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Reasoning About Energy in Qualitative Simulation

Pierre Fouché and Benjamin J. Kuipers

Abstract—Qualitative modeling and simulation make it feasible
to predict the possible behaviors of a mechanism consistent with
an incomplete state of knowledge. Though qualitative simulation
predicts all possible behaviors of a system, it can also pro-
duce spurious behaviors, i.e., behaviors that correspond to no
solution of any ordinary differential equation consistent with
the qualitative model. A method for reasoning about energy
is presented that eliminates an important source of spurious
behaviors. This method is applied to an industrially significant
mechanism—a nonlinear, proportional-integral controller—and
show that qualitative simulation captures the main qualitative
properties of such a system, such as stability and zero-offset
control. It is believed that this is a significant step toward the
application of qualitative simulation to model-based monitoring,
diagnosis, and design of realistic mechanisms.

I. INTRODUCTION

UALITATIVE modeling and simulation make it feasible
Q to predict the possible behaviors of a mechanism consis-

tent with an incomplete state of knowledge. Qualitative
modeling can be useful for monitoring complex mechanisms,
hard to model analytically or numerically, or for diagnosis of
faulty mechanisms, whose model is unknown by definition.
" An important aspect of qualitative simulation is that the be-
havioral prediction can branch, corresponding to qualitatively
distinct futures that cannot be discriminated by the available
information. Qualitative simulation is guaranteed to predict all
real behaviors of systems consistent with the model. However,
any given set of qualitative constraints may not be sufficiently
powerful to filter out all inconsistent behaviors [11]. Such
remaining behaviors, which correspond to no solution of any
ordinary differential equation consistent with the qualitative
model, are called spurious behaviors.

Spurious behaviors pose a significant efficiency problem for
applications of qualitative simulation. When a model-based
diagnostic engine matches observations against behaviors de-
rived from a model, spurious behaviors consume time and
effort, but more importantly may prevent a model from being
eliminated once all its genuine behaviors fail to match. As we
shall see, reasoning about energy makes it possible to eliminate
an important source of spurious behaviors. In the first part of
this paper, we will briefly review the central concepts of quali-
tative simulation, then use two simple examples to demonstrate
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sources of spurious behaviors, and their elimination using the
energy constraint.

With these methods in hand, we turn our attention to an
industrially significant problem: modeling and simulation of
a controlled mechanism. A mechanism with its controller
form an homeostatic system whose operation can conceal
the manifestation of an underlying fault. In order to do
model-based monitoring and diagnosis of such a system, we
must be able to simulate correctly the behavior of a system
including a realistic controller. Using the energy constraint,
we obtain a tractable set of predictions for a nonlinear,
proportional-integral controller, which allows us to deduce the
qualitatively significant properties of such a mechanism, such
as stability and zero-offset control. This suggests a new type of
application for qualitative simulation, in the design of dynamic
control systems, which will be discussed at more length in the
conclusion.

II. QUALITATIVE SIMULATION OVERVIEW

Qualitative simulation is based on the observations that:

» the domain of a variable representing a physical parameter
of a system can often be partitioned into a small number
of “landmark” points and intervals between them, which
represent real qualitative distinctions for the magnitude
of the variable;

+ knowing the direction of change of a variable, in con-
junction with its qualitative magnitude, is often enough
to determine the qualitative properties of its evolution;
and

« for determining the qualitative behavior of a system, it is
often adequate to know a functional relationship between
two variables down to monotonicity and corresponding
pairs of landmark values.

QSIM [10], [11], based on the above ideas, is a powerful
simulation algorithm for deriving the possible qualitative be-
haviors of a system from its qualitative structural description.
[14] provides a tutorial overview of qualitative simulation. [1]
and [5] compare QSIM with the other qualitative simulation
algorithms.

A qualitative model of a system consists of the variables
that describe the system at a given level of abstraction, and
the constraints that hold among the variables. Variables are
continuously differentiable functions of time. The next step
is to identify the landmarks, those values in the domain of
the variable that make real distinctions for the behavioral
description of the variable. For instance if one considers the
amount of liquid in a tank then empty and full are such values.
They are used to describe the qualitative magnitude (QMAG)
of a variable, which is either a landmark, or an interval
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Variables Landmarks Constraints Corresponding Values
Y 0 400 a/dte (Y, V)
v —s 0 +oo d/dt (V,a)
A ~oa g O constant (A)
Fig. 1. Simple ball model.
Variables Landmarks Constraints Corresponding Values
Y 0 oo d/de (Y, V)
v oo Q +oo d/de (v, A}
G oo g 0 constant (G}
F o~ 0 +oo M~ (F, V) (o0, 4} , (0,0}, (+oojmo0)
A =g 0 +oo add (G F,/3) (g, 0,q)2

Fig. 2. Ball with friction model.

between two adjacent landmarks. The totally ordered set of all
the possible QMAGs of a variable is called its quantity space.
A significant difference between QSIM and other algorithms
is its ability to create new landmarks throughout simulation,
in order to model new important qualitative distinctions. A
variable is not only qualitatively described by its QMAG but
also by its direction of change (QDIR), which can be either
decreasing, steady or increasing. The pair (QMAG, QDIR) is
called the qualitative value (QVAL) of a variable. The set of
QVALs of all the system variables is the qualitative state of
the system.

The set of all possible states of a system is restricted
by relations between variables, called constraints. Constraints
may model arithmetic relationships like add(X,Y,Z),
mult(X,Y, Z) or minus(X,Y), differential relationships like
deriv(X,Y) or functional relationships like M*(X,Y). The
last constraint represents a very important class of functional
relationships and states that some monotonically increasing
function exists between X and Y. For instance, one can
express the relation between the amount of liquid in a tank
and its level by M+t (LEVEL, AMOUNT). But one may also
know that when the level is zero (resp. max) the tank is empty
(resp. full), if these terms are landmarks in their respective
quantity spaces. This knowledge is stored in the form of
tuples of corresponding values associated with the constraint
M*(LEVEL, AMOUNT) : (zero,.empty) and (maz, full).

