A THEORY OF TELEOLOGY

APPROVED BY
DISSERTATION COMMITTEE:

Copyright (©)
by
David Wayne Franke
1992

To Leo, Elmer, Verna and Hazel

A THEORY OF TELEOLOGY

by

DAVID WAYNE FRANKE, B.S., M.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May 1992

Acknowledgments

Although the completion of a doctoral program is recognized as an
individual’s achievement, such an accomplishment is only possible with the
guidance and support faculty, friends, and family. I attempt to acknowledge

here those who have provided guidance, support, and inspiration for this work.

My advisor, Professor Benjamin Kuipers, introduced me to this re-
search area and provided the seeds for the ideas described in this dissertation.
His patient guidance and constructive criticism have contributed greatly to
the completion of this research and dissertation. Professor Allen Emerson,
Professor Ray Mooney, Professor Bruce Porter, and Dr. Michael Huhns pro-
vided many insightful comments, questions, and suggestions in reviewing and
evaluating this research. These committee members and the Computer Sci-
ences faculty at the University of Texas at Austin have provided a stimulating
and challenging environment for graduate work. Professor Kuipers is also re-
sponsible for building an excellent research group in Qualitative Reasoning at
the university, and I have benefited greatly through my association with this
group. In particular, I would like to thank Dan Berleant, David Bridgeland,
Dan Clancy, Dan Dvorak, Adam Farquhar, Bert Kay, and Raman Rajagopalan

for many interesting discussions and useful ideas.

The larger qualitative reasoning, functional reasoning, and model-
based reasoning communities have been a wealth of ideas and support. I would

like to acknowledge the fruitful interaction with: the Functional Reasoning

A%

community at Ohio State University, particularly B. Chandrasekaran, Ashok
Goel, and Jon Sticklen; the model-based reasoning group at Vanderbilt, par-
ticularly Gautam Biswas and Stefanos Maginaras, for their interest and help

in building CC; and Rich Doyle of the Jet Propulsion Laboratory.

For their support and encouragement over the years and for their
continuing friendship I thank David Burgess, Carroll Hall, Bill Read, and Bill

Turpin.

Most important is the love and support of my family. My parents,
JoAnn, Loren, Rose, and Leo have provided constant encouragement. Melissa,
Megan, and Debbie have sacrificed their time and activities that I might com-

plete this accomplishment. I love you all.

David Wayne Franke
The University of Texas at Austin
May 1992

vi

A THEORY OF TELEOLOGY

Publication No.

David Wayne Franke, Ph.D.
The University of Texas at Austin, 1995

Supervising Professors: Benjamin J. Kuipers

A representation language for teleological descriptions, or descriptions of pur-
pose, is defined. The teleology language, TeD, expresses the descriptions of
purpose in terms of design modifications that guarantee the satisfaction of
design specifications. These specifications express potential behaviors the de-
signed artifact should or should not exhibit. We define an abstraction relation
on behavior and implement model checking and classification algorithms that
compute this abstraction relation. The model checking algorithm determines
whether or not a behavior satisfies a specification. The classification algorithm
provides effective indexing of behaviors and teleological descriptions. We im-
plement an acquisition technique for teleological descriptions and demonstrate
how teleological descriptions can subsequently be used in diagnosis, explana-

tion, case-based reasoning, design by analogy, and design reuse.

We demonstrate the behavior language, teleology language, acquisi-
tion of teleological descriptions, and application of teleological descriptions in

explanation, diagnosis, and design reuse via examples in the thermal, hydraulic,

Vil

electrical, and mechanical domains. We define additional teleological operators
that express purposes like prevent, order, synchronize, maintain, and requlate,
demonstrating the ability to represent common human-generated descriptions
of purpose in TeD. Expressing the purpose of preventing an undesirable behav-
ior is unique to TeD, and is an example of TeD’s ability to express purposes

regarding missing behaviors and components removed from a design.

The teleology language developed in this work represents a significant
advance over previous work by providing a formal language that 1) is indepen-
dent of any particular domain of mechanisms or behavior language, 2) can
be effectively acquired during the design process, and 3) provides an effective

means of classifying and indexing teleological descriptions.

viii

Table of Contents

Acknowledgments \%
Abstract vii
Table of Contents X
List of Tables XVi
List of Figures x Vil
1. On Describing Purpose 1
1.1 Teleology 1
1.2 Teleology, What’s the Purpose? 5
1.2.1 Diagnosis 6

1.22 Designo o 7

1.2.3 Design Reuse oL 8

1.3 A Life-Cycle Model 10
1.4 Previous and Related Work 13
1.5 Claims of This Work 16
1.6 Outline of This Dissertation 16

2. The Basic Idea 19
2.1 Goal 19
2.2 Specifications as Drivers for Design 19
2.3 A Language for Purpose L. 21
2.3.1 Modifications and Specifications 23

X

2.3.2 Guarantees 24

2.3.3 The Need for Context 25

24 Goalsof TeDo 27
3. Ontology and Representation 28
3.1 An Ontology for Teleology 28
3.2 Structure 30
3.3 Design Modification and History 35
3.4 Design Instantiation 0000 37
3.5 Behavior o 39
3.5.1 Single Behaviors 0oL 40
3.5.2 FEnvisionmento oL 40
3.5.3 Example oo 41

3.6 Design Specifications oo oL 42
3.6.1 Scenarios 42
3.6.2 Specification Predicates 44

3.7 Teleology 44
3.7.1 Primitive Teleological Operator 45
3.7.2 Expression in Modal Logic 46
3.7.3 Example o 49

3.8 Additional Teleological Operators 54
3.8.1 unGuarantees L. 54
3.8.2 Preventing a Behavior 55
3.8.3 Introducing a Behavior, 55
3.8.4 Conditional Behavior 56

4. Behavior Abstraction

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Rationale

Variable Abstraction

Partial States

Abstract Behaviors

SCENATIOS .« « v v v v e e e

Design Specifications for Behavior

Composed Teleological Operators

5. Language Properties

5.1

Generalization and Specialization

5.1.1
5.1.2
5.1.3
5.1.4

Generalizing a Guarantee
Specializing a Prevention
Generalizing an Introduction

Specializing a Conditional

5.2 Generalizing Behavior Specifications

6. Examples

6.1

Design Examples 000 oo

6.2 Circuit Example. o000 oL

6.3

6.2.1
6.2.2
6.2.3
6.2.4

Evaluation 1.
Evaluation 2.
Modification Teleology Summary

Alternate Design History

Electric Motor Example

6.3.1

Structure

xi

59
59
61
65
69
71
73
74

82
82
82
83
83
84
84

6.3.2 Design Specifications Lo 108

6.3.3 Behavior Lo oo 110
6.3.4 Evaluation 1. 110
6.3.5 Evaluation 2. oL 117
6.3.6 Evaluation 3. L. 120

7. Applications 126
7.1 Reusing Designs o 126
7.1.1 Analogy 127
7.1.2 Redesign o 128
7.1.3 Cased-Based Reasoning 128

7.2 Diagnosis 129
8. Indexing 131
81 Goal 131
8.2 Specification Predicate Lattice 132
8.2.1 Variable Value Abstraction. 132
8.2.2 Variable Abstraction 134
8.2.3 Design History Index 135
8.2.4 Initial Index Structure 135

8.3 Classification Lo 135
84 Queries. 137
8.4.1 Explanation Queries 138
8.4.2 Reuse Querieso 140
8.4.3 Diagnosis Queries Lo 143

xii

9. Acquisition

9.1 The Problem .

9.2 Comparative Analysis 0oL

9.3 The Issue of Scopeo

9.3.1 Design Specification Hierarchy

9.4 Planning

10Previous and Related Work

10.1 Introduction . .

10.2 Function versus Teleology

10.3 EQUAL (de Kleer)o

10.3.1 Function vs. Teleology

10.4 Functional Representation, Functional Modeling

10.4.1 Function vs. Teleology

10.5 Responsibilities (Milne)o

10.5.1 Function vs. Teleology

10.6 CDK Project (NASA Ames)

10.7 BIOTIC (Downing) oo i it

10.8 ASK (Gruber) .

10.9 REDESIGN (Steinberg, Mitchell)

10.9.1 Function and Teleology

10.10Purpose-Directed Analogy (Kedar-Cabelli)

11Conclusions

11.1 Accomplishments

11.2 Implementation

145
145
146
148
148
149

154
154
155
156
158
158
160
160
161
161
162
164
165
166
167

11.3 Scaling Up 0o 0000 171

11.4 Future Work oo 172
11.5 Epilogueo 173
A.Steam Boiler Example 1
A.1 Quantity Space Definitionso L. 1
A.2 Component Definitions 2
A.3 Model Definition oo oL 5
A4 Design Specifications oo oo 6
A5 Sample Trace Lo 6
B. Circuit Example 22
B.1 Quantity Space Definitions L. 22
B.2 Component Definitions 22
B.3 Model Definitionso 31
B.4 Design Specifications Lo 33
C.Electric Motor Example 34
C.1 Quantity Space Definitions 34
C.2 Component Definitions 35
C.3 Model Definitions oo 41
C.4 Design Specificationso oL 47
D.Behavior Abstraction Relations 48
D.1 Abstraction Relation Table 48
D.2 Abstraction Relation Definitions 48

X1V

E. Teleology Operators
E.1 Notation
E.2 Primitive Operators
E.3 Composed Operators
E.3.1 Preventso o
E.3.2 Introduces o Lo
E.3.3 Conditionally Guarantees
E.3.4 Conditionally Prevents
E.3.5 Conditionally Introduces
F.CC BNF
F.1 Macros o o oo

.2 Lower-Level [tems

BIBLIOGRAPHY
Vita

XV

51
51
51
51
51
52
52
52
33

54
54
54

57

List of Tables

3.1 Modification Language Syntax - Component Relative 38
3.2 Modification Language Syntax - Environment Relative 38
4.1 Abstraction Relation Summary 61
8.1 Domain-specific variable type names 136
8.2 Initial Index - Metricso oo 136
D.1 Abstraction Relation Summary 48

xvi

1.1

1.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

List of Figures

CMOS Input Selection Circuit - Schematics 4
Life Cycle Model 12
Idealized Steam Boiler 0oL 30
Boiler-Vessel Component Definition in CC 33
Steam Boiler Model Definition in CC 34
Design Process Flow (Single Step) 36
Initial Variable Values - Steam Boiler 41
Behavior Tree - Steam Boiler 41
Qualitative Plots from Qsim* 43
Steam Boiler - Model Checking OQutput 50
Modified Steam Boilero 50
Modified Steam Boiler Model in CC 51
Steam Boiler Modifications 52
Behavior Tree - Modified Steam Boiler 52
Qualitative Plots for Modified Steam Boiler 52
Steam Boiler - Model Checking OQutput 53
Design Flow for the Steam Boiler? 54

XVil

4.1

4.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Component Type Hierarchy 62

Variable Type Hierarchy, 64
Design Process Flow (Single Step) 87
CMOS Input Selection Circuit (ISC1)- Schematic 88
Circuit Model Voltage Quantity Space (in CC) 89

Input Selection Circuit (ISC1)- CC Model (Top Level of Hierarchy) 89

Input Selection Circuit - Design Specification 90
Initial Variable Values 91
Behavior Tree of Initial Circuit (ISC1) 92
Qualitative Plot for Initial Circuit (ISC1). 92
Circuit with Feedback Transistor (ISC2) - Schematic 93
Design Modification (1) Adding Feedback Transistor 94
Circuit with Feedback Transistor (ISC2) - CC Model 95
Behavior Tree of Circuit with Feedback (ISC2) 96
Qualitative Plot for Circuit with Feedback (ISC2) 96
Input Selection Circuit - Design Specification 2 97
Input Selection Circuit - Design Specification 3 98

Behavior Tree of Circuit with Feedback (ISC2) - Discharging . . 100
Qualitative Plot for Circuit with Feedback (ISC2) - Discharging 100
Initial Variable Values - Vhi to 0 Transition 101

Qualitative Plot for Circuit with High Resistance Feedback . . . 101

xviil

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

Input Selection Circuit - Design Specification 3
Design Flow for the Input Selection Circuit®
Circuit with Transmission Gate - Schematic
Design Modifications to Replace Pass Transistor
Circuit with Transmission Gate - CC Model
Behavior Tree of Circuit with Transmission Gate.
Qualitative Plot for Circuit with Transmission Gate
Electric Motor (motor1) - Initial Design
Motor - Initial Design (motorl)- CC Model*
Behavior Tree (motor1) - Positive Starting Positions
Qualitative Plots (motor1) - Positive Starting Positions
Electric Motor (motor2) - Second Design
Single Rotor Commutator Shaft Component - CC Model
Second Motor Design (motor2)- CC Model®
Behavior Tree (motor2) - Starting Position X90+
Qualitative Plots (motor2) - Starting Position X90+
Electric Motor (motor3) - Third Design
Third Motor Design (motor3)- CC Model®
Qualitative Plots (motor3)
Electric Motor (motor4) - Fourth Design

Fourth Motor Design (motor4) - CC Model”

X1X

6.41 Qualitative Plots (motor4) 123

6.42 Behavior Tree (motor4) - Starting Position 0 124
6.43 Design Flow for the Motor® 125
8.1 Generic Magnitude Abstraction Hierarchy 134
10.1 Function in FR (Functional Representation) 159

XX

Chapter 1

On Describing Purpose

1.1 Teleology

The representation of real-world systems and mechanisms initially
was concerned with the structure of such systems, and subsequently evolved to
issues of representation and derivation of the behaviors of these systems. Exam-
ination of real-world system behavior gave rise to derivation and understanding
of causal relationships. Given this base of representation and derivation tech-
niques for structure, behavior, and causality, the representation and derivation
of descriptions of teleology or purpose is presented as the next ingredient of
human understanding of real-world systems to be studied. We assume that
real-world systems are designed to achieve specific behaviors, and that each
component and subsystem has been included in the design to contribute in
some way to these behaviors.! In teleology we intend to capture the manner in
which a component, at any level of the structure hierarchy, contributes to the

behaviors of its ancestors in the structure hierarchy.

One can understand both the utility of descriptions of structure, be-
havior, causality, and purpose and the differences among these descriptions

by considering the questions that can be answered with this information. A

LAs de Kleer points out [deK85], the goals of efficient design, manufacture, and main-
tenance of artifacts dictate that designers avoid superfluous components in the design, and
hence each component should contribute to the ultimate purpose of the design in some way.

1

structure description addresses questions of the form “How is this mechanism
constructed?” and “What are the physical (static) characteristics of this mech-
anism?” A behavior description addresses questions of the form “What does
the mechanism do?” or “What are the dynamic characteristics of the mecha-
nism?” Representations of structure and behavior provide the framework for
a class of problem-solving techniques called model-based reasoning (¢f. Davis
and Hamscher’s discussion of model-based troubleshooting [DH88] and the pro-
ceedings of the model-based reasoning workshops [MBR89, MBR90, MBR91]).
Causal reasoning techniques build on this framework, providing analyses and
descriptions that address questions of the form “How does the mechanism ac-
complish its behavior?” Finally, a teleological description addresses questions
of the form “Why is this portion of the mechanism designed in this way?” or

“What is the purpose of this piece of the mechanism?”

When examining human-generated descriptions of systems or mecha-
nisms, one finds that they are rich with descriptions of purpose, as well as de-
scriptions of structure, behavior and causality. In fact, descriptions of purpose
are very valuable in communicating and understanding design descriptions,
since they convey an aspect of the design process here-to-fore not (automati-
cally) captured or derivable from a declarative design description, namely the
designers’ intent. Consider the following design description segment in which
Herbert and Williams [HWS87, p. 91] discuss modeling a pressurizer subsystem

of a power plant:

Figure 3 shows a schematic of a pressurizer subsystem, the main
purpose of which is to control the pressure of the primary circuit by
maintaining a steam-water interface within the vessel through the

controlled addition of heat and water spray.

[44

This brief excerpt contains a description of purpose, “...to control the pressure

7 as well as a causal account, “...by maintaining a

of the primary circuit . ..
steam-water interface within the vessel” An examination of the substruc-
ture would show components whose purposes were “to maintain a steam-water

interface,” “to control the addition of heat,” and “to control the addition of

water spray.”

The thesis of this work contends that the description of purpose of a
component, mechanism, or activity can be expressed in terms of specifications
or requirements for the system in which the component, mechanism, or activity
is embedded. These specifications describe static (e.g., physical dimensions)
and dynamic (behavior) characteristics of the system. Specifically, descriptions
of purpose are expressed as guarantees that these specifications hold for the
design. Further, these descriptions can be captured during the design process
or by examining design histories, and can subsequently be used in explanation,

diagnosis, and design.

As an example of this approach, consider an electrical engineer de-
signing an input selection circuit.? The engineer begins with specifications
describing the desired static (e.g., size) and dynamic (behavior) characteristics
of the resulting circuit design. For example, one behavior specification for the
input selection circuit is “invert the data signal when the control signal is high
(logic true) and leave the output unchanged when the control signal is low

7 The engineer also begins with specifications from the domain

(logic false).
of CMOS circuit design, such as “the input value to a logic gate should not

maintain a steady, intermediate value (voltage) between low and high, causing

?This design example is discussed in detail in Chapter 6.

Vdd
2|p—
T T
(] - |
data tl] inv ou data |t_1| ol inv out
a. b.

Figure 1.1: CMOS Input Selection Circuit - Schematics

the gate to consume power by allowing current to flow.”

Interacting with a design system, the engineer proposes a design, eval-
uates the design with respect to the specifications, and makes modifications to
the design in an attempt to make the design meet the specifications. In this
interaction, teleological descriptions can be acquired and subsequently used to
assist the engineer in completing the design, as demonstrated in the following

example.

Engineer: Generate the possible behaviors of design 1 (see schematic in Fig-
ure 1.1a.) for signal ctl high and signal in transitioning from low to high.
Computer: The possible behaviors are: (displays the behaviors).

Engineer: Evaluate the behaviors with respect to the design specifications.
Computer: For signal in, the design does not meet specification 5: “the input
value to a logic gate should not maintain a steady, intermediate value (voltage)
between low and high, causing the gate to consume power by allowing current
to flow.” (If the design system has a database of teleological descriptions and
a teleological description referencing this specification exists in the database, a

recommendation for modifying the design can be made.)

Engineer: (Modifies the design by adding feedback transistor t2, as shown in
the schematic in Figure 1.1b.) Generate the possible behaviors of design 2 for
signal ctl high and signal in transitioning from low to high.

Computer: The possible behaviors are: (displays the behaviors).

Engineer: Evaluate the behaviors with respect to the design specifications.
Computer: The design meets all specifications. The purpose of the design
modification transforming design 1 into design 2 is to guarantee specification

3.

We define representation languages for behavior descriptions, specifi-
cations, and teleological descriptions that allow acquisition, classification, and
indexing of teleological descriptions. With these capabilities we can realize the

design process described in this example.

1.2 Teleology, What’s the Purpose?

We have characterized teleological descriptions as addressing ques-
tions of the form “Why is this portion of the mechanism designed in this
way?” or “What is the purpose of this piece of the mechanism?” This identifies
one important use of teleological descriptions, namely explanation. de Kleer’s
EQUAL system [deK85] generates teleological descriptions (of a form different
than that defined herein) for the purpose of explanation of electrical circuits.
The need for representing and expressing the purpose of a particular command
or command sequence is identified for the LOX Expert System (LES) [SJD85],

both for human consumption and for analysis by automated systems.

The ability to express such explanations implies their use not only by

humans but also by systems that automate problem-solving tasks. The task

domains of diagnosis and design are two domains that can utilize teleological
descriptions to extend the applicability and performance of automated problem-
solving systems. Steinberg and Mitchell [SM84] point out that in the domain of
VLSI circuits, the role of information regarding the purpose of a circuit element

is very similar in the problem-solving tasks of design and diagnosis.

1.2.1 Diagnosis

Deriving and utilizing causal relationships is an approach currently
used in explanation systems (e.g., Bylander and Chandrasekaran [BC85], Doyle
[Doy86], and Kuipers [Kui87]) and diagnosis systems (e.g., Cantone et al.
[CLMGS85], Davis [Dav85], De Jong [DeJ85], Genesereth [Gen85], Milne [Mil85],
Sembugamoorthy and Chandrasekaran [SC85], Steinberg and Mitchell [SM84],
and White and Frederiksen [WEF85]). However, in mechanisms with highly in-
terconnected structure or feedback loops, causal relationships can exist between
virtually every pair of components of the mechanism (and between variables of

a mechanism model). As stated by Steinberg and Mitchell [SM84],

The resulting focus (of causal reasoning) is generally broader
than that determined from [the representation of purpose] because
out of the many places in the circuit that can impact any given out-
put specification, only a small proportion of these involve circuitry

whose main purpose is to implement that specification.

In diagnosis, domain specific heuristics can be applied to select among
potential causes, but are not applicable outside their particular domain. If an
observed symptom of a mechanism is considered either as an unwanted behavior
(or a missing behavior), then a teleological description that relates a compo-

nent of the mechanism with the prevention (introduction or guarantee) of that

behavior provides a heuristic for selecting among potential causes. Certainly,
teleological descriptions would not introduce any relationship not discovered
via causal analysis, as purpose necessarily requires causality. Hence, teleolog-
ical descriptions can provide a more productive initial focus of attention for

diagnosis.
1.2.2 Design

Mostow [Mos85] discusses the potential for improving the design pro-
cess through capture and representation of design rationale. Franck [Fra89]
points out that “Design is a form of teleological reasoning, in that from the
intended purpose or anticipated behavior one can select elements that have
the adequate structure to do so.” Teleological descriptions provide a means
for representing design rationale. de Kleer [deK85] notes that disciplines such
as electrical engineering have developed specialized vocabularies for denoting
the purpose of mechanisms and components. Given the ability to capture and
represent teleological descriptions (either generated by humans or programs),
these descriptions can be used to classify mechanism descriptions. Further, such
descriptions can be used to index other design information, whose relevance is
determined by the current concern of the designer (e.g., component size). The
ability to realize these descriptions in a formal language will facilitate their use
as knowledge about the design. Assuming that such a language can be identi-
fied that is independent of any particular domain of mechanisms, the language
will allow teleological descriptions for mechanisms that include components

from several domains, such as electrical, mechanical, and hydraulic.

1.2.3 Design Reuse

Design reuse is an area of current research in both CAE (computer
aided engineering) environments (see work reported by Mostow [Mos85], Mostow
and Barley [MB87], and Huhns and Acosta [HA88]) and CASE (computer aided
software engineering) environments (see discussions by Biggerstaff and Richter
[BR86] and Prieto-Diaz and Freeman [PF87], and collections of papers exam-
ining reuse in software engineering [IEEESS, IEEES7, IEEES4]). In each, the

reuse problem can be addressed by providing:

1. Techniques for capturing and representing information by which a design

component should be classified for subsequent retrieval, and

2. A language for describing the characteristics of the design component the

designer wishes to examine as a candidate for reuse.

As stated by Mostow and Barley [MB87] in discussing reuse of design plans,

For design by analogy, finding a suitable design to retrieve from
a repository of previous designs requires knowing where to look. How
can designers avoid a time-consuming search through such a repos-
itory when they’ve never seen the relevant entry or cant remember
where to find it? As we develop a larger database of design plans,

we expect the process of finding relevant ones to become a bottleneck

Teleological descriptions add another dimension by which designs can
be classified and retrieved. For example, a designer may wish to examine

components that can control some variable (say tank fluid level) of a system

under design. In the absence of a description of purpose, designers must rely
on their mental inventory of likely components, structural features of likely
components, or specific behaviors of likely components in order to construct
a query for the search. Further, designers will more likely miss innovative
solutions that do not fit their current mental model of how to solve the problem
(i.e., what kind of component to use), such as an analogous problem solution

from another design domain (e.g., electrical vs hydraulic).

Current reuse approaches are based on structure classification and
hierarchy or on classifications organized around keywords that represent be-
havioral categories. The problem with classification based on structure (and
keywords that correspond to specific structure abstractions) is that potential
reusers must know the specific design structure or abstraction in order to find
that design. Further, the designer has to know that the structure being re-
quested actually addresses the problem to be solved, such as realizing a specific
behavior. The problem with a classification based on behavior, represented ei-
ther by keywords or by explicit behaviors and their abstraction, is twofold.
First, the candidate components that might solve the designer’s current prob-
lem may have component level characteristics (e.g., behavior) that have no
obvious correlation to the current design problem, such as eliminating some
undesirable system level behavior. Second, indexing designs with respect to
their behavior does not help in situations in which the designer wants a candi-
date design that does not exhibit certain undesirable behaviors. In summary,
indexing designs and design components for reuse via teleological descriptions

provides more semantic content for the reusing designer.

In reusing an existing design, if the design does not match the current

requirements exactly, it will require some modification. As this design is being

10

modified, knowledge of the purpose of components will benefit the (resuing)
designer in much the same way teleological descriptions aid the diagnosis task.
The task is driven by a change in the requirements, additional required or pro-
hibited behaviors in reuse and modified behavior on the part of the mechanism
in diagnosis. When a requirement changes, a teleological description relating
a particular design decision to that requirement gives the reusing designer an
initial set of candidates for modification. Teleological descriptions also help
the designer understand the original purpose of components in the mechanism
design. For example, a particular component may have been selected for cer-
tain static properties like size, as well as the behavioral consequences of the
component. Steinberg and Mitchell’s REDESIGN system [SM84] applies both
causal reasoning and reasoning about purpose to accomplish the redesign of a
circuit based on changes in the specification for the circuit. As was claimed for
diagnosis, REDESIGN uses teleological descriptions to provide tighter focus

for selecting candidate components for modification.

1.3 A Life-Cycle Model

To organize these uses of teleological descriptions, we describe a life-
cycle for engineered mechanisms and identify the role of teleological descrip-
tions in the various life-cycle stages. The life-cycle has the following stages

(Figure 1.2):

e Design stages

— Product specification
— Initial design

— Design evaluation

11

— Design modification
e Support and Reuse

— Explanation
— Diagnosis

— Design reuse

The design stages capture teleological descriptions and can use tele-
ological descriptions to achieve design reuse. Teleological descriptions cap-
tured during design can be used in later stages when diagnosing, explaining,

or reusing the designed artifact.

The design process model used here is of the Propose-Critique-Modify
family described by Chandrasekaran [Cha90]. Our design process model starts
with a set of specifications for the design, including physical characteristics and
descriptions of (required, prohibited, ...) behaviors. In addition to the speci-
fications of a particular design, there is often a set of specifications, or design
principles, that describe general engineering practice for the domain at hand.
These specifications include characteristics of the design required for manufac-

turing, maintenance, standards conformance, and regulatory requirements.

Given specifications for the design, the design process proceeds as a
series of structure modifications, starting from some initial structure. Accom-
panying this series of structure descriptions is a corresponding series of evalua-
tions of the design with respect to the various design specifications. Evaluation
of dynamic characteristics (e.g., functional correctness, performance, and ther-
mal operating characteristics) and static characteristics may require complex

computations like simulation, timing analysis, formal verification of function,

12

Product General Domain
Specifications Specifications

T~

Initial Design

|

Evaluation

|

Design
Modifications

Completed Reuse

Designs

|

Support

Explanation Diagnosis

Figure 1.2: Life Cycle Model

13

and thermal modeling. Ideally, this process continues until evaluation shows
that all specifications have been satisfied, or amended so as to be satisfied. By
examining the changes to the structure in light of the specifications, descrip-
tions as to the purpose of the design modifications can be inferred, as we will

demonstrate with an example.

A hypothetical design system described by Abelson et al. [AEH*89]
supports interaction between a designer and an intelligent computer assistant
that aides in the analysis and evaluation of a proposed design. During interac-
tion with the design assistant, the designer identifies an undesirable behavior
of the design (specifically, an oscillation at a particular frequency). The de-
signer then creates a design modification to correct this behavior (“an active
stabilizer to damp the family B motions”). This is precisely the point at which
a description of purpose can be acquired. The purpose of the addition of the
“active stabilizer” is “to damp the family B motions.” The work described

herein defines a language for representing and indexing such purposes.

1.4 Previous and Related Work

Representation, acquisition, and application of descriptions of pur-
pose have been addressed in previous research, which we summarize here. De-
tailed comparison of the work described in this dissertation (i.e., the Teleologi-

cal Description (TeD) language) with previous research appears in Chapter 10.

The two most significant contributions discussed in the literature are
de Kleer’s EQUAL system [deK85] and the Functional Representation [SC85]
work at Ohio State University. Representing purpose in design systems is

addressed in Steinberg and Mitchell’s REDESIGN system [SM84], and an ap-

proach to diagnosis called the theory of responsibilities has been developed by

14

Milne [Mil85]. More recent efforts in representing purpose have been under-
taken by the Conservation of Design Knowledge (CDK) Project [BSZ89] at
NASA Ames Research Center, in Gruber’s ASK system [Gru91], and in medi-

cal reasoning research in Downing’s BIOTIC system [Dow90].

de Kleer’'s EQUAL system [deK85] expresses teleological descriptions
in terms of behaviors of a component. Each description is based on causal
assumptions on the parameters of the component. EQUAL identifies a func-
tional characterization (teleological description) by matching derived behavior
with prescribed behavior prototypes that have been enumerated, named, and
added as domain specific knowledge. Limitations of this approach are that tele-
ological descriptions are prescribed, domain specific, and limited to describing

relationships among variables of a single component.

Functional representation (FR) described by Sembugamoorthy, Chan-
drasekaran [SC85], Goel [Goe89], Sticklen, and Bond [SCB89] and functional
modeling (FM) described by Sticklen et al. [ST90, SKB90] address 1) represent-
ing “how a device functions” and 2) applying this information to explanation,
diagnosis, and design. FEach function definition in FR contains a ToMake
clause that references a particular behavior that the FR function is supposed
to achieve. Keuneke [Keu91] extends the ToMake clause of FR to include
the “function types” ToMaintain, ToPrevent, and ToControl. The TeD
language can formally capture the semantics of these “purposes,” providing an

effective means of classifying and indexing FR descriptions.

Steinberg and Mitchell’s REDESIGN system [SM84] utilizes repre-
sentations of purpose to focus the selection of candidate components for the
redesign task. REDESIGN expresses teleological descriptions as “rules that

embody [...] general knowledge about circuit design tactics.” These rules spec-

15

ify decomposition steps for realizing a design in available components, and are
captured independently of the design process and added to the design system

as domain specific knowledge.

Milne [Mil85] describes an approach to automated troubleshooting
called the theory of responsibilities. Responsibilities relate a particular compo-
nent of a design to a desired output (behavior). Responsibilities are assigned
automatically based on second principles representing “the type of description
that an electronics engineer uses to describe various building blocks of cir-

cuits.”

This domain specific knowledge must be elicited from designers and
represented, and the thoroughness of the responsibility assignments depends

on the depth of understanding provided in the second principles.

The Conservation of Design Knowledge (CDK) Project [BSZ89] at
NASA Ames Research Center addresses the problems of representing and ac-
quiring design rationale using a philosophy similar to TeD. TeD provides a
formal language for representing design rationale descriptions captured in the
CDK acquisition work, and the CDK work complements TeD by providing

acquisition techniques.

Downing’s BIOTIC system [Dow90] critiques natural (e.g., human
and reptilian) circulatory models with respect to teleologies, desired global be-
haviors of a system. The teleologies of BIOTIC correspond to design specifica-

tions of the TeD language, and hence are prescribed.

Gruber’s ASK system [Gru91] elicits justifications from experts via
an interactive dialogue with the expert. TeD provides a formal language for
representing ASK explanations (teleological descriptions), provides indexing
capabilities for ASK explanations, and addresses acquisition of teleological de-

scriptions during design.

16

1.5 Claims of This Work

The claims of this work are:

1. Descriptions of purpose can be represented formally in a language that is
independent of a particular domain of mechanisms or behavior description
language (specifically the Teleological Description (TeD) language), and
these descriptions of purpose can be expressed in terms of the primitive

operators Guarantees and unGuarantees,

2. Descriptions of purpose can be effectively acquired in the design process

given information available in current design methodologies, and

3. The representation language facilitates the classification and retrieval of
descriptions of purpose for use in design explanation, design reuse, design

by analogy, case-based reasoning, and diagnosis.

1.6 Outline of This Dissertation

The stated claims are achieved in the TeD (Teleological Description)
language described herein. The basic ideas that formed this work are pre-
sented to familiarize the reader with the concepts of the approach. The TeD
language is described in detail around a simple example: an idealized steam
boiler design. We then describe behavior abstraction and properties of the TeD
language based on this abstraction. Two designs are investigated in detail, an
electronic circuit and an electromechanical motor, to demonstrate the breadth
of the TeD language and acquisition of teleological descriptions. Applications
of teleological descriptions in design explanation, design reuse, design by anal-
ogy, and diagnosis are discussed, and the details of acquisition, classification

and retrieval of teleological descriptions for these tasks are presented. This

17

work is compared to related work, and a summary of the contributions of this

work and potential extensions of the research are presented.

Chapter 2 describes the basic ideas of the teleology language TeD and
its relationship to structure and behavior languages, namely that teleological
descriptions relate design modifications expressed in the structure language to
design specifications expressed in the behavior language. Further, a teleological
description makes the statement that a modification is made to guarantee one

or more design specifications for the design.

Chapter 3 defines an ontology for teleology and how these elements
are expressed in the TeD language. The ontological elements are design speci-
fications (behaviors), design descriptions (structure), and design modifications
(a history of structure modifications). Based on these elements we formally

define the teleological description language TeD.

Chapter 4 defines behavior abstraction and its role in specifications
and teleological descriptions. Behavior abstraction permits the expression of
design specifications involving 1) a subset of mechanism variables and 2) qual-
itative behavior. Behavior abstraction is the basis for verification of behaviors
with respect to specifications and for classification and retrieval of teleological
descriptions. We also define composed teleological operators to demonstrate
how descriptions better matching human generated, prose descriptions of pur-

pose can be formally represented.

Chapter 5 presents theorems describing generalization and specializa-
tion properties between teleological descriptions given generalization and spe-
cialization properties between behaviors referenced by these descriptions. The
language properties described in these theorems support design reuse based on

teleological descriptions.

18

Chapter 6 explores detailed examples in the electronic circuit and
electromechanical domains, demonstrating the various languages (structure,

behavior, teleology) and acquisition of teleological descriptions.

Chapter 7 discusses the use of teleological descriptions in the task

domains of design explanation, design reuse, design by analogy, and diagnosis.

Chapter 8 describes an index structure based on behavior abstraction.
This index structure supports the resolution of queries for explanation, design

reuse, and diagnosis tasks discussed in Chapter 7.

Chapter 9 describes techniques for acquiring teleological descriptions,

with details of the acquisition technique implemented in this work.

Chapter 10 reviews previous and related work in teleology and demon-
strates where the TeD language has extended other work and how the other

approaches can be expressed in the TeD language.

Chapter 11 summarizes the claims and their support, citing the con-

tributions, current limitations, and potential extensions of this work.

Chapter 2

The Basic Idea

2.1 Goal

In Chapter 1 we described the task of designing an input selection
circuit (Figure 1.1) to meet design specifications. We address the problem of
representing the purpose of adding the feedback transistor t2 (Figure 1.1b), that
purpose being to eliminate the behavior in which the voltage at the inverter
input (in) is a steady value between low (logic value 0) and high (logic value
1) voltage. The ideas described in this chapter are the conceptual basis for the
teleology and behavior languages described in Chapter 3 and Chapter 4. These

languages express the purpose of adding the feedback transistor as
0 Guarantees ¢

where § denotes the design modification that adds the feedback transistor and

¢ denotes the specification (specification 5).

