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THE REPRESENTATION OF REAL-

world systems and mechanisms was con-
cerned initially with structure. Subse-
quently, researchers moved on to issues of
representing and deriving the behaviors of
these systems. From this examination arose
efforts to derive and understand causal
relationships. Given this base of represen-
tation and derivation techniques for struc-
ture, behavior, and causality, the next step
in understanding real-world systems in-
volves representing and deriving descrip-
tions of teleology, or purpose.

We can understand the utility of descrip-
tions of structure, behavior, causality, and
purpose, as well as the differences among
these descriptions, by considering the
questions we answer with this information.
A structure description addresses questions
of the form “How is this mechanism con-
structed?” and “What are the physical
(static) characteristics of this mechanism?”
Abehavior description addresses questions
of the form “What does the mechanism
do?” or “What are the dynamic character-
istics of the mechanism?” Representations
of structure and behavior provide the
framework for a class of problem-solving
techniques called model-based reasoning.
Causal-reasoning techniques build on this
framework, providing analyses and de-
scriptions that address questions of the

TED EXPRESSES THE PURPOSE OF COMPONENTS OR
ACTIVITIES IN TERMS OF BEHAVIORS PREVENTED,
GUARANTEED, OR INTRODUCED. OUR DESIGN
METHOD CAPTURES THESE DESCRIPTIONS OF
PURPOSE AND FACILITATES THEIR REUSE.

form “How does the mechanism accom-
plish its behavior?” Finally, a teleological
description addresses questions of the form
“Why is this portion of the mechanism
designed in this way?” or “What is the
purpose of this piece of the mechanism?”

When we examine human-generated
descriptions of systems or mechanisms,
we find they are rich with descriptions of
purpose as well as of structure, behavior,
and causality. In fact, descriptions of pur-
pose are valuable in communicating and
understanding design descriptions, since
they convey the designers’ intent. Consid-
er the following design description:!

Figure 3 shows a schematic of a pressurizer
subsystem, the main purpose of which is to
control the pressure of the primary circuit by
maintaining a steam-water interface within
the vessel through the controlled addition of
heat and water spray.

This description mentions the purpose of
the pressurizer subsystem, “to control the
pressure of the primary circuit,” as well as
the technique by which this control is
achieved, “by maintaining ....”

We have devised a language called Ted
for representing teleological descriptions,
along with a design method in which these
descriptions can be captured and subse-
quently used for design reuse. This lan-
guage is independent of any particular
structure or behavior description language,
but it builds on generalizations of such
languages. Ted expresses the purpose of a
component or activity in terms of behav-
iors prevented, guaranteed, or introduced
by the component or activity. Given rep-
resentation and acquisition schemes, sys-
tem builders can use descriptions of pur-
pose in explanation, diagnostic, and design
systems.
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Teleology: what’s the
purpose?

One important use for teleological de-
scriptions is explanation. For instance, de
Kleer's Equal system generates teleologi-
cal descriptions (in a form different from
that in Ted) to explain electrical circuits.?
The Lox Expert System represents and
expresses the purpose of commands and
command sequences, for human consump-
tion and for analysis by automated sys-
tems.? The task domains of diagnosis and
design can use teleological descriptions to
extend the applicability and performance
of automated problem-solving systems. In
describing the Redesign system, Steinberg
and Mitchell point out that in the domain of
VLSI circuits, information regarding the
purpose of circuit elements plays a role
much like the problem-solving tasks of
design and debugging.?

Diagnosis. A current approach in expla-
nation and understanding systems>~ and in
diagnosis systems*$-10 involves deriving
and using causal relationships in mecha-
nisms. However, in mechanisms with highly
interconnected substructures, causal rela-
tionships can exist between virtually every
pair of components in the mechanism (and
between variables of a mechanism model).
As Steinberg and Mitchell have noted,*

The resulting focus (of causal reasoning) is
generally broader than that determined from
[the representation of purpose] because out of
the many places in the circuit that can impact
any given output specification, only a small
proportion of these involve circuitry whose main
purpose is to implement that specification.

Domain-specific heuristics can be ap-
plied to select among potential causes,
but these heuristics are not applicable
outside their domains. If an observed
symptom of a mechanism is considered
either an unwanted behavior (or a missing
behavior), a teleological description re-
lating a component with the prevention
(or the introduction or guarantee) of that
behavior provides a heuristic for select-
ing among potential causes. Certainly,
teleological descriptions cannot introduce
any relationship notdiscovered via causal
analysis, as purpose necessarily requires
causality. Therefore, teleological descrip-
tions provide a more productive focus for
diagnosis.