The set of all the variables with their associated quantity
spaces and the set of all the constraints form a qualitative
differential equation or a QDE. A system may evolve so that
the current QDE may no longer be appropriate to describe
its structure. For instance, the above M7 relation is no
longer valid if the tank overflows. The range of variables for
which a QDE is valid is called an operating region. Functions
describing how a system behaves when it goes out of some
operating region are called region transitions.

Given a qualitative description of a system in terms of
variables and constraints, QSIM starts from an initial state
compatible with the QDE and determines the possible state(s)
of the system during the interval of time immediately after
the initial time-point. It then determines the possible changes
of every variable that will lead to a qualitatively distinct state,
defining a new time point ¢;. This process is called limit analy-
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Fig. 3. Correct behavior of the simple bail.
Variables - Landmarks Constraints Corresponding Values
Y 0 +oa d/de (Y, V)
v oo o +oo d/dt (v, a)
- 0 400 { abs~-value (V, ~V~)
A ~o0 g { constant (A)

Fig. 4. Extended simple ball model.

sis. Possible changes are a variable reaching or moving from a
landmark value or a variable changing its direction of change.
If several possibilities are compatible with the constraints
then QSIM will branch on every possibility: This potential
for a branching sequence of events is an important difference
between qualitative and numerical simulation. QSIM reapplies
this process to every newly created state and the result is a
tree of possible behaviors.

Qualitative simulation can produce total or attainable en-
visionments as well. Building a total envisionment consists
in enumerating all the possible states and then determining
the possible transitions between these states. An attainable
envisionment is similar except that it starts from an initial state
and incrementally builds the attainable states and transitions
among them. A behavior is a path in the graph.

Taking into account only the direction of change of a
variable is sometimes not sufficient to determine its evolution
unambiguously, especially when its derivative is constrained
only by continuity: when the variable becomes steady then
it can be either increasing, decreasing or steady after that
time and this produces an intractable set of behaviors. In-
troducing higher-order derivatives [2], [12], [15] allows the
next direction of change to be determined unambiguously,
since, in this case, it is given by the sign of the second
derivative. Reasoning with higher-order derivatives turns out
to be necessary to simulate complex, nonoscillatory systems.
Kuipers and Chiu [12] also present a method for simulating a
system without representing the direction of change of certain
variables, when only their QMAGs are interesting. Fouché and
Kuipers [7] discuss a comparative analysis of the currently
available techniques in qualitative simulation.

III. SOME LIMITATIONS OF QUALITATIVE SIMULATION

We present two systems that are among the simplest for
which the basic QSIM algorithm produces spurious predic-
tions. By this we mean that some behaviors derived from a
qualitative model do not correspond to any possible behavior
of any system consistent with that model.

A. First Example: A Ball Thrown in the Air

Consider a ball thrown in the air, leaving the ground at time
to with an initial vertical speed Vj. If there is no friction only
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Fig. 5. Three behaviors of the extended simple ball.
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Fig. 6. Impossible behavior of the bouncing ball

one force is exerted on the ball and its acceleration is equal to
constant gravity g. This yields the qualitative model of Fig. 1.
We will refer to this system as the simple ball.

If we include friction in the model, the friction force F is
inversely related to the speed of the ball. This is qualitatively
modeled by M~ (F,V). The fact that F' is zero when the
ball does not move is modeled by a pair of corresponding
values (0,0) associated with the constraint. As the force would
become infinitely large if the speed of the ball were infinite,
we add the corresponding values (—oo, +00) and (+00, —00).
The qualitative model for this situation, referred to as the ball
with friction, is given in Fig. 2.

Suppose first that there is no friction. The qualitative be-
‘havior of the ball is obvious: it first goes up for some period
of time, then reaches a maximum height, creating a new
qualitative time point t;, then goes down before touching the
ground at time t. This behavior is perfectly derived by QSIM,
as shown in Fig. 3.

But what if we want to compare the value of the ball velocity
at time #o and time t5 ? Since there is no friction, the absolute
value of the ball velocity should be the same. QSIM maintains
a total ordering only between relative values and we have to
introduce a new variable to represent the absolute value of the
ball velocity, leading to the new qualitative model of Fig. 4.
Unfortunately QSIM is unable to derive the correct behavior
of the ball and branches on the three possible orderings when
the ball touches the ground, as shown in Fig. 5.

This has a major consequence if we want to model a
bouncing ball. Let us suppose that the shock is elastic (i.e.,
no energy is dissipated during the shock) and that the velocity
of the ball is just reflected. Even if we do not represent the
absolute velocity of the ball, QSIM will create three states
after the bounce because it is unable to determine the ordering
between the initial velocity and the velocity immediately
after the bounce. Other spurious behaviors arise later in the
simulation.

Suppose now that there is friction. In Fig. 6 the ball reaches
a higher altitude after the first bounce with a lower initial
velocity. Energy considerations allow us to explain why this
is impossible: at time t2, the energy of the ball is lower than at
time %o, but at time tg4, it is greater than at time #;. As friction
occurs the total mechanical energy of the ball should always
be decreasing.

B. Second Example: The Spring-Block System

Let us consider another example where a similar problem
occurs: a spring-block system (Fig. 7). It is one of the simplest
mechanical system that exhibits oscillations, and it has been
heavily used in the qualitative physics literature 31, [4). 8],
[10], [11], [16]-[19]. It conmsists of a block connected o a
spring laying on a horizontal table. The block position is
referenced by a variable X, the origin being the rest position.
Friction may or may not occur. The frictionless system will
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Fig. 7. The spring-block system.

Variables I;andmarks Constraints Corresponding Valpes
X w00 0 oo d/at(x,v)
v a0 dee d/at(v,a)
A e 0 +o0 M™ (X, A) {00, 400) , (0,0}, {+o0, —oo}

Fig. 8. Model of the simple spring.

