variable). Let q = r1(c; x) and p = parK(O), then:reach0(q; p) = fhc; r1igreach1(q; p) = fhc; r1i; hc; r2igreach2(q; p) = fhc; r1i; hc; r2igreachn(q; p) = fhc; r1i; hc; r2igreach(q; p) = fhc; r1i; hc; r2igThus: change(q; p) = fhc; r1igops(O) = fquery(r1(c; x)); query(r2(c; x)); query(r1(c; c));query(r2(c; c)); assert(r1(c; c))gFigure 6: The accessible frame-slots and dependent operations for a query in a knowledge-base withtwo partitions.



5 RELATED WORK 18then all knowledge-bases must be `full'.Thus it only remains to �nd the time to calculate the result of a primitive operation On given the resultsof all operations O0n�1. We may have to apply at mostnrules(O)rules. Each rule may branch on all values in frames(q; parK (O)) for all variables. Thus we may havenfr(O)mvars(O)branches (the results of which must be unioned together). Finding the result of each branch involves takingat most len unions and closures. There are thus order:lenunions and closures per branch. Each union is done on a knowledge-base of form K + S where S is of sizej closuref&r (O) j or smaller. Thus each union can be done in time of order:len� nrules(O)� nfr(O)mvars(O)Finally, one can show that each closure can be computed in time:len2 � nrules(O)2 � nfr(O)2mvars(O)+maMultiplying these bounds together gives the time bound in the theorem.5 Related WorkALL draws from several diverse �elds. We attempt only to sketch in general terms the �elds from which itdraws and discuss a few particularly relevant past approaches.ALL draws from semantic networks [Brachman et al., 83, Bobrow & Winograd, 77, Findler, 79, Quillian, 67,Shapiro, 89, Vilain, 85] the intuition that retrieval and reasoning can be guided and limited by the structureof the network. This has long been a key intuition behind semantic networks: \...the knowledge requiredto perform an intellectual task generally lies in the semantic vicinity of the concepts involved in the task."[Schubert, 79]. In particular, ALL draws from semantic networks its frame based data structures [Minsky, 75]and the idea of access paths. Our use of access paths is closely related to previous work on path based infer-ence. Path based inference can be traced back (at least) to [Raphael, 68] and later to [Schwarcz et al., 70] and[Shapiro & Woodmansee, 69]. A good discussion of path based and node based inference (both of which arepartially subsumed by inference in ALL and would be totally subsumed if ALL supported full quanti�cation| see section 6.4) is given in [Shapiro, 78].One di�erence between ALL and much recent careful work on knowledge representation is that ALL (alongwith �rst-order logic and the original work on semantic networks) allows the knowledge-base designer to namethe relations used in the knowledge-base. After Woods' in
uential \What's in a Link" paper [Woods, 75],many knowledge representation languages restricted the allowable relations to a small set which were givena precise syntax and semantics [Brachman 79, Shapiro, 89]. Our approach in ALL is to de�ne our semanticsby \borrowing" the model theory of predicate calculus (by mapping ALL knowledge-bases to statements inpredicate calculus and proving consistency and weakened completeness results) and to allow relations to begiven any names. The meanings of the relations are thus restricted only by the contents of the knowledge-base(as in predicate calculus).ALL also di�ers from past formal work on semantic networks in that it uses a single general purposeretrieval/reasoning mechanism which is guided by the structure of the network. Past work has generally