2.2 Specifications as Drivers for Design

In examining human generated descriptions of purpose (¢f. [HWS87],
[Kow85], [McC88], [Ray86], [SS88], and [WMKS9]), a common theme emerges.
These descriptions relate design features (i.e., particular design decisions) to
design goals (specifications). In fact, the desire to achieve design goals is a

primary motivation of the design activity, succinctly stated by Herbert Simon:

19

20

Synthetic or artificial objects — and more specifically prospective
artificial objects having desired properties — are the central objective
of engineering activity and skill. The engineer, and more generally
the destgner, is concerned with how things ought to be — how they

ought to be in order to attain goals, and to function. [Sim81, p. 7]

Design specifications are described in terms of behavioral (dynamic) charac-
teristics, such as the desired range for the operating temperature of a steam
boiler, and physical (static) characteristics, such as dimensions or weight of the
desired artifact. At the evaluation step of the design process (see Figure 1.2)
the designer determines whether the design meets the specifications set out for
the design.! In general the goal of the design task is that all specifications hold

for the design, or for design d and specifications {s1,...,s,}
v i,holds(s,, d).

Descriptions of purpose of design decisions are expressed in terms of spec-
ification predicates like holds that relate designs and design specifications.
For static characteristics, a specification predicate might indicate whether the
weight of the artifact is less than some limit, or whether the design artifact
meets certain regulatory requirements such as coding standards or expression
in a standard design representation language. Static characteristics can be
easily expressed in terms of a specification predicate, although actual measure-
ment or verification may be a nontrivial computation. Dynamic characteristics

(e.g. behavior) have a rich vocabulary in prose descriptions, using such verbs

!This determination ranges from simple inspection by the designer to probabilistic mea-
sures gained by simulation under some percentage of system inputs to certainty obtained via
rigorous proof methods.

21

as control, transfer, regulate, and prevent. Hence, we will investigate purposes
relative to behavioral characteristics in greater depth, showing that these verbs

can be expressed in terms of a simpler, underlying language.

To demonstrate the rich vocabulary used in prose descriptions of pur-
pose, consider a steam power plant inside a petrochemical refinery. One purpose
of this power plant is to generate power (i.e., translate chemical energy to ther-
mal and/or mechanical energy) for other operations in the refinery. Further,
the transmission and application of power via steam was chosen as opposed
to electricity or chemicals (e.g., gas), since the manifestation of energy in the
form of steam prevents the fire and petrochemical explosion hazard that exists

when using either electricity or chemical combustion.

2.3 A Language for Purpose

Teleological descriptions should provide the knowledge required to
answer questions of the form “What is the purpose of this structural entity
(component or connection)?”? We represent such structural entities as design
modifications. For a component or connection, it was either added as a new
structural element of the design or it replaced a component of the design. Fur-
ther, removal of a component or connection is easily represented as a design
modification. If just the structural entity itself were referenced without the de-
sign modification, one could not express the purpose of removing a component

or connection.

Expressing teleological descriptions in terms of design modifications

ZSelection of a specific parameter value such as the size of a transistor can be viewed as
selecting a specific component from a set of alternative components differing only in that
parameter value.

22

has an intuitive justification in that teleological descriptions expressed in prose
or verbally are often structured as follows: “Suppose this release valve weren’t
present in the design. Then the internal pressure of the steam boiler vessel
might exceed the rated maximum for the vessel and result in an explosion.”
Explanation of the purpose of specific parameter values like the release point
of the pressure valve or the size of a transistor is expressed in a similar manner.
For example, “Suppose the release pressure of the valve were 2000 psi instead
of 1500 psi. Since the rated maximum safe pressure for the steam boiler vessel

is 1600 psi, it could possibly explode.”

Teleological descriptions expressed in terms of design changes also
have a pragmatic motivation. Those points in the design process when the
designer evaluates a design with respect to the specifications naturally define
a set of modifications made for one or more purposes. The evaluation prior to
the modifications identifies one or more specifications that are not currently
met by the design. The evaluation following the design modification sequence
determines whether the specifications the designer was attempting to address
have been met. Consequently, these design evaluation points are precisely the
points at which a description of purpose should and can be captured. Although
current CAD (computer aided design) and CAE (computer aided engineering)
systems support design methodologies in which capture of teleological informa-
tion can be included, these systems do not explicitly represent a methodology
and hence do not reason about or with the methodology.? However, support of

development and verification methodology has been researched (e.g., the Pro-

grammer’s Apprentice [RS84, Wat84]), and Fiduk et al. [FKKP90] describe

3Gystems currently provide a suite of tools, and the designers themselves are responsible
for applying the appropriate tool to the appropriate data, in the correct sequence.

23

current research in explicitly representing methodologies and reasoning about
design activity with respect to methodologies. This methodology management
research will provide the methodological infrastructure for acquisition of teleo-

logical descriptions.

The following sections summarize the key insights for understanding

our approach to representing purpose, the TeD language.

2.3.1 Modifications and Specifications

The first key insight is that a teleological description references:

1. Design modifications (e.g., addition of a component, modification of a

specific parameter value) made during the design process, and

2. Effects these changes have with respect to the design meeting its specifi-

cations.

Consider the case of a pressure release valve on the steam boiler, described by
Kuipers in [Kui85]. The steam boiler has a design specification stating that
the internal pressure should not exceed some maximum value, beyond which
the boiler vessel might explode. The design modification made to address this
specification is the addition of a pressure activated release valve. The purpose
of the addition of the pressure release valve is to prevent the internal pressure
of the boiler from exceeding some critical value at or beyond which the boiler
vessel might explode. We compare this description of purpose with behavioral
and causal descriptions: a behavior description of the pressure release value
states that the valve opens at some prescribed pressure and steam escapes the
vessel via the pressure release valve; a causal description explains how this

behavior is achieved (i.e., the internal workings of the valve). Neither the

24

behavioral description nor the causal description captures why this behavior

was desired, and hence why the pressure release valve was added to the design.

2.3.2 Guarantees

The second key insight is that behavior changes of the design artifact
can be expressed in terms of a teleological operator Guarantees. Informally,
this teleological operator denotes a predicate function whose arguments are a
design modification and a specification predicate and whose truth value is de-
termined by examining the specification predicate in the context of the static
and dynamic characteristics of the unmodified and modified designs.* This op-
erator is justified on two accounts, empirical and theoretical. As an empirical
justification, we make the observation that design requirements are often ex-
pressed in terms of behaviors required or prohibited for the mechanism being
designed. This is most easily demonstrated in a stimulus-response specifica-
tion of behavior: “When set of conditions (state) A occurs, the mechanism
should bring about condition set (state) B, possibly within a specified time
constraint.” This is the essence of the ToMake clause of functional repre-
sentation described by Sembugamoorthy and Chandrasekaran [SC85], namely
“given an initial set of conditions, the purpose is to bring about (ToMake) some

other set of conditions.”

As a formal basis we have defined the teleological operator in terms
of the operators of modal logic [Tur84, Che80]. If one formulates the possi-

ble static characterizations or dynamic behaviors of a mechanism as possible

” W

worlds, then specifications can be viewed as “possibly,” “necessarily,” or “not

*The teleological operator Guarantees is defined formally in Sections 3.7.1 and 3.7.2.

25

possibly” holding in those possible worlds. A guaranteed specification neces-

sarily holds in all possible worlds (behaviors) of the mechanism.

2.3.3 The Need for Context

The final key insight is that while the structure and possible behaviors
of a system component can be described and understood outside the context
of the system in which the component is embedded, a description of purpose
cannot be described independent of such context. Simon identifies the role of

context for functional explanation and description as follows:

An important fact about this kind of explanation is that it de-
mands an understanding mainly of the outer environment. ... In
this manner, the properties with which the inner environment has
been endowed are placed at the service of the goals in the context of

the outer environment. [Sim81, p. 11,15]

Clearly, structure descriptions make sense independent of the context of the en-
closing system, since the structure of each component is described independent
of any specific enclosing system. Similarly, potential component behaviors can
be derived independent of any specific enclosing system.®> Such component be-
havior is described via a state representation in which the state is comprised of
variables and values for those variables. The purpose of a component, however,
can only be described in the context of the static and dynamic characteristics

of the system in which the component is embedded. Consider the steam boiler

>The actual behaviors a component exhibits when embedded in a larger system may be
a subset of the possible behaviors if the enclosing system restricts values of variables defined
at the component’s interface.

26

example once again. The behavior of the release valve can be described in
terms of the valve aperture and the pressure against the valve. The purpose
of the release valve, however, requires reference to the behavior of the system
in which the valve is embedded. For example, the purpose of the release valve

Y

would not be “to open and close,” as this would require further interpretation

in the context of the system in which the valve operated.

The need expressed here for languages for structure, behavior, causal,
and teleology descriptions originates from Kuipers’ identification of structural,

behavioral, and functional descriptions [Kui85, p. 170], where he states:

The structural description consists of the individual variables
that characterize the system and their interactions; it is derived
from the components of the physical device and their physical con-
nections. The behavioral description describes the potential behav-
iors of the system as a network of the possible qualitatively distinct
states of the system. I reserve the term functional description for
a description that reveals the purpose of a structural component or
connection in producing the behavior of a system. Thus, the func-
tion of a steam-release valve in a boiler is to prevent an explosion;
the behavior of the system is simply that the pressure remains be-
low a certain limit. The existing literature frequently obscures this

distinction by using the term ‘function’ to refer to behavior.®

In conclusion, while structure, behavior, causal, and teleology lan-

guages describe unique aspects of a mechanism, they are closely related in that

5Tn the work described herein, the terms teleology or purpose will be used instead of
function, to avoid this confusion of the terms function and behavior.

27

one language references another (e.g., a description in the teleology language
references behavior descriptions) and hence relies on that language for its ex-

pression and derivation.

2.4 Goals of TeD

To these insights we add the following additional goals for TeD:

e To be independent of any particular structure or behavior language or
specific predicates used to express specifications. This allows the tech-
niques and capabilities developed here to be applied to multiple modeling

approaches, including both qualitative and quantitative.

e To be independent of any particular domain of mechanisms. Examples

given here include electrical, hydraulic, and thermal domains.

o To allow hierarchical descriptions referencing predicates or other teleolog-
ical descriptions. This will allow the construction of arbitrarily complex

descriptions of purpose.

Chapter 3

Ontology and Representation

3.1 An Ontology for Teleology

In preparation for a discussion of a representation for teleological
descriptions, a discussion of an ontology! for teleology is in order. Simon char-

acterizes an ontology for purpose as follows:

Fulfillment of purpose or adaptation to a goal involves a relation
among three terms: the purpose or goal, the character of the arti-

fact, and the environment in which the artifact performs. [Sim81,

p. 8]
The ontological elements of the teleology language TeD are:

e Design specifications (desired static and dynamic characteristics)
e Design descriptions (structure, behavior)

e Design modifications
The ontological elements identified by Simon are realized in TeD as follows:

o Purpose or goal - Design specifications

!The ontology identifies the entities that are available for representing problem situations

[Gre83].

28

29

o Character of the artifact - Design descriptions (structure, behavior)

o Fnuvironment - Derived behaviors

We describe the ontological elements of TeD in this chapter. Struc-
ture, design modification, and design history languages are described first. We
then describe behavior and specification languages, and finally the teleology
language TeD. We discuss design specifications, providing intuitive definitions
for the predicates, leaving the formal definitions for Chapter 4. Chapter 4 for-
mally defines the specification predicate occursIn which is used in teleological
descriptions concerning behaviors. In this chapter, we give the essential fea-
tures of structure, design modification, design history, behavior, and teleology

languages, with an example language for each.

To demonstrate the languages and concepts, we use an idealized model
of a steam boiler (the double heat flow system defined by Kuipers [Kui85,
p. 175], shown in Figure 3.1). The behaviors exhibited by the steam boiler
demonstrate the qualitative description of a system reaching equilibrium. In
one possible behavior, equilibrium occurs after the vessel’s internal pressure
has exceeded some maximum value. A modified design in which a pressure
sensor is added eliminates this behavior, and the teleology language captures
the intent of the design modification, namely to eliminate the possibility that
the internal pressure exceeds some maximum value and explodes. This par-
ticular teleological description involves a behavior which is not exhibited by
an implementation of the final design, a unique capability of TeD. We discuss
this capability further when comparing the TeD language to other work in
Chapter 10.

30

N

Figure 3.1: Idealized Steam Boiler

3.2 Structure

Many languages for representing structure have been put forth (see
structure languages proposed by Abelson and Sussman [AS85], Davis [Dav85],
de Kleer and Brown [dKBS85], Forbus [For85], Franke and Dvorak [FD90],
Kuipers [Kui85, Kui86], Williams [Wil85], and VHDL [VHDLS87]) and each
has associated behavior languages and envisioning semantics (discussed by de
Kleer [deK77], de Kleer and Brown [dKB82], and Kuipers [Kui82, Kui86]). The
structure and behavior languages described herein abstract these existing lan-
guage definitions to avoid basing the teleology language on a specific structure

or behavior language and associated envisioning semantics.

Davis and Hamscher [DHS88] identify several common themes in rep-

resenting structure:

e Structure representation should be hierarchical;

31

e Structure representation should be object centered and isomorphic to the

organization of the device;

e Behavior can be represented by a set of expressions that capture the

interrelationships among the values on the terminals of the device.

While the structure language described here supports these themes, it
allows structure ontologies other than one component per physical object. For
example, the ontological elements might be processes [For85] or generic mech-
anisms [Kui89b] with descriptions of purpose associated with these elements.
At the appropriate level of abstraction, a design description may consist of

processes or generic mechanisms as opposed to physical components.

Structure languages used here describe models (designs) hierarchically
composed from simpler models called components [AS85, dKB85]. Hierarchy is
achieved by applying this decomposition recursively to components. Each com-
ponent has an interface, expressed in terms of terminals, that can be connected
to terminals of other components. Interactions between two components are
restricted to these connections. At some point in the hierarchy, components are
described in terms of the primitives of the associated behavior language. We
call these primitives variables and behavior constraints.? Formally, a structure

D is a tuple

(V,Q,qs,con,C), with

?This representation retains sufficient generality to describe complex systems such as a
microprocessor. Variables represent the interface and internal state of the microprocessor and
behavior constraints represent the modification the microprocessor makes on its internal state
and outputs based on the current internal state and input values. Such behavior constraints
may be expressed as arbitrarily complex procedural code.

32

V- aset of variables

() - a set of quantity spaces

gs - a mapping from V to @)

con - a set of constraint types
C - aset of tuples (¢,v1,...,v,,c01,...,¢C0)
where ¢ € con, v; € V, and cv; € ¢s(vy) X ... X gs(vy,).

To demonstrate structure description, we describe the steam boiler
example in the structure language CC [FD90] which uses Kuipers” QsiM [Kui85,
Kui86] behavior language.? In this example we model temperatures, pressure
and heat inside the boiler vessel, and the heat flow from the heat source to the
boiler vessel to the surrounding air, a heat sink. The model is constructed from
three components, a flame (heat source), a boiler vessel, and the surrounding
air (heat sink). For the boiler vessel, variables expressing the difference between
the internal temperature and the flame and air temperatures are also included.
These temperature difference variables are referenced in constraints that relate
heat flow into and out of the boiler vessel to those temperature differences.
Specifically, the heat flow into the boiler vessel is a monotonically increasing

function of the temperature difference between the flame and the boiler vessel.

As this difference increases, the heat flow into the boiler vessel increases.

The component types used to construct the steam boiler example
are Boiler-Vessel, Heat-Source, and Heat-Sink. The Boiler-Vessel com-
ponent definition (Figure 3.2) defines terminals, variables, and behavior con-
straints introduced into a model when it is included. The steam boiler model
(Figure 3.3) defines three component instances and connections among the ter-

minals of these component instances. Using the hierarchical naming scheme of

3The CC structure language allows definition of hierarchical component models from
which CC generates a qualitative differential equation (QDE) suitable for envisioning with

QSIM.

(define-component-interface
Boiler-Vessel
"Boiler Vessel in thermal domain'" thermal
(terminals in out)
(quantity-spaces
(defaults (temperature temperature-gspace)
(entropy heat-qspace))))

(define-component-implementation
primitive Boiler-Vessel
"Boiler Vessel for heat flow, in QSIM primitives"
(terminal-variables (in (inFlow heat-flow (lm-symbol IF))
(Tin temperature))
(out (outFlow heat-flow (lm-symbol OF))
(Tout temperature)))
(component-variables
(netFlow heat-flow display (lm-symbol NF))
(heat entropy display (lm-symbol H))
(pressure (hydraulic pressure) display (lm-symbol P)
(quantity-space pressure-qspace))
(T temperature display)
(dTin temperature display
(quantity-space base-quantity-space))
(dTout temperature display
(quantity-space base-quantity-space)))
(constraints
((ADD T dTin Tin) (0 O 0) (AT* O AT*) (FT* O FT*))
((M+ dTin inFlow) (0 0))
((ADD T dTout Tout) (0 0 0) (AT* O AT*) (FT* O FT*))
((M+ dTout outFlow) (0 0))
((ADD inFlow outFlow netFlow) (0 0 0))
((d/dt heat netFlow))
;; Assume constant fluid/gas mass, so heat follows temperature

((M+ heat T) (0 0) (Ha*x AT*) (Hf* FT*))
((M+ pressure T) (0 0) (Pax AT*) (Pfx FTx))
)

Figure 3.2: Boiler-Vessel Component Definition in CC

33

34

(define-component-interface
SB "Steam Boiler'" thermal
(quantity-spaces
(defaults (temperature temperature-gspace)
(entropy heat-gspace)
(heat-flow base-quantity-space))))

(define-component-implementation
1 SB
"Simple steam boiler"
(components
(Vessel boiler-vessel (display netflow heat pressure T
dTin dTout inFlow outFlow))
(Flame heat-source)
(Air heat-sink))
(connections (pl (Flame out) (Vessel in))
(p2 (Vessel out) (Air in))))

Figure 3.3: Steam Boiler Model Definition in CC

CC, these instances are:

(SB vessel)
(SB flame)
(SB air)

Again using the hierarchical naming scheme of CC, the variables contributed

by component (SB vessel) to the variable set V are

(SB vessel inFlow)
(SB vessel Tin)

(SB vessel outFlow)
(SB vessel Tout)

(SB vessel netFlow)
(SB vessel heat)

(SB vessel pressure)
(SB vessel T)

(SB vessel dTin)

(SB vessel dTout)

35

Behavior constraints contributed by component (SB vessel) to the constraint
set C are:

(ADD (SB vessel T) (SB vessel dTin) (SB vessel Tin))

(M+ (SB vessel dTin) (SB vessel inFlow))

(ADD (SB vessel T) (SB vessel dTout) (SB vessel Tout))

(M+ (SB vessel dTout) (SB vessel outFlow))

(ADD (SB vessel inFlow) (SB vessel outFlow) (SB vessel netFlow))
(d/dt (SB vessel heat) (SB vessel netFlow)))

(M+ (SB vessel heat) (SB vessel T))

(M+ (SB vessel pressure) (SB vessel T))

The complete steam boiler example appears in Appendix A.

3.3 Design Modification and History

The structure language provides a means for describing a single point
in the history or evolution of a design. A description of design history also
requires a means for describing the transitions from one state of the design
(distinct from a behavior state of an artifact or instance of the design) to an-
other. The term design modification denotes such a transition, and is a relation
between two structure descriptions. A design history is a pair comprised of an
4

initial design (structure description) and a sequence of design modifications,

denoted
(do, (01,02, ...,0,))

where dy is the initial design and §; are design modifications. This design

history defines a sequence of designs (structure descriptions)

do,dyy. .. dpy,d,

1Representing a design history as an initial design and design modifications is common
in commercial CAE and CAD systems, providing a record of design changes and the ability
to undo design changes. For efficiency, new “initial” designs are created periodically in such
systems by applying the modifications and explicitly representing the new “initial” design.

36

G— e

5a - staus’ N tds

di+_1

d; - 1" version of the design

E; - envisionment for design d; (see Section 3.5.2)
specs - design specifications

td's - teleological descriptions captured in verification
status - results of verification

d; - modifications generated by the designer

Figure 3.4: Design Process Flow (Single Step)

where d; is the result of applying design modification §; to design d;_y. The
design history is captured during the initial design, evaluation, and design
modification steps in the life-cycle model of Figure 1.2. Figure 3.4 gives a more
detailed process description for the evaluation (envisioning and verification)

and design modification (designer) steps.

To demonstrate design modifications, a simple language is defined
here. The language elements correspond roughly to structure editing opera-
tions, although some editing operations will be a composition or sequence of
the language primitives given here (e.g., “Replace component A with compo-
nent B” is realized via “Delete component A” and “Add component B” with

appropriate connections specified). The modification language primitives are:

e Add-z to a component, where x is a component, connection, terminal,

variable, quantity space, or constraint

37

e Remove-z from a component, where x is a component, connection, termi-

nal, variable, quantity space, or constraint
e Rename-z, where x is a component instance, variable, or terminal

e Change-z, where zis a parameter value (landmarks in a quantity space), a
quantity space of a variable, a component implementation type, a variable

type, or the default domain of a component.

o Create-z, where x is a new component type or quantity space. The new

definition is a copy of an existing one, which will then be modified.

Primitives of the modification language given in Table 3.1 are interpreted in
the context of a component definition, while those in Table 3.2 are interpreted

in the editing environment, outside the context of any specific component.

3.4 Design Instantiation

Given design definitions as described above, one instantiates a design
by actually constructing the artifact specified by the design description, by
building a model of the design suitable for simulation or analysis, or by some
combination of artifact and model. In any case, the design description is in-
stantiated and variables are created. If a physical artifact is constructed, the
variables are in the artifact itself. One can talk about the state of an instan-
tiated design, namely a function mapping variables to values. In terms of a

structure description,
s:V = qs(v1) X ... xqs(v,), where n = |V].

Accordingly, the value of variable v in state s is denoted s(v).

38

(for-component (type descriptor)
(add-component (instance name) (type) (options) . (connections))
(add-connection (connection spec) (connection spec) ...)
(add-terminal (term-name) (term-name) ...)
(add-terminal-variable (term-name) (name) (type) . (options))
(add-component-variable (name) (type) . (options))

(add-constraint (constraint) (constraint) ...)
(remove-component (instance name) (instance name) ...)
(remove-connection (connection spec) (connection spec) ...)
(remove-terminal (name) (name) ...)

(remove-variable (name) (name) ...)

(remove-constraint (constraint) (constraint) ...)

(rename-component-instance (current name) (new name))
(rename-variable (current name) (new name))
(rename-terminal (current name) (new name))
(change-quantity-space (variable) (quantity space))
(change-component-implementation (inst-name) (impl-name))
(change-variable-type (name) (new type))

(change-domain (domain))

)

Table 3.1: Modification Language Syntax - Component Relative

(create-new-component-type (existing type) (new type name))
(create-new-quantity-space (name) (Im list)(parent) (cvalues))
(change-parameter-value (quantity space name) (new gspace))

Table 3.2: Modification Language Syntax - Environment Relative

39

Although CC produces a flattened® representation expressed as a
QSIM qualitative differential equation (QDE), no assumptions in the behav-
ior or teleology languages are made based on whether a design instance is
represented in a hierarchical form or a flattened form. In either case, repre-
senting the state requires unique instances for those variables of the design

which describe the design at the current abstraction level.®

To complete the language for static characterization we require the
definition of a consistent state, a state assigning variable values that are con-

sistent with all behavior constraints imposed by the design.

3.5 Behavior

A discussion of behavior requires an instantiation of a design in the
form of a model, a physical artifact, or some combination of these two forms.
The process of envisioning produces a characterization of the (possibly infi-
nite) set of possible behaviors of the mechanism. We describe a behavior lan-
guage, adopting existing terminology of behavior descriptions (see behavior
language descriptions of de Kleer and Brown [dKB85], Forbus [For85], and
Kuipers [Kui85, Kui86]). For each pair of structure and behavior languages
there is an envisioning semantics addressing issues such as valid transitions
between variable values, valid transitions between states, and representations
of time. We next describe the behavior language and envisionment properties

required by the TeD language.

>A flat representation expresses a model at the lowest level of abstraction, and is produced
from a hierarchical representation. See [FD90] for details of the CC flattening procedure.

®Modeling techniques such as time-scale abstraction [Kui87] may have lower abstraction
levels which are effectively instantaneous from the point of view of the current model, and
hence can be described by variables of the current abstraction level.

40

3.5.1 Single Behaviors

Two states s; and sy are said to be adjacent states if for each variable
v, s2(v) is a legal next value of s;(v) (defined by the envisioning semantics of
the behavior language and ¢s(v)). A behavior is a possibly infinite sequence of
consistent states (so, $1,...,3,,...) where s;, s;41 are adjacent states. The first
state of the sequence is called the initial state.

3.5.2 Envisionment

Given the structure description for a design and an instance of that
design, the envisioning process produces a characterization of some or all
of the possible behaviors of the instance. This characterization is called an
envisionment” [deK77, dKB82, Kui82, Kui86]. The qualitative modeling ap-
proach attempts to derive all the possible behaviors from a given set of initial
states, and hence provides the capability to generate such an envisionment. A
total envistonment represents all possible behaviors of the design instance, and
an attainable envisionment represents all possible behaviors from a specific set
of initial states. In terms of structure description D, an attainable envision-
ment of D from initial state s is written as E({s}) and denotes the set of all
behaviors b of D where b = (s, 2,...) and s; = s. Letting S denote the set of
all states of D, a total envisionment of D is written as E(S) and abbreviated

as E.

"The term envisionment is intended to include descriptions of behaviors generated from
a design instance whose initial state is not an equilibrium, as well descriptions of behaviors
resulting from perturbations to a system in equilibrium [dKB82].

41

(SB vessel T) = (AT* nil)
(SB flame T) = (FT* std)
(SB air T) = (AT* std)

Figure 3.5: Initial Variable Values - Steam Boiler

Figure 3.6: Behavior Tree - Steam Boiler

3.5.3 Example

To demonstrate behavior description and envisionment, we return
to the steam boiler example and use the envisioning semantics and behavior
language of QSIM. Our model of the steam boiler produces three qualitatively
distinct behaviors, shown graphically in the QSIM behavior tree in Figure 3.6.
In the initial state of the model, the contents of the boiler vessel are at the
same temperature as the surrounding air, with the heat source (flame) having
a temperature greater than that of the surrounding air. This initial state is

determined by the variable values shown in Figure 3.5.

The mechanism reaches an equilibrium with the internal temperature
of the boiler vessel at some point between the temperature of the air and the
flame. The three possible behaviors are determined by the possible values for
the internal pressure when equilibrium is reached. This equilibrium pressure
can be either less than, equal to, or greater than the landmark value Pmax* in

the quantity space

(0 Pa* Pmax* inf).

42

Landmark Pa* represents the pressure (within the vessel) at air temperature.

The qualitative plots (from QsiM) for variables (SB vessel T) and (SB
vessel pressure) are shown in Figure 3.7. The initial state for this attainable
envisionment is determined by the variable assignments given in Figure 3.5 and

is the first state given in each behavior.

3.6 Design Specifications

For the steam boiler example, the landmark Pmax* represents a max-
imum safe value for the pressure inside the boiler vessel. A design specification
expresses the fact that to achieve a correct design, the internal pressure of
the boiler vessel should never exceed the maximum safe value. Hence, a de-
signer will modify the design to eliminate the undesirable behavior from the

mechanism, namely the behavior in which this maximum is exceeded.

3.6.1 Scenarios

The design specification language identifies behaviors or behavior ab-
stractions (called scenarios, and defined in Chapter 4) and whether they are
required or prohibited. For the steam boiler example, the behavior abstraction
is an internal boiler vessel pressure greater than the safe maximum, Pmax*.
We express the behavior abstraction as a sequence of states (in this case the

sequence contains only one state), written

({(pressure ((Pmax* inf) ign))}).

8Branching is according to whether pressure reaches landmark Pmax*.

. - INF
-
R L - p1
; - PMAX:
Le sB12 ' - pa
e o
T AT - PA-*
-
0 - PR
o T 2 , , T M
T0 T 2
(SB VESSEL T) (SB VESSEL PRESSURE)
Behavior 1
- IN T
-
- - PMAX:
' = po
>~ sB2 ' - PA
t 0
- AT - PA-*
e
0 -
To 1 , T MW
T0 T1
(SB VESSEL T) (SB VESSEL PRESSURE)
Behavior 2
- I L
-
- M o pvaxe
' ' - PA
>~ sB7 0
' - AT T PAT
© P
0 -
To 1 ;M

(SB VESSEL T)

T0
(SB VESSEL PRESSURE)

Behavior 3

Figure 3.7: Qualitative Plots from Qsim®

43

44

3.6.2 Specification Predicates

To develop the teleology language, we introduce the specification pred-
icate. A specification predicate is evaluated in the context of a behavior, or
possible world, and its truth value indicates whether the specification holds in
the behavior (possible world). We use the term possible world® because the
design created to meet the specifications will exhibit many different possible
behaviors, either because of different initial conditions or inherent nondeter-
minism in the design (e.g., a qualitative model). In expressing teleology, we
want to state that a specification predicate holds in none, some, or all possi-
ble behaviors (worlds) of a design. In the steam boiler example, we want to
state that in all possible behaviors of the design, the internal pressure does not

exceed Pmax*. Modal logic provides an existing formalism for this purpose.

Design specifications involve required or prohibited scenarios, and to
express whether these specifications hold in a behavior, we introduce the speci-
fication predicate occursIn(o,b), where o is a behavior abstraction (scenario)
and occursIn(o,b) is true for behavior (possible world) b if o abstracts b. The
specification predicate occursIn, behavior abstraction, and a specification lan-

guage are described in detail in Chapter 4.

3.7 Teleology

The teleology language relates design modifications (changes in struc-
ture) to design specifications (desired static and dynamic characteristics). With

the teleology language, we can formally express the designer’s intent in mod-

9The term “possible world” is taken from modal logic, which we will use in Section 3.7.2
as a formal basis for teleological descriptions.

45

ifying the steam boiler, namely to prevent the behavior in which the internal

pressure exceeds Pmax*, possibly resulting in an explosion.

Since the teleological description of an entity is context dependent, it
is not possible to enumerate all possible teleological descriptions of an entity.
In this work, the structure hierarchy and associated design specifications of the
system in which a component is embedded provide the context in which teleo-
logical descriptions of the component are developed or evaluated, as discussed

in Section 2.3.3.
3.7.1 Primitive Teleological Operator

Teleological operators are the language primitives for teleological de-
scriptions. In the context of a design modification, a single teleological operator
relates the unmodified design to the modified design in terms of the specifica-
tion predicates. In the following definitions, ¢; are specification predicates,'® d
and d’ are designs (structure descriptions), ¢ a design modification such that d’

is the design obtained by applying § to d, and E and E’ are the envisionments!!

10Recall that specification predicates are evaluated in the context of a specific behavior or
possible world.

11'We use the term envisionment to characterize not only the possible behaviors of a mech-
anism, but also to characterize the possible physical configurations of the mechanism. A
design may be underconstrained and allow more than one physical configuration, particu-
larly in the early stages of the design process. For example, alternative floorplans for a VLSI
chip will have different dimensions giving different total area, as well as different timing
characteristics.

46

of d and d', respectively. We define the operator Guarantees as:'?

dbek, -9,
0 Guarantees ¢ & and
Vb el o

A teleological operator makes a statement about both the modified
and unmodified designs. The statement made for the unmodified design is the
negation of the statement made for the modified design (modulo the envision-
ment, or set of possible worlds). This point may seem trivial, but is crucial
in that it attributes the newly attained truth of the specification predicate to
the design modification. In other words, the design modification was applied
to the unmodified design, for which the specification predicate was not true.
Note that because of the assertion about the unmodified design, the following

teleological descriptions are not equivalent:
(6 Guarantees ¢;) A (6 Guarantees ¢,), and

§ Guarantees (¢; A ¢3).

3.7.2 Expression in Modal Logic

As we discussed in Section 3.6.2, modal logic provides an existing
formalism for expressing the statement that a specification predicate holds
in none, some, or all possible behaviors (worlds) of a design. Modal logic
(see Chellas [Che80]) adds the operators necessarily (written O) and possibly

(written <) to first order logic. Given a first order predicate ¢, O¢ (necessarily

12When defining teleological operators we use a special-purpose notation in which the left
brace indicates a structured conjunction related to the transformation from the unmodified
design to the modified design. Accordingly, the expression involving envisionment E (of the
unmodified design) is written above the expression involving envisionment E’ (of the modified
design), indicating the transformation from the unmodified to the modified design.

47

@) is true if ¢ is true in all possible worlds and $¢ (possibly ¢) is true if ¢
is true in at least one possible world. To express teleological descriptions in
modal logic, we recognize that the envisioning process characterizes the possible
worlds for the design instance, where a possible world is one behavior or physical
configuration of the design. The modal operators possibly and necessarily can
express that a specification predicate is false in all possible worlds (necessarily
not), true in every possible world (necessarily), or true in at least one possible

world (possibly).

We use the model-theoretic approach to define teleological descrip-
tions in modal logic. This approach involves a model — a particular instance
of a set of possible worlds and truth assignments of logical sentences in these
possible worlds. We derive the following benefits from the model-theoretic

approach:

1. A set of logical sentences can be shown to be consistent by demonstrating

a model for which the sentences are satisfiable, and

2. Model-checking techniques for verifying the truth of a set of logical sen-

tences exist for various languages!'>.

A model is expressed as an instance of a schema called a standard model. We use

the definition of a standard model from [Che80, p. 68]. Given M = (W, R, P)

with

1. W a set,

13A model-checking algorithm has been implemented in this work, based on the behavior
abstraction relations defined in Chapter 4.

48

2. R a binary relation on W, and

3. P a mapping from natural numbers to subsets of W,

M is a standard model. In the possible worlds interpretation, W is the set of
possible worlds, R is a relation on W called the accessibility relation, and P

represents the subsets of W for which predicates are true.

Given the envisionment of a design instance, the design specifications,
and procedures' for determining the truth value of the design specifications
in each behavior (possible world) in the envisionment, we further refine the
standard model for expressing teleological descriptions in modal logic. FEnvi-
sionments E and E’ define the set of possible behaviors (possible worlds) of the
unmodified and modified design. The mappings P and P’ define, for each spec-
ification predicate ¢;, the set of behaviors (subsets of E and F', respectively)

in which ¢; is true. For the binary relation R, we define aRj3 as'®
Yae W, Ve W, aRf.
We define the model schemas M = (W, R, P) and M’ = (W' R, P") with

o W the set characterized by envisionment E,

e W’ the set characterized by envisionment E’,

14This work is not directly concerned with techniques for verifying that design specifications
have been met, 1.e., the problem of design verification. While we have implemented a model
checking algorithm based on behavior abstraction, we focus on using the results of design
verification to capture design rationale, namely the purpose of design modifications and
design decisions.

