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PhysicalSystem ModelsTrackingDiagnosisAdvising-- -- ���� safety conditionsstandard procedures� ���ControlAlarmsForewarningFigure 1: The 3 tasks of monitoring and control.operation and are capable of operating with mul-tiple minor faults. Shutdown for diagnosis and re-pair is either costly (in industry) or impossible (inmedicine).2. Few system parameters are observable. All measure-ments come from sensors, which can be expensiveand/or unreliable and/or invasive. Monitoring istypically based on a small subset of the system pa-rameters, with limited opportunity to probe otherparameters.3. The systems are dynamic. The system exhibits time-varying behavior, parameter values vary over a con-tinuous range, the system has state (i.e., has inte-grated quantities), and feedback is common.Automated process monitoring systems typicallyprovide a set of alarms which are triggered when-ever �xed thresholds are exceeded. A nuclear powerplant, for example, can have over a thousand distinctalarms, and hundreds of them can be activated withina minute, as in a loss-of-coolant accident. In such sit-uations, process operators may overlook relevant in-formation, respond too slowly, panic when the rate ofinformation 
ow is too great, and form incorrect men-tal models [Perrow, 1984]. The monitoring methoddescribed here is intended as an aid to help overcomethese problems.Model-based MonitoringThis paper describesMimic, a model-based method formonitoring dynamic systems in which the condition of



the physical system is represented (and repeatedly up-dated) in a dynamic qualitative model. The intent isto mimic the condition of the physical system in themodel. Two tasks maintain the model, as shown inFigure 1. The tracking task advances the state of themodel in step with observations from the physical sys-tem. The diagnosis task, upon identifying a particularfault, injects that fault into the current model so thatthe predictions of the model will continue to agree withactual observations. To be precise, Mimic maintains aset of candidate models since a given behavior may becaused by one of several faults. Each candidate modelrepresents a possible condition of the system (state andfaults).The purpose of monitoring is to determine the pos-sible conditions of the physical system. The role of theadvising task is to present this information to the oper-ator and assist in interpreting it and making decisionsabout control actions. Since the models are predic-tive, they can be used to predict the e�ect of proposedcontrol actions and forewarn of trends leading to unde-sirable conditions. This paper focuses on the trackingand diagnosis aspects, not on the advising aspect.Dynamic Qualitative ModelsTwo main properties are required of the simulationtechnique used in Mimic | it must reveal the time-varying (i.e., dynamic) behavior of the system, and itmust make explicit the behavioral distinctions impor-tant in diagnosis. We use the Qsim [Kuipers, 1986]method for qualitative simulation of dynamic systems.Just as modern control theory represents a dynamicsystem as a set of coupled �rst-order di�erential equa-tions, Qsim represents a dynamic system as a set ofcoupled �rst-order qualitative di�erential equations.Simulated dynamic behavior is represented as a se-quence of states, with alternate states representing atime point or time interval in the dynamic behavior.By using a qualitative model rather than a numericmodel, an in�nite number of in�nitesimally close nu-meric behaviors is reduced to a small number of qual-itatively distinct behaviors. Although Qsim is fun-damentally qualitative, it can exploit available quan-titative information to re�ne its predictions [Kuipersand Berleant, 1987]. This capability proves to be veryimportant in process monitoring because many sen-sors provide quantitative values and some faults canonly be diagnosed by their subtle-but-quantitatively-noticeable e�ects.Basic CycleMimic accomplishes tracking and diagnosis in ahypothesize-and-match cycle that combines associativeand model-based reasoning. In e�ect, the associativecomponent proposes fault hypotheses and the model-based component disposes of them. The cycle has fourmain steps, as shown in Figure 2:
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Hypotheseshypothesis generation1qualitative simulation3matching 24 modelbuilding� -6? ?Figure 2: Hypothesize-build-simulate-match cycle.1. Hypothesis Generation. Observations from the phys-ical system may evoke fault hypotheses via a deci-sion tree (the decision tree is generated beforehand,as described in section ). The fault hypotheses arein the form of speci�c failure modes (such as a stuckpressure regulator or an abnormal setpoint) and areordered by likelihood.2. Model Building. Given a combination of one ormore fault hypotheses, the corresponding Qsim faultmodel is instantiated by initializing setpoint vari-ables and mode variables.3. Qualitative Simulation. Each new fault model is�rst initialized from the observations that evokedits construction, thus establishing the initial stateof the model. The model is then simulated incre-mentally as observations change, predicting the im-mediate successor states. Qsim generates qualitativevalues and quantitative ranges for each parameter.The ranges may be very precise (e.g., [98.5 98.7]) orimprecise (e.g., [0 1]) depending on the availablequantitative knowledge.4. Matching. A similarity function computes the sim-ilarity between the observations and a state of themodel. The comparison is based on both qualita-tive and quantitative values. For similarities abovea threshold, the model is retained as a plausible re-
ection of the physical system's condition. Belowthe threshold, the model is discarded.Learning Diagnostic KnowledgeThe knowledge used inMimic's hypothesis generationstep is mechanically derived from the model of thedynamic system. The basic technique, as describedin [Bratko et al., 1986], induces fault diagnosis rulesfrom the results of simulating qualitative fault mod-els. This technique has been extended to the domainof continuous-variable dynamic systems, as detailed in[Lee and Dvorak, 1989]. Brie
y, diagnostic knowledgeis derived through �ve steps:1. Model De�nition. A model of the physical system isde�ned in terms of qualitative di�erential equations(QDEs), with some QDEs conditional on the oper-ating mode of the component whose behavior they



model. For example, a pump will have one set ofconstraints associated with its normal mode of op-eration and another set associated with a \broken"mode.2. Model Building. Using this model de�nition, amodel-building program instantiates the normal(fault-free) model, all single-fault models, and se-lected combination-fault models. The issue of whichcombination-faults to model is discussed in section .3. Qualitative Simulation. Using Qsim, each model issimulated starting from each possible initial state,producing a total envisionment for each model.4. Construction of Training Set. Training instancesare formed from the states of the total envision-ment using the qualitative magnitude and qualita-tive direction-of-change of each observable parame-ter. Each instance is tagged with the fault combina-tion embodied in the model that generated the state.Collectively, these instances form the training set.5. Induction. The training set is compressed by an in-ductive learning program to a smaller body of oper-ational diagnostic knowledge in the form of a deci-sion tree. The induction algorithm is similar to ID3[Quinlan, 1986], but exploits three additional sourcesof knowledge: the observability of each parameter,the a priori probabilities of faults, and the historicalprobabilities of behaviors.The resulting decision tree is used to classify ob-servations from the monitored system, yielding faulthypotheses. The classi�cation procedure ranks theresulting fault hypotheses by likelihood, thus allow-ing Mimic to focus attention on the most probablefaults. The procedure also produces a ranked set ofmanuallymeasurable parameters whose values, if mea-sured, could reduce the number of hypotheses. Mimicpresents this information to the system operator.The learning procedure described above can con-sume a large amount of computer time, but it is per-formed only once, outside of the real-time monitoringcycle. As Pearce [1988] has demonstrated, this ap-proach to knowledge acquisition provides more com-plete coverage of faults than the traditional knowledgeengineering approach.Multiple-Fault DiagnosisThe number of fault models that need to be con-structed depends on the characteristics of the systembeing modeled and the importance of detecting multi-ple faults. In some domains, single-fault diagnosis isadequate, but in general, multiple faults are common incomplex continuous-running systems. However, com-plete multiple-fault diagnosis is combinatorially explo-sive and therefore unrealistic for real-time monitoringof large systems. As a middle approach, Mimic usesa method for incrementally constructing and testingmultiple-fault hypotheses. The key ideas are describedbelow.