6 CONCLUSION 19used the structure of the network only for special purpose reasoning (spreading activation, classi�cationetc.), and has relied on a �rst-order logic theorem prover [Brachman et al., 83, Schubert et al., 83] or aweaker deduction system [Levesque, 84, Patel-Schneider, 85, Vilain, 85] for general reasoning.A notable exception to this generalization is the recent work of Haan and Schubert [Schubert, 79,Haan & Schubert, 86]. ALL and the networks of Schubert share several features including the use of ac-cess limitations to guide reasoning. The most obvious way to use the structure of a semantic network tolimit access would be to perform deduction with facts not more than a few (say maybe two) nodes away in thenetwork. The problem with this strategy is that some nodes (e.g. the node for your spouse) may have a largenumber of links, many of which are irrelevant to the problem at hand. The solution used in ECOSYSTEMis to maintain a taxonomy of knowledge and use this taxonomy to guide reasoning [Haan & Schubert, 86].The di�erence in ALL is that access is limited to known access paths, which access facts many nodes awayin the network, but do so in a controlled fashion. Thus in ALL it is the structure of the knowledge itself (ormore speci�cally the structure of the access paths in the rules) which controls access and reasoning.Another relevant line of research is the work on vivid knowledge-bases [Etherington et al., 89]. A vividknowledge-base \: : : trades accuracy for speed : : :" [Etherington et al., 89] by constructing a complete databaseof ground facts, from facts that may be presented in a more expressive language. This approach has some ofthe same goals as ALL | particularly in the area of e�ciency | but takes a much di�erent approach andmakes di�erent trade-o�s. At a very high level, the principal di�erences are:� ALL represents all the knowledge that has been asserted (though not all of it may be accessible at agiven time) while a vivid knowledge-base is an approximation of the asserted knowledge (thus weakenedcompleteness results such as Socratic Completeness do not hold for vivid reasoning).� To obtain increased e�ciency, ALL trades completeness for speed while a vivid approach trades bothconsistency and completeness for speed.The design of the inference mechanism in ALL has been heavily in
uenced by logic programming. In factany function-free logic program (without negation) can be written in ALL. Further, the notation and resultsfrom the proof of the completeness of logic programming [Apt, 88, Lloyd, 84] have been used extensively inthe completeness proofs for ALL. In a sense our use of access-paths is a strategy for ordering conjunctivequeries and as such is related to the more elaborate approach given in [Smith & Genesereth, 85]. In fact, ifone follows a discipline of avoiding frame-slots containing a large number of frames11 then the use of access-paths enforces an ordering on conjunctive queries much like that discussed in [Smith & Genesereth, 85].6 ConclusionGiven a knowledge representation system with a model theory and a knowledge-base, one may divide theset of all possible queries in several ways. For example, one can distinguish the queries which succeed fromthose which fail. If this set is exactly equal to the set of all queries which are model theoretic consequences ofthe knowledge-base then the knowledge representation system is consistent and complete. In ALL we dividethe set of all queries into three sets:� Those which succeed immediately.� Those which will succeed after some appropriate series of preliminary queries.� Those which will never succeed (without additional assertions).11E.g. if the set things is very large, then one would like to avoid �lling the slot members with all the members of things |rather, the preferred representation in ALL for \f is a thing" would be to put things in the isa slot of f .



