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Abstract

Industrial process plants such as chemical refiner-
ies and electric power generation are examples
of continuous-variable dynamic systems (CVDS)
whose operation is continuously monitored for ab-
normal behavior. CVDSs pose a challenging di-
agnostic problem in which values are continuous
(not discrete), relatively few parameters are ob-
servable, parameter values keep changing, and di-
agnosis must be performed while the system op-
erates.

We present a novel method for monitoring CVDSs
which exploits the system’s dynamic behavior for
diagnostic clues. The key techniques are: mod-
eling the physical system with dynamic quali-
tative/quantitative models, inducing diagnostic
knowledge from qualitative simulations, continu-
ously comparing observations against fault-model
predictions, and incrementally creating and test-
ing multiple-fault hypotheses. The important re-
sult is that the diagnosis is refined as the physical
system’s dynamic behavior is revealed over time.

Introduction

Process monitoring is a continuous real-time task of
recognizing anomaliesin the behavior of a dynamic sys-
tem and identifying the underlying faults. This task is
common in many industries (e.g., electric power gener-
ation, chemical processing, etc.) and in medicine (e.g.,
cardiac monitoring). In contrast to earlier work on
diagnosis, process monitoring poses three special diffi-
culties:

1. Diagnosis must be performed while the system oper-
ates. Process systems are designed for continuous
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Figure 1: The 3 tasks of monitoring and control.

operation and are capable of operating with mul-
tiple minor faults. Shutdown for diagnosis and re-
pair is either costly (in industry) or impossible (in
medicine).

2. Few system parameters are observable. All measure-

ments come from sensors, which can be expensive
and/or unreliable and/or invasive. Monitoring is
typically based on a small subset of the system pa-
rameters, with limited opportunity to probe other
parameters.

3. The systems are dynamic. The system exhibits time-

varying behavior, parameter values vary over a con-
tinuous range, the system has state (i.e., has inte-
grated quantities), and feedback is common.

Automated process monitoring systems typically
provide a set of alarms which are triggered when-
ever fixed thresholds are exceeded. A nuclear power
plant, for example, can have over a thousand distinct
alarms, and hundreds of them can be activated within
a minute, as in a loss-of-coolant accident. In such sit-
uations, process operators may overlook relevant in-
formation, respond too slowly, panic when the rate of
information flow is too great, and form incorrect men-
tal models [Perrow, 1984]. The monitoring method
described here is intended as an aid to help overcome
these problems.

Model-based Monitoring

This paper describes MIMIC, a model-based method for
monitoring dynamic systems in which the condition of



the physical system is represented (and repeatedly up-
dated) in a dynamic qualitative model. The intent is
to mimic the condition of the physical system in the
model. Two tasks maintain the model, as shown in
Figure 1. The tracking task advances the state of the
model in step with observations from the physical sys-
tem. The diagnosis task, upon identifying a particular
fault, injects that fault into the current model so that
the predictions of the model will continue to agree with
actual observations. To be precise, MIMIC maintains a
set of candidate models since a given behavior may be
caused by one of several faults. Each candidate model
represents a possible condition of the system (state and
faults).

The purpose of monitoring is to determine the pos-
sible conditions of the physical system. The role of the
advising task is to present this information to the oper-
ator and assist in interpreting it and making decisions
about control actions. Since the models are predic-
tive, they can be used to predict the effect of proposed
control actions and forewarn of trends leading to unde-
sirable conditions. This paper focuses on the tracking
and diagnosis aspects, not on the advising aspect.

Dynamic Qualitative Models

Two main properties are required of the simulation
technique used in MIMIC — it must reveal the time-
varying (i.e., dynamic) behavior of the system, and it
must make explicit the behavioral distinctions impor-
tant in diagnosis. We use the QsiM [Kuipers, 1986]
method for qualitative simulation of dynamic systems.
Just as modern control theory represents a dynamic
system as a set of coupled first-order differential equa-
tions, QSIM represents a dynamic system as a set of
coupled first-order gqualitative differential equations.
Simulated dynamic behavior is represented as a se-
quence of states, with alternate states representing a
time point or time interval in the dynamic behavior.

By using a qualitative model rather than a numeric
model, an infinite number of infinitesimally close nu-
meric behaviors is reduced to a small number of qual-
itatively distinct behaviors. Although QsiM is fun-
damentally qualitative, it can exploit available quan-
titative information to refine its predictions [Kuipers
and Berleant, 1987). This capability proves to be very
important in process monitoring because many sen-
sors provide quantitative values and some faults can
only be diagnosed by their subtle-but-quantitatively-
noticeable effects.