Design. Capturing and representing a
design rationale can improve the design
process.!! If we can identify no relevant
requirement when we try to relate a design
decision to the requirements for the de-
signed artifact, then the design decision is
either superfluous or addresses a hidden or
unelaborated design requirement. This is
often the case for design decisions that
address requirements stemming from the
general design or engineering principles of
a particular domain. For example, all cir-
cuit designers understand a body of design
principles that are not explicitly elaborated
in circuit design requirements.

NEITHER BEHAVIORAL NOR
CAUSAL DESCRIPTIONS
EXPLAIN WHY A CERTAIN
BEHAVIOR IS DESIRED.

Given the ability to capture and repre-
sent teleological descriptions (generated
by either people or programs), we can use
these descriptions to classify mechanism
descriptions. Disciplines such as electrical
engineering have developed specialized
vocabularies for denoting the purposes of
mechanisms and components.? Further,
system builders use these descriptions to
index other design information whose rel-
evance is determined by the component’s
current purpose. The ability to realize these
descriptions in a formal language will fa-
cilitate their use as design knowledge. If
this language is domain independent, it
will allow teleological descriptions for
mechanisms whose components come from
several domains (electrical, mechanical,
and hydraulic domains, for instance).

Design reuse. Design reuse is aresearch
area in computer-aided design and engi-
neering environments (electronics, soft-
ware, and mechanical, to name a few). To
realize design reuse, we must be able to
capture and represent the information
needed to classify a design component for
subsequent retrieval. Design reuse also re-
quires a language for describing the char-
acteristics of design components to be

examined as candidates for reuse. As
Mostow and Barley explain,'?

For design by analogy, finding a suitable

design to retrieve from a repository of previ-

ous designs requires knowing where to look.

How can designers avoid a time-consuming

search through such arepository when they’ve

never seen the relevant entry or can’t remem-
ber where to find it? As we develop a larger
database of design plans, we expect the pro-

cess of finding relevant ones to become a

bottleneck...

Teleological descriptions add another
dimension in which designs can be classi-
fied and retrieved. For example, a designer
might want to examine components that
control some variable (say tank fluid level)
of a system under design. To construct a
query for the search without having a de-
scription of purpose, designers must rely
on their mental inventory, the structural
features, or the specific behaviors of likely
components. Without effective indexing
methods into a database of existing de-
signs, designers will more likely miss in-
novative solutions that do not fit their cur-
rent mental model of how to solve the
problem—thatis, whatkind of component
to use.

Finally, when an existing design is being
reused but does not match current require-
ments, it requires some modification.
Knowing the purpose of components ben-
efits the designer making the modifica-
tions in much the same way a teleological
description aids the diagnosis task. In this
case, the task is driven by a change in
requirements (required or prohibited be-
haviors) as opposed to modified behavior
on the part of the mechanism. Designers
have used functional represention of de-
vice functions and structure to address the
redesign problem.' The Redesign system,
for example, applies both causal and tele-
ological reasoning to redesign a circuit
based on specification changes.* As we
claimed for diagnosis tasks, Redesign uses
teleological descriptions to provide a tight-
erfocus to select candidate components for
modification.

Ted — a language for
teleology

Human-generated descriptions of pur-
pose identify relationships between spe-
cific design decisions and design goals.
We describe these goals in terms of the
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Qualitative modeling with
Qsim

Research in reasoning with qualitative
models has been motivated by such con-
cerns as providing programs with common-
sense reasoning or with the ability to reason
about the physical world in the face of in-
complete knowledge. For example, specific
numerical values might be unknown for pa-
rameters that measure the physical world,
and specific details of the mathematical re-
lationships between these parameters might
be unknown. We might know that the level
of liquid in a tank increases as the amount
of liquid is increased, but the shape of the
tank can make the liquid level a nontrivial
function of the amount of liquid. For many
purposes, however, we can effectively rea-
son about this tank system knowing only
that liquid amount and liquid level are
monotonically related.