1. Mimic does continuous monitoring, repeatedly read-ing the sensors. We assume that faults usually occurone-at-a-time with respect to the sampling rate, soany unpredicted behavior will normally be due toa single additional fault (or a single repair). Thus,Mimic usually only needs to deal with one new faultat a time.2. Single-fault diagnostic knowledge triggers fault hy-potheses whenever any of the manifestations of asingle fault are present. Many faults don't interact,so they can be recognized even in the presence ofother faults.3. Double-fault diagnostic knowledge captures themanifestations peculiar to every pair of interactingfaults. So, if a pair of faults interact in a way thatobscures either or both of the individual faults, thisknowledge can detect both faults.4. The hypothesize-and-match algorithm describedearlier is capable of injecting any number of faultsinto a model. When a fault is hypothesized it maybe injected into models that already embody one ormore faults. Thus, multiple-fault hypotheses are in-crementally constructed and tested.5. Hypotheses are combined in a beam search basedon the similarity function described earlier. Let Nbe the maximum number of models to be tracked,T be the set of models currently being tracked, andF be the newly proposed fault hypotheses. At eachcycle then, Mimic retains the N best models fromT [ (T � F ), ranked by similarity value.Tracking a ModelD E FGH IJKLM- - -����:HHHHj --XXXXz-XXXXzFigure 3: Tracking through a behavior graph.When a fault model is �rst constructed, an attemptis made to initialize it from current observations. Ifthe observations are not consistent with any state ofthe fault model, then the model is discarded. If thereis at least one consistent initialization then the modelbecomes a member of the set of candidate models, andall of its consistent initializations (there may be morethan one) are added to the \tracking set". The track-ing set is a set of models, each in a state consistentwith the most recent observations.Tracking is the process of using the observations tofollow a path through the behavior graph of a model(a \partial envisionment"). Consider the fragment ofbehavior graph in Figure 3. If a model is currently instate E, then a new set of observations is compared(using the similarity function) to the parameter values



g ��� Thermostat@@I Flow-rate sensor--� �cold waterhot water H1upper heaterH2lower heater______��______��Figure 4: Electric water heater.of state E. If the match is above a threshold, then themodel remains in state E. Otherwise, the immediatesuccessor states of state E are generated (via incremen-tal simulation) and each of these states is comparedwith the observations. If, say, the match with state Gwas above the threshold, then the model is retainedwith its state now set to G. If none of the successorstates match (up to some limited \distance" from E ),then the model is discarded. The limited distance isneeded to jump over instantaneous states in the envi-sionment that fall between consecutive observations.Observations may include independent parameters,i.e., parameters which are under external control andwhose values thus cannot be predicted. When an inde-pendent parameter changes value, tracking must reini-tialize the states in the tracking set using the currentobservations and values of history variables (ratherthan looking in vain for a compatible successor state).It is possible that tracking could discard all the can-didate models. This condition could arise if either: (1)some type of fault was overlooked in the description ofpossible faults, or (2) the diagnostic knowledge failedto propose one or more faults of a combination fault.In such a case Mimic (1) alerts the operator that thephysical system is behaving abnormally but cannot bediagnosed, and (2) displays the fault hypotheses evokedby the current observations.ExampleTo illustrate Mimic at work, let's consider the electricwater heater shown in Figure 4. It has a single thermo-stat which controls whether or not power is applied tothe two heating elements (on-o� control). Raw sensorinformation comes from a temperature sensor near thethermostat, from a 
ow-rate sensor on the cold-waterinlet, and from the electric terminals of the heating el-ements. In a real monitoring situation we would wantto diagnose a variety of possible faults such as defectiveheating elements, a stuck thermostat, a faulty 
ow-ratesensor, and loss of electrical power. However, to keepthis example simple, we'll consider only the possibilityof defective heating elements.The water heater is modeled in Qsim according to

the laws of thermodynamics that relate heat capac-ity, heat 