Basic Cycle

MiMmic accomplishes tracking and diagnosis in a
hypothesize-and-match cycle that combines associative
and model-based reasoning. In effect, the associative
component proposes fault hypotheses and the model-
based component disposes of them. The cycle has four
main steps, as shown in Figure 2:
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Figure 2: Hypothesize-build-simulate-match cycle.

1. Hypothesis Generation. Observations from the phys-
ical system may evoke fault hypotheses via a deci-
sion tree (the decision tree is generated beforehand,
as described in section ). The fault hypotheses are
in the form of specific failure modes (such as a stuck
pressure regulator or an abnormal setpoint) and are

ordered by likelihood.

2. Model Building. Given a combination of one or
more fault hypotheses, the corresponding Qsim fault
model is instantiated by initializing setpoint vari-
ables and mode variables.

3. Qualitative Svmulation. FEach new fault model is
first initialized from the observations that evoked
its construction, thus establishing the initial state
of the model. The model is then simulated incre-
mentally as observations change, predicting the im-
mediate successor states. QSIM generates qualitative
values and quantitative ranges for each parameter.
The ranges may be very precise (e.g., [98.5 98.7]) or
imprecise (e.g., [0 o]) depending on the available
quantitative knowledge.

4. Matching. A similarity function computes the sim-

ilarity between the observations and a state of the
model. The comparison is based on both qualita-
tive and quantitative values. For similarities above
a threshold, the model is retained as a plausible re-
flection of the physical system’s condition. Below
the threshold, the model is discarded.

Learning Diagnostic Knowledge

The knowledge used in MIMIC’s hypothesis generation
step 1s mechanically derived from the model of the
dynamic system. The basic technique, as described
in [Bratko et al., 1986], induces fault diagnosis rules
from the results of simulating qualitative fault mod-
els. This technique has been extended to the domain
of continuous-variable dynamic systems, as detailed in
[Lee and Dvorak, 1989]. Briefly, diagnostic knowledge
is derived through five steps:

1. Model Definition. A model of the physical system is
defined in terms of qualitative differential equations
(QDEs), with some QDEs conditional on the oper-
ating mode of the component whose behavior they



model. For example, a pump will have one set of
constraints associated with its normal mode of op-
eration and another set associated with a “broken”
mode.

2. Model Building. Using this model definition, a
model-building program instantiates the normal
(fault-free) model, all single-fault models, and se-
lected combination-fault models. The issue of which
combination-faults to model is discussed in section .

3. Qualitative Stmulation. Using QSIM, each model is
simulated starting from each possible initial state,
producing a total envisionment for each model.

4. Construction of Training Set. Training instances
are formed from the states of the total envision-
ment using the qualitative magnitude and qualita-
tive direction-of-change of each observable parame-
ter. Each instance is tagged with the fault combina-
tion embodied in the model that generated the state.
Collectively, these instances form the training set.

5. Induction. The training set is compressed by an in-
ductive learning program to a smaller body of oper-
ational diagnostic knowledge in the form of a deci-
sion tree. The induction algorithm is similar to ID3
[Quinlan, 1986], but exploits three additional sources
of knowledge: the observability of each parameter,
the a prior: probabilities of faults, and the historical
probabilities of behaviors.

The resulting decision tree is used to classify ob-
servations from the monitored system, yielding fault
hypotheses. The classification procedure ranks the
resulting fault hypotheses by likelithood, thus allow-
ing MiMIC to focus attention on the most probable
faults. The procedure also produces a ranked set of
manually measurable parameters whose values, if mea-
sured, could reduce the number of hypotheses. Mimic
presents this information to the system operator.

The learning procedure described above can con-
sume a large amount of computer time, but it is per-
formed only once, outside of the real-time monitoring
cycle.  As Pearce [1988] has demonstrated, this ap-
proach to knowledge acquisition provides more com-
plete coverage of faults than the traditional knowledge
engineering approach.

Multiple-Fault Diagnosis

The number of fault models that need to be con-
structed depends on the characteristics of the system
being modeled and the importance of detecting multi-
ple faults. In some domains, single-fault diagnosis is
adequate, but in general, multiple faults are common in
complex continuous-running systems. However, com-
plete multiple-fault diagnosis is combinatorially explo-
sive and therefore unrealistic for real-time monitoring
of large systems. As a middle approach, MIMIC uses
a method for incrementally constructing and testing
multiple-fault hypotheses. The key ideas are described
below.