Several approaches to qualitative rea-
soning have been investigated,’? with the
common theme of qualitative representa-
tion of parameter values and the functions
that constrain these parameters. This arti-
cle describes the modeling approach and
language of Qsim.%*

In qualitative modeling, a parameter can
assume values from a quantity space (an or-
dered set of discrete landmarks). The sim-
plest quantity space specifies negative,
zero, and positive values (sometimes de-
scribed as —/0/+). In Qsim, quantity spaces
are expressed as ordered sets of landmarks.
The simplest quantity space is expressed as
(—o0 0 =), where —oo represents minus infin-
ity and o represents infinity. The possible
values for a parameter are the individual
landmarks in the quantity space, and the
open intervals implied by adjacent land-
marks. For example, two values from this
quantity space are (—ee 0) and 0. Additional

landmarks can be added to a quantity space,
such as the height of a tank for the parame-
ter representing fluid level. The quantity
space would then be (0 full ). The land-
mark — has been removed from this quan-
tity space, indicating that a negative value
for the height parameter is not meaningful.

Qsim represents the value of a parameter
as a pair — a qualitative magnitude (taken
from the parameter’s quantity space) and a
qualitative direction (taken from Dec, Std,
Inc, and Ign, representing decreasing,
steady, increasing, and ignore). Hence, the
value representing a decreasing liquid
height in the tank somewhere between emp-
ty and full would be ((0 full), Dec).

Some of Qsim’s qualitative constraints
among parameters are M+ (monotonically
increasing), M~ (monotonically decreas-
ing), d/dt (derivative), and add (additive).
For example, the amount of fluid in a tank
(Amt) and the lJevel of fluid in the tank
(Level) are monotonically related, and
expressed as (M+ Amt Level). For pur-
poses of simulation in Qsim, these con-
straints are not causal, and information can
be propagated through the constraint in
either direction.

Given a qualitative model expressed as
parameters, quantity spaces, and con-
straints, Qsim generates the model’s pos-
sible behaviors. There can be (and usually
are) more than one possible behavior for a
model, since qualitative models are less
constraining that quantitative ones.
Hence, the behavior descriptions generat-
ed by Qsim are expressed as a tree (one
initial state) or a forest (multiple initial
states) in which a path from the tree root
to a leaf represents one possible behavior.
Each node in the tree represents a state,
and branches from a state lead to possible
successor states.

For example, if a constant rate of input is
initiated into a empty tank with an open
drain, three qualitatively different behaviors

result. One possible behavior is that this in-
flow/outflow system reaches equilibrium
(that is, inflow equals outflow, and the level
is constant) for a level between empty and
full. A second possible behavior is that
equilibrium is reached when the level exact-
1y equals full. Finally, the third (qualitative-
ly distinct) behavior states that equilibrium
is not reached when the level reaches full
(that is, the tank overflows). This character-
istic of Qsim is very important for acquiring
descriptions of purpose, in that from the
given initial states, Qsim generates all pos-
sible behaviors. In other words, any real be-
havior that the device will generate maps to
one of the qualitative behaviors generated
by Qsim.
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| desired artifact’s behaviors and physical
! characteristics (for example, its dimensions
or weight). We express relationships using
verbs such as “control,” “regulate,” and
“prevent.”

Our language for descriptions of pur-
pose, Ted, identifies (1) design modifica-
tions made during the design process — for
instance, the addition of a component or
the modification of a specific parameter
value; and (2) the effects these changes
have on the designed artifact’s behavior.
These effects are expressed in terms of the
primitives Guarantees and Prevents.

Consider the case of a steam boiler with
a pressure release valve.!* The valve’s
purpose is to prevent the internal pressure
of the boiler from exceeding some critical
value, at or beyond which the boiler vessel

will explode. A behavior description of the
pressure release valve states that the valve
opens at some prescribed pressure and that
steam escapes the vessel via the valve. A
causal description can explain how this
behavior is achieved, but neither the be-
havioral nor causal descriptions explain
why this behavior was desired, and hence
why the pressure release valve was added
to the design.
Ted has the following goals:

« to be independent of any structure or
behavior language,

 to be independent of any domain of
mechanisms, and

» to allow hierarchical descriptions ref-
erencing behaviors or other teleological
descriptions.