15The relation R is serial (for every o there is a 3 such that aRg), reflexive, symmetric,
transitive, and euclidean (for every «, 3, and v if « R and aeR7y then SRy). These properties
imply the validity of schemata D (DA — CGA), T (ODA — A), B (A — 0OCA), 4 (DA — O0A)
and 5 (OCA — OCA), respectively. See [Che80, p. 80].

49
e Pi)={a|aeW A —¢; in a}, and

o Pliy={a|aeW' A ¢ in a}.

Now we can express teleological operator Guarantees in terms of the
modal operators O (necessarily) and < (possibly). For specification predicate

¢1 and models M and M’, we define Guarantees as:

M is a model for O—gy
4 Guarantees ¢; < { and
M’ is a model for Ogy.

Note that M’ is a model for O¢; if and only if P’(1) = W, and M is a model
for &=y if and only if P(1) # {}.

3.7.3 Example

One behavior exhibited by the initial steam boiler design (see Fig-
ure 3.3 for the structure description, Figure 3.7 for the behavior) does not
conform to the design specification (prohibited o) and associated specifica-

tion predicate —moccursIn(o,b), where o is the behavior abstraction

({(pressure ((Pmax* inf) ign))}).

The model checking algorithm implemented in this work determines the fact
that one behavior of the steam boiler does not meet the specification. Output

of model checking is given in Figure 3.8.

A modified design containing a pressure sensor component which
translates pressure into an electrical voltage is proposed (see schematic in Fig-
ure 3.9, CC definition in Figure 3.10). The pressure is sensed via the connec-
tion with component vessel, and the electrical voltage is transmitted via the

connection with component flame. The heat source modifies the temperature

50

Checking behaviors against

Design specification: DHF-NO-EXPLODE

Prohibited Scenarios:
State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Design spec instantiation is #<Spec: PROHIBITED SC-0>:
PROHIBITED:
Scenario:
State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))

Boolean Expression: TRUE

Behavior S-6 inconsistent with spec #<Spec: PROHIBITED SC-0>

Figure 3.8: Steam Boiler - Model Checking Output

N

Figure 3.9: Modified Steam Boiler

51

(define-component-implementation
2 SB
"Steam boiler with pressure sensor'
(components
(Vessel boiler-vessel-modified
(display netFlow heat pressure T
dTin dTout inFlow outFlow))
(Flame controlled-heat-source)
(Air heat-sink)
(Sensor pressure-sensor (display v)))
(connections (pl (Flame out) (Vessel in))
(p2 (Vessel out) (Air in))
(p3 (Vessel t) (Sensor in))
(p4 (Sensor out) (Flame ctl))))

Figure 3.10: Modified Steam Boiler Model in CC

based on the voltage at the control terminal. This modified design was created
with the modifications shown in Figure 3.11 (possibly captured during inter-
active editing by a designer). The complete modified steam boiler component

hierarchy is given in Appendix A.

The envisionment of the modified design (with the initial variable
values given in Figure 3.5) contains three behaviors shown graphically in the
behavior tree of Figure 3.12. Behaviors 2 and 3 are the same as behaviors
2 and 3 of the original design. Behavior 1 has changed (see Figure 3.13),
and the variable (SB vessel pressure) no longer exceeds landmark Pmax*.
The model checking algorithm determines the fact that all behaviors of the
modified steam boiler meet the specification. Output of model checking is

given in Figure 3.14.

We can now describe the purpose of the design modification of Fig-
ure 3.11 with respect to the design specification (prohibited o) and asso-

ciated specification predicate moccursIn(o,b). Letting denote the design

52

(create-new-component-implementation SB 1 2)
(for-component (SB 2)
(replace-subcomponent vessel boiler-vessel-modified
((display netFlow heat pressure T dTin dTout inFlow outFlow)))

(replace-subcomponent flame controlled-heat-source nil)

(add-subcomponent sensor pressure-sensor ((display v))
(in (vessel t)) (out (flame ctl))))

Figure 3.11: Steam Boiler Modifications

N

Figure 3.12: Behavior Tree - Modified Steam Boiler

Y=

- I e

o o

. ! - PLIM

........... N s ' - PA*

- AT B gA_*
= P+

0 - PF-*

TIO Tll le i , , ; M NF

10 I 12
(SB VESSEL T) (SB VESSEL PRESSURE)
Behavior 1

Figure 3.13: Qualitative Plots for Modified Steam Boiler

33

Checking behaviors against

Design specification: DHF-NO-EXPLODE

Prohibited Scenarios:
State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Design spec instantiation is #<Spec: PROHIBITED SC-0>:
PROHIBITED:
Scenario:
State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Verified specifications:
#<Spec: PROHIBITED SC-0>

Figure 3.14: Steam Boiler - Model Checking Output

modification that adds the pressure sensor, the teleological description is

§ Guarantees —occursIn(o,b). (3.1)

Design modification § may have resulted in other behavior changes between
the unmodified and the modified designs. The reason this particular purpose
was identified is because one of the behavior changes accomplished by ¢ was
defined in a specification. The steam boiler design history, evaluation steps,
and acquired teleological description are shown in the context of the design

process flow in Figure 3.15.

%Design SB1 is described in Figures 3.1 and 3.3. Envisionment F; is described in Fig-
ures 3.6 and 3.7. Design modification J is described in Figure 3.11. Design SB2 is described
in Figure 3.9 and 3.10. Envisionment FE5 is described in Figures 3.13 and 3.12. The ac-
quired teleological description is equation 3.1. An sample trace of this design flow is given
in Appendix A.

54

se1_. e

5~ ~staws<’ = tds

\
SN e

status/ \ tds -3.1

Figure 3.15: Design Flow for the Steam Boiler'®

3.8 Additional Teleological Operators

We can define additional teleological operators so that the teleologi-
cal description given for the steam boiler example in the previous section more
closely matches the prose description “The pressure sensor was added to the
steam boiler design to prevent the internal pressure from exceeding the safety
limit Pmax*”. These additional operators are used in defining composed teleo-

logical operators in Chapter 4.17

3.8.1 unGuarantees

We define the operator unGuarantees to facilitate the definition of
other operators. This operator expresses the fact that a specification predicate

true in all behaviors of the unmodified design is now false in at least one

I7All these additional operators can be considered syntactic sugar. They are defined to
demonstrate the construction of semantically more complex teleological expressions, and
to demonstrate parallels to human generated descriptions of purpose. These parallels help
demonstrate that teleological descriptions expressed in TeD capture the semantics of human
generated descriptions, and are suitable for human consumption.

35

behavior of the modified design. The operator unGuarantees is defined as

follows:
VbeE, o,
4 unGuarantees ¢ < < and
0 el, —¢.

Expressed in the modal operators, we have

M is a model for Og¢y,
0 unGuarantees ¢; & and

M’ is a model for Oy

3.8.2 Preventing a Behavior

Consider a design modification made to prevent or exclude an unde-
sirable behavior, as was the case in the steam boiler example. A convenient

operator is Prevents, defined as follows:

dbek, o,
5 Prevents ¢ < ¢ and
Vb el -

Operator Prevents can be expressed in terms of Guarantees as
5 Prevents ¢ < ¢ Guarantees —¢.
Applied to the design modification for the steam boiler, we have

d Prevents occursIn(o,b).

3.8.3 Introducing a Behavior

Consider a design modification made to introduce or enable a par-
ticular behavior abstraction, although the abstraction may not be guaranteed
for all possible behaviors of the design. A convenient operator is Introduces,

defined as follows:

56

VbeE, -9,
0 Introduces ¢ & and
16 e E, ¢.

Introduces can be expressed in terms of unGuarantees as

0 Introduces ¢ < ¢ unGuarantees —¢.

This is readily demonstrated by adding a negated predicate to the definition

of unGuarantees, giving

Vbek, -9,
0 unGuarantees —¢ < (and
16 e E, ¢.

which is the definition of Introduces.

3.8.4 Conditional Behavior

Finally, consider a specification predicate that expresses a desired
characteristic that is conditional, or if ¢4 is true (i.e., is observed or measured),
then ¢, must be true (observed or measured). To make such specifications and
associated teleological descriptions more intuitive, we introduce the operator

Conditionally Guarantees and define it directly as

10 € E7 _'(qbl = ¢2)7
5 Conditionally when {¢;} Guarantees ¢, < ¢ and
Vo eE, ¢ = ¢

Note that Conditionally Guarantees is a single operator of three argu-
ments. We write this operator with the conditional argument in the middle for

readability. We can rewrite this operator in primitives as:

0 Guarantees ¢, = ¢,.

57

We can define the operator Conditionally Prevents, or conditionally pre-

venting a scenario as follows:

dbe E7 _'(qbl = _‘QbQ),
9 Conditionally when {¢;} Prevents ¢, < ¢ and
Vb e E/, qbl = _'qbg.

We can rewrite this operator in primitives as:
6 Guarantees ¢; = —¢,.

We can define the operator Conditionally Introduces, or conditionally in-

troducing a scenario as follows:

VbEEv le :>_'¢2)7
5 Conditionally when {¢;} Introduces ¢, < ¢ and
3¥ e E/, _'(qbl = _‘qbg).

We can rewrite this operator in primitives as:

0 unGuarantees ¢, = —¢,.

For conditional expressions involving Prevents and Introduces, one
might be tempted to rewrite the expression directly in terms of Prevents or
Introduces. However, directly transforming such an expression to an implica-
tion as was done for Guarantees violates the semantics of the Conditionally
operator, namely that 1) the specification predicate ¢, holds when the possible
worlds considered are restricted to those in which specification predicate ¢,
holds and 2) that no statement is made about possible worlds in which the
specification predicate ¢; does not hold. For Prevents, an (incorrect) rewrite
sequence is

0 Conditionally when ¢, Prevents ¢,

rewritten as
6 Prevents ¢; = ¢,

which is rewritten as
d Guarantees (¢ = ¢,).

38

This result cannot be true if there are any possible worlds in which the specifi-
cation predicate ¢; does not hold, since an implication with a false antecedent

is always true. For Introduces, an (incorrect) rewrite sequence is

0 Conditionally when ¢; Introduces ¢,

is rewritten as
0 Introduces ¢; = ¢,

which is rewritten as
d unGuarantees —(¢; = ¢7).

This result can be satisfied if there is one possible world in which the specifi-
cation predicate ¢; does not hold, since an implication with a false antecedent

is always true.

Chapter 4

Behavior Abstraction

4.1 Rationale

In this chapter we formally develop the notion of behavior abstraction.
In the task domain of design,! behavior abstraction is important because design
specifications most often address only a single aspect or small number of aspects
of the artifact to be designed, such as the physical dimensions (length, width,
height) or the behavior of some portion of the artifact. Consequently, one
needs to represent and reason about behavior descriptions that reference only
part of the artifact. Further, the design specification may be given in terms
more general than the details of the designed artifact, such as stating that a
particular variable value should always be positive, although no specific positive

value is specified.

To demonstrate behavior abstraction, recall the steam boiler example
discussed in Chapter 3. The behavior in which the internal pressure of the
boiler vessel instance vessel starts at 0 and goes to the positive value Pmax*
is written as a sequence of three states,

({((vessel pressure) (0 nil))},

{((vessel pressure) ((0 Pmax*) inc))},
{((vessel pressure) (Pmax* std))})

"Hamscher [Ham91] discusses the relevance of behavior abstraction in the problem solving
domain of diagnosis.

59

60

This behavior abstracts the behavior of the entire system, since variables other
than pressure are ignored. One possible generalization of this abstract behav-
ior is obtained by replacing the component name vessel with the component
type boiler-vessel. This abstraction describes the behavior in which the
internal pressure of any instance of boiler-vessel starts at 0 and goes to
the positive value Pmax*. A further generalization eliminates the intermediate
state, describing the behavior in terms of its initial and final states, or

({((boiler-vessel pressure) (0 nil))},
{((boiler-vessel pressure) (Pmax* std))})

We define behavior abstraction in terms of state abstraction, and state
abstraction in terms of variable value, name, and type abstraction. We prove
that each abstraction relation partially orders? its respective space. Ordering
behaviors allows us to decide whether one behavior is more or less general than
another, or that no order exists between the behaviors. Table 4.1 summarizes
the abstraction relations, giving their respective spaces and the relations used

in each definition. For each relation, the strict inequality ¢ T, b is defined as
al,.b A a#b.
We use the behavior abstraction relation to define the specification predicate

occursln.

Computing the abstraction relation is the basis for indexing and clas-
sifying teleological descriptions (see Chapter 8) and the model checking algo-

rithm used in acquiring teleological descriptions (see Chapter 9). The particular

2We use the definition of a partial ordering relation in [Sto77, p. 82].

61

Relation ‘ Space ‘ Defined in Terms of
C. component types | assumed
C, variable names component types
c, variable types generic variable types
C, variable references | C, , C,;
C. values qualitative/quantitative values
L states L,, L.
C, behaviors C,
C, scenarios C,

Table 4.1: Abstraction Relation Summary

details of the abstraction relations defined here are not critical for accomplish-
ing indexing, classification, and acquisition. The key requirement for these

capabilities is that behaviors can be partially ordered.

4.2 Variable Abstraction

Behavior abstraction described in this chapter involves variables and
their values, and we describe abstraction relations for variables as well as their
values. A variable (reference) is composed of a name and a type. The name is
a hierarchical name, as described in Section 3.2. A fully qualified hierarchical
name uniquely identifies a single variable in a design instance. The name can
be abstracted by removing individual elements from the list, such as removing
all elements except the component name and the variable name. Additionally,
the name can be abstracted by replacing an element (e.g., component name)
with a generalization of that component.® For example, in the domain of

electronic circuits, a two input AND gate and a three input AND gate can be

3For example, see the model hierarchy based on behavior described by Nayak, Joskowicz,

and Addanki [NJA91].

62

n-input Boolean

n-input AND n-input OR

2-input AND 3-input AND 2-input OR 3-input OR

Figure 4.1: Component Type Hierarchy

generalized to n-input AND gate. Similarly, a two input OR and a three input
OR gate are generalized to n-input OR, and n-input AND and n-input OR can

be generalized to n-input Boolean gate, as shown in Figure 4.1.

Variable type can be generalized via the generic variable types in
bond graph modeling, described by Rosenberg and Karnopp [RK83]. Domain
specific types such as voltage and current (electrical domain) can be generalized
to effort and flow, respectively. The most general type is designated T, (read
“top”). To demonstrate a variable reference and its abstraction, consider a
circuit design containing a 2-input AND gate (instance name g1), with variable
Vin representing the input voltage of an AND gate. The variable reference
for the input voltage of g1 is (g1 Vin). The reference can be abstracted to
(2-input-AND Vin), referencing the input voltage of any 2-input AND gate
in the circuit. Another possible abstraction is (g1 voltage), referencing any

voltage variable of gate g1.

We now define the abstraction relations for variable names and for

variable types. We assume the abstraction relation C. partially orders the

63

space of component types.?

The relation C,, (read “is a variable name less general or equal to”)

captures the notion of variable name abstraction. For variable name n =
! ! /
(n1,...,ng), 0/ = (nf,....n})

3 F :n’ — n such that

nC,n &< Vnle n, if F(n})=n,, then
Ji < Jix1, (Order Preservation and Uniqueness)
n’ is a generalization of n;,, (Name Abstraction)

Lemma 4.1 C, s reflexive.

Proof: For n = (ny,...,ny), define F(n;) = n;. Now, the order preservation,
uniqueness, and name abstraction (we assumed that the component abstraction
is a partial order, and hence reflexive) conditions are satisfied. O

Lemma 4.2 LT, s anti-symmetric.

Proof: For n = (ny,...,ng), n = (nf,...,n}), first observe that if n T, n’ and
n' €, n, then we must have & = [in order to satisfy the uniqueness condition.
With k& = [, we can see that the mappings F' and F by which n C, n’ and
n’ €, n hold, respectively, must be exactly F'(n!) = n; and F(n;) = n! for the
order preservation condition to hold. Now, n! must be a component abstraction
of n; (for all 7) and n; must be a component abstraction of n} (for all ¢),
which with the fact that component abstraction relation is a partial order (an
assumption) gives us n; = n’ for all i, and n =n’. O

Lemma 4.3 LT, s {ransitive.

Proof: For variable names ¢ = (a1, ...,a;), b= (by,...,by), c = (c1,...,¢,), let
a C,, b via mapping F, and b C,, ¢ via mapping F.. Define mapping F : ¢ — a
as F(e;) = Fp(Fe(ci)). Since both F, and F. satisfy the order preservation
and uniqueness conditions, then F also satisfies the order preservation and
uniqueness conditions. From the name abstraction conditions of F, and F.

4This assumption is reasonable, requiring only that the component abstraction relation
be reflexive (a component type is “less general than or equal to” itself), anti-symmetric
(if component type A is “less general than or equal to” component type B, and B is “less
general than or equal to” A, then A and B are the same component type), and transitive
(if component type A is “less general than or equal to” component type B, and B is “less
general than or equal to” component type C, then A is “less general than or equal to” C).

64

T

effort flow displacement

NN

voltage force current velocity charge displacement

1

Figure 4.2: Variable Type Hierarchy

(i.e., b; is more general than Fu(b;) and ¢; is more general than F.(¢;)) and
from the transitivity of the component abstraction relation, we have ¢j is more
general than F(c¢;). Now, a C,, ¢. O

Theorem 4.4 C, is a partial order.
Proof: From Lemmas 4.1, 4.2, and 4.3. O

Theorem 4.5 The variable type abstraction relation (T,) is a partial order.
Proof: Domain specific variable types such as voltage, current, and charge for
the electrical domain and force, velocity, and displacement for the mechani-
cal domain are generalized as effort, flow, and displacement. These generic
variable types are then abstracted to T. This hierarchy is shown in part in
Figure 4.2, and the properties reflexive, anti-symmetric, and transitive can be
demonstrated. O

We define the relation C, (read “is a variable less general or equal
to”) based on the relations T, and C; (both partial orders) as follows: For
variables v = (n,t) and v' = (n’,),

nC,n,

v, v & and
t et

65

Variable abstraction requires both variable name and variable type abstraction
since the type of a variable name that is not fully qualified can be ambiguous.
For example, a variable name can be abstracted to (X) in a design containing
two component instances (of different component type) that each define a vari-
able named X, but with different variable type. A variable reference intended to
abstract only variables named (X) of a specific type such as voltage requires
the variable type as well. We now prove the assertion that £, is a partial
order.

Lemma 4.6 C, is reflexive.

Proof: For variable v = (n,t), n £, n (Lemma 4.1) and ¢ C; ¢ (Theorem 4.5).
Now, v C, v. O

Lemma 4.7 LT, s anti-symmetric.
Proof: For variables v = (n,t) and v’ = (n’,t'). Suppose v C, v' and v' C, v.
From the definition of C,, nC, n', n’ C, n, t C; ¢, and ¢' C; t. From
Lemma 4.2, we have n = n’, and from Theorem 4.5 we have t = t’. Now

v=12v.0

Y

Y

Lemma 4.8 LT, s lransilive.
Proof: For variables u = (n,,t,), v = (n,,t,), and w = (ny,1t,), suppose
u =, vand v C, w. From the definition of T, , n, T, n,, n, &, n,, t, C; 1y,
and t, C; t,. From Lemma 4.3, we have n, C,, n,, and from Theorem 4.5 we
have t, C; t,,. Now, u C, w. O

Theorem 4.9 C, is a partial order.
Proof: From Lemmas 4.6, 4.7, and 4.8. O

4.3 Partial States

A partial state is an abstraction of a state, possibly equal to the state.
To the variable abstraction relation described in the previous section, we add
two abstraction relations to achieve state abstraction. First, a partial state

can abstract a state by abstracting the variable value. This is accomplished by

66

specifying a range for a variable value, such as « > 0. The relation C, (read
“is a value less general than or equal to”) captures this notion of variable value
abstraction. For example, for variable @ with domain(x) the union of real
numbers (R) and open intervals on real numbers, the values 5, (4,6), (0, inf),

and R are related by T, as follows:

5C, (4,6) C, (0,inf) C, R.

We define the relation T, for the space of qualitative values (¢m, ¢d),
where gm is a magnitude represented as a point or open interval taken from the
union of symbolic quantity spaces and R, and ¢d is one of {dec, std, inc,nil}.
The relation C, is defined for infinite domains (reals, rationals, integers) via
the < and < relations defined for these domains, and for finite domains (quan-
tity spaces) via the partial order imposed by the quantity space (which we will
denote with the relational operators <, <). Considering only the magnitudes

of the qualitative values, for point values = and v,
L,y & o=y
For point value @ and open interval value (y1, y2),
Ty (Y1,y2) & y1<a A x <y
For open interval values (w1, 22) and (y1, y2),
(1, 22) Eo (y1,2) & v1 <21 A 29 <.

The direction of change values dec, std, and inc are all pairwise unordered,
and nil is more general than the other three values. To complete the definition
of C, ,x C, yifthe magnitude relationships described above hold, and either
the direction of change of x and y are the same or the direction of change of y

is nil. We now prove the assertion that C, is a partial order.

67

Lemma 4.10 T, s reflexive.
Proof: For point value x, ©+ = @ = « C, x. For open interval value y = (y1,y2),
syt ANy <y=yLtsy U

Lemma 4.11 C, s anti-symmetric.

Proof: For point values x and y, suppose @ C, y and y C, x. From the defini-
tion of T, , « = y. For point value & and interval value ;y = (y1,92), y C; @
is false. For interval values « = (21, 23) and y = (y1,y2), suppose @ C, y and
y C, x. From definition of T, , y; <y, 22 <y, 11 < yq, and yp < 9, which
gives v1 = y; and x5 = yo, and z = y. O

Lemma 4.12 [, s transitive.

Proof: Suppose * C, y and y C, z. If z is a point value, then z = y, y is
also a point value, and * = y. Now, ¢ C, z. If y is a point value, then
x=y,and x C, z. If x is a point value and y and z are interval values, then
1<y <ax <y <z, and x C, z. If 2, y, and z are all interval values, then
z1 <y <z and 3 <Yy < 29, and 2 B, 2. O

Theorem 4.13 T, is a partial order.
Proof: From Lemmas 4.10, 4.11, and 4.12. O

The second abstraction relation for states eliminates variables from
consideration (hence the name partial state). A variable is eliminated from
consideration by assigning the variable a value that represents any possible
value for the variable. The relation C; (read “is a state less general than or
equal to”) defines an abstraction relation for states and partial states. For

(partial) state s with variable set V;, and partial state p with variable set V,,,

3F:V, =V, such that

\V/ v e va
sCype F(v) T, v, (Variable Abstraction)
s(F(v)) C, p(v), (Value Abstraction)
and

Vv, 09 € Vp, 01 # 09 = F(v1) # Flvg). (Uniqueness)

68

Lemma 4.14 T, is reflexive.

Proof: For state s with variable set V, define mapping F such that for v € V,
F(v) = v. Clearly, the mapping satisfies the uniqueness condition. Further,
the variable and value abstraction conditions are satisfied, since both £, and
C, are reflexive (Lemmas 4.6 and 4.10, respectively), giving F(v) C, v and
s(F(v)) C, s(v). O

Lemma 4.15 LT, is transitive.
Proof: Let p; be (partial) states. Suppose p; T py via mapping Fz and ps C; ps
via mapping F3. From the definition of T, we have

Vo eV Fav) T, v, pr(Fa(v)) E, pa(v), and
\V/ v e V37 fg(U) EU v, p?(f?)(v)) Ex pS(U)-

Define F : ps — p1 as Fz o F5. From transitivity of C, (Lemma 4.8) we
have Vv € V3, F(v) C, v, and from transitivity of C, (Lemma 4.12) we have
Vo € Vs, pi(F(v)) E, ps(v). Further, for vi,v2 € Vs, vy # ve = Fs(vy) #
Fa(va) = Fo(Fa(v1)) # Fao(Fa(v2)), and F(vy) # F(vz). Now, py T, ps. O

Lemma 4.16 C, s anti-symmetric.

Proof: For states r and s with variable sets V, and V;, respectively, suppose
r C; s via mapping Fs and s =, r via mapping F,. The uniqueness property
of C, impliesthat |V,| = |V,|. Now consider the mapping H = F, oF;, noting
that H : V; — V, and is one-to-one (from the uniqueness property of C;).
Claim: H is the identity mapping on V.

Claim proof: Suppose that H is not the identity mapping on V,. Then there
exists v € V, such that H(v) # v. Now consider the sequence H(v), H*(v),
For each step in the sequence, we know H*!(v) C, H'(v), since H(v) =
F.(Fs(v)) and C; is transitive (from Lemma 4.15), implying that H(v) C; v.
If at any point the two are equal, we have violated the one-to-one property of
‘H, a contradiction. However, we cannot have [, at every point, since there
are finitely many elements of V. Therefore, H is the identity mapping on V.
a.

Now, H = F, o F, = the identity map, and F, = F,!. Similarly, we can show
that F, = F- 1. Now, Vv € V,,

s(v) = s(F-(Fs(v))) Ea (()) C. s(v), and
v=Fr(Fo(v) B Fo(v) Ev v

and we have r(Fs(v)) = s(v) and Fy(v) = v. Similarly, Vo € V,,
r(v) = r(Fs(Fe(v)) Eo s(F, () Eo r(v), and

v=F(F ())E Fr(v) By v
and we have s(F,.(v)) = r(v) and F,(v) = v. Now, r = 5. O

69

Theorem 4.17 T, is a partial order.
Proof: From Lemmas 4.14, 4.16, and 4.15. O

4.4 Abstract Behaviors

In addition to variable abstraction, value abstraction (point value to
an interval, or interval to “wider” interval), and state abstraction (eliminating
variables), behavior abstraction generalizes by eliminating certain states in the
sequence. Hence, partial states of an abstract behavior need not be adjacent
states as defined in Section 3.5.1. To demonstrate this point, consider (in the

behavior language of QSIM) the behavior abstraction

{(z,(0,dec))}, {(z, (0, inc))}).

The states abstracted in this scenario cannot be adjacent in a behavior of the
model, but are allowed as a behavior abstraction The abstraction describes
behavior in which z at some time had the qualitative value (0, dec), and at
some later time (with an unspecified number of intervening values) had the
value (0, inc). In the semantics of QSIM, the variable @ must take on a

qualitative value whose direction of change is std between dec and inc.
The basic idea of behavior abstraction is that there exists a corre-

spondence between the abstraction and the behavior such that

1. a partial state of the abstraction is assigned to a state of the behavior

which it abstracts, and

2. the order of states implied by the assignment (i.e., the order of partial

states) is preserved in the abstracted behavior

The relation T, (read “is a behavior less general than or equal to”) defines

the abstraction relation on behaviors. Formally, for behavior b = (s, 2,...)

70

and behavior b/ = (s}, s5,...),

3 F : b — bsuch that

v S;’ € blv f(‘s;) = Sjis
b, bV & Ji < Jit1, (Order Preservation)
sj, Ty st (State Abstraction)

and
Vsishe Ui # g = F(si) # F(sh). (Uniqueness)

The symbol [isread “is a behavior less general than” and requires for some

st e b that s;, C, s

K3

Lemma 4.18 T, s reflexive.

Proof: For behavior b = (sy, s9,...), define F : b — b as F(s;) = s;. F clearly
satisfies the order preservation and uniqueness properties. Further, s; T, s;
from Lemma 4.14, and now b T, b. O

Lemma 4.19 T, s anti-symmetric.

Proof: For behaviors b = (s1,...,s;) and b’ = (s],...,s;), suppose b C; V' via
mapping F’' and &' C, b via mapping F. The uniqueness property requires
that ¢ = j, and the order preservation property requires that F(s;) = s, and
F'(s),) = sg. From the definition of T, we have s; C; s, and s, T, si, which
with Lemma 4.16 gives s, = s}, for all k. Now, b=10". O

Lemma 4.20 For behaviors b Ty b', (partial) states s; and s of b', and (par-
tial) states sy, = F(s!) and sy, = F(sh) of b, 1 <3 = ki <kj.
Proof: Straightforward, from definition of C; and induction. O

Lemma 4.21 [, is transilive.
Proof: For behaviors a, b, and ¢, suppose a Ty b A b Cp ¢. From the definition
of C; , there exist functions F, : b — a and F. : ¢ — b such that

Vb € b, Fb(bi) = j; Ji < Jit1, aj, Es b;, and
Ve € ¢ Fole) = by, Ji < Jir, b B ¢

Define F = F,(F.), so that F : ¢ — a. Now for F(e¢;) = aj,, we need to
show j; < jiy1 (order preservation property), a;, T ¢; (state abstraction prop-
erty), and the uniqueness property holds. Let by, = F.(¢;) and aj, = Fy(by,).
From the definition of C; , we have k; < k;y1, and from Lemma 4.20 we have

71

Ji < Jiz1. From definition of T, , we have by, T, ¢; and a;, T, by,. From
Lemma 4.15, a;;, C, ¢;. Finally, for ¢;,¢; € ¢, 1 # j = Fola) # Fele) =
Fo(Fole)) # Fo(Felej)), and F(e;) # F(ej). Now we have a 5, ¢. O

Theorem 4.22 T, is a partial order.
Proof: From Lemmas 4.18, 4.19, and 4.21. O

4.5 Scenarios

A scenario is a pair (p,3) where p = (p1,pa,...) is an abstract be-
havior and 3 is a Boolean expression. We introduce the Boolean expression
{ in order to add constraints on the behavior expressed in terms of logical
connectives (A, V,), relational operators, constants, and variable values (e.g.,
s1(v), where v is a variable in b). [can constrain the set of behaviors that
the scenario abstracts. For example, if 3 is (pa(time) — p1(time)) < 10, then
scenario (p,) abstracts behavior b = (by,...) if b T, p via mapping F, and
for b, = F(p1), bj = F(p2), the inequality (b;(time) — b;(time)) < 10 holds.?

For convenience in defining composed teleological operators later in
this chapter, notation for scenario concatenation and scenario merging is intro-

duced. Let V be the set of variables of a design. For scenarios

!

0= (p = <p17"'7p71>7ﬁ)70 = (p/ = <p/17“‘7p/7n>76/)7

6

where p references® variables in V, C V and p’ references variables in V,» C V),

we define [; 0] as follows:

!

(050] = ((Prs- s Pus Py P) (B A B)).

>For variables with interval values, the expression is quantified over all possible values in
the interval.

5By “reference a variable” we mean the partial state defines a value for the variable other
than “any possible value”.

72

For n = m, we define [o || o] as follows:

/ (g1, ¢n), (B A 57))
o]l o] = where ¢; = p; U p, and

for v e (V, N V), q:(v) = g.L.b{pi(v), p:(v)}.
As was done for values, states, and behaviors, we define an abstraction

relation (partial order) on scenarios. The relation T, (read “is a scenario less

general than or equal t0”) is defined as follows: For scenarios o = (p,3) and
o' =(p,p"), with p=(p1,...) and p' = (p},...),

p Ty p/ via mapping F': p' — p (BehaviorAbstraction)
o Ecr U/ = aﬂd
B = F'(B) (ConditionAbstraction).

where F'(3') denotes the rewriting of 3’ with respect to the mapping F' : p’ — p
(i.e., variable reference pl(v) in 3’ is replaced by p;(v), where p; = F'(pl)).

Scenarios o and o’ are equivalent if p T, p" and 8 < F'(3').

Lemma 4.23 T, is reflexive.

Proof: For scenario o = (p,3), define mapping F' : p — p as the identity
mapping. From Lemma 4.18 we have p T, p. Since F’ is the identity mapping
on p, F'(#) = 8, in which case 8 = F'(3). Now, 0 C, 0. O

Lemma 4.24 C, s anti-symmelric.

Proof: For scenarios o = (p, 3) and o' = (p', '), suppose 0 C, o’ via mapping
F'and o' C, o via mapping F. From p T, p', p' T, p, and Lemma 4.19, we
have p = p’. We can now choose the identity mapping for both F and F’ since
p=p and C, is reflexive (Lemma 4.23). Now, 8 = F'('), 5’ = F(f), and

c=0'.0

Lemma 4.25 [T, s transitive.
Proof: For o, = (p;,3;), suppose o1 C, 02 and 03 C, 03. From p; T po,
p2 Ty p3, and Lemma 4.21 we have p; T, ps. Given

Fy i p2 — p1 such that 0 = Fy(5a),
Fs5 : ps — pa such that 0y = F5(5s),

define F = F; 0 F3. We need to show that 8, = F(0s). Recalling that the

interpretation for variables with interval values is that the expression is true

73

for all possible point values of the interval, note that the mapping F; restricts
interval values to tighter intervals or to point values. Hence, (2 = F5(33)) =
(Fo(B2) = Fa(Fs(Ps))). Since 1 = Fy(f2), we have 8y = F(fs). Now,

o1 L, 03. 0

Theorem 4.26 C, is a partial order.
Proof: From Lemmas 4.23, 4.24, and 4.25. O

4.6 Design Specifications for Behavior

A design specification states whether a scenario is required or prohib-

ited. The syntax of a design specification is one of

(required o) or (prohibited o)

where o is a scenario. A design specification participates in a teleological
description in the form of an associated specification predicate. We define the
specification predicate occursIn(o,b) for scenario o = (p, 3) as follows:

b T, p via mapping F :p — b

occursIn(o,b) < ¢ and

F(7) is true.

A scenario 1s sald to occur in an envisionment if 1t occurs in at least one behavior
of the envisionment. A set of scenarios {oy,...,0,} occurs in a behavior b if
each o; occurs in b. Note that each scenario can occur in the behavior via a
different instance of the function F. The specification predicates associated

with the basic design specifications are, respectively,

occursIn(o,b), —occursIn(o,b)

A design description can contain a precondition for the desired behavior as

follows:

74

(conditionally (list of scenarios)
(required (scenario))
(prohibited (scenario)))

To simplify the expression of design specifications, we allow a symbol
to be bound to a component type and then used in variable names in scenarios.

The syntax for such a design specification is:

(for-component (symbol) (type descriptor)
(conditionally (list of scenarios)
(required (scenarios))
(prohibited (scenarios))))

For each instance of component type (type descriptor), the design specifi-
cation is instantiated. Considering the steam boiler example of Chapter 3,
the design specification concerning the variable pressure in component type
boiler-vessel is

(for-component X (boiler-vessel)
(prohibited (((((X pressure) ((Pmax* inf) ign)))) true)))

4.7 Composed Teleological Operators

The operators described here demonstrate the ability to define seman-
tically richer operators in terms of the three operators Guarantees, Prevents,
and Conditionally Guarantees.” When examining descriptions of purpose
generated by designers, verbs such as introduce, control, regulate, maximize,
reduce, allow, order, and synchronize occur. The following definitions decom-
pose such verbs into the teleological primitives directly or via previously defined
verbs. This permits decomposition of such operators into a predetermined,

small set of domain independent primitives.

"Recall the fact that these operators can be written in terms of the single operator
Guarantees.

75

Descriptions of purpose should be able to express constraints on sce-
narios with respect to the time domain. For purposes involving temporal re-
lationships, one representation approach for specification predicates is tempo-
ral logic, such as those described by Chandra and Misra [CM88], Emerson
(CTL™) [ES85], Moszkowski [Mosz85], and Turner [Tur84] (temporal logics of
McDermott, Allen, and Halpern, Manna, and Moszkowski). We give thirteen
definitions limited to expressions involving scenarios (0;) and the specification

predicate occursIn(o;,b).