1. Mimic does continuous monitoring, repeatedly read-

ing the sensors. We assume that faults usually occur
one-at-a-time with respect to the sampling rate, so
any unpredicted behavior will normally be due to
a single additional fault (or a single repair). Thus,
Mimic usually only needs to deal with one new fault
at a time.

2. Single-fault diagnostic knowledge triggers fault hy-

potheses whenever any of the manifestations of a
single fault are present. Many faults don’t interact,
so they can be recognized even in the presence of
other faults.

3. Double-fault diagnostic knowledge captures the

manifestations peculiar to every pair of interacting
faults. So, if a pair of faults interact in a way that
obscures either or both of the individual faults, this
knowledge can detect both faults.

4. The hypothesize-and-match algorithm described

earlier is capable of injecting any number of faults
into a model. When a fault is hypothesized it may
be injected into models that already embody one or
more faults. Thus, multiple-fault hypotheses are in-
crementally constructed and tested.

5. Hypotheses are combined in a beam search based

on the similarity function described earlier. Let N
be the maximum number of models to be tracked,
T be the set of models currently being tracked, and
I be the newly proposed fault hypotheses. At each
cycle then, MiMIcC retains the N best models from
TU(T x F), ranked by similarity value.

Tracking a Model
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Figure 3: Tracking through a behavior graph.

When a fault model is first constructed, an attempt
is made to initialize it from current observations. If
the observations are not consistent with any state of
the fault model, then the model is discarded. If there
is at least one consistent initialization then the model
becomes a member of the set of candidate models, and
all of its consistent initializations (there may be more
than one) are added to the “tracking set”. The track-
ing set is a set of models, each in a state consistent
with the most recent observations.

Tracking is the process of using the observations to
follow a path through the behavior graph of a model
(a “partial envisionment”). Consider the fragment of
behavior graph in Figure 3. If a model is currently in
state F, then a new set of observations is compared
(using the similarity function) to the parameter values
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Figure 4: Electric water heater.

of state E. If the match is above a threshold, then the
model remains in state E. Otherwise, the immediate
successor states of state F are generated (via incremen-
tal simulation) and each of these states is compared
with the observations. If, say, the match with state G
was above the threshold, then the model 1s retained
with 1ts state now set to G. If none of the successor
states match (up to some limited “distance” from F),
then the model is discarded. The limited distance is
needed to jump over instantaneous states in the envi-
sionment that fall between consecutive observations.

Observations may include independent parameters,
1.e., parameters which are under external control and
whose values thus cannot be predicted. When an inde-
pendent parameter changes value, tracking must reini-
tialize the states in the tracking set using the current
observations and values of history variables (rather
than looking in vain for a compatible successor state).

It is possible that tracking could discard all the can-
didate models. This condition could arise if either: (1)
some type of fault was overlooked in the description of
possible faults, or (2) the diagnostic knowledge failed
to propose one or more faults of a combination fault.
In such a case MiMIC (1) alerts the operator that the
physical system is behaving abnormally but cannot be
diagnosed, and (2) displays the fault hypotheses evoked
by the current observations.

Example

To illustrate Mimic at work, let’s consider the electric
water heater shown in Figure 4. It has a single thermo-
stat which controls whether or not power is applied to
the two heating elements (on-off control). Raw sensor
information comes from a temperature sensor near the
thermostat, from a flow-rate sensor on the cold-water
inlet, and from the electric terminals of the heating el-
ements. In a real monitoring situation we would want
to diagnose a variety of possible faults such as defective
heating elements, a stuck thermostat, a faulty flow-rate
sensor, and loss of electrical power. However, to keep
this example simple, we’ll consider only the possibility
of defective heating elements.

The water heater is modeled in QSIM according to

the laws of thermodynamics that relate heat capac-
ity, heat flow, thermal resistance, and temperature. In
the normal (fault-free) model all the components of
the water heater (tank, heating elements, thermostat,
flow-rate sensor) operate according to their intended
design. In a fault model, a faulty component operates
according to a failure mode (such as a heating element
that generates no heat when power is applied).