Structure and behavior. To handle
references to design modifications and be-
haviors, descriptions in Ted had to be based
on languages that express structure and
behavior. Instead of inventing new lan-
guages, we focused on using existing ones.
The structure language was required to be
able to express design modifications. (Most
interactive design environments express
design modifications in terms of editing
primitives, and use these to undo editing
operations at the designer’s request.) The
behavior language was required to express
behaviors as ordered sequences of states of
the designed artifact (model or device),
and to describe device states in terms of
a set of variables and their values. For
the examples given here, we use the behav-
ior language Qsim (see the sidebar).'*!?
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Structure changes
Behavior changes

Completed design

Figure 1. A design method for acquiring and
using teleological descriptions.

Understanding these examples does not
require a description of the structure
language.

Before we provide terminology and def-
initions for Ted, we can demonstrate a
teleological description for adding the
pressure release valve. If 8 represents the
design modification of adding the release
valve, we can say that & prevents the steam
boiler’s internal pressure from exceeding
some maximum value max. In Ted, we
express this as

8 prevents <{(internal _pressure,
((max, e}, ign)) }>

To achieve this purpose, the release valve
opens when Internal_pressure reaches the
value Max.

Partial states and scenarios. To the
behavior language’s terminology (variables,
states, and behaviors), Ted adds the terms
“partial state” and “scenario.” A partial
state is an abstraction of a state, possibly
equal to the state. A partial state describes
the values of a subset of model variables,
and can further abstract a state by specify-
ing arange for a variable value, such as x>
0. The partial order —, (read “is less gen-
eral than”) captures this notion of variable
value abstraction. For example, for vari-
able x with the domain of the union of real
numbers and open intervals on real num-
bers, the values 5, (4, 6), (0, =), and R are
related by, as follows: 5 =, (4,6) i, (0, o)
ZLR.

The partial order _; (read “is less gen-
eral than™) extends this notion to partial
states and the states they abstract. Hence,
for state s and partial state p of design d, with

Vv denofing the variables of d, and VooV
denoting the variables referenced by p,

sCpe

s={(v,x)lve V, xin the domain of v},

p={(vx)lve V., x in the domain of v},
and

Vve Vo (v,x,) € s and (vx,) e p=
xS ;V xp

A scenario is defined as a sequence of

partial states in which the subset of vari-

ables is the same in all partial states in the

sequence. Therefore, for design d, with V

being the variables of 4 and v,cV,

G is a scenario of d <>
O = <py,....p,> and
{ Voupi={vx)lve V,, x in the domain
of v}

In addition to ignoring the model’s vari-
ables, a scenario can also generalize a se-
quence of states by eliminating certain states
in the sequence. Hence, partial states of a
scenario need not be adjacent states. To
demonstrate this point, consider the Qsim
scenario

<{(x, (0, dec))}, {(x, (0, inc))}>

where Dec denotes decreasing and Inc de-
notes increasing. The states that are ab-
stracted in this scenario cannot be adjacent
in a behavior of the model, but are allowed
as an abstraction of the behavior in the
form of a scenario. Specifically, the
scenario says that x at some time had the
qualitative value (0, Dec), and at some
later time (with an unspecified number of
intervening values) had the value (0, Inc).
In the semantics of Qsim, the
variable x must take on a qualitative value
whose direction of change is Std (steady)
between Dec and Inc.

Mapping scenarios to behaviors. A
scenario is said to Occur-in a behavior if a
mapping exists from the scenario into the
behavior such that (1) a partial state is
mapped to a state that it abstracts, and (2)
the order of states implied by the scenario
is preserved in the behavior. Given two
scenarios,

G =<P,e.., Pp>
G =<ps., pu>

we can describe their temporal relation-
ships as Occur-serially and Occur-
synchronously. For instance, ¢ and o’

Occur-serially in behavior 4 if 6 and ¢’
each Occur-in b in such a way that p, is
mapped to state 5; of b, p;” is mapped to
state s; of b, and i < j. 6 and 6" Occur-
synchronously in behavior b if n = m, and
o and ¢’ each Occur-in b in such a way that
corresponding partial states of & and ¢’ are
mapped to the same state of b. A notation
for ¢ and ¢’ Occurring-serially is [6 ; 0'],
and for Occurring-synchronously is [0 || o’].