The first two operators describe the manner in which two scenarios
may be related in time. These two operators are not concerned with the mag-
nitude of time intervals other than the distinction between 0, finite, and infinite
time.® Recall that o; are scenarios, d and d’ are design instances, § a design
modification such that d’ is the design obtained by applying 4 to d, and E and
E’ are the envisionments of d and d’, respectively. In these and subsequent tele-
ological descriptions, the specification predicate occursIn(o;,b) is abbreviated

as o;.

1. 6 Orders 0,0, &

dbeE (occursln(oy,b) A occursln(og,b) A
—occursIn([oy; 03], b)

and

Vi e FE (occursIn(oq,b) A occursIn(oy, b)) =
occursIn([oy; o9,).

This can be written in terms of primitives as

d Conditionally when {0y, 0.} Guarantees [o7; 05].

8The particular operators defined here are not derived from any particular temporal logic,
and are merely hypothesized as useful in constructing teleological descriptions. For exam-
ple, Hamscher [Ham91] identifies synchronize as an interesting abstraction in describing the
behavior of electronic circuits.

76

2. 0 Synchronizes 0,0, &

dbeE (occursin(oy,b) A occursIn(og,b)) A
—occursIn([oy || 02],b)
and

Vi e FE (occursIn(oq,b) A occursIn(oy, b)) =
occursIn([oy || o2, b’).

This can be written in terms of primitives as

d Conditionally when {0y, 02} Guarantees [0} || 02].

Expressed with the modal operators,

1. § Orders oy,0;, &

M is a model for
OoccursIn(oy, b) A occursIn(oy,b) A
—occursIn([oy; 02),0))
and
M’ is a model for
O((occursIn(oy,b’) A occursIn(oy, b)) =
occursIn([oy; 09],0)).

2. 0 Synchronizes 0,0, &

M is a model for
OoccursIn(oy, b) A occursIn(oy,b) A
—occursIn([oy || 02],b))
and
M’ is a model for
O((occursIn(oy,b’) A occursIn(oy, b)) =
occursIn([oy || 02],b')).

The next four composed operators involve time, specifically the re-
duction or increase of the time between the occurrence of states in behaviors,

and guarantees of minimum or maximum values for time intervals between

77

the occurrence of states in behaviors. The Boolean expression of a scenario

expresses the temporal constraint. In the next four examples,

oy = (<p1,...,pn>,ﬁ1),
oy = ({q1,--.),)

b:<81782,...>

The variable t has value equal to the time at which the state occurred.

3. § Guarantees Minimum Latency (n) Between oy,0; &

dbeE (occursin([oy;o2],b) A F(ps) =35 N Flg) =35) A
(55(6) — si(1)) <

and

Vi e E (occursIn([oy;oq],0) A Fl'(pn) =3 N F'lqr) = s5) =

(s§(1) = s:(t)) 2 m.

This can be written in primitives as

d Conditionally when [oy; 03] Guarantees ((p., ¢1), (¢1(t)—pn(t)) > n).

4. § Guarantees Maximum Latency (n) Between 0,0, &
dbeE (occursin([oy;o2],b) A F(ps) =35 N Flg) =35) A
(s;(t) = si(1)) > m
and
Vi e E (occursIn([oy;oq],0) A Fl'(pn) =3 N F'lqr) = s5) =
(s;(t) = si(1)) < m.

This can be written in primitives as

§ Conditionally when [o1; 03] Guarantees ((p,, q1), (¢:({)—p.(t)) < n).

5. § Guarantees Minimum Duration (n) For 0y &
dbeE (occursin(og,b) A F(p1)=si N F(ps) =3;) A
(s;(t) =si(t)) <m
and

Vi el (occursIn(o,b) A F'(pr)=s; N Flpa) =3;) =
(55(1) — si(1)) > .

78
This can be written in primitives as

d Conditionally when o; Guarantees ((p1,pn), (p.(t) — p1(?)) > n).

6. 0 Guarantees Maximum Duration (n) For 0y &

dbeE (occursin(og,b) A F(p1)=si N F(ps) =3;) A

(s§(t) = s:(t)) > m

and

Vi el (occursIn(o,b) A F'(pr)=s; N Flpa) =3;) =
(s;(1) = si(1)) < n.

This can be written in primitives as

§ Conditionally when o; Guarantees ((p1, p.), (p.(t) — p1(t)) < n).

The remaining operator definitions make statements about scenarios
over time, such as maintaining a scenario, or guaranteeing that a scenario
will occur exactly once or infinitely many times. In the definition of operator
Maintains, the specification predicate occursIn is generalized to apply to

single states as well as sequences of states (behaviors).

7. ¢ Maintains o &

dbeE, 3s€b —occursln(o,s),
and

Vi ek, Vs el occursin(o,s).

This can be written in primitives as

0 Guarantees V b; € b,occursIn(o, b;)

The Maintains operator can be used to express purposes such as

regulate or control, namely maintaining some condition such as a temperature

79

between some specified minimum and maximum. Such a scenario would look
like

(({(temp, (minTemp, maxTemp))}), true).

The next two operators express the purpose that once a particular
event or event sequence occurs, then some other event or event sequence is
guaranteed to occur or prevented from occurring. For example, if some mech-
anism parameter goes beyond a specified range, then it is brought back into

range, possibly within some time constraint.

8. § Subsequently (in 1) Guarantees o, <

db€E occursIn(oy,b) A —occursIn([oy;oz],b)
and
Vi € E occursln(oy,b) = occursIn([oy;os),b).

This can be written in primitives as

4 Conditionally when o; Guarantees [o7; 05].

9. § Subsequently (in 01) Prevents o, <

db ek occursIn(o,b) A occursIn([oy;os),b)
and
Vi € E occursln(oy,b) = —occursIn([oy;os,b).

This can be written in primitives as

5 Prevents [o; 03).

The next three operators express the purpose that a particular event
or event sequence occurs exactly once (Guarantees Single Occurrence),
occurs infinitely many times if it occurs at all (Guarantees Recurrence), or
always occurs infinitely many times (Guarantees Recurring). For example,

a mechanism may require a periodic signal for synchronizing events or resetting

itself.

80

10. 6 Guarantees Single Occurrence ¢ <

b€ E —occursln(o,b) V occursln([o;o],b)
and
Vi € E occursln(o,b’) A —occursln([o;o],b).

This can be written in primitives as
5 Guarantees ¢ A Subsequently when o Prevents o

or as

d Guarantees 0 A Prevents [0;0].

In the following two definitions, behaviors b and b are written as

(S0, 81,...) and (s, s],...) respectively.

11. § Guarantees Recurrence o &

db € E occursIn(o,b) A 34> 0 —occursIn(o,(s;,...))
and
Vo € E occursIn(o,b') = Vi>0 occursln(o, (s;,...)).

This can be written in primitives as

d Subsequently when ¢ Guarantees V¢ > 0 occursIn(o, (s;,...)).

12. § Guarantees Recurring o &

dbeE 3i>0 —occursIn(o, (s;,...))
and
Vi e E'Vi>0occursin(o,(s;,...)).

This can be rewritten as
4 Guarantees Recurrence o A § Guarantees o,

or as

d Guarantees V¢ > 0 occursIn(o, (s;,...)).

81

The last operator expresses the purpose that a particular event or
event sequence (o3) should always be preceded by some other event or event

sequence (o1). This predecessor event or event sequence becomes a necessary

condition.

13. 4 Guarantees 03 Requires 0y &

db€E occursIn(oz,b) A —occursIn([oy;oz],b)
and

Vi € E occursln(og,b) = occursIn([oy;os),b).

This can be written in primitives as

4 Conditionally when oy Guarantees [o7; 05].

Chapter 5

Language Properties

5.1 Generalization and Specialization

In this chapter we investigate some properties of teleological descrip-
tions with respect to design specification generalization and scenario general-
ization. These properties will be of interest when constructing an index of
designs and design modifications for reuse, when navigating this index, and

when selecting designs and design modifications for reuse.

For example, it will often be the case that the exact specification a de-
signer is addresing does not appear in the database of teleological descriptions.
A design reuse implementation can identify teleological descriptions referencing
specifications “similar” to the desired specification and propose these “similar”
teleological descriptions to the designer. In particular, we exploit the logical
relationship ¢; = @3 between specification predicates ¢; and ¢,. To modify a
design to prevent specification predicate ¢; from holding, a designer might di-
rectly apply a modification that prevents the weaker specification predicate ¢,
or augment the modification to prevent ¢,. The propositions described in this
chapter demonstrate how the TeD behavior and teleology languages and the

behavior abstraction relation C, support reuse via “similar” specifications.

5.1.1 Generalizing a Guarantee

A design modification that guarantees a specification predicate also

guarantees any generalization (i.e. weaker predicate) if the generalized predi-

82

83

cate is false in at least one possible world of the unmodified design.

Proposition 5.1 For specification predicates ¢y, ¢q, design modification ¢, if
® 01 = ¢,

¢ 0 Guarantees ¢, and

¢ 3bC E, ¢,

then 6 Guarantees ¢,.
Proof: 6 Guarantees ¢ = V' € F' ¢1. With ¢; = ¢, we have VI € E', ¢,.
Given that 3 b € E, =¢,, we have § Guarantees ¢,. O

5.1.2 Specializing a Prevention

A design modification that prevents a specification predicate also pre-
vents any specialization (i.e. stronger predicate) if the specialized predicate is

true in at least one possible world of the unmodified design.

Proposition 5.2 For specification predicates ¢y, ¢q, design modification ¢, if
® o1 = ¢,

e 0 Prevents ¢,, and

.EIbEE,le,

then §6 Prevents ¢ .
Proof: Prevents ¢, = Vb € E', =¢py. With ¢; = ¢y, we have V' € ' —¢y.
Given that 3 b € E, ¢1, we have § Prevents ¢,. O

5.1.3 Generalizing an Introduction

A design modification that introduces a specification predicate also
introduces any generalization (i.e. weaker predicate) if the generalized predi-

cate is false for all possible worlds of the unmodified design.

Proposition 5.3 For specification predicates ¢y, ¢q, design modification ¢, if
® 01 = ¢,

e ¢ Introduces ¢;,and

.VbEEv_'qb?v

84

then 6 Introduces ¢,.
Proof: § Introduces ¢; = 3’ € F/, ¢;. With ¢1 = ¢, we have 3V € ', ¢,.
Given that V b € E, =¢,, we have § Introduces ¢,. O

5.1.4 Specializing a Conditional

A design modification that conditionally guarantees (prevents) a spec-
ification predicate also guarantees (prevents) the specification predicate condi-
tional upon any specialization (i.e. stronger predicate) of the condition, given
that the guaranteed (prevented) predicate is false in at least one possible world

of the unmodified design in which the specialized condition is true.

Proposition 5.4 For specification predicates ¢, ¢y, ¢z, design modification &,
of

® o1 = ¢,
¢ 0 Conditionally when ¢, Guarantees ¢, and

.HbEE,qbl A _'qb,

then § Conditionally (in ¢;) Guarantees ¢.

Proof: 6 Guarantees (¢, = ¢) = VU € E' ¢y = ¢. With ¢; = ¢, we have
Vb €, o1 = ¢. Giventhat 3b € E, ¢ A =, we have § Guarantees ¢; = ¢,
and ¢ Conditionally (in ¢;) Guarantees ¢. O

5.2 Generalizing Behavior Specifications

We prove an implication from scenario generalization (abstraction) to
the occursIn specification predicate, and then use this implication with the

previous propositions of the chapter.

Proposition 5.5 If 01 C, o4, then occursIn(oy,b) = occursIn(os,b).
Proof: For behavior (possible world) b, consider scenario (b,true). From
occursIn(oy,b), we have (b,true) C, oy. With o1 T, o2 and Lemma 4.25,
we have (b, true) C, 03. Now, occursIn(oyb). O

85

Proposition 5.6 For scenarios oy and oy and design modification d, if

0y L, 02,
e ¢ Guarantees occursIn(oy,b),and
e b€ E,—~occursIn(oz,b),

then § Guarantees occursIn(oz,b).
Proof: From Proposition 5.1 and Proposition 5.5. O

Proposition 5.7 For scenarios o and oy and design modification d, if

® 0 L, 03,
e 6 Prevents occursIn(os,b),and
e 3b € E,occursIn(oy,b),

then § Prevents occursIn(oy,b).
Proof: From Proposition 5.2 and Proposition 5.5. O

Proposition 5.8 For scenarios oy and oy and design modification d, if

® 0 L, 03,
e ¢ Introduces occursIn(oy,b),and
e Vb€ E, ~occursIn(oy,b),

then § Introduces occursIn(os,b).
Proof: From Proposition 5.3 and Proposition 5.5. O

Proposition 5.9 For scenarios oy, o4, 0 and design modification d, if

0 L, 0y,
e 6 Conditionally (in 03) Guarantees occursIn(o,b),and
e 3b €k, occursIn(oy,b) A —occursln(o,b),

then § Conditionally when oy Guarantees occursIn(o,b).
Proof: From Proposition 5.4 and Proposition 5.5. O

Chapter 6

Examples

6.1 Design Examples

In this chapter we examine two detailed design examples to demon-
strate the teleology language and behavior abstraction discussed in Chapters 3
and 4. These examples demonstrate acquisition of teleological descriptions in
the design process. We use these examples and the acquired teleological de-
scriptions in subsequent discussions of explanation, design reuse, and diagnosis.
Acquisition issues are discussed in Chapter 9, and indexing teleological descrip-
tions for explanation, design reuse, and diagnosis is discussed in Chapter 8. The

two examples explored here are

e Input selection logic from a CMOS arithmetic logic unit (ALU) design
[Ray86].

e An electric motor design [KTY91].

Both examples start with initial designs and specifications characterizing as-
pects of the desired behavior. The initial designs are found to be inconsistent
with the design specifications, and a series of design modifications are made
to make the designs meet their respective specifications. The teleological de-
scriptions associated with these modifications are developed for each set of
modifications. A diagram describing this design flow is given in Figure 6.1. For

each design d; we give a schematic, a CC model, and the initial values used

86

87

G— R

5a - staus’ atds

di+_1

d; - 1" version of the design

E; - envisionment for design d;

specs - design specifications

td's - teleological descriptions captured in verification
status - results of verification

d; - modifications generated by the designer

Figure 6.1: Design Process Flow (Single Step)

in envisioning. For each envisionment F; we give a prose description of the
behaviors, a graphical representation of the envisionment (the QSIM behavior
tree), and some representative qualitative plots generated by Qsim. For both
examples we give the design specifications and describe the verification results
for each design d;. Design modifications, ¢;, generated by the designer are
given in the structure modification language described in Section 3.3. In these
examples, envisioning is performed with QsiM, and verification (determining
whether specifications are satisfied, and acquiring and classifying teleological
descriptions) is performed by code implemented by the author. Design modi-

fications are hand generated.

6.2 Circuit Example

Consider the input selection circuit in Figure 6.2, extracted from a

CMOS arithmetic logic unit (ALU) design. The circuit contains a pass tran-

88

ctl

.
data t1 1 inv ou

Figure 6.2: CMOS Input Selection Circuit (ISC1)- Schematic

sistor t1 and an inverter inv. In the ALU design, the signal c¢tl determines
(controls) whether the signal data is passed into the logic portion of the ALU.

The desired behavior of this circuit in terms of signals data, ctl, in, and out is:

When the value of signal ctl is HIGH, the value of signal data is
transmitted to signal in (i.e., they are electrically connected). This
value is then inverted by inv (HIGH — LOW or LOW — HIGH),

and the inverted value then becomes the value of signal out.

The (logic) values of HIGH and LOW are landmarks of the quantity space in
which the parameters data, ctl, in, and out range. These landmarks represent
the desired values for signals in the circuit when no signal transitions are occur-
ring. The CC quantity space for voltages in this circuit is shown in Figure 6.3.
HIGH is represented by landmark Vhi and LOW is represented by landmark

0.

Structure

The top level of the hierarchical structural description (in structure
language CC) of the input selection circuit is shown in Figure 6.4. The complete
structural description is expressed in several levels of hierarchy, and is given in

Appendix B.

89

(define-quantity-space MOS-voltage-qspace
(Vhi- Vhi-Vtn Vtp O Vtn VhiVtp Vhi)
(conservation-correspondences

(Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn)))

Figure 6.3: Circuit Model Voltage Quantity Space (in CC)

(define-component-interface
ISC "Input select circuit'" electrical
(quantity-spaces
(defaults (voltage (0 Vhi) (parent MOS-voltage-gspace))
(current base-quantity-space))
(hierarchical-parents (voltage MOS-voltage-gspace))))

(define-component-implementation
1 ISC
"N-trans for input select, capacitor for output load."
(components
(RV1 reference-voltage)
(RV2 reference-voltage)
(RV3 reference-voltage (ignore-qdir i))
(t1 (MOS-transistor (impl N-channel-bidirectional))
(display Ids))
(inv Inverter)
(C (capacitor (impl current-gspace)) (ignore-qdir i i2)))
(connections
(data (RV1 t) (t1 d))
(ctl (RV2 t) (t1 g))
(in (t1 s) (inv in))
(out (inv out) (C t1))
(wt (RV3 t) (c t2))))

Figure 6.4: Input Selection Circuit (ISC1)- CC Model (Top Level of Hierarchy)

90

(for-component X (inverter MOS-transistor)
(prohibited (((((X Vg) ((0 Vhi) std)))) true)))

Figure 6.5: Input Selection Circuit - Design Specification

Design Specifications

A general domain specification for CMOS design is: “signals should
take on an intermediate value between 0 and Vhi only during a transition from
0 to Vhi or Vhi to 0”. In particular, a logic component such as the inverter
should not have an input signal with an intermediate value between 0 and Vhi
and unchanging. The rationale for this design rule comes from the operating
characteristics of the CMOS inverter implementation, in which current flows
when the input has value between 0 and Vhi but does not flow when the input
has value either 0 or Vhi.! Hence, CMOS circuits consume power only when
switching, as opposed to other implementation technologies such as nMOS that
consume power during signal transition and at other times as well. We express
this general domain specification in Figure 6.5, which says that for transistor
components inside inverters, the scenario in which the gate voltage (Vg) of the

transistor is in the interval (0 Vhi) and steady is prohibited.

Behavior

We first examine the behavior of the circuit when the signal in has
value 0, signal out has the value Vhi, signal ¢t/ has the value Vhi, and the
signal data has just assumed the value Vhi. The desired behavior is: “value

Vhi is transmitted to in, and the inverter inv changes out to 0”.

!The actual value at which the inverter stops drawing current is determined by a threshold
value set by the manufacturing process used to produce the circuit.

91

data (ISC RV1 V) = (Vhi std)
ctl (ISC RV2 V) = (Vhi std)
n (IsC t1 Vs) = (0 nil)
out (IsCc ¢ V1) = (Vhi nil)

(ISC RV3 V) = (0 std)
(Isc ¢ Q) = (Q* nil)
(IsC ¢ C) = (Cx std)
(ISC inv Vdd V) = (Vhi std)
(ISC inv Vss V) = (0 std)
(ISC inv Nt Cg) = (Cg* std)
(ISC inv Nt Qg) = (0 nil)
(ISC inv PT Cg) = (Cg* std)
(ISC inv PT Qg) = (0 nil)
(ISC t1 Cg) = (Cg* std)
(ISC t1 Qg) = (Qg* std)

Figure 6.6: Initial Variable Values

The operating characteristics of t1 (an n-channel MOS transistor) are
such that when the signal data has value Vhi and the signal c¢tl has the value
Vhi, the value transmitted to signal ¢n is Vhi minus the threshold value (> 0)
of t1 [MC80]. Landmark VhiVtp represents the value Vhi minus the threshold
value of t1. The landmark VhiVtp is between the landmark 0 and Vhi, and

hence not a desired value for signal n.

This operating characteristic is captured in the CC description of the
n-channel MOS transistor, and the associated behavior is demonstrated in the
envisionment of the ISC model generated by QSIM from initial conditions shown
in Figure 6.6. The envisionment predicts six qualitatively unique behaviors,
shown in the behavior tree in Figure 6.7. The qualitative plot of variable (ISC
t1 Vs) in behavior 6 is shown in Figure 6.8. This variable represents the
voltage at terminal s of transistor t1 and at terminal in of inverter inv. The

qualitative plot in Figure 6.8 shows a feature of all of the behaviors when signal

92

o O A W N P

Figure 6.7: Behavior Tree of Initial Circuit (ISC1)

= VH

o e+ e VHI VTP

(TSC 1L V)

Figure 6.8: Qualitative Plot for Initial Circuit (ISC1)

values stabilize in the circuit, namely that signal (ISC t1 Vs) has the value

§VBVtRastd) - tion 1

The model checking algorithm? implemented in this work determines
that no behaviors satisfy the specification of Figure 6.5. The designer’s task
is to modify the design either structurally or via changes in parameter values

(landmarks) to bring the behaviors in line with the specification.

?Based on the behavior abstraction relation T, given in Chapter 4.

93

in out

Figure 6.9: Circuit with Feedback Transistor (ISC2) - Schematic

Structure Modification

The addition of the feedback transistor ¢2, a p-channel MOS transistor
(see the schematic in Figure 6.9) modifies the circuit behavior in the following

way (in terms of signals in and out):

As signal in transitions from 0 to Vhi, signal out transitions
from Vhi to 0. As signal out moves away from Vhi and towards 0O,
transistor t2 electrically connects in with Vdd, enabling a current
flow from Vdd to in which in turn increases the value of in to that

of Vdd (Vhi).

The operating characteristics of a p-channel transistor are such that the value
Vhi can be transmitted without degradation (i.e., not subject to any threshold
value). Consequently, the designer’s modification, the addition of ¢2, prevents
the scenario in which in reaches a value less than Vhi and remains steady.
This design modification is automatically captured in the design modification
language (see Figure 6.10) and added to the circuit’s design history. The mod-

ification produces the new structure description shown in Figure 6.11.

94

(for-component ISC
(create-new-implementation 1 2))

(for-component (ISC (impl 2))

(remove-connection (C t1))

(add-component t2 p-channel-feedback () (in (t2 s)))

(add-component S (split (impl equipotential-current-space))
((ignore-qdir I I1 I2) (display V)
(no-new-landmarks I Il I2))
(out (S m))
(w2 (8 s1) (t2 g))
(w3 (8 s52) (C t1))))

Figure 6.10: Design Modification (1) Adding Feedback Transistor

Modified Behavior

The envisionment of the modified design characterizes 22 qualitatively
distinct behaviors, shown in Figure 6.12, with all behaviors having a final, qui-
escent state in which the signal in is (Vhi std), the desired result. This would
seem to meet the design specification of prohibiting a steady but intermediate
value for signal in. However, the model checking algorithm identifies a behav-
ior (see Figure 6.13) in which signal in (variable (ISC t1 Vs)) takes on an
intermediate steady value during the transition from 0 to Vhi, and then moves
on to value (Vhi std). This behavior is legal under the constraints imposed
by the qualitative model of the circuit, and represents incomplete knowledge
of the specific capacitance values for the capacitors in the circuit.®> We modify
the specification as shown in Figure 6.14 to state the condition “for transis-

tor components inside inverters, the scenario in which the gate voltage (Vg) of

3Capacitance for “wires” in the circuit are represented on the transistor gates, and do not
appear explicitly as capacitor components.

(define-component-implementation
2 ISC
"N-trans for input select, P-trans for feedback."
(components
(RV1 reference-voltage)
(RV2 reference-voltage)
(RV3 reference-voltage (ignore-qdir I))
(t1 (MOS-transistor (impl N-channel-bidirectional))
(initable Qg Vs) (display Ids Vs))
(t2 P-channel-feedback)

(inv Inverter)
(c (Capacitor (impl current-gspace)) (ignore-qdir i i2))
(s (Split (impl equipotential-current-gspace))

(ignore-qdir I I1 I2) (display V)
(no-new-landmarks I I1 I2)))
(connections

(data (RV1 t) (t1 d))

(ctl (RV2 t) (t1 g))

(in (t1 s) (inv in) (t2 8))

(out (inv out) (S m))

(wi (RV3 t) (C t2))

(w2 (S s1) (t2 g))

(w3 (S s2) (€ t1))))

Figure 6.11: Circuit with Feedback Transistor (I8C2) - CC Model

95

1 0—0—0—"—0—"—0—’@
2

3

4 —e—0—®

5 —e—0O—e—0—e—0—@®
6

7 =
8

9 —e—0—®

10 —e—0O0—e—0—®

11 —e—0—®

12 —®

13 —e—O—e—0—e—0—e—0—®
14

: =
16

17 —e—0—®

18 —e—0O—e—0—e—0—®

19 —eo—0O—e—0—®

20 —e—0—®

21 —®

22 —e—0—@®

Figure 6.12: Behavior Tree of Circuit with Feedback (ISC2)

(TSC 11 V)

Figure 6.13: Qualitative Plot for Circuit with Feedback (ISC2)

97

(for-component X (inverter MOS-transistor)
(conditionally ((((((X Vg) (0 std)))
(((X Vg) ((0 Vhi) std)))) true))
(required (((((X Vg) (Vhi std))))

true))))

Figure 6.14: Input Selection Circuit - Design Specification 2

the transistor is in the interval (0 Vhi) and steady must be followed by the
scenario in which the gate voltage has value (Vhi std)”. The model checking

algorithm confirms that all behaviors meet this specification.

Teleology

The purpose of the design modification that adds ¢2 to the input
selection circuit can be expressed in TeD as follows. Let d; represent the design

modification of adding 2 to the design (Figure 6.10), let oy be the scenario

(({((inv MOS-transistor Vg) ((0 Vhi) std))}),true)

and let o5 be the scenario

(({((inv MOS-transistor Vg) (Vhi,std))})true).

Then

§; Conditionally when {o,} Guarantees [oy;03]." (6.1)

The behavior that electrically connects in to Vdd also addresses an-

other problem that occurs when in has value Vhi and ¢t/ transitions from Vhi

“Recall that the specification predicate occursIn(es,b) is abbreviated as o.

98

(for-component X (ISC)
(for-component Y (X inverter MOS-transistor)
(conditionally ((((((Y Vg) (Vhi ign))
((X Nt Vg) (0 std)))) true))
(prohibited (((((Y Vg) ((0 Vhi) std))
((X Nt Vg) (0 std))))
true)))))

Figure 6.15: Input Selection Circuit - Design Specification 3

to 0. In this situation, in is no longer electrically connected to data, and be-
comes a memory element which should preserve its value, Vhi. However, in the
absence of 2, the charge at in will dissipate and move the signal value away
from the landmark value Vhi, resulting in the value of signal out changing also
(i.e., moving away from 0). By introducing ¢2, the charge at in is maintained
at Vhi, and hence the behavior in which in decreases in value is prevented. The

design specification describing the desired behavior is given in Figure 6.15.
The purpose of the design modification that adds ¢2 can be expressed
in TeD as follows. Let o3 and o4 be, respectively, the scenarios
(({((inv MOS-transistor Vg) (Vhi std)),((t1 Vg) (O std))}),true),

(({((inv MOS-transistor Vg) ((0 Vhi) ign)),((t1 Vg) (0 std))}),true).

Then

91 Conditionally when {03} Prevents o. (6.2)

The design modification of adding ¢2 to the circuit has been assigned
the purpose of guaranteeing the behavior that a steady value between 0 and
Vhi for signal in will be followed by the value Vhi, The steady, intermediate

value will be transitory. Further, from starting conditions where in has value

99

Vhi and ctl has value 0, the modification prevents signal in from changing its

value.

6.2.2 Evaluation 2

While the first design modification has addressed problems associated
with signal in achieving and maintaining value Vhi, a new problem has been
introduced by the first design modification. When signal in has value Vhi,
signal data has value 0, and signal ctl transitions from 0 to Vhi, the charge
stored at in (representing the value Vhi) should be drawn off via the connection
through ¢1. However, recall that current can flow from Vdd to in via the
connection provided by ¢2. If current flows from Vdd to in at a sufficient
rate, an intermediate value will be reached for in such that the complementary
value at out is not high enough to “turn-off” ¢2 (a p-channel transistor is off
when the gate voltage is Vhi). This behavior, shown in Figure 6.17, occurs in
the attainable envisionment, shown in Figure 6.16, generated from the initial

conditions shown in Figure 6.18.

The second design modification changes the channel resistance of ¢2
(to a high resistance value) to impede the current flow and hence prevent the
scenario in which ¢n reaches an equilibrium point between Vhi and 0 during the
Vhi to O transition of in. A qualitative plot of the desired behavior is shown in
Figure 6.19. The design specification describing this desired behavior is given
in Figure 6.20.

This purpose of the particular channel resistance value for ¢2 can
be expressed in TeD as follows. Let d, represent the design modification of

increasing the channel resistance of {2, and let o5 be the scenario

(({((t1 Vg) (Vhi std)),((t1 vd) (0 std))})true).

100

=
o

i gqé*ghﬂwé

=
=

[= T e = S S S =
® N o 0 A~ W N

N NP
P, O ©

NN
w N

66

Figure 6.16: Behavior Tree of Circuit with Feedback (ISC2) - Discharging

N - VH
el - VHVTP
T 1-56

= VIN

| |]
TO T1 T2

(TSC 11 V)

Figure 6.17: Qualitative Plot for Circuit with Feedback (ISC2) - Discharging

data (IsC
ctl (IscC
mn (IscC
Vdd (ISC t2
(ISC t2

(ISC inv

(ISC inv

(ISC inv

(ISC inv

(ISC inv

(ISC inv

(IscC

(IscC

(ISC t2

(ISC t2

RV1 V)
RV2 V)

t1

Vs)

vdd V)

Pt

Vg)

vdd V)
Vss V)

Nt
Nt
Pt
Pt
t1
t1
Pt
Pt

out (IsCc ¢
(ISC RV3 V)

(Isc Cc Q)

(IsC Cc ©C)

Figure 6.18: Initial Variable Values - Vhi to 0 Transition

Cg)
Qg)
Cg)
Qg)
Cg)
Qg)
Qg)
Cg)
V1)

(0 std)

(Vhi

= (Vhi

(Vhi

std)
nil)
std)

= (0 nil)

(Vhi

std)

(0 std)
= (Cg*
= (Qg*
= (Cg*
= (Qg*
= (Cg*
= (Qg*
= (0 nil)
= (Cg*
= (0 nil)
(0 std)
(0 nil)
(Cx std)

std)
nil)
std)
nil)
std)
std)

std)

e ey

' ' '
TO T1 T2

'
T3

'
T4

'
T5

'
T6

(TSC 11 V)

101

Figure 6.19: Qualitative Plot for Circuit with High Resistance Feedback

102

(for-component X (ISC)
(for-component Y (X inverter MOS-transistor)
(conditionally ((((((X Nt Vg) (Vhi std))
((X Nt vd) (0 std)))) true))
(required (((((Y Vg) (0 std))))
true)))))

Figure 6.20: Input Selection Circuit - Design Specification 3

and let g be the scenario
(({((inv MOS-transistor Vg) (0 std))})true).

Then

d; Conditionally when {o5} Guarantees og. (6.3)

6.2.3 Modification Teleology Summary

To summarize this example, {2 was added 1) to prevent the scenario
in which in reaches a steady value between 0 and Vhi when transitioning from
0 to Vhi, and 2) to prevent the scenario in which the value of in decreases
from Vhi when in is acting as a memory element storing the value Vhi. The
channel-resistance of {2 was set high to prevent the scenario in which in reaches
an equilibrium value between 0 and Vhi during the transition from Vhi to 0.
The input selection circuit design history, evaluation steps, and the acquired
teleological description are shown in the context of the design process flow in

Figure 6.21.

®Design ISC1 is described in Figures 6.2 and 6.4. Envisionment F; is described in Fig-
ures 6.7 and 6.8. Design modification §; is described in Figure 6.10. Design ISC2 is described
in Figure 6.9 and 6.11. Envisionment F» is described in Figures 6.13 and 6.12. Design ISC3
is described in Section 6.2.2. Envisionment E3 is described in Figures 6.19. The acquired
teleological descriptions are equations 6.1, 6.2, and 6.3

103

scL . s

51e - staus<’ - td5

Y
ISC2__ — = Ez.\‘ f specs

5re - statise’ = td5-6.1,6.2

\j
ISC2a—» — Eg.\‘ '/ specs

status/ \. td's -6.3

Figure 6.21: Design Flow for the Input Selection Circuit®

104

ctl

1

data Tm - inv

n out

~ctl

Figure 6.22: Circuit with Transmission Gate - Schematic

(for-component ISC
(create-new-implementation 1 3))

(for-component (ISC (impl 3))

(remove-component t1)

(add-component RV4 reference-voltage ((ignore-qdir I)))

(add-component Tm transmission-gate ((display Isd Vsd))
(data (Tm in))
(ctl (Tm ctl))
(in (Tm out)))

(add-connection (w2 (RV4 t) (Tm ctl-bar))))

Figure 6.23: Design Modifications to Replace Pass Transistor

6.2.4 Alternate Design History

Given the original input selection circuit design, an alternative de-
sign modification can be made to address the initial problem observed by the
designer. Consider the circuit schematic in Figure 6.22, in which the pass tran-
sistor t1 has been replaced by a CMOS transmission gate. The transmission
gate has operating characteristics such that it can transmit both Vhi and 0
values without degradation with respect to voltage. The design modifications
that add the transmission gate are shown in Figure 6.23, with the resulting

structure description shown in Figure 6.24.

105

(define-component-implementation
3 ISC
"Transmission-gate for input selection."
(components (RV1 reference-voltage)
(RV2 reference-voltage)
(RV3 reference-voltage (ignore-qdir I))
(RV4 reference-voltage (ignore-qdir I))
(Tm transmission-gate (display Isd Vsd))
(I Inverter)
(C (Capacitor (impl base-gspace))
(ignore-qdir i i2)))
(connections (data (RV1 t) (Tm in))
(ctl (RV2 t) (Tm ctl))
(in (Tm out) (I in))
(out (I out) (C t1))
(wt (Ct2) (RV3 t))
(w2 (RV4 t) (Tm ctl-bar))))

Figure 6.24: Circuit with Transmission Gate - CC Model

The envisionment of this new design characterizes 24 qualitatively dis-
tinct behaviors (see Figure 6.25), all of which assign value (Vhi std) to signal
in in the final (quiescent) state, as shown in Figure 6.26. Using the first design
specification, given in Figure 6.5, the purpose of the design modification which
replaces pass transistor (¢1) with transmission gate (T'm) can be expressed in
TeD as follows. Let d3 represent the design modification of replacing ¢1 with

transmission gate T'm (Figure 6.23), Then

03 Prevents o;. (6.4)

6.3 Electric Motor Example

The electric motor example discussed here is taken from Kiriyama,

Tomiyama, and Yoshikawa [KTY91], who give an initial design and a series

106

1

2

3

4 ——0—®

5 —e—0O—e—0—e—0—@®
6

7

8

9 —e—0—®

10 —e—0O—e—0—®

11 —e—0—®

12 —®

13 —e—0O—e—0—e—0——0—=0®
14 —e—0O—e—0—e—0—®
15

16

17

18 —e—0—©®

19 —e—O0——0—®

20 —e—0O—e—0—e—0—®

21

22

23

24 L—eo—0—®

Figure 6.25: Behavior Tree of Circuit with Transmission Gate

(TSCTNW S V)

Figure 6.26: Qualitative Plot for Circuit with Transmission Gate

107

of design modifications in an investigation of model building techniques for
analysis in various domains, specifically electrical, mechanical (rotation), and
thermal.® The desired behavior of the electric motor is to translate electric
current into mechanical rotation for use in some larger system in which the
electric motor is embedded. The particular design specifications regarding the

motor behavior are:

e Mechanical rotation in the positive direction at a specified velocity.
e No dead points (starting positions at which the motor will not rotate).

e No unbalanced lateral forces on the motor shaft.