Table 1 summarizes an example of monitoring the
water heater, showing how monitoring progresses over
eight moments in a series of observations'. For each
moment, the table shows the quantitative sensor read-
ings and three sets maintained inside MiMic. The wa-
ter heater begins in a state where the water in the
tank is hot, the heating elements are off, no water is
flowing, and there is a slow temperature loss. These
readings are consistent with the normal model. Now,
someone starts to draw water for a bath. A high
flow rate is measured but all other readings remain
the same. Since water flow is an independent variable,
Mmumic reinitializes every tracked model (just the nor-
mal model in this case) to reflect the change. Since the
normal model is consistent with the new values, it is
retained.

As time continues, the temperature inside the tank
drops because of the cooler inlet water. These read-
ings are consistent with the current state of the normal
model and evoke no fault hypotheses, so no change oc-
curs to the tracking set. At moment 3 the temperature
drops to the point where the heating elements turn on
(as observed on a voltage sensor), These readings are
also consistent with the normal model, so the state of
the model is updated accordingly.

At moment 4 the temperature continues to drop. Al-
though this observation is qualitatively consistent with
the normal model, it is inconsistent with the associ-
ated quantitative ranges. In effect, the model is saying
that for this flow rate, tank capacity, heating rate, and
inlet temperature, the water temperature should not
be dropping so fast. Thus, the tracking task discards
the normal model. At the same time, the readings are
classified by the decision tree as being suggestive of
three possible faults — a bad upper heating element,
a bad lower heating element, or both heating elements
bad (denoted bad-H1, bad-H2, and bad-H1,H2)?. This
causes three fault models to be built. Each model is
successfully initialized, so MIMIC is now tracking three
models.

The water flow stops at moment 5 (somebody turned
off the faucet). With this change in an independent
parameter, MIMIC reinitializes the three models. At
moment 6, the temperature is observed to be rising.

!The numeric values shown in Table 1 are from a nu-
meric simulation of the water heater in which the lower
heater is burned out.

?In a more detailed example, other hypotheses would
also be proposed, such as a faulty temperature sensor and
a faulty flow meter.



Moment 0 1 2 3 4 5 6 7
Synopsis temp flow temp heater  temp still flow temp heater
hot starts dropping on dropping stops rising off
Time (min.) 0.0 1.0 2.0 2.4 2.7 3.0 13.0 21.7
Flow (liters/min.) 0 30 30 30 30 0 0 0
Temp. (deg. C) 64.9 64.9 61.4 58.9 57.1 55.9 60.0 66.0
Power (on or off) off off off on on on on off
New fault hypotheses none none none none bad H1 none none none
bad H2
bad H1,H2
New fault model(s) none none none none bad H1 none none none
bad H2
bad H1,H2
Tracked model(s) normal normal normal normal bad H1 bad H1 bad H2 bad H2
bad H2 bad H2
bad H1,H2 bad H1,H2

Table 1: Diagnosing the water heater from dynamic behavior.

This observation is qualitatively inconsistent with the
bad-H1,H2 model, so this model is discarded. The ob-
served temperature is then compared to the quantita-
tive predictions of the two remaining models. Because
the observed temperature exceeds the range predicted
by the bad-H1 model, that model is discarded. The
predictions of the one remaining model, bad-H2, are
compatible with the observations, so the model is re-
tained. This model continues to track future readings,
thus emerging as the sole fault hypothesis.

Discussion

The water heater example shows how, with few ob-
servable parameters, MIMIC can diagnose a system by
observing its dynamic behavior. In general, the speed
at which a diagnosis can be narrowed depends on the
number of monitored parameters and the dynamic ac-
tivity of the system. With more monitored parameters
and more system activity, there are more opportunities
to falsify hypotheses.

As a diagnostic method, MIMIC can generate both
false positives and false negatives. False positives are
common because the relatively small number of ob-
served parameters cannot, in a single reading, discrim-
inate among all the possible faults. Thus, all but one
of the candidates will be a false positive. However,
with additional readings that reveal the system’s dy-
namic behavior, the set of candidates can be reduced,
sometimes to a single candidate.

False negatives can arise either because some type
of failure was overlooked in the knowledge acquisition
phase or because a combination of three or more faults
interacted in a way that obscured one or more of the in-
dividual faults. The former case is solved by adding the

new failure type and rerunning the diagnostic learning
procedure. The latter case is more difficult. One ap-
proach is to learn diagnostic knowledge for more than
just single and double faults. In the general case this is
impractical since the number of fault combinations is
exponential in the number of concurrent faults. How-
ever, in some domains (such as in medicine) the num-
ber of realistic combination faults may be tractable
because many of the combinations are physiologically
impossible or medically uninteresting [Bratko et al.,

1986].