Primitive teleological operators. Te-
leological operators are the language prim-
itives for teleological descriptions. In the
context of design modification, a single
teleological operator relates the behaviors
of the unmodified design to the behaviors
of the modified design in terms of scenar-
ios. In the following definitions, o, are
scenarios, d and d’ are designs, § is a
modification applied to d that yields &', E is
the set of behaviors of design 4, and £’ is
the set of behaviors of 4. The term
Scenarios(d) denotes the set of scenarios
that Occur-in behavior b. Each teleological
operator makes a statement about both
modified and unmodified designs:

(1) & guarantees ¢ <
Vb’ e E' 6 e scenarios(b’), and
dbe E ¢ ¢ scenarios(b)

(2) 8 prevents ¢ &
Vb e E' ¢¢ scenarios(b’), and
dbe E 6 e scenarios(h)

The third primitive operator provides a
means for creating teleological descrip-
tions that involve preconditions. This pre-
condition references a set of scenarios on
which a sentence (a single teleological
operator or a sentence constructed from
teleological operators and logical connec-
tives) depends. In the following definition,
T is a teleological sentence:

(3) dconditionally (in {0,,...,0,}) T
Vb'e E'{c,,....0,} Cscenarios(h’)
=> T holds in »’, and
dbe E{oy,..., 6,} < scenarios(h)
A T does not hold in &

These three primitive teleological opera-
tors form the basis on which we build
teleological descriptions.

Composed teleological operators. The
Ted language can define semantically rich-
er operators in terms of the three primitive
operators Guarantees, Prevents, and
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Conditionally. When we examine descrip-
tions of purpose generated by designers,
we find verbs such as “introduce,” “control,”
“regulate,” “maximize,” “reduce,” and
“allow.” The following definitions are not
derived from any particular temporal log-
ic, butare merely hypothesized as useful in
constructing teleological descriptions.
These definitions demonstrate how to de-
compose such verbs into teleological
primitives directly or via previously de-
fined verbs:

2

(1) & orders 0, 0y &
Vb'e E' {0, 0} Cscenarios(b)) =
[0y 0;] € scenarios(d’), and
3be E {0,,0,} < scenarios(b) A
[01:; 0,] € scenarios(b)

We can rewrite this as

& conditionally (in {G,,0,}) guarantees
[0 02]

(2) & synchronizes 0,,6; <
Vb'e E'{0,, 6;} cscenarios(b’) =
[0, || 0,] € scenarios(b’), and
3 b e E {0, 6,5} C scenarios(d) A
[0y Il 65] & scenarios(b)

We can rewrite this as

& conditionally (in {0, 0;}) guarantees
[o1lto2]

(3) dintroduces ¢ <
Ib € E' 6 e scenarios(b’)
VY be E o ¢ scenarios(h)

We can rewrite this as

& guarantees —(prevents G)

An environment for design

Given a language for expressing de-
scriptions of purpose, our design method
can capture these teleological descriptions
during the design process. It can also use
these descriptions to reuse designs and to
diagnose the designed artifact in the future.

We used a design process model from
the propose-critique-modify family de-
scribed by Chandrasekaran.!® Our model
starts with a set of design specifications,
including physical characteristics and de-
scriptions of required, prohibited, and oth-
er behaviors. In addition to the design
specifications, there should be a set of
specifications — design rules, if you will
— that describe general engineering prac-
tice for the domain at hand. The design

process then proceeds as a series of struc-
ture modifications, starting from some ini-
tial structure. Accompanying this series of
structure descriptions is the corresponding
series of behavior descriptions that can be
generated from the structure descriptions.
This process terminates when the structure
and behavior descriptions meet both the
design-specific and the general engineering
specifications (see Figure 1). By examining
the changes that structure modifications in-
duce in behavior descriptions, we can infer
the purpose of the design modifications.

A related design environment described
by Abelson et al.!” supports interaction
between a designer and an intelligent com-
puter assistant that helps analyze and eval-
vate proposed designs. This interaction
identifies a design’s undesirable behavior
(specifically, an oscillation at a particular
frequency fora floating ocean platform), at
which point the designer initiates a design
modification to correct this behavior (“an
active stabilizer to damp the family B mo-
tions.”) A description of purpose can be
acquired at precisely this point: The pur-
pose of the addition of the “active stabiliz-
er” is “to damp the family B motions.”

Design example. Consider the desired
behavior of a simple CMOS circuit (shown
in Figure 2) containing a pass transistor 7,
and an inverter. When the control signal’s
value is High, the data signal’s value is
transmitted to the in signal (that is, they are
electrically connected). The inverter in-
verts this value (High to Low, or Low to
High), which then becomes the value of the
out signal. The logic values of High and
Low are landmarks of the quantity space in
which the data, control, in, and out param-
eters range. These landmarks are the de-
sired values for signals in the circuit, which
brings us to the first undesirable behavior.