6 CONCLUSION 20Socratic Completeness then gives a precise characterization of the second and third sets | the second set isequal to the set of all queries which are model theoretic consequences of the knowledge-base, and the thirdset is equal to the set of all queries which are not model theoretic consequences. Partitional Completenessgives a partial characterization of the �rst set | a query will succeed immediately if all the informationneeded to prove it is located `close enough' to the query in the knowledge-base.6.1 About Socratic CompletenessOne of the questions asked about our work12 was \What good is Socratic Completeness when Socrates isdead?" Meaning that the hard part of reasoning has simply been pushed o� to the problem of posing the rightquestions. The �rst answer to this question is that in a system with the expressive power of �rst-order logic,the incomputability never goes away; our approach decomposes the problem of reasoning into two parts:the (tractable) problem of computing the results of queries and the (intractable) problem of deciding whatqueries to ask. Past work has made other divisions | e.g. the T-box and A-box of [Brachman et al., 83].The second answer is that our goal is to develop a knowledge representation system with understandableinferential power. To this end, Socratic Completeness is a necessary (but not yet su�cient) property. SocraticCompleteness guarantees that there is some hope of eventually �nding the right questions (by guaranteeingthat the questions exist).These answers suggest two directions for future work: �rst, encoding (in the knowledge-base) common-sense knowledge about what general types of queries are useful for solving common types of complex reasoningproblems; and second, the identi�cation of other weakened completeness properties which, like PartitionalCompleteness, de�ne what queries should immediately succeed.Socratic Completeness is also a step toward a formal speci�cation of what inferential power a knowledgerepresentation system should provide. Due to its intractability, full logical completeness is too strong a spec-i�cation, but provides an upper bound in the search for an appropriate speci�cation. Socratic Completenessis a fairly weak speci�cation but is arguably a necessary property. Thus it provides a lower bound on thespace of appropriate speci�cations.6.2 About Partitional CompletenessPartitioning the knowledge-base is not a new idea. Minsky's original proposal ([Minsky, 75]) for frames envi-sioned a structure on the knowledge-base consisting of groups of related frames. Hayes' Naive Physics Man-ifesto ([Hayes, 85]) also viewed commonsense knowledge as consisting of clusters of closely related concepts,loosely related to each other. Closer to the implementation level, blackboard architectures ([Hayes-Roth, 85])also group inference methods into weakly interacting partitions. While these intuitions about the modularityof knowledge are persuasive, it must be admitted that it has not yet been empirically demonstrated that thecontents of large-scale commonsense knowledge-bases divide naturally into partitions.If we accept the intuition that knowledge can be meaningfully divided into partitions (or perhaps beforewe commit to accepting this intuition), we would like to know what e�ect partitions have on reasoning.Intuitively, one would expect that the rules in the partition of a query would somehow be more easilyaccessible to the query. The Partitional Completeness Theorem gives a partial formalization of this intuition,by saying that if a query is a logical consequence of the if-needed rules in its partitions then the query willsucceed immediately. The theorem also gives us an empirical way to test a partitioning of a large knowledge-base | if simple queries depend on many rules in other partitions (and thus require many preliminary queriesbefore they succeed) then the partitions are not well chosen.12By Rich Thomason at the 1989 Workshop on Formal Aspects of Semantic Networks.



6 CONCLUSION 216.3 About the Complexity ResultsThe expression given in theorem 4 for the complexity of inference in ALL involves too many variables to beeasily comprehended. In a `typical' knowledge-base one might expect that:nrules(O) � nfr(O) (13)nops(O) � nfr(O)ma (14)Let n = nfr(O). If we further assume that len is small, then ALL operations can be computed in time oforder: n3ma+5+5mvars(O)Certainly a tighter bound could be computed (with somewhat more work). In general we have foundthat our examples run much faster than the worst case bound. However, the complexity analysis is still auseful exercise. Our implementation of ALL originally used an algorithm which was exponential in the worstcase. Replacing it with an algorithm similar to the one given here greatly improved its run time. Further,the complexity result gives some guidance in the design of knowledge-bases. For example, it suggests thatwhile the length of rules makes little di�erence, rules with many variables should be avoided.6.4 Implementing ALLOur