Variables Landmarks Constraints Corresponding Values
X -0 o0 d/dt(x,v)
v —~oa ¢ +oo d/dt(v,a)
Fs ——a 0 teo M~ (Fg,X) {~o0, 400} , (0,0}, (+oo; ~o0}
Fp e 0 tee MR, V) (o0, +00) , (0,0), (400, ~o0)
A ~o0 (O heo Add (Fg, Fp,A)

Fig. 9. Model of the damped spring.

often be referred to as the simple spring, and the other as the
damped spring. Though extremely simple from a structural
point of view deriving their behaviors qualitatively turned out
to be challenging. ‘

We know that the force Fs exerted by the spring on the
block is inversely related to its elongation. This is qualitatively
modeled by M~ (Fs, X). The fact that Fyg is zero when the
block is at its rest position is modeled by corresponding values
(0,0) associated with the constraint. To model the fact that the
force would become infinitely large if the block was moving
toward infinity we add the corresponding values (—o0, +00)
and (+o00, —c0).

While the relation between Fs and X is frequently linear
(Hook’s law), we shall not make any linearity assumption, to
demonstrate that our method applies to nonlinear systems. For
the simple spring, no other forces are exerted on the block and
we can directly model the acceleration as inversely related to
the position of the block. For the damped spring, the friction
force Fr is inversely related to the speed of the block and
again we shall not assume that this relation is linear. The
models are given in Fig. 8 and 9.

Simulating the simple spring produces one behavior until
time t3 and starts branching at time t4. Fig. 10 shows the
three possible behaviors at that time. In behavior (a), the block
does not reach its initial position. In behavior (b), the block
goes beyond and in behavior (c) the system comes back to
its initial state.

Only the last bebavior is genuine, of course. Furthermore,
if simulation is allowed to continue after this point, stranger
behaviors are produced: some of them correspond to de-
creasing oscillations followed by increasing oscillations, or
vice-versa.

IV. POSSIBLE SOLUTIONS AND RELATED WORK

One way to eliminate these spurious behaviors is to intro-
duce new variables representing potential and kinetic energy
and to assert that the total energy is constant [10]. More
generally, we can specify a Lyapunov function, generalizing
the notion of energy, to represent the total energy of the
system. This approach has several drawbacks:

* Finding such a function is generally very hard, especially
for nonlinear systems. Additional variables must be added
to the system model, reducing its simplicity. Here we are
only interested in the position, speed and acceleration of
the block. ‘

* The simulator must be given additional information that
is implicitly contained in existing constraints. It should
be able to determine whether a system is conservative by
analyzing the constraint structure.

Another approach is to perform envisionment as other
qualitative simulation algorithms do {4, 3] and not create new
landmarks (see Fig. 11), since in Fig. 10, branching occurs
because new landmarks are created either for the position or
the velocity.

This is adequate if one only wants to prove that the simple
spring cannot reach quiescence. However:

* It is impossible to study the nature of oscillations because
the position of the block at time ¢4 cannot be compared
with its initial position. Without creating new landmarks,
the problem cannot even be expressed.

* Prohibiting the creation of new landmarks does not solve
the problem, since an extended version of the simple
spring including the variable w = x — z¢ exhibits the
same spurious behaviors, branching on the ordering of
v=~0and w =0

* In an envisionment, just as in the basic QSIM algorithm,
the validity of a transition depends only on the two
adjacent states connected by the transition. Let us explain
why the behavior in Fig. 10(a) cannot be ruled out by
purely local reasoning: let S; be the state of the system
during the interval [t3t4] and S the state at time t4 In
S1, there is no precise relationship between the speed and
the position of the block, and so the transition between
S; and S, is perfectly valid if we consider only S; and
So. It is invalid in that behavior because we know that
z¢ represents the initial position of the block, and at %,
the block was dropped with no initial velocity. In another
behavior, that transition might be valid. The validity of a
transition depends on the behavior in which it takes place
and global considerations must be introduced. '

One way to reason globally about the behavior of a system is
to use a phase space representation. The phase space for a sys-
tem is the Cartesian product of a set of independent variables
that fully describe the system. In practice, it provides another
view of a system behavior: a system state is represented by
a point in the phase space, and a behavior is represented
by a trajectory. The phase space is a powerful tool to study
properties of dynamical systems. A major theorem about the
existence and uniqueness of the solution of an autonomous
system of ordinary differential equations (i.e., one without
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Fig. 10. Three way branching of the simple spring

time-varying input) has a direct equivalent in the phase space
representation:

A trajectory that passes through at least one point that
is not a critical point cannot cross itself unless it is a
closed curve. In this case the trajectory corresponds
to a periodic solution of the system.

Lee and Kuipers [16] and Struss [17] discovered indepen-
dently that this property can be conveniently translated into
qualitative terms for second order systems. In this case the
phase space is a plane, so a general intersection criterion can be
established even if trajectories are described qualitatively. This
criterion can then be used to rule out trajectories that intersect
themselves. One must note that in the quantitative case, only
one among all possible pairs of independent variables is
necessary to check the nonintersection property. But because
reasoning qualitatively implies losing a certain amount of
information, the nonintersection constraint must be applied to
all possible phase planes: one qualitative phase plane may
contain information that is not present in another one.

Struss [17] used the phase space representation in con-
junction with symmetry properties of the simple spring to
determine that its behavior was purely cyclic, but he could
not use symmetry properties for the damped spring and both
increasing or decreasing oscillations remained possible. How-
ever his technique proved that the nature of oscillations was a
system property that could not change through time. In other
words, “once damped, always damped.” Lee and Kuipers’
method [16] had the same limitations.

Ishida [8] used the qualitative theory of linear systems
developed in econometrics. Introducing the notions of sign
stability and sign observability he concluded that “oscillations
will always converge eventually” for the damped spring and
“the [simple spring] system is always in a pure periodical
mode”. However his method is restricted to linear systems,
whereas these properties of oscillations in spring systems are
independent of systems being linear or nonlinear.