Modification 1. The operating charac-
teristics of #; (an n-channel MOS transis-
tor) are such that when the data and control
signals both have the value High, the value
transmitted to the in signal is (High — Th),
where Th is the threshhold value (> 0) of 7,.
Let HTh equal High~ Th. The value HTh is
between the landmark values Low and High,
and hence not a desired value for the in
signal. In the domain of CMOS circuit
design, it is a design goal to have a signal
at values between High and Low only when
the signal is transitioning between High

Figure 2. A CMOS circuit.

Figure 3. A circuit with o feedback transistor.

and Low. Steady, intermediate values be-
tween Low and High should be eliminated.

Adding the feedback transistor #, (a p-
channel MOS transistor) modifies this be-
havior in terms of the in and the out signals,
as shown in Figure 3. As the in signal
transitions from Low to High, the out sig-
nal transitions from High to Low. As the
out signal moves away from High and
toward Low, transistor 1, electrically con-
nects the in signal with V,, enabling a
current flow from V, to the in signal. This
in turn increases the in signal’s value to
that of V,; (High). Consequently, adding 1,
prevents the scenario in which the in signal
reaches a value less than High and remains
steady.

To express this purpose of t, in the Ted
language, let 8, represent the design mod-
ification of adding ¢, to the design, and let
o, be the scenario

<{ (in, ((low, high), std)),
(ctl, (high, std)),
(data, (high, std)) }>

Then, as expressed in Ted, 8, prevents ;.

The behavior that electrically connects
the in signal to V, also addresses another
problem that occurs when the in signal has
value High and the control signal transi-
tions from High to Low. In this situation,
the in signal is no longer electrically con-
nected to the data signal; it becomes a mem-
ory element, which should preserve its
value, High. However, in the absence of 1,,
the charge at the in signal will dissipate and
move the signal value away from the land-
mark value High, resulting in the value of
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the out signal changing also (moving away
from Low). By introducing t,, we can main-
tain the charge at the in signal at High, pre-
venting the in signal from decreasing in value.

To express this purpose of 1, in the Ted
language, let o; be the scenario

<{ (in,(high, std)),
(ctl,(low, std)) },

[ (in((low, high), ign)),
(ctl,(low, std)) }>

Then, as expressed in Ted, 8, prevents o,.

The design modification of adding 1, to
the circuit can be assigned the purpose of
preventing a steady or nontransitional sig-
nal value between Low and High when the
data and control signals have the value
High. Further, from starting conditions
where the in signal has the value High and
the control signal has the value Low, the
modification prevents the in signal from
changing its value.

Modification 2. While the first design
modification addresses problems associat-
ed with the in signal achieving and main-
taining value High, it also introduces a new
problem. If the in signal has value High,
the data signal has value Low, and the
control signal transitions from Low to High,
then the charge stored at the in signal (rep-
resenting the value High) should be drawn
off via the connection through t,. Howev-
er, if the channel resistance of t, (when open)
is low, current will flow from V,, to the in
signal. If this happens at a sufficient rate,
an intermediate value will be reached for
the in signal such that the complementary
value at the out signal is not high enough to
“turn off” 1, (a p-channel transistor is off
when the gate voltage is High). Hence, the
second design modification raises the
channel resistance of ¢, to a higher value
when it is “open,” to prevent the in signal
from reaching an equilibrium point be-
tween High and Low during its High-to-
Low transition.

Again, a teleological description relat-
ing the design modification (changing the
channel resistance of ¢,) can be related to
the desired change in behavior, namely
that the circuit can successfully switch the
in signal value from High to Low.

The purpose of #,’s channel resistance
value can be expressed in Ted as follows.
Let &, represent the design modification of
increasing t,’s channel resistance, and let
O3 be the scenario

<{ (in, ((low, high), std)),
(ctl, (high, std)),
(data, (low, std)) }>

Then, as expressed in Ted, 82 prevents o3.
To summarize this example, we added 1,
to prevent (in Ted terminology)

* the scenario in which the in signal reaches
asteady value between Low and High when
transitioning from Low to High, and

* the scenario in which the in signal’s
value decreases from High when the signal
is acting as a memory element storing the
value High.

THE TED LANGUAGE
COMPLEMENTS FUNCTIONAL
REPRESENTATION

BY PROVIDING A DETAILED,
FORMAL LANGUAGE

FOR EXPRESSING PURPOSE.