6.3.1 Structure

The initial motor design (see schematic in Figure 6.27) contains three
components, a shaft, rotor, and magnet. An electric current through the coil
of the rotor establishes a magnet field for the rotor, and the rotor-shaft con-
nection gives the rotor-shaft assembly one degree of freedom, namely rotation.
The magnetic attraction between the south pole of the rotor and the north pole
of the magnet provides the force that initiates rotation of the rotor-shaft as-
sembly. The top level of the hierarchical structure description (in CC) is given
in Figure 6.28, for positive positions of the rotor-shaft assembly. Appendix C

gives the complete motor example.

SThe larger goal discussed in [KTY91] is an intelligent CAD system expected to serve as
an integrated modeling environment in which aspect models are automatically generated and
theiwr consistency are maintained. Such an environment provides the essential capabilities for
capturing teleological descriptions, namely model building and model analysis.

“"Mode variable declarations are ommitted in this figure for space considerations. The
complete description is given in Appendix C.

108

Rotor

Shaft

Figure 6.27: Electric Motor (motor1) - Initial Design

6.3.2 Design Specifications

The design specifications for the motor design given previously are

captured in the following, precise specifications:

(for-component S (shaft)
(conditionally ((((((S V) (0 ign)))) true))
(required (((((8 V) (Vx std)))) true))))

(for-component S (shaft)
(conditionally ((((((S V) ((0O V) ign)))) true))
(required (((((8 V) (Vx std)))) true))))

(for-component S (shaft)
(conditionally ((((((S V) (V* ign)))) true))
(required (((((8 V) (Vx std)))) true))))

(for-component S (shaft)
(prohibited (((((8 V) ((0 inf) ign))
((Ss Cum-F-lat) ((0 inf) std))))
true))

The first three specifications describe the behavior that for any com-
ponent of type shaft, if the rotational velocity of the shaft starts between 0 and
the desired velocity V* (inclusive), then the velocity should become constant
at the desired velocity, V*. The last specification states that for any positive
shaft velocity, the cumulative lateral force exerted on the shaft should be 0 and

constant.

109

(define-component-interface
motor "Electro-mechanical motor'" mechanical
(quantity-spaces
(defaults ((magnetic force) polarity-qgspace)
((electrical current) motor-current-qspace)
((mechanical-rotation force) angular-force-gspace))))

(define-component-implementation
1 motor "Single magnet, single rotor"
(quantity-spaces
(default ((mechanical-rotation velocity) motor-velocity-gspace)))
(component-variables (PE energy (quantity-space (0 PE+ PEx)))
(TE energy))
(components (magnet magnet)
(rotor (rotor (impl 1)) (no-new-landmarks F-lat F-ang)
(ignore-qdir F-ang)
(quantity-spaces (X position-X-gspace)))
(shaft (one-terminal-shaft (impl 1))
(no-new-landmarks F-lat F-ang Cum-F-ang)
(ignore-qdir F-ang Cum-F-ang)
(quantity-spaces (X position-X-gspace))))
(constraints
((ADD PE (shaft KE) TE))
((constant TE))
((constant (shaft I) Imax+))
((position positive)
->
((U- (shaft X) (rotor Orientation) (X+ Omax+)) (0 0) (X180+ 0))
((8- (shaft X) PE (0 PE*) (X180+ 0)) (X+ PE+)))
((position negative)
->
((U+ (shaft X) (rotor Orientation) (X- Omax-)) (X180- 0) (O 0))
((s+ (shaft X) PE (X180- 0) (0 PE*)) (X- PE+)))
(connections (c1l (rotor magnet) (magnet north))
(c2 (rotor shaft) (shaft t))))

Figure 6.28: Motor - Initial Design (motor1) - CC Model”

110

6.3.3 Behavior

The first envisionment to examine is the attainable envisionment from
the assertions that the initial velocity of the shaft is 0 and the initial shaft

position is between landmarks 0 and X180+, specifically

(shaft V)
(shaft X)

(0 nil)
((0 X180+) nil)

This envisionment (see Figure 6.29) has three initial states corresponding to
the three initial values (0 X+), X+, and (X+ X180+) for the shaft position.
The behaviors with an initial shaft position at 0 or X180+ are quiescent in the
initial state, demonstrating dead points at which no rotation is provided. All
three initial states shown in Figure 6.29 produce cyclic behaviors in which the
desired velocity V* may or may not be achieved, and possibly even exceeded.
Further, the cumulative lateral force on the shaft is non-zero. These behavior

characteristics are shown in the qualitative plots in Figure 6.30.

The attainable envisionment generated for an initial velocity of 0 and
the shaft starting in a negative position is essentially the same as the attainable
envisionment for a positive starting position. The attainable envisionments
for initial rotational velocities of (0 V*) and V* also show cyclic behaviors,
some oscillating between positive and negative velocities (like a pendulum or
undamped spring), and the others completing rotations. As was the case for
initial velocity 0, some behaviors have velocity exceeding the desired velocity,

V.

6.3.4 Evaluation 1

The first design modification makes two changes to the initial motor

design. First, a second magnet is added to the design, placed opposite the

111

1 O O D O O O o—D O ©
2 O O O o—D ©
3 O O o—D O ©
4
5
6
7
8
9 O O, O O O o—D ©
10 O O O o—D ©
11 O O o—D O ©
12 o—D O O O o—D O ©
13 O O O o—D O ©
14 O O o—D O O ©
15 O o—D O O O o—D O ©
16 O O O o—D O ©
17 O O o—D O O ©
18
19
20
21
22
23
Figure 6.29: Behavior Tree (motor1) - Positive Starting Positions
I SINF - o - - X180+
prrreneeeey e
I . -w1s IT° M7
1 ' 3 - X+
B 1T %
T g 0
s ex 0
e B = X-
- Toet -M 50
L Lo -M 41
[T
I -MNFE | L = ™y - X180-
1 1 " 1 1 " 1 i i n i i n i
To T T2 T3 T4 TS T6 To T1 T2 T3 T4 T5 T6

(NOTOR SHART V)

(NOTOR SHART X)

Figure 6.30: Qualitative Plots (motor1) - Positive Starting Positions

112

Figure 6.31: Electric Motor (motor2) - Second Design

shaft from the first magnet and given the opposite magnetic orientation (with
respect to the shaft), as shown in the schematic in Figure 6.31. Further, the
shaft is modified so that the polarity of the rotor can be reversed as the shaft

rotates through positions 0 and X180 (i.e., a commutator).

Structure Modification

The first design modification includes the addition of a second magnet
and the replacement of the shaft and rotor components. The new shaft com-
ponent models the commutator for reversing the current flowing through the
rotor, and the new rotor component allows the rotor to be connected to both
magnets.® The new shaft component definition is shown in Figure 6.32. The
CC definition for the new motor design (motor2) is given in Figure 6.33. Note
that the S+ (S-) constraint relates the current to the shaft velocity, thereby

constraining the velocity to be less than or equal to landmark V.

8These connections provide for the interaction of the magnetic fields of the rotor and the
magnets, as the component-connection modeling approach dictates that such interactions
must be explicitly declared.

“Mode variable declarations are ommitted in this figure for space considerations. The
complete description is given in Appendix C.

113

(define-component-implementation
2 one-terminal-shaft ""
(terminal-variables
(t (F-ang force)
(v velocity)
(F-lat (mechanical-translation force)
(quantity-space motor-lateral-force-qspace))
(1 (electrical current))))
(component-variables
X displacement)
(Cum-F-ang force (quantity-space angular-force-gspace)))
(constraints ((d/dt X V))
((d/dt V Cum-F-ang))
((minus Cum-F-ang F-ang) (F- F+) (0 0) (F+ F-))))

Figure 6.32: Single Rotor Commutator Shaft Component - CC Model

Modified Behavior

To generate the envisionment we assert the initial velocity of the shaft

as 0 and the initial shaft position as X90+ (between 0 and X180+), specifically

(shaft V)
(shaft X)

(0 nil)
(X90+) nil)

From this initial state, the envisionment is infinite as indicated in the behavior
tree in Figure 6.34. This corresponds the the number of rotations of the motor
before the desired velocity, V*, is reached. The desired velocity is reached, af-
ter some number of rotations, as shown in the qualitative plots in Figure 6.35.
Starting positions (0 X90+) and (X90+ X180+) generate attainable envision-
ments similar to that for starting position X90+. Starting positions of 0 and
X180+ are still dead points. Similarly, for the negative starting shaft posi-
tions, two initial states demonstrate dead points (positions 0 and X180-) and
the other three generate cyclic behaviors in which the velocity has the desired

value V*. For all starting positions, an initial velocity of either (0 V*) or Vx

114

(define-component-implementation
2 motor
"Double magnet, single rotor"
(quantity-spaces
(defaults
((mechanical-rotation velocity) motor-velocity-qspace)))
(components

(magnetl magnet)

(magnet2 magnet)

(rotor 2-field-rotor (no-new-landmarks F-lat F-ang)
(ignore-qdir F-ang))

(shaft (one-terminal-shaft (impl 2))
(no-new-landmarks F-lat F-ang Cum-F-ang)
(ignore-qdir F-ang Cum-F-ang)
(quantity-spaces (X position-90-gspace))))

(constraints
((position positive)
->
((U- (shaft X) (rotor Orientation) (X90+ Omax+))
(0 0) (X180+ 0))
((s- (shaft V) (shaft I) (O Imax+) (V*x 0))))
((position negative)
->

((U+ (shaft X) (rotor Orientation) (X90- Omax-))

(X180- 0) (0 0))
((Ss+ (shaft V) (shaft I) (0 Imax-) (Vx 0)))))

(connections (c1 (rotor magnet+) (magnetl north))

(c2 (rotor magnet-) (magnet2 south))
(c3 (rotor shaft) (shaft t))))

Figure 6.33: Second Motor Design (motor2) - CC Model”

© 00 N o g~ W N P

[S S S T
o oA W N B O
O

i
3
©

O o—OD O o ®)
o—QD O Oo—©
O o—QD O—©
o—D 0—0O

O 0—©

Oo—©

Figure 6.34: Behavior Tree (motor2) - Starting Position X90+

115

~ I NF

R

| " |
TO T1 T2

"
T3

1
T4

LT X180+

= X90+

.

| " | " |
TO T1 T2 T3 T4

= X90-

~ X180-

T5

(NOTOR SHART V)

(MOTOR SHAFT X)

Figure 6.35: Qualitative Plots (motor2) - Starting Position X90+

116

results in cyclic behavior with the desired velocity V*. In all behaviors with a

non-zero velocity, the lateral force exerted on the shaft is non-zero.

Teleology

While none of the design specifications have been met for all behav-
iors of the design, we can identify some initial conditions for which a design
specification has been met. Specifically, for starting positions other than 0 and
X180, the design specification regarding the desired rotational velocity for the
shaft has been met. This purpose can be expressed in TeD as follows: Let &4
represent the design modification described previously, namely addition of a
second magnet and replacement of the shaft with a commutator shaft. Let o7,

og, and g9 be the conditional scenarios of the first three design specifications,

namely
o = (({((shaft V) (0 ign))}),true),
os = (({((shaft V) ((0 V*) ign))}),true), and
o9 = (({((shaft V) (V* ign))}) true).

Let 019 be the required scenario of the first three design specifications, namely

o0 = (({((shaft V) (V¥ std))}),true).

Let o011 and o5 be the scenarios describing the shaft positions between 0 and

180, namely
o1 = (({((shaft X) ((0 X180+) ign))}),true), and
o12 = (({((shaft X) ((X180- 0) ign))}),true).

Then we can claim the following teleological descriptions involving d4:

d4 Conditionally when {o7,01;} Guarantees oy, (6.5)

d4 Conditionally when {07,012} Guarantees oy (6.6)

117

Figure 6.36: Electric Motor (motor3) - Third Design

44 Conditionally when {05} Guarantees oy (6.7)

44 Conditionally when {09} Guarantees oy (6.8)

6.3.5 Evaluation 2

The second design modification makes essentially one change to the
previous motor design, the addition of a second rotor to the shaft placed op-
posite the first rotor (see schematic in Figure 6.36). The shaft component is

modified to accommodate the second rotor.

Structure Modification

The second design modification adds a second rotor and modifies the
shaft. The new shaft component models the commutator for reversing the
current flowing through both rotors, as the shaft rotates through positions 0
and X180, and maintains opposite polarity in the two rotors. The definition for

the new motor design (motor3) is given in Figure 6.37.1°

10Mode variable declarations are ommitted in this figure for space considerations. The
complete description is given in Appendix C.

'Mode variable declarations are ommitted in this figure for space considerations. The
complete description is given in Appendix C.

118

(define-component-implementation
3 motor
"Double magnet, double rotor"
(quantity-spaces
(defaults
((mechanical-rotation force) angular-force-gspace)
((mechanical-rotation velocity) motor-velocity-qspace)))
(components

(magnetl magnet)

(magnet2 magnet)

(rotorl 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation Polarity)
(quantity-spaces (Orientation orientation-gspace)))

(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation Polarity)
(quantity-spaces (Orientation orientation-gspace)))

(shaft (2-terminal-shaft (impl 1))

(no-new-landmarks F-latl F-lat2 F-angl F-ang?2
F-ang-sum Cum-F-ang)
(display V1 X Cum-F-lat Cum-F-ang Position)
(ignore-qdir F-angl F-ang2 F-ang-sum Cum-F-ang)
(quantity-spaces (X position-90-gspace))))
(constraints
((position positive)
-> ((U- (shaft X) (rotorl Orientation) (X90+ Omax+))
(0 0) (X180+ 0))
((U+ (shaft X) (rotor2 Orientation) (X90+ Omax-))
(0 0) (X180+ 0)))
((position negative)
-> ((U+ (shaft X) (rotorl Orientation) (X90- Omax-))
(X180- 0) (0 0))
((U- (shaft X) (rotor2 Orientation) (X90- Omax+))
(X180- 0) (0 0))))
(connections (c1l (rotorl magnet+) (rotor2 magnet+) (magnetl north))
(c2 (rotorl magnet-) (rotor2 magnet-) (magnet2 south))
(c3 (rotorl shaft) (shaft t1))
(c4 (rotor2 shaft) (shaft t2))))

Figure 6.37: Third Motor Design (motor3) - CC Model'!

119

-INF B .,-‘X180+
1 o -
Lt - X90+
® I o\ L
.1
' ™ 0
0 1
= X90-
-MNF L
1 ~ X180-
1 n 1 " 1 1 . " . " . .
0 ™ T2 T3 T4 ™ TO T1 T2 T3 T4 T5
(MOTOR SHAFT V1) (MOTOR SHAFT X)
“INF
- F- LAT+
0
- F- LAT-
=M NF
1 n 1 " 1 1
TO T1 T2 T3 T4 T5

(MOTOR SHAET CUM F-LAT)
Figure 6.38: Qualitative Plots (motor3)
Modified Behavior

To generate the envisionment we assert the initial velocity of the shaft

as 0 and the initial shaft position as X90+ (between 0 and X180+), specifically

(shaft V)
(shaft X)

(0 nil)
(X90+ nil)

The behavior of the motor3 model matches the behavior of motor2 except that
the cumulative lateral force of the shaft is now 0, since the lateral force imparted
by each rotor is balanced by the other rotor.!? This can be seen in the value
of variable (S Cum-F-lat), which is (0 std) in all behaviors (see qualitative
plot in Figure 6.38. The behavior tree for motor3 matches the behavior tree

for motor2 (Figure 6.34).

12Balanced lateral force is asserted in the model via a CONSTANT constraint. The model
checking algorithm does not use this information, since it looks only at the behaviors and
the specifications.

120

Teleology

In the motor3 design, we have satisfied the design specification regard-
ing lateral force on the shaft. This purpose can be expressed in TeD as follows:
Let d5 represent the design modification described previously, namely addition
of a second rotor. Let o135 be the required scenario of the design specification

regarding lateral force on the shaft, namely

o13 = (({((shaft V) ((0 inf) ign)),
((shaft Cum-F-lat) (0 std))}),true).

Then we can claim the following teleological description involving ds:

d5 Guarantees os. (6.9)

6.3.6 Evaluation 3

The third design modification addresses the remaining design prob-
lem, the dead points, by adding a third rotor (see Figure 6.39). The shaft

component is modified to accommodate the third rotor.

Structure Modification

The third design modification adds a third rotor and modifies the
shaft. The new shaft component models the commutator for reversing the
current flowing through all rotors as the shaft rotates and passes each rotor
through positions 0 and X180. The rotors are distributed around the shaft so
as to balance the lateral force exerted by each rotor. The definition for the new

motor design (motor4) is given in Figure 6.40.'

13Mode variable declarations are ommitted in this figure for space considerations. The
complete description is given in Appendix C.

1“Mode variable declarations and some constraints are ommitted in this figure for space
considerations. The complete description is given in Appendix C.

121

Figure 6.39: Electric Motor (motor4) - Fourth Design

Modified Behavior

To generate the envisionment we assert the initial velocity of the shaft

as 0 and the initial shaft position as X90+ (between 0 and X180+), specifically

(shaft V)
(shaft X)

(0 nil)
(X90+ nil)

The behavior of the motor4 model matches the behavior of motor3 except that
all starting positions result in the desired shaft velocity (V*). This is shown
in the qualitative plot in Figure 6.41, where the starting position is 0. The
behavior tree for motor4 is similar in structure to the behavior tree for motor3

and motor2 (Figure 6.34), and is shown in Figure 6.42.

Teleology

In the motor4 design, we have satisfied the first design specification in
the case where the shaft starts in positions 0 and 180, and the specification is
still satisfied for the other starting positions. The purpose can be expressed in
TeD as follows: Let dg denote the design modification that adds the third rotor,
and let 014 and o015 be the scenarios describing the starting shaft positions of 0

and 180, namely

122

(define-component-implementation
4 motor
"Double magnet, triple rotor"
(quantity-spaces
(defaults
((mechanical-rotation force) angular-force-gspace)
((mechanical-rotation velocity) motor-velocity-qspace)))
(components

(magnetl magnet)

(magnet2 magnet)

(rotorl 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation Polarity)
(quantity-spaces (Orientation orientation-60-gspace)))

(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation)
(quantity-spaces (Orientation orientation-60-gspace)))

(rotor3 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation)
(quantity-spaces (Orientation orientation-60-gspace)))

(shaft (3-terminal-shaft (impl 1))

(no-new-landmarks F-latl F-lat2 F-lat3
F-angl F-ang2 F-ang3 Cum-F-ang)
(display V1 X Cum-F-lat Cum-F-ang Position)
(ignore-qdir F-angl F-ang2 F-ang3 Cum-F-ang)
(quantity-spaces (X position-30-gspace))))
(constraints
((position X0toX60+)
-> ((M+ (shaft X) (rotorl Orientation)) (0 0) (X60+ 060+))
((M- (shaft X) (rotor2 Orientation)) (0 060+) (X60+ 0))
((U+ (shaft X) (rotor3 Orientation) (X30+ Omax-))
(0 060-) (X60+ 060-)))
((position X60+toX120+)
-> ((U- (shaft X) (rotorl Orientation) (X90+ Omax+))
(X60+ 060+) (X120+ 060+))
((M- (shaft X) (rotor2 Orientation)) (X60+ 0) (X120+ 060-))
((M+ (shaft X) (rotor3 Orientation)) (X60+ 060-) (X120+ 0)))
)
(connections (cl (rotorl magnet+) (rotor2 magnet+)
(rotor3 magnet+) (magnetl north))
(c2 (rotorl magnet-) (rotor2 magnet-)
(rotor3 magnet-) (magnet2 south))
(c3 (rotorl shaft) (shaft t1))
(c4 (rotor2 shaft) (shaft t2))
(c8 (rotor3 shaft) (shaft t3))))

Figure 6.40: Fourth Motor Design (motor4) - CC Model'*

123

-1 NF

“M NF

[I L I e e T T T
TO T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14

~X180+
~X150+
~X120+
~X90+
X600+
~X30+

| [[|
[0 _T1 T2 T3 T4 15 T6 T7 T8 T9 TI10T11T12T13T14

0
~X30-
~X60-
~X90-
~X120-
~X150-
I'X180-

(MOTOR SHAFT V1)

(MOTOR SHAFT X)

~I NF

0
-F- LAT-

“M NF

[L e e R e e e e
TO T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14

- LAT+] |

~X120- T

~X180- T

~X120+T

~X60+TO)

O >X0TOX6

[R L e e e e e e
TO T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14

~X60- TO)IO

60-

120-

180+

120+

T

(MOTOR SHAFT CUM F- LAT)

NOTOR_SHAFT. POSI 11 ON

Figure 6.41: Qualitative Plots (motor4)

o1 = (({((shaft X) (0 ign))}),true),
o5 = (({((shaft X) (X180+ ign))}),true).

Then we can claim the following teleological description involving dg:

ds Conditionally when {07,014} Guarantees oy,

ds Conditionally when {o7, 015} Guarantees ;.

(6.10)

(6.11)

The motor design history, evaluation steps, and the acquired tele-

ological description are shown in the context of the design process flow in

Figure 6.43.

5Design Motorl is described in Figures 6.27 and 6.28. Envisionment F; is described in
Figures 6.29 and 6.30. Design Motor2 is described in Figure 6.31 and 6.33. Envisionment
E5 is described in Figures 6.35 and 6.34. Design Motor3 is described in Figure 6.36 and
6.37. Envisionment E3 is described in Figures 6.38 and 6.34. Design Motor4 is described in
Figure 6.39 and 6.40. Envisionment Fj is described in Figures 6.41 and 6.42. The acquired
teleological descriptions are equations 6.5 through 6.11

124

© 0O N O O~ W NP

=
o

=
N

= e
A W

[
o o

= e
o ~

N
o ©

NN
N P

NN
AW

NN
o 0

NN
w0 ~

N
©

w
o

w
=

Figure 6.42: Behavior Tree (motor4) - Starting Position 0

Motorl — El\ f Specs

ie - stause” - ids

Y
Motor2 . - Ez\ f specs

o +_status+’ . tds-65,6.6.6.7,6.8

\J
Motor3 __,. —_— Es\ f specs

o e +stawse’ “tds-6.9

\J

Motord — E4\ f specs

Status/ \s td's -6.10,6.11

Figure 6.43: Design Flow for the Motor'®

125

Chapter 7

Applications

7.1 Reusing Designs

Consider the initial input selection circuit design (Figure 6.2) in the
context of an accompanying database of design modifications and components

L If the design modifications

which have associated teleological descriptions.
of 1) adding the feedback transistor or 2) replacing the pass transistor with
a transmission gate are recorded in a database with the associated teleologi-
cal description of preventing the intermediate signal value, then these design
modifications are available to the designer via a query of the form “Show me
design modifications that prevent the behavior in which a signal maintains an
intermediate value between 0 and Vhi”. This query could be generated by
the designer, or alternatively generated by a design critic that examines the
behaviors of the design and compares those behaviors with the specifications.
This design critic can then present discrepancies between the design’s behav-

ior and its specifications, and suggest possible modifications to correct these

discrepancies.

More generally, the goals of the designer at each individual design
step can be used to index a database of existing design modifications (including

complete components) to retrieve modifications or components for reuse. In

1A design modification or component may have several teleological descriptions associated
with it, since the modification may have resolved more than one design specification.

126

127

particular, at each step the designer is attempting to modify some aspect of
the design structure and/or behavior (via structure modifications) to bring the
design in line with the specifications. The significant capability introduced
by this work is that the designer can access existing design modifications and
components in terms relevant to the task at hand, namely modifying the design
so that it meets a particular design specification. Indexing existing design
information in terms of structural or behavioral aspects alone cannot provide
this relevance. This index is discussed in Chapter 8, and addresses a significant

problem in analogy and case-based reasoning systems.

7.1.1 Analogy

In analogy-based design reuse, behaviors referenced in teleological de-
scriptions can be abstracted beyond particular domains by abstracting variable
types, and hence provide a mechanism for retrieving design solutions from other
domains (e.g. electrical versus mechanical). When such design modifications
or components are retrieved, they provide the designer with design solutions
from other design domains that can be applied in the current domain when

suitable structural analogies are made.

For example, consider the design modification made to the steam
boiler (Figure 3.11). The pressure sensor translates pressure (effort in the hy-
draulic domain) to voltage. An analogous component to the pressure sensor, a
temperature sensor, translates temperature (effort in the thermal domain) to
voltage. In undertaking a design in which temperature as opposed to pressure is
to be regulated, the teleological description giving the purpose of (the addition
of) the pressure sensor as regulating the pressure can be recognized and re-

trieved, providing a candidate analogous design, namely the steam boiler and

128

pressure sensor. Further, the abstraction of the teleological description that
matched the new design specification (i.e., regulated temperature) gives part
of the mapping from the base (analogous) design to the target design, namely

that pressure (effort) maps to temperature (effort).

7.1.2 Redesign

The design flow of Figure 1.2 is also relevant when an existing design
is being modified to meet a new set of specifications. Teleological descriptions
can assist in the redesign task in two ways. First, as a specification is changed,
any design modifications and components with teleological descriptions that
reference the specification (e.g., required or prohibited behavior) are primary
candidates for modification to meet the new specifications. Similar approaches
to redesign are design plans (Steinberg and Mitchell [SM84]) and functional
representations (Goel and Chandrasekaran [Goe89]). Second, as the designer
explores the space of possible design modifications, teleological descriptions
associated with the current design structure provide the designer with infor-
mation concerning what other behaviors of the design might be affected if a

particular component is modified.

7.1.3 Cased-Based Reasoning

Case-based reasoning systems address reuse in a manner similar to
analogical reasoning systems by retrieving previous cases and adapting these
cases to the current situation. As Riesbeck and Schank state in [RS89], “A

case-based reasoner:

e finds those cases in memory that solved problems similar to the current

problem, and

129

e adapts the previous solution or solutions to fit the current problem, taking

into account any difference between the current and previous situations.”

Riesbeck and Schank [RS89] also point out that “Finding the relevant cases

involves:

o characterizing the input problem by assigning the appropriate features,

and

o retrieving the cases from memory with those features.”

The behavior and teleological description languages provide a means
for characterizing the (input) problem, namely what (behavior) specification is
of interest, and the indexing capability built on these languages provides the

means for retrieving cases. We discuss indexing in Chapter 8.

7.2 Diagnosis

The role of teleological descriptions in diagnosis is essentially that de-
scribed for redesign, namely providing focus for selecting structural components
that are likely to account for observed or desired behaviors. This selection task
is called candidate or hypothesis generation in model-based diagnosis. When
performing model-based diagnosis (see Davis and Hamscher [DH88]), a set of
candidate structure components is generated. This set contains those structural
components that can possibly account for the missing or undesirable behaviors.
Candidate evaluation is performed to determine whether each candidate can
account for the aberrant behavior. Finally, candidate selection chooses a single

candidate or set of candidates that best accounts for the aberrant behavior.

130

Techniques for generating the candidate set include dependency trac-
ing and causal analysis. For devices with highly interconnected structure, this
set can be a large percentage of the structural components of the device, possi-
bly all structural elements. Since all of these candidates may require evaluation,
it is important to focus the candidate generation process where possible. Do-
main specific heuristics can be applied to select among potential causes, but

are not applicable outside their particular domain.

Teleological descriptions provide an initial focus for candidate gener-
ation, allowing an initial candidate set to be generated based on those struc-
tural components known to have been placed in the design for the purpose
of affecting the aberrant behavior. If an observed symptom of a mechanism
is considered as an unwanted behavior (missing behavior), then a teleological
description which relates a component of the mechanism with the prevention
(introduction or guarantee) of that behavior provides a heuristic for selection
among potential causes. Hence, teleological descriptions can provide a more
productive initial focus of attention for candidate generation in diagnosis. Such
a candidate generation process is not claimed to be complete, since it is pos-
sible that the candidate set generated in this way will not always contain the

structural component(s) causing the aberrant behavior.

In the modified input selection circuit (Figure 6.9), if the behavior
in which in takes on the value ((0 Vhi) std) is observed (i.e., an aberrant
behavior occurs), then component ¢2 is a likely candidate to examine, since the

purpose of adding t2 to the design was to eliminate the observed behavior.

Chapter 8

Indexing

8.1 Goal

In this chapter we describe an organization, for teleological descrip-
tions, that facilitates retrieval for explanation, reuse, and diagnosis, as well as
classification of newly acquired descriptions. This organization, or index struc-

ture, provides two perspectives on the database of teleological descriptions,

e specification predicates and their abstractions, and

e design history (modification sequence for a design).

We have implemented the computation of the abstraction relations described in
Chapter 4 to achieve classification of new teleological descriptions and querying
for teleological descriptions. We conclude this chapter by describing query or
use scenarios of the teleological description database for explanation, design

reuse, and diagnosis. These queries answer to following questions:

o Explanation: “What is the purpose of component X?7”
o Design Reuse: “How have previous designs addressed specification ¢?”

e Diagnosis: “What components have purposes referencing behavior B?”

131

132

8.2 Specification Predicate Lattice

The primary organizing mechanism for the teleological description
index is the specification predicate lattice, which is based on the partial or-
der T, (Theorem 4.26). The partial orders T, , C, , T, , and T, define
the generalization and specialization relationships between scenarios and their

abstractions. The abstractions used to generate the index are:

1. Generalize the qualitative direction of change of variable values (dec, std,

and inc become ign).

2. Generalize the magnitudes of variable values to the quantity space

(minf - 0 + inf)!
3. Generalize variable types:
(a) Generalize the hierarchical variable name (remove a prefix from the

hierarchical name), followed by

(b) Generalize the variable type per the type hierarchy in Figure 4.2.

8.2.1 Variable Value Abstraction

Variable values are abstracted with respect to the qualitative direction
of change, and with respect to the qualitative magnitude. The quantity space
(minf - 0 + inf) is selected for magnitude abstraction because it can express

the following abstract values:

!The landmarks - and + are a notational convenience for expressing values such as
“bounded below by 0 and above by some finite value”, or (0 +). A finite, positive value can
be expressed as (0 inf), but this form makes (0 (0 inf)) somewhat awkward.

133

o Negative, zero, or positive. This quantity space is used in the qualita-
tive reasoning approaches of de Kleer and Brown [dKB85] and Williams
[Wil85]? and can be expressed in this QSIM quantity space as (minf 0),

0, and (0 inf).
e A positive value bounded above, or (0 +).
e A negative value bounded below, or (- 0).
e A finite, positive value with a positive lower bound, or (+ inf).
o A finite, negative value with an negative upper bound, or (minf -).
o A finite value with a negative lower bound, or (- inf).
e A finite value with a positive upper bound, or (minf +).

o A finite value with a negative lower bound and a positive upper bound,

or (- +).

o A value with a positive lower bound and positive upper bound. Such a
value has abstractions (0 +) and (+ inf), representing the upper and

lower bounds, respectively.

o A value with a negative lower bound and negative upper bound. Such a
value has abstractions (minf -) and (- 0), representing the upper and

lower bounds, respectively.

The abstraction hierarchy for the values of this quantity space is

shown in Figure 8.1.

2These qualitative values are often referred to as +,0,~.

134

(minf inf)
(minf +) (- inf)
(minf 0) (-+) (0 inf)
(minf -) (-0) 0 0+ (+ inf)

Figure 8.1: Generic Magnitude Abstraction Hierarchy

8.2.2 Variable Abstraction

The relation T, is defined in terms of variable name abstraction and
variable type abstraction (see Section 4.2), and gives two ways of abstracting
the variable. First, a variable instance can be abstracted to represent any
occurrence of the variable, such as the input voltage of an inverter instance

3 This abstraction is

or the input voltage of a Boolean logic gate instance.
accomplished by abstracting the (hierarchical) variable name. Second, the
variable type can be abstracted from its specific domain to the corresponding
generic type (see Table 8.1). For example, voltage in the electrical domain is
abstracted to the generic type effort. Variable type abstraction is applied only

after the variable value magnitude has been abstracted, since specific landmarks

are not meaningful across domains (e.g., electrical and thermal).

3This abstraction is very useful because it allows a general behavior description to be
written that can be intantiated for particular occurrences of a variable. Recall the general
design specification for CMOS circuit design given in Chapter 6, which stated that the input
voltage of a (any) logic gate in a design should not have the value ((0 Vhi) std).

135

8.2.3 Design History Index

A design history provides a (sequential) index for accessing the teleo-
logical descriptions associated with the design modifications referenced by the
history. Explanation queries search the design history for design modifications
involving the addition, deletion, or modification of specific design components
or parameters. When found, the design modification will give the teleological

descriptions associated with the modification.

8.2.4 Initial Index Structure

The initial index structure contains entries for single variable, single
state behaviors representing the domains and variable types shown in Table 8.1
and the qualitative values shown in Figure 8.1. Some statistics on the initial

specification predicate lattice are shown in Table 8.2.

8.3 Classification

The classification algorithm implements the behavior abstraction re-
lations described in Chapter 4 and determines the position for teleological de-
scriptions in the specification lattice. The algorithm computes the sets rep-
resenting the most specific generalizations (msg) and the most general spe-
cializations (mgs) of the specification predicates referenced by the teleological
description. Each specification predicate is added to the specification predicate
lattice “between” the msg and the mgs (i.e., as a specialization of each element

of msg and as a generalization of each element of mgs).

A scenario o appears in the specification predicate occursIn(o,b),
either as the object of the teleological description or as the condition predicate

of a conditional teleological description. When classifying a scenario, we gen-

136

‘ H effort ‘ flow ‘ momentum ‘ displacement
Acoustic pressure flow momentum amount
Electrical voltage current | flux-linkage charge
Hydraulic pressure flow momentum amount
Mechanical force velocity | momentum | displacement
Mech-Rotation force velocity | momentum | displacement
Mech-Translation force velocity | momentum | displacement
Thermal temperature | flow entropy

H power ‘ capacitance ‘ resistance ‘

Acoustic power volume resistance
Electrical power | capacitance | resistance
Hydraulic power volume resistance
Mechanical power | capacitance | resistance
Mech-Rotation power | capacitance | resistance
Mech-Translation || power | capacitance | resistance
Thermal power | capacitance | resistance

Table 8.1: Domain-specific variable type names

Nodes | 3304
Links | 9502
Leaf Nodes | 1050
Maximum Depth | 7
Average # Generalizations | 2.9
Average # Specializations | 4.2
Maximum # Generalizations | 4
Maximum # Specializations | 15

Table 8.2: Initial Index - Metrics

137

erate two generalizations of the scenario and add them to the index as well.

These generalizations are:

1. The scenario with values abstracted to the quantity space
(minf - 0 + inf),* abstracting away the details of particular quantity

spaces.

2. Scenario 1 with variable types abstracted to the generic types shown in
Table 8.1, abstracting away from a specific domain and allowing identifi-

cation of analogous scenarios across different domains.