V. ENERGY-BASED FILTERING

Reasoning about energy has an important place in our
common sense understanding of the physical world. Many
of the conclusions that one can draw about the evolution of
a system are based on a qualitative analysis of the energy
balance.

An explanation of the behavior of the mass-spring system
to someone who is not familiar with mechanics might look
like this:

+ There is something that gives the system its ability to

change its motion. Let us call this thing energy.

+ Energy seems to be either contained in the block when it
is moving or provided by the spring when it is stretched
or compressed. Intuitively, the faster the block is moving
the more energy it has; the more the spring is stretched
(or compressed) the faster it will accelerate the block
when the spring is released. Let us call the first, speed-
related form kinetic energy and the second, which may
potentially make the block move potential energy.
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* When the block is moving, for instance when it leaves the
position where the spring is fully stretched, its potential
energy is decreasing while its kinetic energy is increasing.
Oscillations are a continual exchange between kinetic and
potential energies.

* Friction causes energy to be lost in motion, so the block
cannot reached the same extreme position each time the
spring is stretched or compressed.

* When there is no friction, the sum of the potential and
kinetic energies remains constant, so the block must reach
the same extreme position when its speed is zero.

These explanations used qualitative descriptions of the
concepts of mechanical energy, its conservation or dissipation,
and two of its different forms: kinetic and potential. To
generalize to nonmechanical systems, we have to formalize
these intuitive notions. In classical mechanics, formalization
is provided by both the Kinetic Energy Theorem and the
decomposition of forces into conservative and nonconservative
forces. However, these concepts are applicable to any second-
or higher-order systems even when it does not make sense to
talk about physical energy.

A. Principle’

Theorem 1 (Kinetic Energy): Suppose we have a system
including three variables X, V and A, continuous functions
of time, such that:

Vt € [a,b], X'(t) = V(t) and V'(t) = A(f) (1)
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Attainable envisionments. (a) Envisionment graph of the damped spring. (b) Behavior of the simple spring.

and A(%) can be decomposed into two terms,
A(t) = C(X(t)) + N(t). 2

Further, suppose the system moves, over the interval [t¢5]
from

Ty = X(tl)?’ul = V(tl) {0 9 = X(tz),'Ug = V(tg)

then

AKe(tlvt‘Z) - WC<t17t2)+WN(t17t2) (3)
where
AK(t1,t2) = %m(v% - ) (4)
Welt,t) =m [ Cla) ds )
Waltnts) =m [ NOV() dt ©)

ty

This theorem shows that the change in kinetic energy can be
decomposed into the sum of the conservative work W and
the nonconservative work Wy . The constant mass m appears
here only for terminological compatibility with the physical
terms “force,” “energy,” and “work.” This result depends only
on the equations relating X, V, A, C, and N and it applies
equally well to nonphysical domains. Foliowing the analogy
with mechanical systems, we shall refer to X as the “position,”
V the “velocity” and A the “acceleration” of the system.
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B. Qualitative Interpretation

In this paragraph, we will use the following notations to deal
with sign of quantities: [z], denotes the sign of z — a. When
a = 0, we will simply use [z]. The sign of a continuously
varying quantity f over an interval [z122] will be represented
by [f]*"?), and defined as follows:

. m[mmﬂ = 0 iff Vz € [z1,z2], f(z) =

o [fller®el = 4 iff Vz € [z, 2],f($) > a and
3 g € [z1, 22, f(@0) >

o [f]l==2] = — iff Vo € [21, 72], f
o € I, f

o [f]l=1=2] = 7 otherwise.

(z) < a and
z1, 2], f(

Zo) < a.

The key observation is that the sign of the quantities defined by
(4), (5) and (6) can be computed using information present in a
qualitative behavioral description, and that (3) can be checked
using the classical sign addition law: The following theorems
allow us to interpret qualitatively the kinetic energy theorem.
Theorem 2:

[AK(t1,t2)] = Q)
The sign of the variation of kinetic energy depends only on the
absolute value of V at ¢; and f5. This sign can be evaluated
if v, and vy have the same sign or if the absolute value of v

is explicitly represented as a variable.
Theorem 3: if [C(z)]l®1%2] # ?, then

Welt, t2)] = [72]e, [C(z))=2=2],

“UZHIUH

®)

If C(z) does not change sign on the interval between z; and
1z then the sign of W depends only on that sign and on the
ordering between z; and x3:

Theorem 4: if C is odd over [z1, x2] and if [C/(z)]I=t=2!]
7, then

We(t, t2)] = [C(x)][mllmzl].

(lz2l)jz, ©
Even if C(x) does change sign on the interval between 13
and o, if we have more information about the nature of C
(here, C is odd), it is still possible to compute [We(ty, t2)]
if C(z) does not change sign on the shorter interval between
|z1| and |z2].

Theorem 5: if [N(t)V (t)]l1*2] # 7, then

(W (t1,2)] = [NV (B, (10)

The sign of Wy can be determined only if the product
N(£)V(t) has constant sign from ¢; to t. Fortunately this is
often true, since N, frequently represents frictional or motor
“forces”, in the opposite or the same direction as the velocity.

The energy constraint is applied as a global filter. For each
new state at a time point t;, each earlier time-point ¢; is
considered. If the signs of the terms in (3) can be determined
over the interval [t;t;], and if they violate the qualitative
addition constraint, the proposed state at ¢; is inconsistent and
can be filtered out.

C. Computational Complexity

It is easy to see that using the energy constraint requires
O(NL?) computations of signs (signs of AK., Wc and Wy),
where N is the total number of behaviors in the tree and L the
average number of time points in all the behaviors. This sounds
like a Iot of additional work to do, but a very important point is
that the energy constraint can early detect that some branches
correspond to spurious behaviors and prevent those branches
from being further developed. In practice this often results in
computational time saving and much smaller behavior trees,
compared to those obtained without the energy constraint (see
Fig. 15).