ow, thermal resistance, and temperature. Inthe normal (fault-free) model all the components ofthe water heater (tank, heating elements, thermostat,
ow-rate sensor) operate according to their intendeddesign. In a fault model, a faulty component operatesaccording to a failure mode (such as a heating elementthat generates no heat when power is applied).Table 1 summarizes an example of monitoring thewater heater, showing how monitoring progresses overeight moments in a series of observations1. For eachmoment, the table shows the quantitative sensor read-ings and three sets maintained insideMimic. The wa-ter heater begins in a state where the water in thetank is hot, the heating elements are o�, no water is
owing, and there is a slow temperature loss. Thesereadings are consistent with the normal model. Now,someone starts to draw water for a bath. A high
ow rate is measured but all other readings remainthe same. Since water 
ow is an independent variable,Mimic reinitializes every tracked model (just the nor-mal model in this case) to re
ect the change. Since thenormal model is consistent with the new values, it isretained.As time continues, the temperature inside the tankdrops because of the cooler inlet water. These read-ings are consistent with the current state of the normalmodel and evoke no fault hypotheses, so no change oc-curs to the tracking set. At moment 3 the temperaturedrops to the point where the heating elements turn on(as observed on a voltage sensor), These readings arealso consistent with the normal model, so the state ofthe model is updated accordingly.At moment 4 the temperature continues to drop. Al-though this observation is qualitatively consistent withthe normal model, it is inconsistent with the associ-ated quantitative ranges. In e�ect, the model is sayingthat for this 
ow rate, tank capacity, heating rate, andinlet temperature, the water temperature should notbe dropping so fast. Thus, the tracking task discardsthe normal model. At the same time, the readings areclassi�ed by the decision tree as being suggestive ofthree possible faults | a bad upper heating element,a bad lower heating element, or both heating elementsbad (denoted bad-H1, bad-H2, and bad-H1,H2)2. Thiscauses three fault models to be built. Each model issuccessfully initialized, soMimic is now tracking threemodels.The water 
ow stops at moment 5 (somebody turnedo� the faucet). With this change in an independentparameter, Mimic reinitializes the three models. Atmoment 6, the temperature is observed to be rising.1The numeric values shown in Table 1 are from a nu-meric simulation of the water heater in which the lowerheater is burned out.2In a more detailed example, other hypotheses wouldalso be proposed, such as a faulty temperature sensor anda faulty 
ow meter.



Moment 0 1 2 3 4 5 6 7Synopsis temp 
ow temp heater temp still 
ow temp heaterhot starts dropping on dropping stops rising o�Time (min.) 0.0 1.0 2.0 2.4 2.7 3.0 13.0 27.7Flow (liters/min.) 0 30 30 30 30 0 0 0Temp. (deg. C) 64.9 64.9 61.4 58.9 57.1 55.9 60.0 66.0Power (on or o�) o� o� o� on on on on o�New fault hypotheses none none none none bad H1 none none nonebad H2bad H1,H2New fault model(s) none none none none bad H1 none none nonebad H2bad H1,H2Tracked model(s) normal normal normal normal bad H1 bad H1 bad H2 bad H2bad H2 bad H2bad H1,H2 bad H1,H2Table 1: Diagnosing the water heater from dynamic behavior.This observation is qualitatively inconsistent with thebad-H1,H2 model, so this model is discarded. The ob-served temperature is then compared to the quantita-tive predictions of the two remaining models. Becausethe observed temperature exceeds the range predictedby the bad-H1 model, that model is discarded. Thepredictions of the one remaining model, bad-H2, arecompatible with the observations, so the model is re-tained. This model continues to track future readings,thus emerging as the sole fault hypothesis.DiscussionThe water heater example shows how, with few ob-servable parameters, Mimic can diagnose a system byobserving its dynamic behavior. In general, the speedat which a diagnosis can be narrowed depends on thenumber of monitored parameters and the dynamic ac-tivity of the system. With more monitored parametersand more system activity, there are more opportunitiesto falsify hypotheses.As a diagnostic method, Mimic can generate bothfalse positives and false negatives. False positives arecommon because the relatively small number of ob-served parameters cannot, in a single reading, discrim-inate among all the possible faults. Thus, all but oneof the candidates will be a false positive. However,with additional readings that reveal the system's dy-namic behavior, the set of candidates can be reduced,sometimes to a single candidate.False negatives can arise either because some typeof failure was overlooked in the knowledge acquisitionphase or because a combination of three or more faultsinteracted in a way that obscured one or more of the in-dividual faults. The former case is solved by adding the