We select these generalizations out of the many that can be generated for two
reasons. First, we abstract scenarios away from specific quantity spaces since
quantity spaces are likely to differ in landmark names and landmark order.
This abstraction provides a connection or grouping in the lattice for scenarios
containing variables of the same domain specific types with similar time varying
behavior. Second, we abstract away from domain specific variable types to
provide a connection or grouping among scenarios containing variables of the
same generic types with similar time varying behavior. This second abstraction
provides the basis for design reuse across domains, namely using a teleological
description originally captured in one domain (e.g., hydraulic) when designing

in another domain (e.g., thermal).

8.4 Queries

In this section we describe query or use scenarios of the teleological

description database for explanation, design reuse, and diagnosis. These queries

1Al possible abstractions based on wider intervals from a particular quantity space are
not recorded in the index, but are considered during search.

138

answer the following questions:

o Explanation: “What is the purpose of component X7”
o Design Reuse: “How have previous designs addressed specification ¢?”

e Diagnosis: “What components have purposes referencing behavior B?”

For presentation purposes, we express these queries via the following Prolog

[CM84] predicates:

o td(design-history, modification, operator, spec)
Succeeds when teleological description modification operator spec occurs

in design-history.

e references(modification, component)

Succeeds when modification references structural entity component.

o msg(spec, generalization)
Succeeds when generalization is a most specific generalization of specifi-

cation spec.

o mgs (spec, specialization)
Succeeds when specializations is a most general specialization of specifi-

cation spec.

8.4.1 Explanation Queries

For explanation, queries of the teleological description database are
restricted to those descriptions involving modifications from the design history

of the mechanism being examined. In this case, queries are of the form

td(d,Mod, Op, SpecPredicate), references(Mod, ¢) (8.1)

139

where d is the design history of the mechanism being examined, and ¢ is the

component or parameter for which an explanation is desired.

For the steam boiler example from Chapter 3, an explanation query
asks “What is the purpose of the pressure sensor instance Sensor in the steam
boiler design?”. Using Query Form 8.1, let d be the steam boiler design his-
tory and ¢ the pressure sensor instance sensor. Having added the teleological
description derived for the pressure sensor (Section 3.7.3) to the database, the

query variables are bound by the query as follows:

e Mod - the modification that adds the pressure sensor (Figure 3.11),
e Op - Prevents, and

e SpecPredicate - occursIn(o,b), where o is the scenario in which the

internal pressure exceeds the landmark Pmaxx.

This query and the retrieved teleological description are shown near the end of

Section A.5.

For the input selection circuit from Chapter 6, an explanation query
asks “What is the purpose of the p-channel transistor instance PtFb in the
input selection circuit?”. In Query Form 8.1, let d be the input selection circuit
design history and ¢ the p-channel transistor instance t2. Having added the
teleological descriptions derived for the input selection circuit (Section 6.2.1)

to the database, the query variables are bound by the query as follows:

e Mod - the modification that adds the transistor (d;),
e Op - Conditionally when {0} Guarantees, and

e SpecPredicate - [07;03).

140

To further expand the set of explanations, the restriction confining
the search to the current design history can be lifted, allowing search for expla-
nations of the purpose of the component in other design histories that employ
that component. For the steam boiler example, the unrestricted query for

teleological descriptions referencing instances of pressure-sensor is

td(Dh, Mod, Op, SpecPredicate),references(Mod, pressure-sensor) (8.2)

In this query, the design history is unrestricted, and the component type
pressure-sensor is explicit. Such queries can help in understanding the uses
of the component, but are not guaranteed to explain its purpose in the design

of interest.

8.4.2 Reuse Queries

In a design reuse context, the designer is faced with the problem of
modifying a design so that it meets specifications. Hence, the initial query
made by the designer will be one based on a specification predicate of the
design. While one can specify the appropriate teleological operator (Guaran-
tees, if the specification predicate is to hold everywhere, or Prevents if the
specification predicate is to be prohibited), retrieving modifications based solely
on the specification predicate can be of interest to the designer regardless of
the teleological operator. For example, a design modification that introduced a
specification predicate in a previous design may be of interest when the reusing
designer is attempting to prevent the specification predicate from holding, be-
cause the reusing designer may be able to reverse the design modification that

introduced the predicate and hence prevent it. The base query is

td(Dh, Mod, Op, ¢) (8.3)

where ¢ is the specification predicate of interest.

141

Having added the teleological descriptions captured for the steam
boiler and input selection circuit designs to the database, a reuse query retrieves
the appropriate design modifications for each design. For the steam boiler
design, let ¢ be the design specification in which the internal pressure exceeds

Pmax*. The variables of Query Form 8.3 are bound by the query as follows:

e Dh - the design history containing modification Mod
e Mod - the modification that adds the pressure sensor (Figure 3.11), and

e Op - Prevents.

If the database contains other descriptions referencing the specification predi-
cate ¢, these are also retrieved. A more specific query can be constructed by

replacing the query variable Op with the explicit operator prevents.

For the input selection circuit, let ¢ be [o1; 02]. The variables of Query

Form 8.3 are bound by the query as follows:

e Dh - the design history containing modification Mod
e Mod - 4y, the modification that adds the feedback transistor, and

e Op - Conditionally when o; Guarantees.

It is likely, however, that the exact specification predicate does not
appear in the database, in which case the designer would like to retrieve de-
sign modifications (i.e., teleological descriptions) concerned with specification
predicates “close to” the one of interest. This “closeness” property is realized
by generalization and specialization links among specification predicates in the
database of teleological descriptions. Consequently, the initial set of teleolog-

ical descriptions retrieved for potential reuse should contain the most specific

142

generalizations (msg) and the most general specializations (mgs) of the specifi-
cation predicate of interest, ¢. Note that if ¢ appears exactly in the database,

this set will be {¢}, the specification predicate itself. This set is the union of

solutions to the queries:

msg(¢, Spec), td(Dh, Mod, Op, Spec) (8.4)

and
mgs(¢, Spec), td(Dh, Mod, Op, Spec). (8.5)
To constrain the query with respect to a specific teleological operator such as

Guarantees, one can use the queries

td(Dh,Mod, guarantees, Spec) (8.6)

or
td(Dh,Mod, [conditionally, ¢;, guarantees], Spec). (8.7)

For queries involving conditional scenarios, the conditional scenario
can be replaced in the query (e.g., Query Form 8.7) by a query variable. This
permits teleological descriptions with different conditions, possibly empty or
not a generalization or specialization of the desired condition, to be retrieved
from the database. The modifications referenced in these teleological descrip-
tions can potentially be of use to the designer. For example, consider a design in
which temperature must be maintained between prescribed limits (denote this
specification ¢y), and in which a modification (denoted ¢) has been made that
brings the temperature back within the prescribed range when perturbations
push the temperature above the upper limit. Letting ¢, denote the condi-
tion where the upper limit for temperature has been exceeded, the teleological

description involving dis

5 Conditionally when ¢, Guarantees [¢s; ¢1].

143

Design modification dcan be useful to the design when attempting to make the
design respond to perturbations that push the temperature below the lower

limit.

8.4.3 Diagnosis Queries

In the context of diagnosis, we make the assumption that the specifica-
tion predicates were satisfied by the design, and that some portion of the mech-
anism is broken. Consequently, queries of the teleological description database
should be restricted to those descriptions involving modifications from the de-
sign history of the mechanism under diagnosis. In this case, queries are of the
form

td(d,Mod, Op, ¢) (8.8)
where d is the design history of the mechanism under diagnosis, and ¢ is the
specification predicate which no longer holds (i.e., the object of the diagnosis).
If the specification predicate describes a condition that should not occur, the
query can further restrict candidate descriptions by restricting the operator in

the query as either
td(d,Mod, prevents, ¢) (8.9)

or
td(d,Mod, [conditionally,Spec, prevents], ¢). (8.10)

If the condition under diagnosis is not expressed precisely in terms of the spec-
ification predicates of the design, then msg and mgs may be required in the
query.

For the steam boiler example from Chapter 3, if the internal pressure
of the boiler vessel is exceeding the desired maximum pressure Pmax*, an diag-
nosis query asks “What component or subsystem of the steam boiler has the

purpose of enforcing the specification in which the internal pressure exceeds

144

landmark Pmax*?”. In Query Form 8.8, let d be the steam boiler design history
and ¢ the design specification describing the scenario in which the internal
pressure exceeds Pmax*. Having added the teleological description derived for
the pressure sensor (Section 3.7.3) to the database, the query variables are

bound by the query as follows:

e Mod - the modification that adds the pressure sensor (Figure 3.11), and

e Op - Prevents.

The design modification identifies the addition of the pressure sensor (and
associated connections) as preventing the undesirable behavior, thereby giving

an initial focus for diagnosis, namely the pressure sensor and its connections.

For the case in which no teleological description referencing specifi-
cation predicate ¢ was captured during the mechanism design, and ¢ is the
object of diagnosis (i.e. ¢ is not satisfied by the malfunctioning mechanism),
retrieving teleological descriptions relative to ¢ for other designs can potentially
provide some insight into the current diagnosis task. If the specification pred-
icate was established in a similar manner in both designs, then information
captured for one design can be applied in diagnosis of instances of the related
design. In this case, “similar manner” means the design modifications were
similar, such as adding an instance of a particular component or modifying a

specific parameter of the design.

Chapter 9

Acquisition

9.1 The Problem

For knowledge-based systems, acquiring the knowledge in a form us-
able by that system is a principal concern. This is particularly true for sys-
tems that rely on a database (knowledge base) of examples, such as analogical
reasoning systems [Hel88], design support systems, and case-based reasoning
systems [RS89]. Once captured, an effective indexing technique for classifying
and retrieving this knowledge is required. The semantics and form of teleolog-
ical descriptions developed in this research provide a means for addressing the
acquisition problem in the context of the design process model of Figure 1.2.
In particular, the essential elements of teleological descriptions are available
in this design process, namely design specifications and design modifications.
Further, the process includes evaluation steps, points at which it is determined
whether the design meets the specifications and at which the corresponding

teleological descriptions can be captured.

Several acquisition approaches are possible, and one has been imple-
mented in this work. These approaches can be applied either interactively
during design or to a replay of the design history. The acquisition approaches

are:

o Faxplicit description - the designer identifies the design specification and

the modification that comprise the teleological description. The acqui-

145

146

sition system can verify the fact that the modification did result in the

specification being met.

Explicit cue or Learn now - the designer explicitly invokes generation of
teleological descriptions at those points in the design process where a

specification has been satisfied.

Implicit cue - the designer states to the design system that the design
specification being addressed is X. The system proposed by Abelson et
al. [AEH*89] provides such an approach, with designer interactions such

as “Add an active stabilizer to damp the family B motions.”

Automatic - the acquisition program observes design activity, noting de-
sign modifications and evaluations, and automatically generates teleolog-

ical descriptions.

The approach implemented in this work can be described as the ex-

plicit cue approach, and provides the implementation core for the other ap-

proaches.

9.2 Comparative Analysis

Comparative and differential analyses are used to recognize the situa-

tion that a design specification has been met as a result of a design modification.

We compare design evaluations performed before and after the modification to

determine if a previously unsatisfied specification is now satisfied. Satisfaction

of a specification predicate is determined by a model checking algorithm that

computes the abstraction relations given in Chapter 4. In the designs examined

in this work, we use QSIM to model and simulate designs. The choice of QSiM

147

allows strong statements about guarantees of the presence or absence of partic-
ular behaviors since (QSIM guarantees that all possible behaviors of the model
appear in the QSIM generated behavior tree [Kui89a]. To evaluate a design,
we compare each behavior with the scenario ¢ to determine the truth value
of the specification predicate occursIn(o,b). After evaluating the unmodified
and modified designs, design specifications not met by the unmodified design

and now met by the modified design are attributed to the design modification.

It is possible that a modification does not ensure a specification for
all possible behaviors of a design, but does so for some behaviors. In this
case, a conditional teleological description can be generated, with the condition
describing an initial state or state sequence common to the behaviors now
meeting the specification and not occurring in (i.e. abstracting) the behaviors
that do not meet the specification. For example, the first modification to the
motor design (see Figure 6.31) solved the dead point specification for starting
positions between 0 and 180 and velocity 0, but did not eliminate the dead

points for starting positions 0 or 180 with velocity 0.

Acquisition in this manner can be applied to modeling and evaluation
techniques that do not guarantee the condition that all possible behaviors are
represented if the evaluation technique can state those initial conditions under
which it can guarantee the condition that the specification predicate is true. For
example, a quantitative modeling and simulation approach may be restricted
to making assertions about the truth value of a specification predicate given a

set of initial, quantitative values for the model (design).

148

9.3 The Issue of Scope

In considering acquisition of teleological descriptions, we must con-
sider the appropriate level of behavior or specification at which to attribute
a purpose of a design component or modification. The example of a spark
plug’s purpose in an automobile, suggested by Mooney [Moo89], best demon-
strates this issue. What is the purpose of a spark plug in an automobile? To
make the car go? To make the engine produce force? To make a piston go up
and down? In this example, the number of possible specifications or desired
behaviors would seem to be endless, given all the potential behaviors of the
automobile. We resolve this issue in the following paragraphs via a discussion
concerning the nature of large system specifications, how they are developed,

and how they evolve.

9.3.1 Design Specification Hierarchy

Although not always explicitly represented, the design specifications
for a large, complex system describe the desired behavior and physical charac-
teristics of the system at the level at which a user interfaces with that system.
In the case of the automobile, these specifications (implicit or explicit) state
such things as the expected behavior when the steering wheel is turned or when
the accelerator pedal is pushed down, or the miles per gallon achieved by the
vehicle. The designer or design team elaborates the design specifications based
on past knowledge of such designs and on the initial functional and structural
decompositions of the design (see discussions by Alford [Alf82] and Rich and
Shrobe [RS84]). For the automobile example, more detailed specifications for
the steering column and linkage are generated (e.g., X degrees of rotation of the

steering wheel translates to Y degrees of deflection in the front tires), the en-

149

gine (e.g., power curve characterization), and other functional and structural
components of the design. FEach of these elaborations can be related to the

higher level specification to which it contributes.

Teleological descriptions can be generated for any level of the spec-
ification hierarchy. For a specific component or modification, the associated
specification (associated via the teleological description) will usually make a
statement about the desired behavior of the functional or structural level at
which the component is included. For example, a specification for the auto-
mobile might be that it translates chemical energy (gasoline) into mechanical
energy (motion). The purpose of the engine is then to guarantee this behavior.
As the engine design is created (via functional and/or structural decomposi-
tion), the specification is decomposed, eventually resulting in a specification
for each individual cylinder of the engine. This level of specification will be
referenced by a teleological description for the spark plug, namely to guarantee
the behavior that the compressed fuel and air mixture is ignited and burns.
Consequently, a teleological description will associate a modification with a
specification of the “nearest” structural parent (hierarchically) within which

the modification is made.

9.4 Planning

Planning systems (¢f. Cohen and Feigenbaum [CF82], Nilsson [Nil80])
including linear planning, nonlinear planning (¢f. Fikes, Nilsson [FN71], and
Hart [FHN72]), and hierarchical planning (¢f. Sacerdoti [Sac74, Sac77]) provide
additional examples of initial and evolved specifications in design. Planning
systems attempt to achieve some goal state, given an initial state and a set

of operators on states. An example planning domain is robot manipulation, a

150

simple characterization of which is the blocks world.

In the blocks world, a goal state (specification) and pre- and post-
conditions of operators are given in terms of predicates such as on, onTable,
holding, and emptyArm. For example, the goal state in which three blocks (A,

B, and C) are stacked on one another on the table is written as
on(A,B) A on(B,C) A onTable(C).

To achieve this goal state, a planner can manipulate the state of the blocks
world via operators, such as pickUp, putDown, stack, and unStack, that trans-
form one state into another. Each operator has a set of preconditions that
determine when the operator may be applied to a state. For example, the op-
erator pickUp(z) requires the predicates clear (z) and emptyArm be true. In

addition to these two sources of specifications, namely

1. An initial specification in the form of the goal state, and

2. Preconditions for the application of operators

the planning system may decompose individual specifications during the course
of problem solving. In our example, the goal specification might be decomposed

into on(A,B), on(B,C), and onTable(C) for purposes of the planning task.

In planning tasks where operators and their preconditions are known,
acquiring teleological descriptions is straightforward. If the application of an
operator achieves a particular specification (operator precondition or subgoal),
then the teleological description references that operator and that specification.
If a sequence of operator applications is required, then the entire sequence is
referenced by the teleological description as the modification. In this way, the

operator applications (each with their respective teleological descriptions) used

151

to achieve the various subgoals of a goal g can be referenced as a group, or macro
modification (see Huhns and Acosta [HA88]), by a teleological description that

also references the goal g.

In our blocks world example, assume that the initial state is described
by onTable(C) A onTable(B) A on(A,B). The planning system (hopefully!)

will generate a plan like:

—_

. pickUp(A)
2. putDown(A)
3. pickUp(B)
4. stack(B,C)
5. pickUp(A)

6. stack(A,B)

Assuming the planning system generated the subgoals on(B,C) and on(A,B)
and recognized the need to achieve subgoal on(B,C) first, we can generate
the following teleological descriptions (in the context of the plan), where [

represents the initial state:

1. pickUp(A)

e (1) Guarantees clear(B)

2. putDown(A)

e (2) Guarantees emptyArm

152

e (1,2)! Conditionally when /? Guarantees clear(B) A emptyArm, pre-

conditions for moving B.

3. pickUp(B)

e (3) Guarantees holding(B), precondition for operation 4.

4. stack(B,C)

e (4) Guarantees on(B,C), a subgoal generated by the planner.

e (1,2,3,4) Conditionally when I Guarantees on(B,C).

5. pickUp(A)

e (5) Guarantees holding(A), precondition for operation 6.

6. stack(A,B)

e (6) Guarantees on(A,B), a subgoal generated by the planner.
e (1,2,3,4,5,6) Conditionally when [Guarantees on(A,B) A on(B,C).
There are two interesting observations to make from this planning

example. First, the “regressive” operation of removing A from B (operation

1) does not cause a problem in expressing the purpose of operations, since

I'This notation indicates that all operators are applied, in the specified order.

2 An explicit condition is given here to state that the operators are applied from the initial
state. A single operator (modification) is assumed to be applied to the previous state of the
design history

153

the operation alone can be related to a specification (clear(B)). Second, the
context of solving specific goals provided by the planner allows teleological de-
scriptions involving a composite modification such as (1,2,3,4) to be recognized

and generated.

Finally, with respect to the planning task, the greatest potential for
teleological descriptions and their acquisition is to provide a database of ex-
ample design modifications and their purpose, from which design modification

operators can be learned.

Chapter 10

Previous and Related Work

10.1 Introduction

Although a large number of potential uses of teleological descriptions
have been cited in work on design explanation, design reuse, design by analogy,
case-based reasoning, and diagnosis, few researchers have directly addressed
the formal representation and acquisition problems for descriptions of purpose.
The two most significant contributions discussed in the literature are de Kleer’s
EQUAL system [deK85] and the Functional Representation [SC85] work at
Ohio State University. More recent efforts in representing purpose have been
undertaken by the Conservation of Design Knowledge (CDK) Project [BSZ89]
at NASA Ames Research Center and in Gruber’s ASK system [Gru91], and in
medical reasoning research in Downing’s BIOTIC system [Dow90]. Represent-
ing purpose in design systems is addressed in the REDESIGN system [SM84]
and an approach to diagnosis called the theory of responsibilities has been de-
veloped by Milne [Mil85]. We compare the work described in this dissertation
to these systems and approaches, and we point out where the TeD language has
extended previous capabilities and how TeD represents the descriptions used

in previous work.

With respect to related research, the work described in this disser-
tation achieves a set of capabilities that no related research has collected to-
gether. Subsets of these capabilities can be found in related research. However,

the classification and retrieval capabilities supported by TeD are not provided

154

155

elsewhere, and the ability to described purposes regarding behaviors not ex-
hibited by the mechanism (i.e., prevented behaviors such as explosion of the
steam boiler) and components removed from the mechanism is unique to TeD.

We list here the key capabilities supported by the TeD language.

e Formal language for representing purpose, with clearly defined semantics,

as opposed to an ad hoc representation
e Domain independent teleology language
o Teleologies are not prescribed
o Ability to express teleology regarding missing behaviors
o Ability to express teleology regarding component removed from a design

o Teleological descriptions reference behavior of any level of the structure

hierarchy
e Support for indexing and classification
o Teleological descriptions can be acquired by automated techniques

o Teleological descriptions are task independent, and can be applied to ex-
planation, design reuse, redesign, analogical design, case-based reasoning,

and diagnosis.

10.2 Function versus Teleology

As pointed by Kuipers [Kui85], the existing literature frequently ob-
scures the distinction between purpose and behavior by using the term func-
tion to refer to behavior. For example, in their introduction to [CM85] Chan-

drasekaran and Milne state:

156

In simple cases, the behavior [...] can be the function, but in
general, functional specifications involve teleology, i.e., an account

of the intentions for which the device is used.

In this dissertation, the term function has not been used to avoid this confusion.
In comparing this research to other work, a clear definition of the term function
used in other work is required. In particular, the term function is used to
describe behavior, teleology, or various combinations of behavior and teleology.
We will attempt to clarify the meaning of the term function for work referenced

in this chapter.

10.3 EQUAL (de Kleer)

de Kleer’'s EQUAL system [deK85] expresses teleological descriptions
in terms of behaviors of a component. Each such description is based on a
causal assumption(s) on the parameters of the component. For example, if a
resistor in an electrical circuit causally relates changes in voltage to changes in
current, then the resistor is characterized as a voltage-sensor. A functional char-
acterization (teleological description) is identified by matching derived behavior
with prescribed behavior prototypes which have been enumerated, named, and

added as domain specific knowledge. Two limitations of this approach are

o Teleological descriptions are prescribed and domain specific, and

o Teleological descriptions are limited to describing relationships among

variables of a single component.

To clarify this second point, a teleological description (in EQUAL) of a com-

ponent cannot reference behaviors and parameters of other components of the

157

system in which the component under analysis is embedded. For example, the
purpose of a valve in a system of pipes and tanks may be to prevent overflow of
a specific tank. The parameters of the valve are a control input, a measure of
the valve aperture, and a flow rate. The level of a tank is sensed (via pressure,
a level indicator, or some other technique) and relayed to the control input of
the valve. EQUAL can only express teleology in terms of the parameters of the
component, and in this example the level of the associated tank is not a pa-
rameter of the valve. Hence, the teleological description of the valve generated

by EQUAL would be “control flow through the valve”.

TeD addresses both of these problems. First, a teleological description
(in the TeD language) for a component (i.e., the design modification that added
the component) is generated from the specifications of the design in which the
component in included, and hence is not prescribed for the component.! Second,
TeD provides for abstraction of teleological descriptions, thereby allowing these
descriptions to be applied across domains (electrical, thermal, etc.) in support

of design by analogy.

For purposes of design explanation (a goal of the EQUAL system),
EQUAL teleological descriptions can provide answers to queries of the form
“What is the behavior of component X in the circuit?”. However, queries of
the form “Why is component X in this circuit?” cannot be answered beyond
“to provide (component) behavior Y”. EQUAL teleological descriptions will
not give any insight into the component’s contribution to a design specifica-
tion beyond one that defines the desired behavior observed at the component

terminals.

!One could say that a design specification is prescribed, but only in the context of the
design in which the component is included, and not for the component itself.

158

The EQUAL approach does attempt to capture causal information
(implicitly, via the derivation process) in a teleological description, while the

TeD language does not. The relevance of this approach to causal reasoning is

debated in [IS86a, IS86b] and [dIKBS86].
10.3.1 Function vs. Teleology

In the EQUAL work, de Kleer uses the terms function and teleology
interchangeably (“ .. the function of a circuit (i.e., its purpose) ... ”, [deK85, p.
205]). In EQUAL, function is a combination of causal information (changes in
voltage “cause” changes in current) and behavior (voltage and current change).
Because the teleological descriptions of a component are defined in terms of
the behaviors observed at the component terminals, teleological descriptions in

EQUAL will necessarily map one-to-one to these behaviors.

10.4 Functional Representation, Functional Modeling

The functional representation (FR) [SC85, Goe89, SCB89] and func-
tional modeling (FM) [ST90, SKB90] address 1) representing “how a device
functions” and 2) applying this information to explanation, diagnosis, and de-
sign. The functional representation expresses functional knowledge at multiple

levels of abstraction in the following ontology [SC85]:

o Structure - relationships among components and abstractions of compo-

nents

o [unction - the response (what we call behavior) of the component to ex-

ternal or internal stimult

159

FUNCTIONS:
buzz: TOMAKE buzzing(buzzer)
IF pressed (manual-switch)*
PROVIDED assumptionl
BY behaviorl

END FUNCTIONS
Figure 10.1: Function in FR (Functional Representation)

o Behavior - how a device achieves its function. We call this a causal

explanation or representation

o Generic knowledge - causal knowledge compiled from various domains,

such as Kirchoff’s laws in electrical circuits

o Assumptions. We call these constraints or preconditions.

With respect to teleological descriptions, the interesting ontological element of
FR is Function. Each function definition in FR contains a ToMake clause (see
Figure 10.1, taken from [SC85]) which references a particular behavior (in the
QsiM or TeD sense) that the FR function is supposed to achieve. The ToMake

clause states the purpose of the FR function.

In TeD, given a state description of the behavior (buzzing(buzzer)),
the IF condition behavior (pressed(switch)), and the assumptions in the PRO-
VIDED clause, we can write a teleological description for the FR function.
Let oarake, 017, and o; be the respective state descriptions listed above. The

teleological description for the FR function is

d Conditionally {in 074, 0,} Guarantees o4,

160

where ¢ is a design modification that incorporates the FR function into the
larger design. Consequently, TeD provides a formal language for expressing
the ToMake clause and condition clauses in FR. Keuneke [Keu91] extends the
ToMake clause of FR to include the “function types” ToMaintain, ToPre-
vent, and ToControl. The TeD language can formally capture the semantics

of these “purposes”, or function types as shown in Chapters 3 and 4.

By expressing an FR purpose in TeD, we combine several clauses of
the FR description with a formal language for which we have indexing and clas-
sification capabilities. This formal language also provides a means for clearly

defining the semantics of Keuneke’s function types.

10.4.1 Function vs. Teleology

As is obvious from the definition of FR ontological elements, func-
tion in FR describes a desired behavior via the ToMake clause and condition
clauses, and also references a causal description (the FR behavior) of how the

FR function (behavior) is achieved.

10.5 Responsibilities (Milne)

[Mil85] describes an approach to automated troubleshooting called
the theory of responsibilities. Responsibilities relate a particular component of

a design (e.g., analog circuit) to a desired output (behavior) in the form
(output) (time-interval) (value) by (components)

Responsibilities are assigned automatically based on second principles which
have been provided to the system. These second principles represent “the type

of description that an electronics engineer uses to describe various building

161

blocks of circuits”, and are used in causal simulation to develop the responsibil-
ity assignments. These second principles represent domain specific knowledge
that must be elicited from designers and represented. The thoroughness of the
responsibility assignments depends on the depth of understanding provided in
the second principles. If only limited understanding is available in the form of

second principles, then responsibilities can only be assigned in a limited way.

The approach taken in the theory of responsibilities resembles the FR
work and the work described in this dissertation in that responsibilities asso-
ciate components with behaviors of the system incorporating the component.
The TeD language provides a formal basis for these representations, and the
TeD implementation provides an acquisition technique that does not rely on

the availability of second principles.

10.5.1 Function vs. Teleology

The theory of responsibilities work uses the term function to mean the
(expected) behavior at the component terminals. A responsibility is analogous

to a teleological description in this work.

10.6 CDK Project (NASA Ames)

The Conservation of Design Knowledge (CDK) Project addresses the
problems of representing and acquiring design rationale. The CDK acquisition
approach is very similar to the approach taken in this work, and is based on a

similar philosophy of design rationale. [BSZ89] states:

This work assumes that the goal of the designer is to satisfy a set
of (changing) requirements and that the rationale for design deci-

sions can be inferred by comparing how different design alternatives

162

meet the design requirements. ... Qur first strategy is to simulate
the behavior of two designs, collect the set of requirements that were
affected, and compare the ways in which they are met. To accom-
plish this, our system must represent design requirements and model
the structure and behavior of alternative designs. Then the impact

of these designs on their respective requirements could be evaluated.

TeD provides a formal language for representing design rationale de-
scriptions captured in the CDK acquisition work. The CDK work complements
the work on TeD by providing acquisition techniques. Insufficient information
regarding the details of the CDK project representation is available to judge

its strengths and weaknesses with respect to TeD.

10.7 BIOTIC (Downing)

BIOTIC [Dow90] critiques natural (e.g., human, reptilian) circulatory
models with respect to teleologies, desired global behaviors of a system. For
circulatory systems, example teleologies are oxygen transport or carbon diox-
ide dissipation. BIOTIC critiques circulatory systems from two perspectives, a
static or “zero-order” perspective and a dynamic or “first-order” perspective,
called the Bipartite Teleological Model (BTM). The formalization of BTM
identifies four teleologies, transport, conservation, accumulation, and dissipa-
tion. The topology (structure) of the circulatory systems are described in terms
of producers, consumers, flow mizers, and connections among these elements.
Quantities modeled in these topologies are concentrations, gradients, exchange
rates, and flows. For the static perspective, “recommended” behaviors of pro-
ducer and consumer flows and gradients are enumerated. For the dynamic

perspective, tendencies for producer and consumer quantities are enumerated.

163

Given these recommended behaviors for each teleology, BIOTIC can then cri-
tique various circulatory systems with respect to each teleology. These critiques
evaluate each topology’s ability to meet the teleology by assigning ratings in
the range -1 to 1 to the systems behaviors (compared to the behaviors recom-
mended for the specific teleology), and produces an explanation that relates

the salient topological relationships to teleological satisfaction.

The teleologies of BIOTIC correspond to design specifications of the
work described in this dissertation?. The explanations generated by BIOTIC
correspond to the teleological descriptions of this work. For example, in cri-
tiquing a model of the reptilian circulatory system, the following explanation

is generated:

The steady ventricular output along with the parallelism of GM
and GL permits the desired a) increase of flow to the consumption

region, GL, and b) decrease of flow to the production region.

In the TeD language, the structural and component behavioral features of
steady ventricular output and parallelism of GM and GL comprise the design
modification, and the desired behaviors expressed in a) and b) comprise the
specification predicate of a teleological description. Note that the desired be-
haviors (specifications) a) and b) are derived from the top level specification

(BIOTIC teleology) concerning (carbon dioxide) dissipation.

With respect to the work described herein, the most interesting capa-

bilities of BIOTIC are 1) application to natural systems and 2) the acquisition

It should be noted that BIOTIC addresses teleology in natural, evolved systems while
this work addresses teleology in engineered systems. We avoid the concomitant philosophical
and theological debate.

164

of teleological descriptions (BIOTIC explanations).

10.8 ASK (Gruber)

The ASK [Gru91] system elicits justifications from experts via an
interactive dialogue with the expert. The characteristics of these justifications

are [Gru9l, p. 73]

1. Justifications are represented in terms of SITUATIONS (structure, as-
sumed operating conditions), CHOICES (design alternatives), and FEA-
TURES (models, initial conditions, predicted behaviors).

2. The representation is implemented in a TASK-SPECIFIC ARCHITEC-

TURE that can apply justifications to perform some task

3. Examples are elicited in a COMPUTATIONAL CONTEXT OF USE
(design evaluation), where situations and choices are reflected in the state

of the system

4. Justifications are elicited by asking for RELEVANT FEATURES, se-

lected from a finite set of possible features provided by the system

5. EXPLANATIONS ARE GENERATED by mapping from relevant fea-

tures to intended behaviors.

These characteristics can be realized as a combination of TeD teleological de-
scriptions, the design environment in which they are captured, and some task
environment in which they will be used (e.g., design explanation). ASK situ-
ations and choices correspond to TeD design histories (designs and modifica-
tions). ASK features (as predicted behaviors) correspond to TeD design specifi-

cations. The ASK computational context of use is the design evaluation step in

165

acquiring TeD descriptions. The step of asking for relevant features identifies
the structural elements (modifications to structure, component behavior, or
parameters), and explanation generation associates the relevant features (TeD

design modifications) with intended behaviors (TeD design specifications).

The contribution of TeD is a formal language for representing teleo-
logical descriptions (ASK explanations) and the associated indexing capabil-
ities provided by the language. The TeD representation also supports more

automated acquisition of teleological descriptions during design.

10.9 REDESIGN (Steinberg, Mitchell)

The REDESIGN system [SM84] utilizes representations of purpose
to focus the selection of candidate components for the redesign task. These
teleological descriptions occur in a design plan, which “is characterized in terms
of implementation rules that embody [...] general knowledge about circuit
design tactics”. These rules specify decomposition steps for realizing a design
in available components. For example, a rule specifies how the OR of two
functions is accomplished (introduce an OR-gate) or specifies how parallel input
can be converted into serial input (introduce a shift register). All such rules
applied to create the design can be organized into the design plan, which then

records the role of individual components in the larger design.

Steinberg and Mitchell give the following example to demonstrate the

kind information they attempt to capture:

“Because the address inputs to the ROM6475 must be stable for
at least 500 nsec, while the input Characters are stable for only 300
nsec, a latch (LATCHT74175) is used to capture the input Character,

166

and hold these data values for an acceptable duration.”

To represent this description in the TeD language, let § denote the addition
of “LATCH74175” to the circuit, and let o denote the behavior “capture the
input Characters and hold the address inputs to ROM6475 stable for at least

500 nsec”. The teleological description is then

6 Guarantees o.

Descriptions of purpose in the REDESIGN system are represented in
the form of implementation rules. These rules are captured independently of the
design process and added to the design system as domain specific knowledge.
Automatic acqusition of implementation rules is proposed as future work. The
TeD language supports acquisition of these descriptions as design occurs, pro-
viding a means for capturing the information from which such implementation
rules can be derived (as described in Section 9.4). Given state representations
of the desired behaviors of a circuit (e.g., OR’ed functions or parallel to serial
transmission), REDESIGN descriptions of purpose can be expressed in the TeD

language.

10.9.1 Function and Teleology

The REDESIGN work makes a distinction between function and pur-
pose, where function defines the (expected) behavior at component terminals,
and purpose identifies the component’s role in the larger context of the behavior

of the design that includes the component.

167

10.10 Purpose-Directed Analogy (Kedar-Cabelli)

The purpose-directed analogy system of [Ked85] requires a representa-
tion of purpose or function of artifacts to direct the construction of analogies.
In particular, these descriptions of purpose are used to identify the relevant
attributes of artifacts to be used in the analogy. The example given is for
the concept HOT-CUP, representing objects whose purpose is to enable the
drinking of hot liquids. If a cup were to be used for some other purpose, say
ornamental, then different attributes would be meaningful in the analogy. The
approach to representing function uses predicates such as enables with argu-
ments such as operations (e.g. drinking) and substances (e.g., hot liquid). A
domain theory is developed in which attributes imply structural features which
in turn imply preconditions to actions which can be combined to achieve some
goal (i.e., the purpose of the artifact). In this system, the relationships between

attributes, structure, and function are prescribed and domain specific.