D. Identifying the Energy Constraint

QSIM needs to be given the names of the variables X,V,
C and N in order to apply the energy constraint. Algebraic
expressions representing C and N in terms of other variables
can be given as well, if these variables are not explicitly
represented in the QDE. This can be done by hand, or by
an algebraic manipulator that first looks . for a derivative
chain in the QDE, and then tries to identify an appropriate
decomposition for the highest derivative in that chain.

The main problem in this search is to find a conservative
term that is “as conservative as possible”. It is always possible
to specify that N(¢) = A(t) and C(z) = 0, but in that-case the
sign of the nonconservative work is almost always unknown.
Our algebraic manipulator currently handles cases where the
amount of manipulation is not too big, but fails to provide a
useful answer for more complex systems such as the example
of a Pl-controller in Section VI, where the decomposition is
not trivial.

This currently is the main limitation of our method. We
are still improving our algebraic manipulator so it can handle
more cases, but we are also investigating to see if other, more
powerful manipulators, such as Macsyma or Mathematica,
could be used instead, and interfaced with QSIM.

VI. RESULTS

We begin by explaining how the energy constraint works
on the ball systems.

A. The Ball Systems

In, our examples, the decomposition of the acceleration into
conservative and nonconservative terms is trivial:
* For the simple ball: C(z) = g and N(t) = 0.
« For the ball with friction: C(z) = g and N(t) = F(t).
Provided by the algebraic manipulator with the decomposi-
tion for the ball system, QSIM is able to determine that the two
first behaviors of Fig. 5 are inconsistent, with the following
justifications.
* Behavior a:
“Inconsistent: between t0 and t2,
Ke-var = -, C-work = 0, NC-work = 0"
This means that between time points to and t,, the vari-
ation of kinetic energy is negative (|V(¢0)] > |V (t2)])s
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Fig. 12. Behaviors of the ball with friction

but both conservative and nonconservative works are zero
(Y (to) = Y (t2) and N.(t) = 0)

« Behavior b:
#Inconsistent: between t0 and t2,
Ke-var = 0, C-work = NC-work =
Here is the explanation:

0"

1

sign(AK,(to, t2)) = 0 because |V (to)| = |V (t2)]
sign(We(to,t2)) = — because between %o and
1o, g < 0 and Y(tg) < Y(tq)

sign(W, (tg, t2)) = 0 because N(t) =0

Note that an inconsistency is detected before time ¢3 and
that simulation is stopped at time 5.

The simulation of the ball with friction produces three
behaviors shown in Fig. 12.

The important point to observe in Fig. 12 is that the absolute
value of the velocity when the ball hits the ground is always
lower than its initial value.

About Asymptotic Behaviors QSIM produces three behav-
jors because the ball may reach its terminal velocity (i.e., the
velocity at which the friction force compensates exactly for
the force of gravity) before or at the same time that the ball
hits the ground. Strictly speaking the ball can never reach
its terminal velocity. However one can argue that solutions b
and c are intuitively appealing since in reality many falling
objects quickly reach a speed that is indistinguishable from
their terminal velocity. QSIM thus allows certain types of
asymptotic motion toward a limit to be described as taking
place in finite time: an example of technically spurious,
but heuristically useful, predictions. Certain optional filtering
methods are available [15], which are partially successful in
filtering out these behaviors, if desired by the user.

Perhaps surprisingly, when we simulate a bouncing ball
with elastic collisions but friction due to air resistance, we
still get exactly three behaviors, all representing bounces of
decreasing amplitude (Fig. 13). There is a single three-way
branch according to whether the ball reaches terminal velocity
on the first bounce. After the first bounce, the energy constraint
ensures that the ball cannot reach its terminal velocity.

B. Springs

Again the algebraic manipulator provides QSIM with the
decomposition of the acceleration into conservative and non-
conservative terms:

« For the simple spring: C(X(¢)) = A(t) and N(t) = 0.

« For the damped spring: C(X(t)) = Fs(t) and N(t) =

Fr(t).

Applying the energy constraint to the simple spring, QSIM
determines that the two first behaviors of Fig. 10 are incon-
sistent, leaving a single cyclic behavior, and providing the
following justifications.

» Behavior a:

“Tnconsistent: between t0 and t4,
Ke-var 0, C-work = +, NC-work = 0"
Behavior b:

“Inconsistent: between t0 and t4,
Ke-var = +, C-work = 0, NC-work = 0"

Simulating the simple spring until time t4 took the same
time: 0.3 s with and without the energy constraint. It is
interesting to insert another variable into the simple spring
model to represent the absolute value of the position. This
allows us to compare the extreme positions on each side of
the rest position. QSIM now gives us three genuine behaviors,
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Fig. 13. Behaviors of the bouncing ball.
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Fig. 14. Behaviors of the simple, nonsymmetric spring.

all cyclic. This branch happens because the spring force is
not necessarily symmetric. The spring may be very stiff when
compressed and weaker when stretched, or vice-versa, SO
the extreme positions may not be symmetric with respect
to the rest position. Fig. 14 shows the three possible cyclic
behaviors.

Applying the energy constraint to the damped spring allows
QSIM to derive the correct behavioral description as shown in
Figs. 15 and 16. We come up with one infinite, pseudocyclic
behavior, exhibiting decreasing oscillations, and an infinite set
of behaviors in which the system becomes overdamped after
a finite number of oscillations. If the system were linear, it
could not become over-damped after the first oscillation, but
without a linearity assumption, these are genuine behaviors.

Simulating the damped spring until time t9 took 4.3 s
without the energy constraint and 1.6 s with it.

VII. A COMPLEX EXAMPLE: A NON-LINEAR
PROPORTIONAL INTEGRAL CONTROLLER

A.more complex example shows that, with the help of a
variety of qualitative simulation methods, QSIM is able to
derive the correct behaviors of a nontrivial system and to
provide answers to interesting engineering questions.