new failure type and rerunning the diagnostic learningprocedure. The latter case is more di�cult. One ap-proach is to learn diagnostic knowledge for more thanjust single and double faults. In the general case this isimpractical since the number of fault combinations isexponential in the number of concurrent faults. How-ever, in some domains (such as in medicine) the num-ber of realistic combination faults may be tractablebecause many of the combinations are physiologicallyimpossible or medically uninteresting [Bratko et al.,1986]. LimitationsMimic assumes that faults occur one-at-a-time withrespect to its sampling rate. This assumption may beviolated in the case of a catastrophic event (such asan explosion) or cascading faults; these are real con-ditions that Mimic does not address. Also, Mimiccannot guarantee that it will recognize any combina-tion faults beyond the combinations included duringlearning. In practice, it will diagnose many such non-learned combination faults, but the faultsmay interactin a way that obscures the manifestations of some sub-set of those faults.Related WorkMeasurement interpretation is a signi�cant part of thejob of monitoring, and this aspect of Mimic sharessome of the ideas set forth by Forbus [1986]. In par-ticular, Mimic's notion of tracking combines two ele-ments of Forbus' approach: that of �nding temporallyadjacent states in the envisionment which correspondto temporally adjacent measurements, and jumpingover short gaps where consecutive measurements have



missed an intervening instantaneous state in the envi-sionment.Mimic is similar to Premon [Doyle et al., 1989] inthat both use a qualitative model of the physical sys-tem to perform monitoring. However, Premon is con-cerned with monitoring a correctly functioning systemin a changing environment. It uses a single fault-freemodel in a predict-plan-sense cycle for dynamic ad-justment of alarm thresholds and for deciding whichsensors to focus attention on (where the number of sen-sors is large). This work is complementary toMimic'sfocus on diagnosis, and raises the possibility of com-bining the techniques to perform diagnostic monitoringon very large systems.Mimic di�ers markedly from model-based trou-bleshooters such as GDE [de Kleer and Williams, 1987]in that it (a) uses fault models and (b) does not usedependency tracing or constraint suspension [Davis,1984]. Fault models are necessary in Mimic becauseof the need to track a faulty system's behavior overtime. Faults are speci�cally modeled (rather than sus-pending constraints) in order to get reasonably detailedpredictions of behavior. Dependency tracing, althoughextremely useful in domains such as digital logic cir-cuits, provide little diagnostic power in a system ofconstraints among continuous variables having feed-back loops. The problem is that dependency tracing insuch systems often returns all constraints as suspectsbecause: (a) all parameters of a constraint usually af-fect the result, and (b) output parameters often feedback to input parameters.The high-level design ofMimic is similar to the \gen-erate, test and debug" (GTD) paradigm [Simmons andDavis, 1987] in that both use associational knowledgeto generate plausible hypotheses and model-based rea-soning to evaluate them. The core idea in GTD is of\debugging almost right plans" whereas inMimic it isof \debugging almost right models".A number of expert systems have been built whichshare the same operational goal as Mimic | that ofrelieving some of the burden of monitoring from pro-cess operators [Dvorak, 1987]. Mimic focuses solely ondetermining the condition of the physical system, butmost of these expert systems have the broader scope oftrying to advise the operator on corrective actions. Es-cort [Sachs et al., 1986], an exemplar of this group,gets its knowledge of faults and anomalies and cor-rective actions through the usual process of codifyinghuman expertise in rules; Escort does not encode apredictive model of the physical system asMimic does.Implementation StatusPrototypes ofMimic and its companion learning algo-rithm (named DynaLearn) are implemented in Com-mon Lisp and have been run on a Symbolics 3670.
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