lisp implementation of ALL is considerably more powerful than the formalism presented in this paperand can express de�nite descriptions, full negation, some types of defaults, and quanti�cation. Beyondsimple examples of forward and backward-chaining we have investigated some standard examples of defaultinheritance (essentially implementing the inferential distance rule of Touretzky [1986]), the Yale shootingproblem [Hanks & McDermott, 86], several examples which involve reasoning about sets of similar objects,and some examples of reasoning from quanti�ed information (e.g. From \Every man loves a woman" concludethat there must be some woman that George loves).. We have also solved the bank problem mentioned inthe introduction. Our most recent work involves the use of ALL to express the ideas of Qualitative ProcessTheory [Forbus, 84]. The result [Crawford, Farquhar, & Kuipers, 90] is a system which compiles qualitativedescriptions of physical situations into qualitative di�erential equations which can be simulated by QSIM[Kuipers, 86].13Ultimately we are working towards a formal theory which has the expressive power of predicate calculus,and is consistent and Socratically Complete, but is still computationally tractable. It is straightforward toadd to ALL the ability to express full classic negation (i.e. not negation by failure), but then inference inALL (using rules alone) is no longer Socratically Complete. We are currently working to formalize in ALLthe notion of reasoning by Reductio Ad Absurdum (used in our implementation). Reasoning by Reductio AdAbsurdum involves adding assumptions to the knowledge-base and then reasoning about their consequences(and if the consequences of an assumption include `false' concluding the negation of the assumption). Webelieve that such a mechanism will allow Socratically Complete reasoning in the presence of classic nega-tion. Further, the queries determine what assumptions are made, so the complexity of ALL should still bepolynomial (though some hard problems may require an exponential number of preliminary queries).There is also no way to express existential quanti�cation in our current formalism. We have incorporatedde�nite descriptions, which de�ne a type of existential quanti�cation, into the implementation of ALL, buttheir formalization is not straight-forward (as they do not seem to translate naturally into predicate calculus).Our most recent work has been on adding, to the implementation, the ability to represent, and do somekinds of reasoning with, arbitrarily nested quanti�ed expressions. Our approach to nested quanti�cation isbased on the idea of arbitrary objects [Fine, 85]. One may, for example, reason about a large class of objectsby reasoning about an `arbitrary object' having the properties common to all objects in the group. Futurepapers will discuss this work in more detail.13This is joint work with Adam Farquhar.



7 ACKNOWLEDGMENTS 227 AcknowledgmentsThe authors would like to thank Len Schubert, Rich Thomason, and Charles Petrie for careful readings anduseful comments on various versions and drafts of this paper.A Appendix { Formal De�nition of On.In this appendix we give the formal de�nition of On. This amounts to de�ning with great care the familiarbehavior of forward and backward chaining rules in a knowledge-base. This is a non-trivial exercise, but it isnecessary in order to carefully prove the theorems. Further, a careful formulation of forward and backwardchaining reveals at least one interesting and unexpected problem | the problem of if-added incompletenessdiscussed in section 3.4.5.Formally, for any n, and any operation O allowed in the knowledge-bases of KB:On : KB � 2C�R =) 2� �KB: (15)We de�ne On in the following 3 cases. In all cases assume K is a knowledge-base, � a (non-empty) pathallowed in K, q a primitive path allowed in K, f a fact allowed in K, and p a subset of C � R. We use theshorthand: lookup(q)(K) = f� 2 �j(9f 2 K :: � = mgru(q; f))g: (16)Case 1: Base case: O is a primitive operation, and O 62 p or n = 0.If O = query(q) then On(K; p) = hlookup(q)(K);Ki (17)else O = assert(f) and On(K; p) = hffgg; closure(K + f)i: (18)Case 2: O is a primitive operation, n > 0, and O 2 p.First we �nd the rules which apply. Let � be a renaming which maps variables in rules in Nr tovariables not used in O or K (this must be possible since the alphabet contains a countably in�nitenumber of variables).If O = query(q) then: R = f��� j � 2 Nr ^ � = mgru(Key(�)�; q)g (19)Else, O = assert(f) and: R = f�� j � 2 Ar ^ � = mgru(Key(�); f)g (20)If R = ; then let: K 0 = kb(On�1(K; p)) (21)Otherwise, we apply the rules and union the results. Applying a rule consists of querying its antecedentand then asserting its consequent. The consequent is asserted with all substitutions under which theantecedent succeeds.If O = query(q) then:K 0 = closure([ � 2 R :: kb(queryn�1(Ant(�))(K; p)) [ (22)([ � 2 sub(queryn�1(Ant(�))(K; p)) ::kb(assertn�1(Conseq(��))(K; p))))
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