The system in Fig. 17 is a tank whose level is controlled by a
proportional-integral controller or Pl-controller. This example
is based on one proposed in [9]. Basically the principle of
the controller is the following: a sensor provides the level [ of
liquid in the tank. The controller compares this value with a set
point [ and defines the difference between the two as the error
e. The opening of the valve v is a function of the error and
the integral i of error e. We have generalized the control law
to include several monotonic function constraints, representing .
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Fig. 16. Decreasing oscillations of the damped spring.

unknown and potentially nonlinear functions. The conclusions
we derive will therefore apply to any particular system that
satisfies this qualitative description.

Modeling the system qualitatively is not straightforward. We
outline the modeling process here; the derivation is given in
detail in Appendix B. The system variables are presented in
Fig. 18.

A. Model Building
The dynamic behavior of the system in open-loop is given
(see Appendix B.1) by the equation
dl
AE% = g1 — vCy/ pagl. an

This equation is already nonlinear, but the main source of
nonlinearity of the closed-loop system is the control law:

v= foli) + gole) (12)

Fig. 17. A level-controlied tank

where the only thing that we know about functions fo and
go is that

« they are instances of the MT™ class of functions:
(dfo(i))/(di) > O and (dgo(e))/(de) > 0
* fo(0) = go(0) = 0.
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q1 volumetric inflow rate

A cross-sectional area

P, ambient pressure

l level of liquid in the tank

e error

v position of the valve

q2 volumetric outflow rate

Vi volume in the tank

p pressure at the bottom of the
tank

s set point

? integral of error

Cy valve coefficient

q volumetric netflow rate

p liquid density

ag acceleration of gravity

Fig. 18. System variables

Initially the system is at equilibrium: ¢ = 0,e=0,1=1I
and the inflow is at some value g1 = ¢f. We would like to
study how this controller reacts to a step mcrease of the inflow:
at time to, the inflow takes on the value g7 with ¢ >qf.

As we will compare the level to a fixed set point, we can
introduce the following reduced variables:

_Ldl e Q@
F”Za’i Fl‘Azs F2'Al
_.l pag
L—-—Z; V=uo K———A ls

Substituting these variables into (11) yields the following
equations:

dL
T 13)

F,=KVVL F=F-F

which can be directly transformed into QSIM constraints.
Introducing auxiliary variables for the error and its integral:

L=E+1 F=—

e )
E-_Z; I—T; (14)

allows the control equation (12) to be modeled qualitatively:
V=f(I)+g(E)with fe MT andg e M™ (15)

if functions f and g are defined by f(I) = fo(¢) = fo(lsI)
and g(E) = go(e) = go(lsE)-

Without curvature and energy analysis the simulation is

intractable. Let us analyze the system from the “energy” point
of view first. The system composed of (13), (14), and (15) is
a second-order system analogous to a spring: the “position” is
the integral of error I, the “velocity” is the error E' and the
“acceleration” the netflow F. What we would like to have is
a decomposition of F into two terms C and N, C depending
only on I and N having a sign related to the sign of E, to be
able to compute the sign of the nonconservative work. This
decomposition is determined in Appendix B.2 and the result is:

C=F ~Kf(I) (16)

N = -K(g(E) + Vhi(E)) (17)

with by € Mt and hy(0) = 0. F; and K are constant so the
first term C is conservative and the sign of N is determined
by the sign of E, for V is always positive.

B. Simulation Results

It is easy to see that the derivatives of variables V, F' and
F, are not constrained and that these variables will exhibit
chatter. Ignoring their directions of change [12] eliminates
this phenomenon. Fig. 19 shows the behavior trees computed
until time ¢5, using no global constraints, using the Non-
Intersection Constraint (spurious behaviors are not deleted but
labeled as inconsistent with a X at the end), using the Energy
Constraint and using both of them (clockwise, from upper left
corner). Used alone, the nonintersection constraint ensures that
I and L must have similar behaviors (both increasing or both
decreasing oscillations); the energy constraint ensures that I
must exhibit decreasing oscillations.

Fig. 20 shows one particular behavior, with the energy and
the nonintersection constraints, computed until time £12.

1) All the time varying variables exhibit decreasing oscil-
lations and the system can reach quiescence after an
arbitrary number of oscillations. The controller is always
stable in response to a step increase of inflow.

2) In every quiescent state the level is equal to the set
point. There is no offset.

Since these properties are true in all the behaviors of
the system, they are true for every physical system that is
consistent with the qualitative model.

For the above analysis, we did not set an upper limit for
the level in the tank. When we do provide such a limit,
we get three behaviors at time t;, two of which correspond
to overflow or the level exactly reaching the limit without
overflowing. This provides the additional conclusion that if the
tank does not overflow during the first oscillation it will never
overflow. Adding quantitative information to the model [13]
may determine whether the tank will overflow or not, given
numerical intervals for the step increase and other parameters
of the system.

C. Using Curvature Constraints

We have not explicitly determined the behavior of the valve,
since all that we know from Fig. 20 is that the valve is open.
In order to determine its direction of change, a curvature
analysis must be carried through [15]. This is explained in
detail in Appendix B.3. Of course we have to apply the
smoothness assumption to the functions f and g (i.e., the
second derivatives of f and g are always small). If we also
use the fact that the second derivatives of V and F are useful
only when their first derivatives are zero, we obtain

V" = F(f'(I) - KVg'(E)hy(E)) (18)
"o_ ’ v’
F" = ~Khy(E)F ( () + ) E>> (19)

with hy € MT and hy(E) > 0. The previous expressions are
ambiguous if used directly. Under the assumption that the inte-
gral control term is “big enough” compared to KV ¢'(E YW (E)
and (V')/(h3(E)) then we have

sign(V") = sign(F) (20)

sign(F") = —sign(F). (21)
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Fig. 20. One behavior of the level-controlled tank This simulation provides answers to some questions a process control engineer
would ask about the qualitative properties of the controlled system.