Limitations

MiMic assumes that faults occur one-at-a-time with
respect to its sampling rate. This assumption may be
violated in the case of a catastrophic event (such as
an explosion) or cascading faults; these are real con-
ditions that MiMIC does not address. Also, Mimic
cannot guarantee that it will recognize any combina-
tion faults beyond the combinations included during
learning. In practice, it will diagnose many such non-
learned combination faults, but the faults may interact
in a way that obscures the manifestations of some sub-
set of those faults.

Related Work

Measurement interpretation is a significant part of the
job of monitoring, and this aspect of MiIMIC shares
some of the ideas set forth by Forbus [1986]. In par-
ticular, MIMIC’s notion of tracking combines two ele-
ments of Forbus’ approach: that of finding temporally
adjacent states in the envisionment which correspond
to temporally adjacent measurements, and jumping
over short gaps where consecutive measurements have



missed an intervening instantaneous state in the envi-
sionment.

MimIc is similar to PREMON [Doyle et al., 1989] in
that both use a qualitative model of the physical sys-
tem to perform monitoring. However, PREMON 1is con-
cerned with monitoring a correctly functioning system
in a changing environment. It uses a single fault-free
model in a predict-plan-sense cycle for dynamic ad-
justment of alarm thresholds and for deciding which
sensors to focus attention on (where the number of sen-
sors is large). This work is complementary to MIMIC’s
focus on diagnosis, and raises the possibility of com-
bining the techniques to perform diagnostic monitoring
on very large systems.

Mimic differs markedly from model-based trou-
bleshooters such as GDE [de Kleer and Williams, 1987]
in that it (a) uses fault models and (b) does not use
dependency tracing or constraint suspension [Davis,
1984]. Fault models are necessary in MIMIC because
of the need to track a faulty system’s behavior over
time. Faults are specifically modeled (rather than sus-
pending constraints) in order to get reasonably detailed
predictions of behavior. Dependency tracing, although
extremely useful in domains such as digital logic cir-
cuits, provide little diagnostic power in a system of
constraints among continuous variables having feed-
back loops. The problem is that dependency tracing in
such systems often returns all constraints as suspects
because: (a) all parameters of a constraint usually af-
fect the result, and (b) output parameters often feed
back to input parameters.

The high-level design of MIMIC is similar to the “gen-
erate, test and debug” (GTD) paradigm [Simmons and
Davis, 1987] in that both use associational knowledge
to generate plausible hypotheses and model-based rea-
soning to evaluate them. The core idea in GTD is of
“debugging almost right plans” whereas in MIMIC 1t is
of “debugging almost right models”.

A number of expert systems have been built which
share the same operational goal as MiMIic — that of
relieving some of the burden of monitoring from pro-
cess operators [Dvorak, 1987]. Mimic focuses solely on
determining the condition of the physical system, but
most of these expert systems have the broader scope of
trying to advise the operator on corrective actions. Es-
CORT [Sachs et al., 1986), an exemplar of this group,
gets its knowledge of faults and anomalies and cor-
rective actions through the usual process of codifying
human expertise in rules; ESCORT does not encode a
predictive model of the physical system as Mimic does.

Implementation Status

Prototypes of MiMIC and its companion learning algo-
rithm (named DYNALEARN) are implemented in Com-
mon Lisp and have been run on a Symbolics 3670.

Conclusions and Future Work

This paper has presented a technique for online di-
agnosis (7.e., monitoring) of continuous-variable dy-
namic systems. The key elements of the design are:
(1) representation of continuous-variable dynamic sys-
tems in dynamic qualitative/quantitative models, (2)
induction of diagnostic knowledge from model simula-
tions, (3) tracking fault-model predictions against ob-
servations, and (4) incremental creation of multiple-
fault hypotheses. The important result is that MiMIcC
exploits the system’s dynamic behavior for diagnostic
clues.

Work is progressing on a hemodynamic model of the
human cardiovascular system with an expert cardiolo-
gist. The complete model will have 4 state variables,
about 50 parameters, and several regulatory mecha-
nisms (negative feedback loops). As a model of realistic
complexity and scale, this will better reveal limitations
of the MiMIcC design and areas for improvement.
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