The channel resistance of £, was set high to
prevent (also Ted terminology) the scenar-
ioin which the in signal reaches an equilib-
rium value between Low and High during
the transition from High to Low.

Reusing designs. Consider the CMOS
circuit design example in the context of an
accompanying database of design modifi-
cations and components, which have asso-
ciated teleological descriptions. (A design
modification or component can have sev-
eral teleological descriptions associated
with it, since the modification might have
been applied in different contexts with dif-
ferent results.) If the design modification
of adding the feedback transistor is record-
ed in the database with the associated tele-
ological description of preventing the in-
termediate signal value, then this design
modification is available to the designer
via the query “Show me design modifica-
tions that prevent the behavior in which a
signal maintains an intermediate value be-
tween Low and High.” This query could be
generated by the designer or by a design
critic examining the behaviors of the de-
sign and comparing those behaviors with

the specifications. This design critic can
then present discrepancies between the de-
sign’s behavior and its specifications, and
suggest possible modifications to correct
these discrepancies.

More generally, the goals of the design-
er at each design step can be used to index
a database of existing design modifica-
tions (including complete components) to
retrieve modifications or components for
reuse. The designer can access existing
design modifications and components in
terms relevant to the task at hand, namely
solving a specific design problem. Index-
ing existing design information in terms of
structural or behavioral aspects alone can-
not provide this relevance.

Interestingly, behaviors referenced in te-
leological descriptions can be abstracted
beyond specific domains by ignoring vari-
able types, and hence provide a mechanism
for retrieving design solutions from other
domains (for example, electrical versus me-
chanical). Retrieved design modifications or
components offer potential solutions that
designers can subsequently apply when
suitable structural analogies are available.

Finally, the design method shown in
Figure 1 is relevant when an existing de-
sign is being modified to meet a changing
set of specifications. In this instance, tele-
ological descriptions can assist the redesign
task in two ways. First, as a specification is
changed, all design modifications and
components with teleological descriptions
that reference the specification (for exam-
ple, required or prohibited behaviors) are
primary candidates for modification to meet
new specifications. Similar approaches to
redesign are described elsewhere, using
design plans* and functional representa-
tions.!> Second, as the designer explores
possible modifications, teleological de-
scriptions associated with the current de-
sign structure give the designer informa-
tion concerning other design behaviors that
mightbe affected if a particular component
is modified.

Diagnosis

The role of teleological descriptions in
diagnosis is essentially that described for
redesign — namely, providing a focus for
selecting structural components that are
likely to contribute to observed or desired
behaviors. In the task domain of model-
based diagnosis,'? this is called candidate
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or hypothesis generation. This process
generates a set of candidate structure com-
po-nents that could possibly account for
missing or undesirable behaviors. The sys-
tem evaluates each candidate and finally
chooses a single candidate or set of candi-
dates that best accounts for the aberrant
behavior.

Techniques for generating the candidate
set include dependency tracing and causal
analysis. For devices with highly intercon-
nected structures, this set can comprise a
large percentage of the device’s structural
components — possibly all of them. Since
all these candidates might require evalua-
tion, it is important to focus the candidate
generation process where possible. Teleo-
logical descriptions can provide this focus,
allowing the system to generate an initial
candidate set based on structural compo-
nents known to have been placed in the
design for the purpose of affecting the
currently aberrant behavior. However, this
candidate generation focus is not necessar-
ily complete. The candidate set generated
in this way might not contain the structural
component causing the aberrant behavior.

WE HAVE IMPLEMENTED

algorithms for deriving teleological de-
scriptions by comparing design modifica-
tion with design specifications, and we are
modeling designs using Qsim. We are also
developing a design environment (as de-
scribed in Figure 1) that integrates deriva-
tion techniques for descriptions of purpose.

In comparison with the research on
functional representation and functional
modeling,”-1318 this work has focused on
representing and acquiring statements of
purpose, and does not address the repre-
sentation of causal descriptions found in
functional representation. Statements rep-
resented in the Ted language correspond to
the Tomake clauses found in functional
representation. The Ted language comple-
ments functional representation by provid-
ing a detailed, formal language for ex-
pressing purpose, which functional
representation enriches with causal infor-
mation. This causal information describes
how a design accomplishes the behaviors
referenced in the teleological description;
in other words, how a design achieves the
designer’s purpose.
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