Fig. 21 shows three behaviors (only the valve, the level VHI. CONCLUSION
and the netflow are plotted). One remaining problem is that ~
interpreting the assumptions we have made in terms of con- We have demonstrated the use of the energy constraint for

ditions on the parameters of the actual system is not triv- eliminating an important class of spurious behaviors during
ial! qualitative simulation, and illustrated it with simple models
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Fig. 21. Three behaviors of the level-controlled tank with simplifying assumptions.

of the ball and the spring, with and without friction. The
more complex example of the PI controller demonstrates that
the energy constraint can be. applied, with some effort in the
algebraic manipulation of the problem, to an industrially sig-
nificant mechanism. This example also shows that qualitative
simulation is now quite different from “naive physics.” The
goal of naive physics was to formalize our knowledge of the
everyday physical world whereas qualitative simulation tends
to provide a qualitative description of a system’s possible
behaviors, when that system is imperfectly known. It turns
out that these subfields of Al, though very close at the
beginning, evolved in a different way and the techniques used
in qualitative simulation are anything but naive.

However, this example also suggests the value of qualitative
simulation for the analysis of dynamic systems such as control
systems. Qualitative simulation can be applied to mechanisms
that are incompletely known, or which are completely char-
acterized but include nonlinear elements, so that traditional
analysis is ineffective. The soundness theorem for qualitative
simulation [11], guarantees that all real behaviors of the
mechanism will be among the set predicted by QSIM. If
methods such as the energy and curvature constraints can
produce a tractable set of predictions, then certain qualitative
properties of the mechanism can be inferred by examining the
properties of the qualitative behaviors. As we have seen with
the PI controller, if properties such as stability or zero-offset
are true of every predicted behavior, then they must be true of
any mechanism satisfying the qualitative description.

The converse is also useful, though somewhat less so,

since qualitative simulation is not complete in its ability to
filter out impossible behaviors. If an undesirable behavior
appears among the set of predictions, it requires further careful
analysis, to determine whether it is a genuine behavior of some
mechanism satisfying the qualitative description, or whether
the behavior is spurious. If it is genuine, it may be possible
to impose additional qualitative or quantitative constraints on
the System to prevent undesirable behaviors.

APPENDICES

A. Proofs

Al) The Kinetic Energy Theorem (Theorem 4.1): We can de-
fine the work done by the forces acting on the system from
t1 to to as ’

War(ts, t2) = m / T AV ) dt 22)

Replacing A by V' in (22) and changing the variable of
integration lets us write

ty
Wr(t1,t2) =m V(HV'(t) dt
ty
v2
=m v dv
Vi
1 ;
= =m(v] — v}
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By defining
AK. (1, 12) = 5m(0 — v}) 23)
to be the change in kinetic energy in the system, we get
Wr(ty,t2) = AK(t1,t2). 24)

Now, suppose we can decompose A(t) into two terms, one of
which depends only on the value of z:

A(t) = C(X(t)) + N(t). 25)
Then we can rewrite (1) as (
Wr(ty,t2) = Wel(ty, t2) + Wi (ts, t2) (26)
where
Welts, ts) = / COxX @)V dt @7
and
Wit = [ NOV() dt. (28)

Substituting X’ for V in (27) and changing the variable of
integration gives us

We(ti, t2) :/

x

T2

C(z) da. (29)

Combining (23), (24), (26), (28), and (29) gives us the
theorem.
A.2-Proof of Theorem 4.2:
o If v1 = vy = 0, the identity is trivial.
s If v; # 0 or vy # 0, then v3 — v? = |of> — |u1? =
(lva] = [oaD)(Jva| + 1))
Theorem 4.2 follows, for [lvg| + |ui1]] = +
A.3—Proof of Theorem 4.3:
* If t; = t», then z1 = z9 and the identity is trivial.
e If t; # to , let us discuss according to the value of
[l
+ If [C(z)][=122] = 0, the identity is trivial.
+ If [C(z)][®2] = 4, let us first consider the case
;1 < z3. Since C is continuous and C(zo) > 0,
3 (z5,27) € [x122)* 125 < 39 L 7 and
Vze [zgzg], C(z) > 0.

I+
Hence, fxf C(z) dz > 0.'We can now decom-
pose the i(r)ltegral

x, z}
Wc(tl,tg) :/ ’ C(:E) d$+/ ’ C(Z’) dz
x1 ) :t(;

X2

+ /+ C(z) dz.
Zo
As C(z) > 0 over [z1x2], we have W (t1,2) >
0. If z; > xo then We(ty,t2) = — f;; C(z) dz
and we get [We(t, 1)) = 22z, [C(a)]712]

+  The proof extends without difficulty to the case,
[Cla)frree] = —.

A.4—Using Symmetries (Proof of Theorem 4.4):
* If x; > 0 and z2 > O, the identity is the same as in
Theorem 4.3
« If z;1 < 0 and 29 < 0, then
[|z2)jz, [C (@)1= 121 = [—25 + 2] [C ()] 172 =]
= —fo2 — ma)~C(a)1=
= 23], [C(x)]l=1#2)
From Theorem 4.3, this is equal to We(t1,12).

* If z; and z» have opposite sign, we can decompose the
conservative work into two terms:

0
Wel(ti, ta) =/

Ty

C(z) dz + /mz C(z) dz.
0

Changing the variable of integration z in the first integral

to —z yields

0 T2
Welty, te) = —f C(~zx) d$+/ Clz) dz.

-T1 0

Thus, using the fact that C' is odd:
0 T2

Welty,te) = C(z) dz +/ C(x) dz.

—T1 0

Putting the two integrals together gives us

We(ta, t2) -‘-/

-z

z2

C(z) dx.

We are now back to one of the two cases we studied
above, since —z; and z2 have the same sign. This
establishes the theorem.

A.5—Proof of Theorem 4.5: The proof is identical to the

proof of Theorem 4.3, if we replace z by t and C(t) by
NV (¢).