The TeD language provides a formal, domain independent represen-
tation of purpose that could be used in purpose directed analogy. Further, the
TeD representation provides a means for retrieving potential analogy examples.
In the case of the concept HOT-CUP, one aspect or specification of the goal to
drink a hot liquid is the insulating property of the material from which the cup
is constructed. If o represents the scenario in which heat is rapidly transmitted
from the liquid in the cup to the hand holding the cup, then we can write the
teleological description

6 Prevents o

where § represents the selection of styrofoam as the material from which the cup
is constructed. The behavior involved in this teleological description, namely

the transmission of heat, can assist in the selection of analogy candidates by

168

identifying those designs which incorporate an insulator, i.e., something that

prevents the transmission of heat.

Chapter 11

Conclusions

11.1 Accomplishments

The contribution of this work is the ability to represent descriptions of
purpose so that these descriptions can be reasoned about (acquired, classified,
and retrieved) and reasoned with in design (explanation, reuse, analogy), case-
based reasoning, and diagnosis. We believe that this is an important endeavor

for artificial intelligence, as Schank points out more generally:

...the Al [is] also in collecting the actual experiences of the
experts and indexing them so that reminding and, hence, learning

[can] take place. [Sch9l, p. 45]

The cruz of Al is in the representation of [this] knowledge, the
content-based indexing of [this] knowledge, and the adaptation and
modification of this knowledge through the exercise of this knowl-
edge. [Sch9l, p. 47]

This work has addressed the first two points here, namely the representation
of teleological descriptions (knowledge) and the content-based indexing of this

knowledge. The claims laid out in Chapter 1 for this work were:

1. Descriptions of purpose can be represented formally in a language that is

independent of a particular domain of mechanisms or behavior description

169

170

language (specifically the Teleological Description (TeD) language), and
these descriptions of purpose can be expressed in terms of the primitive

operators Guarantees and unGuarantees,

2. Descriptions of purpose can be effectively acquired in the design process

given information available in current design methodologies, and

3. The representation language facilitates the classification and retrieval of
descriptions of purpose for use in design explanation, design reuse, design

by analogy, case-based reasoning, and diagnosis.

These claims are supported as follows:

1. The teleological description and behavior abstraction languages described
in Chapters 3 and 4, respectively, provide a formal language that is in-
dependent of any specific domain of mechanisms. This independence is

demonstrated in the examples described in Chapters 2 and 6.

2. An acquisition technique is described in Chapter 9 and has been imple-
mented. Other research (¢f. [Gru9l], [BSZ89]) addresses the acquisition

problem directly, providing additional acquisition approaches.

3. Teleological descriptions can be classified and retrieved as described in
Chapter 8. Further, retrieval via this index is well suited for the tasks of
design explanation, design reuse, design by analogy, case-based reasoning,
and diagnosis because queries are posed in terms of the problem to be

solved as opposed to the technique for solving the problem.

171

11.2 Implementation

The ideas put forth in this dissertation have been implemented for
the structure language CC [FD90] and the behavior language of Qsim [Kui85,
Kui86]. The example designs for the steam boiler (Chapter 3), input selection
circuit (Chapter 6), and electromechanical motor (Chapter 6) are represented in
CC and simulated in QSiM. The teleological descriptions at each modification
step described for the designs are captured, and classified in the index structure
described in Chapter 8. Diagnosis and reuse queries via the index are also

implemented.

11.3 Scaling Up

A critical question regarding the representation, acquisition, and in-
dexing approaches is “Do they scale up?”. We believe they will, and support
this claim with observations about design specifications for real world, engi-

neered systems and the design methodologies employed to produce the designs.

First, consider the issues of representation and indexing. Although
the complete specification of a real world system may be many pages long in its
text description, it is structured (usually hierarchically) with each individual
specification making a concise statement about some static property or dynamic
property (behavior) the designed system should exhibit. Hence, the scenario
representation used to express behaviors will be adequate for the task. Research

and progress in

e requirement (specification) representation and capture, and

e methodological (design process) support

172

will also contribute to the scale up of this work, since each of these endeavor

to formally represent, reason about, and reason with design specifications.

Now, consider the issue of acquisition. As with representation and in-
dexing, work in requirements and methodology support consider specifications
as first class objects, hence making them accessible to acquisition techniques.
To capture the fact that system requirements have in fact been met in a sys-
tem design (currently available in products such ad RDD-100 and Teamwork,
and called requirements traceability), requirements and methodology support
systems will (automatically or via human intervention) trace verification steps
with respect to requirements and hence identify those points at which teleolog-

ical descriptions can be acquired.

Finally, with respect to acquisition, our experience has been that in-
dividual designers make design modifications whose purpose is to satisfy one or
a small number of individual specifications, simply because the high complex-
ity of making and verifying changes that address many specifications makes
the design process unmanageable. For example, software development organi-
zations employ control systems for software maintenance that require changes
to the source code to be identified with the specification (usually in the form
of a user problem report, i.e., a specification the software does not meet) the
change is intended to address. The designers (maintainers) are then assigned
the task of addressing individual problem reports, or a small number of related

problem reports.

11.4 Future Work

This work provides a basis for the following related research activities:

173

o Faxtension to other domains, particularly software design. Issues of design
explanation, design by analogy, design reuse, and diagnosis are also of
concern in the domain of software engineering. Investigation should focus
on the differences (if any) in specifications, behavior description, and

verification techniques from the design of physical systems.

o Integration with task specific problem solvers: design explanation, case-

based reasoners, and diagnosis systems.

o Integration into a design environment: address integration issues in-
cluding: explicit representation of and reasoning with design process or
methodology models; explicit representation of teleological description ac-
quisition and use (explanation, design reuse) in the design process model;

access to various representations of design data.

o Scaling up: building a knowledge-base of descriptions for real, working
systems that can subsequently be used in real world design, case-based

reasoning, and diagnosis systems.

o Fx post facto acquisition: acquisition of teleological descriptions from

designs for which only the final design and no design history is available.

o Probabilistic Guarantees: representation and acquisition of teleological
descriptions that describe the purpose of increasing or decreasing the

probability of a particular behavior (suggested by Michael Huhns).

11.5 Epilogue

In reviewing this work to compose a conclusion, many of the details

seem straightforward now, partly from focusing on the problem for several years

174

and partly because the goals of this research have been refined along with the
results. A more fundamental reason for this observation is that much of what
has been formalized here is understood and practiced intuitively by designers.
This type of contribution is noted by Polya [Pol73, p. 57] when he quotes the

nineteenth century mathematician Bernard Bolanzo:

I do not think at all that I am able to present here any procedure
of investigation that was not perceived long ago by all men of talent;
and I do not promise at all that you will find here anything quite
new of this kind. But I shall take pains to state in clear words
the rules and ways of investigation which are followed by all able
men, who in most cases are not even conscious of following them.
Although I am free from the illusion that I shall fully succeed even
in doing this, I still hope that the little that is presented here may

please some people and have some applications afterwards.

In summary, this work attempts to formalize an aspect of intelligent

behavior, namely reasoning about and reasoning with descriptions of purpose.

Appendix A

Steam Boiler Example

A.1 Quantity Space Definitions

(define-quantity-space temperature-qspace (0 AT* FT* inf))
(define-quantity-space heat-qspace (0 Ha* Hf* inf))

(define-quantity-space heat-flow-gspace
(minf F-* O Fx* inf)
(conservation-correspondences (F-* Fx)))

(define-quantity-space liquid-flow-gspace
(minf Fmax-* O Fmax* inf)
(conservation-correspondences (Fmax-#* Fmax*)))

(define-quantity-space simple-pressure-gspace
(minf Pf-* O Pf#* inf)
(conservation-correspondences (Pf-* Pfx*)))

(define-quantity-space pressure-gspace
(minf Pf-* Pmax-* Pa-#* O Pa* Pmax* Pf* inf)
(parent simple-pressure-gspace)
(conservation-correspondences
(Pf-* Pf*x) (Pa-* Pax) (Pmax* Pmax-*)))

(define-quantity-space modified-pressure-gspace
(minf Pf-* Pmax-* Pa-* O Pa* Plim* Pmax* Pf* inf)
(parent pressure-gspace)
(conservation-correspondences

(Pf-* Pf*x) (Pa-* Pax) (Pmax* Pmax-*)))

(define-quantity-space voltage-gspace (0 Vmax*))

A.2 Component Definitions

(define-component-interface
Heat-Source
"Heat source in thermal domain' thermal
(terminals out))

(define-component-implementation
primitive Heat-Source
"Heat source in thermal domain, in QSIM primitives"
(terminal-variables (out (f heat-flow)
(t temperature independent))))

(define-component-interface
Heat-Sink
"Heat sink in thermal domain'" thermal
(terminals in))

(define-component-implementation
primitive Heat-Sink
"Heat sink in thermal domain, in QSIM primitives"
(terminal-variables (in (f heat-flow)
(t temperature independent))))

(define-component-interface
Boiler-Vessel
"Boiler Vessel in thermal domain'" thermal
(terminals in out)
(quantity-spaces
(defaults (temperature temperature-gspace)
(entropy heat-qspace))))

(define-component-implementation
primitive Boiler-Vessel
"Boiler Vessel for heat flow, in QSIM primitives"
(terminal-variables
(in (inFlow heat-flow (lm-symbol IF))
(Tin temperature))
(out (outFlow heat-flow (lm-symbol OF))
(Tout temperature)))
(component-variables
(netFlow heat-flow display (lm-symbol NF))
(heat entropy display (lm-symbol H))
(pressure (hydraulic pressure)

display (lm-symbol P)
(quantity-space pressure-qspace))
(T temperature display)
(dTin temperature display
(quantity-space base-quantity-space))
(dTout temperature display
(quantity-space base-quantity-space)))
(constraints
((ADD T dTin Tin) (0 0 0) (AT* O AT*) (FT* O FTx))
((M+ dTin inFlow) (0 0))
((ADD T dTout Tout) (0 0 0) (AT* O AT*) (FT* O FT*))
((M+ dTout outFlow) (0 0))
((ADD inFlow outFlow netFlow) (0 0 0))
((d/dt heat netFlow))
;; Assume constant fluid/gas mass, so heat follows temperature

((M+ heat T) (0 0) (Ha*x AT*) (Hf* FT*))
((M+ pressure T) (0 0) (Pax AT*) (Pfx FTx))
)

(define-component-interface

Controlled-Heat-Source

"Controlled heat source in thermal domain'" thermal
(terminals out ctl))

(define-component-implementation
1 Controlled-Heat-Source
"Controlled heat source, in QSIM primitives"
(terminal-variables (out (f heat-flow)
(t temperature))
(ctl (v (electrical voltage)
(quantity-space voltage-gspace))))
(constraints ((S- v t (0 FT*) (Vmax* ATx)))))

(define-component-interface
Boiler-Vessel-Modified
"Boiler Vessel with Instrumentation Terminal'" thermal
(terminals in out t)
(quantity-spaces
(defaults (temperature temperature-gspace)
(entropy heat-qspace))))

efine-component-implementation
(defi p impl i
primitive Boiler-Vessel-Modified

"Boiler Vessel with instrumentation terminal, in QSIM primitives"
(terminal-variables
(in (inFlow heat-flow (lm-symbol IF))

(Tin temperature))

(out (outFlow heat-flow (lm-symbol OF))
(Tout temperature))

t (p (hydraulic pressure)

(quantity-space modified-pressure-qspace))))
(component-variables

(netFlow heat-flow display (lm-symbol NF))
(heat entropy display (lm-symbol H))
(pressure (hydraulic pressure)

display (lm-symbol P)

(quantity-space modified-pressure-gspace))
(T temperature display)
(dTin temperature display

(quantity-space base-quantity-space))
(dTout temperature display

(quantity-space base-quantity-space)))

(constraints
((ADD T dTin Tin) (0 O 0) (AT* O AT*) (FT* O FT*))
((M+ dTin inFlow) (0 0))
((ADD T dTout Tout) (0 0 0) (AT* O AT*) (FT* O FT*))
((M+ dTout outFlow) (0 0))
((ADD inFlow outFlow netFlow) (0 0 0))
((d/dt heat netFlow))
;; Assume constant fluid/gas mass, so heat follows temperature
((M+ heat T) (0 0) (Ha*x ATx) (Hf* FTx))
((M+ pressure T) (0 0) (Pax AT*) (Pf#* FTx))
((M+ pressure p) (Pf-* Pf-*) (Pmax-* Pmax-*) (Pa-* Pa-*) (0 0)
(Pax Pax) (Plim* Plimx) (Pmax* Pmax*) (Pf* Pfx*))

)

(define-component-interface
Pressure-Sensor
"Pressure sensor, voltage output' hydraulic
(terminals in out))

(define-component-implementation
1 Pressure-Sensor
"Pressure sensor, voltage output, in QSIM primitives"
(terminal-variables

(in (p pressure (quantity-space modified-pressure-qspace)))
(out (v (electrical voltage) (quantity-space voltage-gspace))))
(constraints ((S+ p v (Plim* 0) (Pmax* Vmax*)))))

fedinModslDefinition
SB "Steam Boiler'" thermal
(quantity-spaces
(defaults (temperature temperature-gspace)
(entropy heat-gspace)
(heat-flow base-quantity-space))))

(define-component-implementation
1 SB
"Simple steam boiler"
(components
(Vessel boiler-vessel (display netflow heat pressure T
dTin dTout inFlow outFlow))
(Flame heat-source)
(Air heat-sink))
(connections (pl (Flame out) (Vessel in))
(p2 (Vessel out) (Air in))))

(define-component-implementation
2 SB
"Steam boiler with pressure sensor'
(components
(Vessel boiler-vessel-modified
(display netFlow heat pressure T
dTin dTout inFlow outFlow))
(Flame controlled-heat-source)
(Air heat-sink)
(Sensor pressure-sensor (display v)))
(connections (pl (Flame out) (Vessel in))
(p2 (Vessel out) (Air in))
(p3 (Vessel t) (Semsor in))
(p4 (Sensor out) (Flame ctl))))

(defun Steam-Boiler-Sim (model text)

(let* ((initial-values (translate-cc-name-alist
model
>(((Vessel t) (AT* nil))
((Flame f) ((minf 0) nil))
((Flame t) (FT* std))
((Air t) (AT* std)))))
(sim (make-sim))
(initial-state (make-new-state
:from-qde model
:assert-values initial-values
:text text
:sim sim)))
(gqsim initial-state)
(gsim-display initial-state)
sim))

A.4 Design Specifications

(define-design-specification
DHF-No-Explode
(prohibited (((((Pressure) ((PMax* inf) ign)))) true))
)

A.5 Sample Trace

CC and TeD demo - Steam Boiler example. Initial Steam Boiler

definition (in CC):

(define-component-interface SB
"Steam Boiler"
(quantity-spaces
(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)
((THERMAL ENTROPY) HEAT-QSPACE)
((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))

(define-component-implementation SB 1
"Simple steam boiler"
(components

(VESSEL BOILER-VESSEL (DISPLAY NETFLOW HEAT PRESSURE T DTIN
DTOUT INFLOW OUTFLOW))
(FLAME HEAT-SOURCE)
(AIR HEAT-SINK))
(connections
(P1 (FLAME 0OUT) (VESSEL IN))
(P2 (VESSEL OUT) (AIR IN))))

Boiler Vessel component definition (in CC):

(define-component-interface BOILER-VESSEL
"Boiler Vessel in thermal domain"
(terminals IN 0OUT)
(quantity-spaces
(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)
((THERMAL ENTROPY) HEAT-QSPACE))))

(define-component-implementation BOILER-VESSEL PRIMITIVE
"Boiler Vessel for heat flow, in QSIM primitives"
(terminal-variables

(IN (INFLOW HEAT-FLOW (LM-SYMBOL IF)) (TIN TEMPERATURE))
(OUT (OUTFLOW HEAT-FLOW (LM-SYMBOL OF)) (TOUT TEMPERATURE)))
(component-variables
(NETFLOW HEAT-FLOW DISPLAY (LM-SYMBOL NF))
(HEAT ENTROPY DISPLAY (LM-SYMBOL H))
(PRESSURE (HYDRAULIC PRESSURE)
DISPLAY (LM-SYMBOL P)
(QUANTITY-SPACE PRESSURE-QSPACE))
(T TEMPERATURE DISPLAY)
(DTIN TEMPERATURE DISPLAY (QUANTITY-SPACE BASE-QUANTITY-SPACE))
(DTOUT TEMPERATURE DISPLAY
(QUANTITY-SPACE BASE-QUANTITY-SPACE)))
(constraints
((ADD T DTIN TIN) (O O 0) (AT* O AT*) (FT* O FTx))
((M+ DTIN INFLOW) (O 0))
((ADD T DTOUT TOUT) (0 0 0) (AT* O AT*) (FT* O FTx))
((M+ DTOUT QUTFLOW) (0 0))
((ADD INFLOW OQUTFLOW NETFLOW) (0 0O 0))
((D/DT HEAT NETFLOW))
((M+ HEAT T) (0 0) (HAx ATx*) (HF* FTx))
((M+ PRESSURE T) (0 0) (PA* AT*) (PF* FT%))))

Heat source and heat sink definitions (in CC):

(define-component-interface HEAT-SOURCE
"Heat source in thermal domain"
(terminals 0UT))

(define-component-implementation HEAT-SOURCE PRIMITIVE
"Heat source in thermal domain, in QSIM primitives"
(terminal-variables

(QUT (F HEAT-FLOW) (T TEMPERATURE INDEPENDENT))))

(define-component-interface HEAT-SINK
"Heat sink in thermal domain"
(terminals IN))

(define-component-implementation HEAT-SINK PRIMITIVE
"Heat sink in thermal domain, in QSIM primitives"
(terminal-variables

(IN (F HEAT-FLOW) (T TEMPERATURE INDEPENDENT))))

Design specification for the Steam Boiler. This specification states
that the pressure should not exceed a maximum expressed as the landmark

Pmax*.

Design specification: DHF-NO-EXPLODE

Prohibited Scenarios:
State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Constructing the QDE for the Steam Boiler from the CC definition.
Information regarding the model variables is displayed.

Model stats: 12 variables, 0 mode variables, 10 constraints.
Model variable quantity spaces:

Hierarchical name Quantity Space Internal CC name

(SB AIR F) (MINF O INF) SB_AIR.F@P2

(SB VESSEL OUTFLOW) [d] (MINF O INF) SB_VESSEL.OUTFLOW@P2

(SB VESSEL INFLOW) [d] (MINF O INF) SB_VESSEL.INFLOW@P1

(SB FLAME F) (MINF O INF) SB_FLAME.F@P1
(SB VESSEL DTOUT) [d] (MINF O INF) SB_VESSEL.DTOUT
(SB VESSEL DTIN) [d] (MINF O INF) SB_VESSEL.DTIN
(SB VESSEL T) [d] (0 AT* FT* INF) SB_VESSEL.T

(SB VESSEL PRESSURE) [d] (MINF PF-* PMAX-* PA-% 0
PAx PMAX* PF* INF)
SB_VESSEL .PRESSURE
(SB VESSEL HEAT) [d] (0 HAx HF* INF) SB_VESSEL.HEAT
(SB VESSEL NETFLOW) [d] (MINF O INF) SB_VESSEL.NETFLOW
Effort variable equivalence classes:

Quantity space: (0 AT* FTx INF) SB.EFFORT_THERMALGQP2
(SB VESSEL TOUT)
(SB AIR T)

Quantity space: (0 AT* FTx INF) SB.EFFORT_THERMAL@P1

(SB FLAME T)
(SB VESSEL TIN)

The QDE constructed from the CC model.

(define-QDE SB_1

(quantity-spaces
(SB_VESSEL.NETFLOW (minf O inf) "(SB VESSEL NETFLOW)")
(SB_VESSEL.HEAT (0 ha* hf* inf) "(SB VESSEL HEAT)'")
(SB_VESSEL.PRESSURE (minf pf-* pmax-#* pa-* O pa* pmax* pf* inf)

"(SB VESSEL PRESSURE)")

(SB_VESSEL.T (0 at* ftx inf) "(SB VESSEL T)'")
(SB_VESSEL.DTIN (minf O inf) "(SB VESSEL DTIN)")
(SB_VESSEL.DTOUT (minf O inf) "(SB VESSEL DTOUT)")
(SB.EFFORT_THERMAL@P1 (0 at* ft* inf) "(SB FLAME T)")
(SB_FLAME.F@P1 (minf O inf) "(SB FLAME F)")
(SB_VESSEL.INFLOW@P1 (minf O inf) "(SB VESSEL INFLOW)")
(SB.EFFORT_THERMAL@GP2 (0 at* ft* inf) "(SB VESSEL TOUT)")
(SB_VESSEL.OQUTFLOW@P2 (minf O inf) "(SB VESSEL OUTFLOW)")
(SB_AIR.F@P2 (minf O inf) "(SB AIR F)"))

(constraints

((ADD SB_VESSEL.T SB_VESSEL.DTIN SB.EFFORT_THERMAL@P1)
(0 0 0) (at* O at*x) (ft* O ftx*x))

((M+ SB_VESSEL.DTIN SB_VESSEL.INFLOW@GP1) (0 0))

((ADD SB_VESSEL.T SB_VESSEL.DTOUT SB.EFFORT_THERMAL@P2)
(0 0 0) (at* O at*x) (ft* O ftx*x))

10

((M+ SB_VESSEL.DTOUT SB_VESSEL.OUTFLOW@P2) (0 0))
((ADD SB_VESSEL.INFLOWQP1 SB_VESSEL.OUTFLOW@P2 SB_VESSEL.NETFLOW))
((D/DT SB_VESSEL.HEAT SB_VESSEL.NETFLOW))
((M+ SB_VESSEL.HEAT SB_VESSEL.T) (0 0) (ha* at*) (hf* ft*))
((M+ SB_VESSEL.PRESSURE SB_VESSEL.T) (0 0) (pa* at*) (pf* ftx))
((MINUS SB_FLAME.F@P1 SB_VESSEL.INFLOW@P1)
(minf inf) (inf minf) (0 0))
((MINUS SB_VESSEL.OUTFLOW@P2 SB_AIR.F@P2)
(minf inf) (inf minf) (0 0)))
(independent SB.EFFORT_THERMAL@P2 SB.EFFORT_THERMAL@P1)
(text (("Simple steam boiler")))
(layout
(SB_VESSEL .0OUTFLOW@P2 SB_VESSEL.INFLOW@P1 SB_VESSEL.DTOUT)
(SB_VESSEL.DTIN SB_VESSEL.T SB_VESSEL.PRESSURE)
(SB_VESSEL .HEAT SB_VESSEL.NETFLOW))
(other
(IGNORE-QDIRS)
(NO-NEW-LANDMARKS)
(CC-INFO . (SB (impl 1)))
(CC-MODE-ASSUMPTIONS))

Simulating the model in QSIM. Behavior tree and qualitative plots
are shown in Figures 3.6 and 3.7.

Run time: 0.200 seconds to initialize a state.
Run time: 0.940 seconds to simulate 7 states.
Send Images to [s screen / f file / b both / n nowhere] -> s

Qualitative time plots. Enter T=behavior Tree,
Space or N=Next behavior (1 of 3), behavior number,
0=0ther commands, Q=Quit: t

Qualitative time plots. Enter T=behavior Tree,
Space or N=Next behavior (1 of 3), behavior number,
0=0ther commands, Q=Quit: 1

Qualitative time plots. Enter T=behavior Tree,
Space or N=Next behavior (1 of 3), behavior number,
0=0ther commands, Q=Quit: q

11

Checking the behavior tree against the design specification. Any dis-
crepencies will be noted.

Checking behaviors against

Design specification: DHF-NO-EXPLODE
Prohibited Scenarios:

State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Design spec instantiation is #<Spec: PROHIBITED SC-0>:
PROHIBITED:
Scenario:

State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Behavior S-6 inconsistent with spec #<Spec: PROHIBITED SC-0>

Modifying the design. This modification involves the following editing
operations:

e First operation: replace the vessel component with another that has a
sensor terminal (component type boiler-vessel-modified).

e Second operation: replace the heat source (flame) component with an-
other that has a control input (component-type controlled-heat-source).

e Third operation: add a pressure sensor that translates pressure sensed in
the boiler vessel to voltage at the control input of the heat source.

Edit command 1:
(REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED
((DISPLAY NETFLOW HEAT PRESSURE T
DTIN DTOUT INFLOW OUTFLOW)))

Edit command 2:
(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)

Edit command 3:
(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR

12

((DISPLAY V)) (IN (VESSEL T)) (OUT (FLAME CTL)))

Modified boiler vessel component definition.

(define-component-interface BOILER-VESSEL-MODIFIED
"Boiler Vessel with Instrumentation Terminal"
(terminals IN OUT T)

(quantity-spaces
(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)
((THERMAL ENTROPY) HEAT-QSPACE))))

(define-component-implementation BOILER-VESSEL-MODIFIED PRIMITIVE
"Boiler Vessel with instrumentation terminal, in QSIM primitives"
(terminal-variables

(IN (INFLOW HEAT-FLOW (LM-SYMBOL IF)) (TIN TEMPERATURE))
(OUT (OUTFLOW HEAT-FLOW (LM-SYMBOL OF)) (TOUT TEMPERATURE))
(T (P (HYDRAULIC PRESSURE)
(QUANTITY-SPACE MODIFIED-PRESSURE-QSPACE))))
(component-variables
(NETFLOW HEAT-FLOW DISPLAY (LM-SYMBOL NF))
(HEAT ENTROPY DISPLAY (LM-SYMBOL H))
(PRESSURE (HYDRAULIC PRESSURE)
DISPLAY (LM-SYMBOL P)
(QUANTITY-SPACE MODIFIED-PRESSURE-QSPACE))
(T TEMPERATURE DISPLAY)
(DTIN TEMPERATURE DISPLAY (QUANTITY-SPACE BASE-QUANTITY-SPACE))
(DTOUT TEMPERATURE DISPLAY (QUANTITY-SPACE BASE-QUANTITY-SPACE)))
(constraints

((ADD T DTIN TIN) (O O 0) (AT* O AT*) (FT* O FTx))
((M+ DTIN INFLOW) (0 0))
((ADD T DTOUT TOUT) (0 O 0) (AT* O AT*) (FT* O FT*))
((M+ DTOUT OUTFLOW) (0 0))
((ADD INFLOW OQUTFLOW NETFLOW) (0 0 0))
((D/DT HEAT NETFLOW))
((M+ HEAT T) (0 0) (HAx ATx*) (HF* FTx))
((M+ PRESSURE T) (0 0) (PAx ATx) (PF* FTx))
((M+ PRESSURE P) (PF-* PF-#*) (PMAX-* PMAX-*) (PA-* PA-*) (0 0)

(PA* PA*) (PLIM* PLIM*) (PMAX* PMAX*) (PF* PF*))))

Steam boiler definition after applying edit command:

13

(REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED
((DISPLAY NETFLOW HEAT PRESSURE T
DTIN DTOUT INFLOW OUTFLOW)))

(define-component-interface SB
"Steam Boiler"
(quantity-spaces
(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)
((THERMAL ENTROPY) HEAT-QSPACE)
((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))

(define-component-implementation SB MODIFIED

"Simple steam boiler"

(components
(VESSEL BOILER-VESSEL-MODIFIED (DISPLAY NETFLOW HEAT PRESSURE T

DTIN DTOUT INFLOW OUTFLOW))

(FLAME HEAT-SOURCE)
(AIR HEAT-SINK))

(connections
(P1 (FLAME OUT) (VESSEL IN))
(P2 (VESSEL OUT) (AIR IN))))

Modified heat source component definition.

(define-component-interface CONTROLLED-HEAT-SOURCE
"Controlled heat source in thermal domain'
(terminals OUT CTL))

(define-component-implementation CONTROLLED-HEAT-SOURCE 1
"Controlled heat source, in QSIM primitives"
(terminal-variables
(OUT (F HEAT-FLOW) (T TEMPERATURE))
(CTL (V (ELECTRICAL VOLTAGE) (QUANTITY-SPACE VOLTAGE-QSPACE))))
(constraints
((8= VT (0 FT*) (VMAX* AT%*)))))

Steam boiler definition after applying edit command:

14

(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)

(define-component-interface SB
"Steam Boiler"
(quantity-spaces
(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)
((THERMAL ENTROPY) HEAT-QSPACE)
((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))

(define-component-implementation SB MODIFIED

"Simple steam boiler"

(components
(FLAME CONTROLLED-HEAT-SOURCE)
(VESSEL BOILER-VESSEL-MODIFIED (DISPLAY NETFLOW HEAT PRESSURE T

DTIN DTOUT INFLOW OUTFLOW))

(AIR HEAT-SINK))

(connections
(P1 (FLAME QUT) (VESSEL IN))
(P2 (VESSEL OUT) (AIR IN))))

Pressure sensor component definition.

(define-component-interface PRESSURE-SENSOR
"Pressure sensor, voltage output"
(terminals IN OUT))

(define-component-implementation PRESSURE-SENSOR 1
"Pressure sensor, voltage output, in QSIM primitives"
(terminal-variables
(IN (P PRESSURE (QUANTITY-SPACE MODIFIED-PRESSURE-QSPACE)))
(OUT (V (ELECTRICAL VOLTAGE) (QUANTITY-SPACE VOLTAGE-QSPACE))))
(constraints
((5+ P V (PLIM* 0) (PMAX* VMAX*)))))

Steam boiler definition after applying edit command 3:

15

(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR
((DISPLAY V)) (IN (VESSEL T)) (OUT (FLAME CTL)))

(define-component-interface SB
"Steam Boiler"
(quantity-spaces
(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)
((THERMAL ENTROPY) HEAT-QSPACE)
((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))

(define-component-implementation SB MODIFIED

"Simple steam boiler"

(components
(SENSOR PRESSURE-SENSOR (DISPLAY V))
(FLAME CONTROLLED-HEAT-SOURCE)
(VESSEL BOILER-VESSEL-MODIFIED (DISPLAY NETFLOW HEAT PRESSURE T

DTIN DTOUT INFLOW OUTFLOW))

(AIR HEAT-SINK))

(connections
((SENSOR 0UT) (FLAME CTL))
((SENSOR IN) (VESSEL T))
(P1 (FLAME 0OUT) (VESSEL IN))
(P2 (VESSEL OUT) (AIR IN))))

Constructing the QDE for the modified Steam Boiler from the CC

definition. Information regarding the model variables is displayed.

Model stats: 14 variables, O mode variables, 13 constraints.
Model variable quantity spaces:

Hierarchical name Quantity Space Internal CC name

(SB AIR F) (MINF O INF) SB_AIR.F@P2

(SB VESSEL OUTFLOW) [d] (MINF O INF) SB_VESSEL.OUTFLOW@P2
(SB VESSEL INFLOW) [d] (MINF O INF) SB_VESSEL.INFLOWGP1
(SB FLAME F) (MINF O INF) SB_FLAME.F@P1

(SB VESSEL DTOUT) [d] (MINF O INF) SB_VESSEL.DTOUT

(SB VESSEL DTIN) [d] (MINF O INF) SB_VESSEL.DTIN

(SB VESSEL T) [d] (0 AT* FT* INF) SB_VESSEL.T

(SB VESSEL PRESSURE) [d] (MINF PF-* PMAX-* PA-* O

16

PAx PLIM* PMAX* PF* INF)
SB_VESSEL .PRESSURE
(SB VESSEL HEAT) [d] (0 HAx HF* INF) SB_VESSEL.HEAT
(SB VESSEL NETFLOW) [d] (MINF O INF) SB_VESSEL.NETFLOW
Effort variable equivalence classes:

Quantity space: (0 AT* FT* INF) SB.EFFORT_THERMALGQP2
(SB VESSEL TOUT)
(SB AIR T)

Quantity space: (0 AT* FT* INF) SB.EFFORT_THERMAL@P1

(SB FLAME T)
(SB VESSEL TIN)

Quantity space: (MINF PF-% PMAX-* PA-* O PAx PLIM% PMAX* PF* INF)

SB.EFFORT_HYDRAULICQC-7669

(SB SENSOR P)
(SB VESSEL P)

Quantity space: (O VMAXx) SB.EFFORT_ELECTRICAL@C-7668
(SB SENSOR V) [d]
(SB FLAME V)

The QDE constructed from the CC model.

(define-QDE SB_MODIFIED
(quantity-spaces
(SB_VESSEL.NETFLOW (minf O inf) "(SB VESSEL NETFLOW)")
(SB_VESSEL.HEAT (0 ha* hf* inf) "(SB VESSEL HEAT)'")
(SB_VESSEL .PRESSURE
(minf pf-* pmax-* pa-* O pa* plim* pmax* pf#* inf)
"(SB VESSEL PRESSURE)")
(SB_VESSEL.T (0 at* ft* inf) "(SB VESSEL T)'")
(SB_VESSEL.DTIN (minf O inf) "(SB VESSEL DTIN)")
(SB_VESSEL.DTOUT (minf O inf) "(SB VESSEL DTOUT)")
(SB.EFFORT_ELECTRICALQC-7668 (0 vmax#*) "(SB SENSOR V)'")
(SB.EFFORT_HYDRAULIC@C-7669
(minf pf-* pmax-* pa-* O pa* plim* pmax* pf#* inf)
"(SB SENSOR P)")
(SB.EFFORT_THERMAL@P1 (0 at* ft* inf) "(SB FLAME T)")
(SB_FLAME.F@P1 (minf O inf) "(SB FLAME F)")
(SB_VESSEL.INFLOW@P1 (minf O inf) "(SB VESSEL INFLOW)")
(SB.EFFORT_THERMAL@P2 (0 at* ft* inf) "(SB VESSEL TOUT)")
(SB_VESSEL.OQUTFLOW@P2 (minf O inf) "(SB VESSEL OUTFLOW)")
(SB_AIR.F@P2 (minf O inf) "(SB AIR F)"))

17

(constraints
((S+ SB.EFFORT_HYDRAULIC@C-7669 SB.EFFORT_ELECTRICALQC-7668
(PLIM* 0) (PMAX* VMAX*)) (plim* 0) (pmax* vmax#))
((S- SB.EFFORT_ELECTRICAL@C-7668 SB.EFFORT_THERMAL@P1
(0 FT*) (VMAX* AT*)) (0 ft*x) (vmax* atx*))
((ADD SB_VESSEL.T SB_VESSEL.DTIN SB.EFFORT_THERMAL@P1)
(0 0 0) (at*x 0 at*) (ft* O ftx))
((M+ SB_VESSEL.DTIN SB_VESSEL.INFLOW@P1) (0 0))
((ADD SB_VESSEL.T SB_VESSEL.DTOUT SB.EFFORT_THERMAL@P2)
(0 0 0) (at*x 0 at*) (ft* O ftx))
((M+ SB_VESSEL.DTOUT SB_VESSEL.OUTFLOW@P2) (0 0))
((ADD SB_VESSEL.INFLOWQP1 SB_VESSEL.OUTFLOW@P2 SB_VESSEL.NETFLOW))
((D/DT SB_VESSEL.HEAT SB_VESSEL.NETFLOW))
((M+ SB_VESSEL.HEAT SB_VESSEL.T) (0 0) (ha* at*) (hf* ft*))
((M+ SB_VESSEL.PRESSURE SB_VESSEL.T) (0 0) (pa* at*) (pf* ftx))
((M+ SB_VESSEL.PRESSURE SB.EFFORT_HYDRAULIC@C-7669)
(pf-* pf-*) (pmax-* pmax-*) (pa-* pa-*) (0 0) (pa* pax*)
(plim* plim#*) (pmax* pmax*) (pf* pf#*))
((MINUS SB_FLAME.F@P1 SB_VESSEL.INFLOW@P1)
(minf inf) (inf minf) (0 0))
((MINUS SB_VESSEL.OUTFLOW@P2 SB_AIR.F@P2)
(minf inf) (inf minf) (0 0)))
(independent SB.EFFORT_THERMALQP2)
(text (("Simple steam boiler")))
(layout
(SB_VESSEL .OUTFLOW@P2 SB_VESSEL.INFLOW@P1
SB.EFFORT_ELECTRICAL@C-7668)
(SB_VESSEL .DTOUT SB_VESSEL.DTIN SB_VESSEL.T)
(SB_VESSEL .PRESSURE SB_VESSEL.HEAT SB_VESSEL.NETFLOW))
(other
(IGNORE-QDIRS)
(NO-NEW-LANDMARKS)
(CC-INFO . (SB (impl MODIFIED)))
(CC-MODE-ASSUMPTIONS))

Simulating the model in QSIM. Behavior tree and qualitative plots
are shown in Figures 3.12 and 3.13.