B. The PI-Controller
B.1-—Analytic Model: The mass balance of the system in
Fig. 17 is:

d
a(th) = pq1 — pgs. (30)

Given that the tank is cylindrical (of cross-sectional area A)
and the density is constant, we get:

dl
A— = q1 — qo.
= =a-a @)
A valve is classically modeled by
g2 =vC,/P - P, (32)

where v is the opening of the valve, C, a coefficient charac-
teristic of the valve and P, is the atmospheric pressure. The
pressure P at the bottom of the tank is

P = P, + pa,l. (33)
Putting together (31), (32), and (33) yields
dl
A;ﬁ = g1 — vCyr/pa,l. (34)
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(Define-QDE PIC
(text “A level-controlled tank”)
(quantity-spaces
;; Main variables

(F1 (0 f1* £1+ inf)) ;inflow

(F2 (0 £2+ inf)) ;outflow

(F (minf 0 inf)) ;netflow

(L (0 1* inf) ;level in the tank

(rL (0 rL* inf)) ;square root of L

(V (0 inf)) 7 - ;opening of the valve
;; Control variables

(LS (0 1* inf)) ;level set point

(E (minf 0 inf)) ;error: L-LS

(PC (minf 0 inf)) ;jproportional control term

(IC (minf 0 inf)) ;integral control term

(C (minf inf))) ;conservative term

(constraints

;; System equations )

((add F F2 Fl) (0 f2+ f1+)) ;mass balance

((d/dt L F))
((M+ rl L) (0 0) (rl* 1*) (inf inf))

((mult V rL F2) ) ;valve equation
;; Control equations
((add E L8 L) (0 1* 1%*)) ;error definition

((d/dt IC E))
((add PC IC V) ) ;PI control
((M+ PC E) (minf minf) (0 0) (inf inf))
((M~- C IC) (minf inf) (inf minf))
((constant F1l))
((constant LS)))
(energy~constraint (IC E C (- E)))
(ignore-QDIRs V F F2)
(unreachable-values (v 0))
(phase-planes (f2 c)(e c)(Vv e))
(print-names (PC “g(E)")
(IC “£(I)")))
P T e e e S S S
;; STEP-INCREASE simulates the model:
:; - steady-state is the equilibrium state,
;; - perturbed-state the state immediately after the step increase.

PP e s s S S S m—————
(defun step-increase ()
(gsim~cleanup)
(let* ((*time-limit* ‘t12)
(steady~state (make-new-state :from-gde PIC
p:assert-values ‘((E (0 std))
(£1 (£1* std))
(1s (1* std)))))
{perturbed-state (create-transition-state :from-state steady-state
:to-gde PIC
:assert ‘((f1 (f1+ std))
(e (nil inc)))
sinherit-QMAG ‘(1 ic 1s))}))
(gsim-display (gsim perturbed-state))))

Fig. 22. QMIS model.

The error e is defined by B. Energy Analysis

e=1—14 (6) Consider the model defined by (13), (14), and (15). Let us

and its integral i by begin by expressing V'L as a function of E:

t
i= /_00 e(u) du. (36) VL=VE+1. (37)



62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1, JANUARY/FEBRUARY 1992

To get the decomposition we must separate constant terms and
terms that depend on E. Introduce a new function h; such that

VE+1=1+h(E). (38)
or equivalently
h(E)=vE+1-1 39)

where hy is an instance of M. Since h1(0) = 0, hi(E(t))
and E(t) always have the same sign. Replacing v/I by its
new expression in (13) yields :

Fy = KV 4+ KVhy(E). < (40)
Hence
F=F - K((f(I)+g(E) + Vhi(E)) (1)
or equivalently:
F = (F - Kf() - K(g(E)+ Vhi(E))  (42)

where F; and K are constant so the first term between
parentheses is conservative. The important point concérning
the second term is that its sign is determined by the sign of
E, since V is positive. The appropriate decomposition is:

C=F-Kf() (43)
N¢ = -K(g(E) + Vhi(E)). (44)
B.3—Curvature Analysis: Differentiating (15) yields
V'=Ef(I)+ Fg'(E) (45)
and
V" =Ff(I)+E*f"(I)+ F'g'(E) + F*¢"(E).  (46)

In order to use (2)' we shall assume that the functions f and
g are relatively smooth so that their second derivatives are

always very small (in the linear case they are equal to zero):
V"'=Ff'(I)+ F'¢(E). 47

Let us replace /L in the expression of Fy (13) by ho(E) =
VE+1

Fy = KVho(E). (48)
Since Fj is constant
F' = ~F}. 49)
Deriving (48) yields
F'= —-KV'hy(E) — KVFhy(E) 50)
and
F" = ~KV"hyo(E) = 2KV'Fhy(E) — KVF'hY(E) 51

~ KVF?h)(E).
Using the smoothness assumption on he yields

F" = —KV"hy(E) - 2KV'Fhy(E) — KVF'hy(E). (52)

Equations (47) and (52) are not useful directly. If we consider
that (47) is useful only when £/ = 0 and (50) when V/ = 0, .
they can be simplified. Using F’ = 0 in (6) yields

V'he(E) = ~VFhy(E). (53)
From the definition of Ao, we know that
2hy(E)ho(E) = 1 64
and (53) is reduced to
2h2(E)V' = -VF. (55)
Using (55) in (52) yields
/
F" = —~Khy(E) (V" + h—;}%) (56)

Again using F’ = 0 in (47) allows (56) to be simplified:

¢
F'" = ——Kh2(E)F<f’(I) + E%%F)) (57)
To simplify (47), let us use V' = 0 in (45)
'
F= —-Egi,—(%%. (58)
Putting this expression into (50) yields
F' = —KVFhy(E). (50)
Using (59) in (47) yields the final expression for V"
V" = F(f'(I) - KVhy(E)g/(E)). (60)

B.4—QSIM Model: The QSIM model is shown in Fig. 22.
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