Run time: 0.240 seconds to initialize a state.
Run time: 1.200 seconds to simulate 7 states.

18

Send Images to [s screen / f file / b both / n nowhere] -> s

Qualitative time plots. Enter T=behavior Tree,
Space or N=Next behavior (1 of 3), behavior number,
0=0ther commands, Q=Quit: t

Qualitative time plots. Enter T=behavior Tree,
Space or N=Next behavior (1 of 3), behavior number,
0=0ther commands, Q=Quit: 1

Qualitative time plots. Enter T=behavior Tree,
Space or N=Next behavior (1 of 3), behavior number,
0=0ther commands, Q=Quit: q

Checking the behavior tree against the design specification. Any dis-
crepencies will be noted.

Checking behaviors against

Design specification: DHF-NO-EXPLODE

Prohibited Scenarios:
State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Design spec instantiation is #<Spec: PROHIBITED SC-0>:
PROHIBITED:
Scenario:
State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Verified specifications:
#<Spec: PROHIBITED SC-0>

Classifying the teleological description for the verified specification.

Classifying <TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))
Value (PMAX* INF) abstracted to (+ INF)
Variable type (HYDRAULIC EFFORT) abstracted to EFFORT

19

Classifying <IN "Abstract (generic type, gmag) scenario.'>
Classifying <IN "Abstract (domain type, generic gmag) scenario.'>
Classifying <IN "Full scenario.">

Query design history for purpose of a modification. What were the
purpose(s) of design modification Deltal?

<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))

Structure inspection:

#<Structure DESIGN-MODIFICATION 1670C2B>

[0: NAME] DELTA1
[1: EDIT-COMMANDS]

((REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED (#))
(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)
(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR (#) (IN #) (OUT #)))

[2: HISTORY] <DH for (SB (IMPL 1))>

[3: TDS] (<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>)))
>> 1

#<List 1670C49>

[0] (REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED
((DISPLAY NETFLOW HEAT PRESSURE T DTIN DTOUT INFLOW QUTFLOW)))
[1] (REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)
[2] (ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR
((DISPLAY V)) (IN (VESSEL T)) (OUT (FLAME CTL)))
>> U
#<Structure DESIGN-MODIFICATION 1670C2B>

[0: NAME] DELTA1
[1: EDIT-COMMANDS]

((REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED (#))
(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)
(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR (#) (IN #) (OUT #)))

[2: HISTORY] <DH for (SB (IMPL 1))>
[3: TDS] (<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>)))

20

>> 2
#<Structure DESIGN-HISTORY 1670COB>

[0: INITIAL-DESIGN] (SB (IMPL 1))

[1: MODIFICATIONS] (DELTA1)

>> U

#<Structure DESIGN-MODIFICATION 1670C2B>

[0: NAME] DELTA1
[1: EDIT-COMMANDS]

((REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED (#))
(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)
(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR (#) (IN #) (OUT #)))

[2: HISTORY] <DH for (SB (IMPL 1))>

[3: TDS] (<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>)))
>> 3

#<List C7C801>

[0] <TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))
>> 0

#<Structure TD C7C78B>

[0: MODIFICATION] DELTA1

[1: CONDITION] NIL

[2: RESULT] ((<IV SB_VESSEL.PRESSURE>))
[3: OPERATOR-NEGATED?] NIL

[4: RESULT-NEGATED?] T

>> 2

#<List C7C721>

[0] (<IV SB_VESSEL.PRESSURE>)
>> 0
#<List C7C719>

[0] <IV SB_VESSEL.PRESSURE>
>> 0
#<Structure INDEX-VARIABLE C7C6FB>

[0: NAME] SB_VESSEL.PRESSURE

[1: TYPE] (HYDRAULIC EFFORT)

[2: QMAG] (PMAX* INF)

[3: QDIR] IGN

[4: QSPACE] (MINF PF-* PMAX-# PA-* O PA* PLIM* PMAX* PF* INF)

>> :Q

Query index for teleological descriptions matching a spec.

Design specification: DHF-NO-EXPLODE

Prohibited Scenarios:
State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))
Boolean Expression: TRUE

Td’s addressing the specification:
<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))

21

Appendix B

Circuit Example

B.1 Quantity Space Definitions

(define-quantity-space MOS-voltage-gspace
(Vhi- Vhi-Vtn Vtp O Vtn VhiVtp Vhi)
(conservation-correspondences

(Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn)))

(define-quantity-space MOS-positive-voltage-gspace
(0 Vtn VhiVtp Vhi)
(parent MOS-voltage-gspace))

(define-quantity-space MOS-current-gspace
(Imax- 0 Imax)
(conservation-correspondences (Imax- Imax)))

B.2 Component Definitions

(define-component-interface
Reference-Voltage
"Reference voltage" electrical
(terminals t)
(quantity-spaces
(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace)))))

(define-component-implementation
primitive Reference-Voltage
"Reference Voltage in QSIM primitives"
(terminal-variables (t (v voltage independent)
(i current)))
(constraints ((CONSTANT v))))

22

23

(define-component-interface
Split
"Split one flow into two'" electrical
(terminals m sl s2)
(quantity-spaces
(defaults (voltage MOS-positive-voltage-gspace)
(current base-quantity-space))))

(define-component-implementation
Equipotential-base-gspace Split
"Flows are synchronized in direction and 0 value"
(terminal-variables (m (v voltage)
(i current))
(s1 (v1 voltage)
(i1 current))
(s2 (v2 voltage)
(i2 current)))
(constraints
((SUM-ZERO i i1 i2) (0 0 0))
((M- 1 i1) (minf inf) (0 0) (inf minf))
((M- 1 i2) (minf inf) (0 0) (inf minf))
((M+ v v1) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))
((M+ v v2) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))))

(define-component-implementation
Equipotential-current-gspace Split
"Flows are synchronized in direction and 0 value"
(terminal-variables
(m (v voltage)
(i current (quantity-space MOS-current-qspace)))
(s1 (vl voltage)
(i1 current (quantity-space MOS-current-qspace)))
(s2 (v2 voltage)
(i2 current (quantity-space MOS-current-qspace))))
(constraints
((SUM-ZERO i i1 i2) (0 0 0) (Imax Imax- O) (Imax O Imax-)
(Imax- Imax 0) (Imax- O Imax))
(M- 1 i1) (0 0))
(M- 1 i2) (0 0))
((M+ v v1) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))
((M+ v v2) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))))

24

(define-component-interface

capacitor

"Electrical Capacitor" electrical

(terminals t1 t2)

(quantity-spaces
(defaults (voltage (0 Vhi) (parent MOS-voltage-gspace))

(current MOS-current-qspace))

(hierarchical-parents (voltage MOS-voltage-gspace))))

(define-component-implementation
current-gspace capacitor
"Electrical capacitor in QSIM primitives"
(terminal-variables
(t1 (vl voltage (quantity-space MOS-positive-voltage-gspace))
(i current display))
(t2 (v2 voltage (quantity-space MOS-positive-voltage-gspace))
(i2 current)))
(component-variables
(v voltage display (quantity-space MOS-voltage-gspace))
(c capacitance independent (quantity-space (0 Cx)))
(q charge (quantity-space (0 Q*))))
(constraints
((ADD v v2 v1) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)
(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)
(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))
((MULT v ¢ q) (Vhi C* Q%))
((d/dat q 1))
((MINUS i i2) (imax imax-) (0 0) (Imax- Imax))
((CONSTANT ¢))))

(define-component-implementation
base-gspace capacitor
"Electrical capacitor in QSIM primitives"
(terminal-variables
(t1 (vl voltage (quantity-space MOS-positive-voltage-gspace))
(i current display (quantity-space base-quantity-space)))
(t2 (v2 voltage (quantity-space MOS-positive-voltage-gspace))
(i2 current (quantity-space base-quantity-space))))
(component-variables
(v voltage display (quantity-space MOS-voltage-gspace))

25

(c capacitance independent (quantity-space (0 Cx)))
(q charge (quantity-space (0 Q*))))
(constraints

((ADD v v2 v1) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)
(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)
(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))

((MULT v ¢ q) (Vhi C* Q%))

((d/dat q 1))

((MINUS i i2) (inf minf) (0 0) (minf inf))

((CONSTANT ¢))))

(define-component-interface

MOS-transistor

"MOS transistor" electrical

(terminals g s d)

(quantity-spaces
(defaults (voltage (0 Vhi) (parent MOS-voltage-gspace))

(current MOS-current-qspace))

(hierarchical-parents (voltage MOS-voltage-gspace))))

(define-component-implementation
N-channel-bidirectional MOS-transistor
"N channel, bidirectional transistor"
(terminal-variables
(g (Vg voltage (quantity-space MOS-positive-voltage-gspace))
(Ig current (quantity-space base-quantity-space)))
(s (Vs voltage (quantity-space MOS-positive-voltage-gspace))
(Isd current))
(d (Vd voltage (quantity-space MOS-positive-voltage-gspace))
(Ids current)))
(component-variables

(Vsd voltage (quantity-space MOS-voltage-gspace))
(vds voltage (quantity-space MOS-voltage-gspace))
(Vgs voltage (quantity-space MOS-voltage-gspace))
(Vgd voltage (quantity-space MOS-voltage-gspace))

(channell resistance (quantity-space (0 Ci1x))
(landmark-symbol ch))

(channel2 resistance (quantity-space (0 C2x))
(landmark-symbol ch))

(channell2 resistance (quantity-space (0 C12* C3%))

26

(landmark-symbol ch))

(channel resistance (quantity-space (0 Chx))

(landmark-symbol ch))

(Qg charge (quantity-space (0 Qg*)))
(Cg capacitance independent (quantity-space (0 Cg*))))
(constraints

((ADD Vsd Vd Vs)

((MINUS Vsd Vds)

((ADD Vgd Vd Vg)

((ADD Vgs Vs Vg)

(Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)

(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)

(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))
(Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn) (0 0)

(Vhi Vhi-) (VhiVtp Vhi-Vtn) (Vtn Vtp))

(Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)

(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)

(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))
(Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)

(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)

(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))

((S+ Vgd channell (Vtn 0) (Vhi C1%)))
((S+ Vgs channel2 (Vtn 0) (Vhi C2%)))
((ADD channell channel2 channeli2) (0 0 0) (Ci*x O C12%)

(0 C2% C12%) (Ci* C2* C3%*))

((S+ channeli12 channel (0 0) (C12* Chx*)))
((MULT Vsd channel Isd) (Vhi Ch* Imax) (Vhi- Ch* Imax-))

((MINUS Ids Isd)

(Imax- Imax) (0 0) (Imax Imax-))

;; Gate capacitance constraints

((MULT Vg Cg Qg)
((D/DT Qg Ig))
))

(Vhi Cg* Qg*))

(define-component-implementation
P-channel-bidirectional MOS-transistor

"P channel transistor in QSIM primitives"
(terminal-variables
(g (Vg voltage (quantity-space MOS-positive-voltage-gspace))
(Ig current (quantity-space base-quantity-space)))
(s (Vs voltage (quantity-space MOS-positive-voltage-gspace))
(Isd current))

27

(d (Vd voltage (quantity-space MOS-positive-voltage-gspace))
(Ids current)))
(component-variables

(Vsd voltage (quantity-space MOS-voltage-gspace))
(vds voltage (quantity-space MOS-voltage-gspace))
(Vgs voltage (quantity-space MOS-voltage-gspace))
(Vgd voltage (quantity-space MOS-voltage-gspace))

(channell resistance (quantity-space (0 Ci1x))

(landmark-symbol ch))

(channel2 resistance (quantity-space (0 C2x))

(landmark-symbol ch))

(channell2 resistance (quantity-space (0 C12* C3%))

(landmark-symbol ch))

(channel resistance (quantity-space (0 Chx))

(landmark-symbol ch))

(Qg charge (quantity-space (0 Qg*)))
(Cg capacitance independent (quantity-space (0 Cg*))))
(constraints

((ADD Vsd Vd Vs)

((MINUS Vsd Vds)

((ADD Vgd vd Vg)

((ADD Vgs Vs Vg)

(Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)

(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)

(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))
(Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn) (0 0)

(Vhi Vhi-) (VhiVtp Vhi-Vtn) (Vtn Vtp))

(Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)

(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)

(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))
(Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)
(Vtp Vtn 0) (Vtp Vhi VhiVtp)

(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (O Vhi Vhi)
(Vtn O Vtn) (Vtn VhiVtp Vhi)

(VhiVtp O VhiVtp) (VhiVtp Vtn Vhi) (Vhi O Vhi))

((8- Vgd channell (Vhi- C1x) (Vtp 0)))
((S- Vgs channel2 (Vhi- C2x) (Vtp 0)))
((ADD channell channel2 channeli2) (0 0 0) (Ci*x O C12%)

(0 C2% C12%) (C1*x C2% C3%*))

((S+ channel12 channel (0 0) (C12* Chx*)))
((MULT Vsd channel Isd) (Vhi Ch* Imax) (Vhi- Ch* Imax-))

((MINUS Ids Isd)

(Imax- Imax) (0 0) (Imax Imax-))

;; Gate capacitance constraints

28

((MULT Vg Cg Qg) (Vhi Cgx Qg*))
((D/DT Qg Ig))
))

(define-component-implementation
N-channel-source-at-Vss MOS-transistor
"N channel transistor - source at Vss (0)"
(terminal-variables
(g (Vg voltage (quantity-space MOS-positive-voltage-gspace))
(Ig current (quantity-space base-quantity-space)))
(s (Vs voltage (quantity-space (0)))
(Isd current))
(d (Vd voltage (quantity-space MOS-positive-voltage-gspace))
(Ids current)))
(component-variables
(Vsd voltage (quantity-space MOS-voltage-gspace))
(channel resistance (quantity-space (O Chx*))
(landmark-symbol ch))

(Qg charge (quantity-space (0 Qg*)))
(Cg capacitance independent (quantity-space (0 Cg*))))
(constraints

((M- Vsd Vd) (Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn) (0 0))
((CONSTANT Vs 0))

((S+ Vg channel (Vtn 0) (Vhi Chx)))

((MULT Vsd channel Isd) (Vhi- Ch* Imax-))

((MINUS Ids Isd) (0 0) (Imax Imax-))

;; Gate capacitance constraints

((MULT Vg Cg Qg) (Vhi Cg* Qg*))

((D/DT Qg Ig))

)

(define-component-implementation
P-channel-drain-at-Vdd MOS-transistor
"P channel transistor - drain at Vdd (Vhi)"
(terminal-variables
(g (Vg voltage (quantity-space MOS-positive-voltage-gspace))
(Ig current (quantity-space base-quantity-space)))
(s (Vs voltage (quantity-space MOS-positive-voltage-gspace))
(Isd current))
(d (Vvd voltage (quantity-space (0 Vhi)))
(Ids current)))
(component-variables
(Vsd voltage (quantity-space MOS-voltage-gspace))

29

(Vgd voltage (quantity-space MOS-voltage-gspace))
(channel resistance (quantity-space (O Chx*))
(landmark-symbol ch))

(Qg charge (quantity-space (0 Qg*)))
(Cg capacitance independent (quantity-space (0 Cg*))))
(constraints

((M+ Vsd Vs) (Vhi- 0) (Vhi-Vtn Vtn) (Vtp VhiVtp) (O Vhi))
((CONSTANT Vd Vhi))

((M+ Vgd Vg) (Vhi- 0) (Vhi-Vtn Vtn) (Vtp VhiVtp) (0 Vhi))
((8- Vgd channel (Vhi- Chx) (Vtp 0)))

((MULT Vsd channel Isd) (Vhi- Ch* Imax-))

((MINUS Ids Isd) (0 0) (Imax Imax-))

;; Gate capacitance constraints

((MULT Vg Cg Qg) (Vhi Cg* Qg*))

((D/DT Qg Ig))

)

(define-component-interface

P-Channel-Feedback

"P-channel transistor with Vdd at drain' electrical

(terminals g s)

(quantity-spaces
(defaults (voltage (0 Vhi) (parent MOS-voltage-gspace))

(current MOS-current-gspace))

(hierarchical-parents (voltage MOS-voltage-gspace))))

(define-component-implementation
1 P-Channel-Feedback
"P-Channel-Feedback from P-Channel with drain at Vdd, and Vdd"
(components
(Vdd reference-voltage (ignore-qdir I))
(Pt (MOS-transistor (impl P-channel-drain-at-Vdd))
(ignore-qdir Ids Isd Ig) (display Ids Vg)))
(connections (w (Vdd t) (Pt d))
(g (Pt g))
(s (Pt 8))))

(define-component-interface
Transmission-Gate
"CMOS transmission gate (N, P in parallel)" electrical
(terminals in out ctl ctl-bar)

30

(quantity-spaces

(defaults (voltage (0 Vhi) (parent MOS-voltage-gspace))
(current MOS-current-qspace))

(hierarchical-parents (voltage MOS-voltage-gspace))))

(define-component-implementation
transistors Transmission-Gate
"P-channel and N-channel transistors in parallel."
(components
(Pt (MOS-transistor (impl P-channel-bidirectional))
(display Ids Qg))
(Nt (MOS-transistor (impl N-channel-bidirectional))
(display Ids Qg)))
(connections (in (Pt s) (Nt s))
(out (Pt d) (Nt d))
(ctl (Pt g))
(ctl-bar (Nt g))))

(define-component-interface
Inverter "Inverter composed from transistors' electrical
(terminals in out)
(quantity-spaces
(defaults (voltage (0 Vhi) (parent MOS-voltage-gspace))
(current MOS-current-qspace))
(hierarchical-parents (voltage MOS-voltage-gspace))))

(define-component-implementation
transistors Inverter
"P-channel and N-channel transistors."
(components
(Vdd reference-voltage (ignore-qdir i))
(Vss reference-voltage (ignore-qdir i))
(Pt (MOS-transistor (impl P-channel-drain-at-Vdd))
(initable Qg Vg Vs) (ignore-qdir Ids Isd Ig)
(display Ids Qg) (no-new-landmarks Ig))
(Nt (MOS-transistor (impl N-channel-source-at-Vss))
(initable Qg Vg Vd) (ignore-qdir Ids Isd Ig)
(display Ids Qg) (no-new-landmarks Ig))
(S (Split (impl equipotential-base-qgspace))
(ignore-qdir I I1 I2) (display V I)
(no-new-landmarks I I1 I2)))
(connections (wi (Vdd t) (Pt d4))

(w2 (Vss t) (Nt s))
(w3 (s s1) (Pt g))
(wa (S s2) (Nt g))
(in (S m))

(out (Pt s) (Nt d))))

1ne¥&fmp n ter ace
selec 1dglc g% t" electrical

(quantlty spaces

(defaults (voltage (0 Vhi) (parent MOS-voltage-gspace))
(current base-quantity-space))

(hierarchical-parents (voltage MOS-voltage-gspace))))

(define-component-implementation
1 ISC
"N-trans for input select, capacitor for output load."
(components
(RV1 reference-voltage)
(RV2 reference-voltage)
(RV3 reference-voltage (ignore-qdir i))
(t1 (MOS-transistor (impl N-channel-bidirectional))
(display Ids Vs))
(inv Inverter)
(c (capacitor (impl current-qgspace))
(ignore-qdir i i2)))
(connections (w1l (RV1 t) (t1 4))
(w2 (RV2 t) (t1 g))
(w3 (t1 s) (inv in))
(w4 (inv out) (C t1))
(ws (RV3 t) (c t2))))

(define-component-implementation
2 ISC
"N-trans for input select, P-trans for feedback."
(components
(RV1 reference-voltage)
(RV2 reference-voltage)
(RV3 reference-voltage (ignore-qdir I))

32

(t1 (MOS-transistor (impl N-channel-bidirectional))
(display Ids Vs))
(t2 P-channel-feedback)
(inv Inverter)
(c (Capacitor (impl current-gspace)) (ignore-qdir i i2))
(s (Split (impl equipotential-current-qgspace))
(ignore-qdir I I1 I2) (display V)
(no-new-landmarks I I1 I2)))
(connections (w1 (RV1 t) (t1 d))
(w2 (RV2 t) (t1 g))
(w3 (t1 =) (inv in) (£2 8))
(w4 (inv out) (S m))
(w5 (C t2) (RV3 t))
(w6 (S s1) (t2 g))
(w7 (S s2) (C t1))))

(define-component-implementation
3 ISC
"Transmission-gate for ramp input."
(components
(RV1 reference-voltage)
(RV2 reference-voltage)
(RV3 reference-voltage (ignore-qdir I))
(RV4 reference-voltage (ignore-qdir I))
(Tm transmission-gate (display Isd Vsd))
(inv Inverter)
(C (Capacitor (impl base-gspace))
(ignore-qdir i i2)))
(connections (w1l (RV1 t) (Tm in))
(w2 (RV2 t) (Tm ctl))
(w3 (RV4 t) (Tm ctl-bar))
(w4 (Tm out) (inv in))
(ws (inv out) (C t1))
(w6 (C t2) (RV3 t))))

33

B.4 Design Specifications

(for-component X (inverter MOS-transistor)
(prohibited (((((X Vg) ((0 Vhi) std)))) true)))

(for-component X (inverter MOS-transistor)
(conditionally ((((((X Vg) (0 std)))
(((X Vg) ((0 Vhi) std)))) true))
(required (((((X Vg) (Vhi std))))
true))))

(for-component X (ISC)
(for-component Y (X inverter MOS-transistor)
(conditionally ((((((Y Vg) (Vhi ign))
((X Nt Vg) (0 std)))) true))
(prohibited (((((Y Vg) ((0 Vhi) std))
((X Nt Vg) (0 std))))
true)))))

(for-component X (ISC)
(for-component Y (X inverter MOS-transistor)
(conditionally ((((((X Nt Vg) (Vhi std))
((X Nt Vvd) (0 std)))) true))
(required (((((Y vg) (0 std))))
true)))))

Appendix C

Electric Motor Example

C.1 Quantity Space Definitions

(define-quantity-space position-X-gspace (X180- X- O X+ X180+)
(conservation-correspondences (X180- X180+) (X- X+)))

(define-quantity-space positive-qspace (0 inf))

(define-quantity-space polarity-qspace (South O North)
(conservation-correspondences (South North)))

(define-quantity-space angular-force-gspace (F- 0 F+)
(conservation-correspondences (F- F+)))

(define-quantity-space orientation-gqspace (Omax- O Omax+)
(conservation-correspondences (Omax- Omax+)))

(define-quantity-space orientation-60-gspace
(Omax- 060- 0 060+ Omax+)
(conservation-correspondences (Omax- Omax+) (060- 060+)))

(define-quantity-space motor-current-qspace (Imax- O Imax+)
(conservation-correspondences (Imax- Imax+)))

(define-quantity-space motor-velocity-gspace (minf O V* inf))

(define-quantity-space position-90-gspace (X180- X90- 0 X90+ X180+)
(conservation-correspondences (X180- X180+) (X90- X90+)))

(define-quantity-space position-30-gspace
(X180- X150- X120- X90- X60- X30- 0
X30+ X60+ X90+ X120+ X150+ X180+)
(conservation-correspondences (X180- X180+) (X150- X150+)
(X120- X120+) (X90- X90+) (X60- X60+) (X30- X30+)))

(define-quantity-space motor-velocity-gspace (minf 0 V*))

34

35

(define-quantity-space motor-lateral-force-qspace
(minf F-lat- O F-lat+ inf)
(conservation-correspondences (F-lat- F-lat+)))

8: izj Of)%li]relﬁ% j‘? ﬁ&]nté]nqyﬁ motor" mechanical-rotation

(termlnals shaft magnet))

(define-component-implementation
1 rotor ""
(terminal-variables
(shaft (F-ang force)

(v velocity)
(F-lat (mechanical-translation force))
(1 (electrical current)))

(magnet (F-mag (magnetic force))))
(component-variables
(Polarity (magnetic force) (quantity-space polarity-gspace))
(Repulsion force (quantity-space angular-force-gspace))
(PotentialF force (quantity-space angular-force-gspace))
(Orientation displacement (quantity-space orientation-qspace)))
(constraints
((M+ I Polarity) (Imax- South) (0 0) (Imax+ North))

((mult F-mag Polarity Repulsion) (0 0 0) (South North F-)
(North South F-) (South South F+) (North North F+))
((minus Repulsion PotentialF) (F- F+) (0 0) (F+ F-))

((mult PotentialF Orientation F-ang) (F- Omax- F+) (F- Omax+ F-)
(0 0 0) (F+ Omax- F-) (F+ Omax+ F+))
((U- v F-lat (0 0)) (minf minf) (inf minf))))

(define-component-interface
magnet "Magnet for electromechanical motor" magnetic
(terminals north south))

(define-component-implementation
1 magnet ""
(terminal-variables

36

(north (F-north force (quantity-space polarity-qspace)))
(south (F-south force (quantity-space polarity-qspace))))
(constraints ((constant F-north north))
((constant F-south south))))

(define-component-interface
one-terminal-shaft
"Single terminal shaft for electromechanical motor"
mechanical-rotation
(terminals t))

(define-component-implementation
1 one-terminal-shaft ""
(terminal-variables

(t (F-ang force)

(v velocity (quantity-space motor-velocity-qspace))
(F-lat (mechanical-translation force))
(I (electrical current))))
(component-variables
X displacement)
(Cum-F-ang force (quantity-space angular-force-gspace))
(KE energy))

(constraints ((d/dt X V))
((d/dt V Cum-F-ang))
((minus Cum-F-ang F-ang) (F- F+) (0 0) (F+ F-))
((U+ V KE (0 0)) (minf inf) (inf inf))))

(define-component-interface
2-field-rotor
"Rotor for electromechanical motor, two magnetic fields"
mechanical-rotation
(terminals shaft magnet- magnet+))

(define-component-implementation

1 2-field-rotor

"Rotor for electromechanical motor, two magnetic fields"

(terminal-variables

(shaft (F-ang force)
(v velocity (quantity-space motor-velocity-gspace))
(F-lat (mechanical-translation force)
(quantity-space motor-lateral-force-gspace))

(I (electrical current)))

37

(magnet+ (F-mag+ (magnetic force)))
(magnet- (F-mag- (magnetic force))))
(component-variables
(Polarity (magnetic force) (quantity-space polarity-gspace))
(Repulsion- force (quantity-space angular-force-gspace))
(Repulsion+ force (quantity-space angular-force-gspace))
(PotentialF force (quantity-space angular-force-gspace))
(Orientation displacement (quantity-space orientation-qspace)))
(constraints
((M+ I Polarity) (Imax- South) (0 0) (Imax+ North))
((mult F-mag- Polarity Repulsion-) (0 0 0) (South North F-)
(North South F-) (South South F+) (North North F+))
((mult F-mag+ Polarity Repulsiont) (0 0 0) (South North F-)
(North South F-) (South South F+) (North North F+))
((add Repulsion+ PotentialF Repulsion-)
(0 0 0) (F- F+ F+) (F+ F- F-))
((mult PotentialF Orientation F-ang) (F- Omax- F+) (F- Omax+ F-)
(0 0 0) (F+ Omax- F-) (F+ Omax+ F+))
((U- v F-lat (0 0)) (minf minf) (V* F-lat-))))

(define-component-implementation
2 one-terminal-shaft ""
(terminal-variables
(t (F-ang force)
(v velocity)
(F-lat (mechanical-translation force)
(quantity-space motor-lateral-force-qspace))

(1 (electrical current))))
(component-variables
X displacement)

(Cum-F-ang force (quantity-space angular-force-gspace)))
(constraints ((d/dt X V))
((d/dt V Cum-F-ang))
((minus Cum-F-ang F-ang) (F- F+) (0 0) (F+ F-))))

(define-component-interface
2-terminal-shaft "Two terminal motor shaft" mechanical-rotation
(terminals t1 t2)
(quantity-spaces
(defaults
(velocity motor-velocity-qspace)
(force angular-force-gspace)

38

((mechanical-translation force) motor-lateral-force-qspace)
((electrical current) motor-current-qspace))))

(define-component-implementation
1 2-terminal-shaft "Two terminal motor shaft"
(terminal-variables (t1 (F-angl force)

(V1 velocity)

(F-lat1 (mechanical-translation force))
(11 (electrical current)))

(t2 (F-ang2 force)

(v2 velocity)

(F-lat2 (mechanical-translation force))
(12 (electrical current))))

(component-variables (X displacement)

(Cum-F-ang force)
(Cum-F-lat (mechanical-translation force)))
(mode-variables
(position
(positive <- (or (X ((0 X180+) nil))
(X (X180+ dec))
(X (X180+ std))))
(negative <- (or (X ((X180- 0) nil))
(X (X180- inc))
(X (X180- std))))
(:discontinuous-transition <- (X (X180+ inc))
negative (X (X180- inc)))
(:discontinuous-transition <- (X (X180- dec))
positive (X (X180+ dec)))))
(constraints
((da/at X V1))
((d/dt V1 Cum-F-ang))
((sum-zero F-angl F-ang2 Cum-F-ang) (F- F- F+) (0 0 0) (F+ F+ F-))
((minus I1 I2) (Imax- Imax+) (0 0) (Imax+ Imax-))
((equal V1 V2) (0 0) (V¥ V¥))
((constant Cum-F-lat 0))
((position positive) -> ((S- V1 I1 (0 Imax+) (V+ 0))))
((position negative) -> ((S- V1 I2 (0 Imax+) (V¥ 0))))))

(define-component-interface
3-terminal-shaft "Three terminal motor shaft" mechanical-rotation
(terminals t1 t2 t3)
(quantity-spaces
(defaults

(velocity
(force

39

motor-velocity-gspace)
angular-force-gspace)

((mechanical-translation force) motor-lateral-force-qspace)

((electrical current)

motor-current-gspace))))

(define-component-implementation

1 3-terminal-shaft

(vi

(F-lat1l

(I1
(t2
(v2

(F-lat2

(I2
(t3
(v3

(F-lat3

(I3

(component-variables (X

(Cum-F-ang
(Cum-F-lat

(mode-variables
(position

(X0toX60+ <- (X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X
(X

(or

(X60+t0X120+ <- (or

(X120+t0X180+ <-

(or

(X180-t0X120- <- (or

(F-ang2

(F-ang3

"Three terminal motor shaft"
(terminal-variables (t1 (F-angl

force)

velocity)
(mechanical-translation force))
(electrical current)))

force)

velocity)
(mechanical-translation force))
(electrical current)))

force)

velocity)
(mechanical-translation force))
(electrical current))))
displacement)

force)

(mechanical-translation force)))

((0 X60+) nil))
(X60+ dec))

(0 inc))

(X60+ std))

(0 std))))

((X60+ X120+) nil))
(X120+ dec))

(X60+ inc))

(X120+ std))

(X60+ std))))
((X120+ X180+) nil))
(X180+ dec))

(X120+ inc))

(X180+ std))

(X120+ std))))
((X180- X120-) nil))
(X120- dec))

(X180- inc))

(X120- std))

40

(X120-toX

(X60-toX0

(X (X180- std))))

60- <- (or (X ((X120- X60-) nil))

(X (X60- dec))
(X (X120- inc))
(X (X60- std))

(X (X120- std))))
<- (or (X ((X60- 0) nil))
(X (0 dec))

(X (X60- inc))
(X (X60- std))))

(:discontinuous-transition <- (X (X180+ inc))

X180-toX120- (X (X180- inc)))

(:discontinuous-transition <- (X (X180- dec))

(constraints

X180+t0oX120+ (X (X180+ dec)))))

((d/dt X V1))
((d/dt Vi Cum-F-ang))

((sum-zero F-angl F-ang2 F-ang3 Cum-F-ang)
(F- F- F- F+) (0 0 0 0) (F+ F+ F+ F-))

((equal V1 V2)

((equal V1 V3)

((constant Cum-F-lat 0))
((position XOtoX60+) ->

((s- V1 I1 (0 Imax+) (V¥ 0)))
((equal I1 I2) (Imax- Imax-) (O
((minus I1 I3) (Imax- Imax+) (O
((position X60+toX120+) ->

((s- V1 I1 (0 Imax+) (V¥ 0)))
((equal I2 I3) (Imax- Imax-) (O
((minus I1 I3) (Imax- Imax+) (O
((position X120+toX180+) ->

((s- v3 I3 (0 Imax+) (V¥ 0)))
((equal I1 I3) (Imax- Imax-) (O
((minus I1 I2) (Imax- Imax+) (O
((position X180-toX120-) ->

((s- v3 I3 (0 Imax+) (V¥ 0)))
((equal I1 I2) (Imax- Imax-) (O
((minus I1 I3) (Imax- Imax+) (O
((position X120-toX60-) ->

((s- v2 I2 (0 Imax+) (V¥ 0)))
((equal I2 I3) (Imax- Imax-) (O
((minus I1 I3) (Imax- Imax+) (O
((position X120-toX60-) ->

0)
0)

0)
0)

0)
0)

0)
0)

0)
0)

(Imax+
(Imax+

(Imax+
(Imax+

(Imax+
(Imax+

(Imax+
(Imax+

(Imax+
(Imax+

(0 0) (V* V%))
(0 0) (V* V%))

Imax+))
Imax-)))

Imax+))
Imax-)))

Imax+))
Imax-)))

Imax+))
Imax-)))

Imax+))
Imax-)))

41

((s- V2 12 (0 Imax+) (Vx 0)))
((equal I1 I3) (Imax- Imax-) (0 0) (Imax+ Imax+))
((minus I1 I2) (Imax- Imax+) (0 0) (Imax+ Imax-)))))

8? §1ne %fnfgf)eii ace

motor tomme NP M tor" mechanical
(quantity-spaces
(defaults ((magnetic force) polarity-qgspace)
((electrical current) motor-current-qspace)
((mechanical-rotation force) angular-force-gspace))))

(define-component-implementation
1 motor
"Single magnet, single rotor"
(quantity-spaces
(default
((mechanical-rotation velocity) motor-velocity-qgspace)))
(component-variables (PE energy (quantity-space (0 PE+ PEx)))
(TE energy))
(mode-variables
(position
(positive <= (or ((shaft X) ((0 X180+) nil))
((shaft X) (X180+ dec))
((shaft X) (X180+ std))))
(negative <- (or ((shaft X) ((X180- 0) nil))
((shaft X) (X180- inc))
((shaft X) (X180- std))))
(:discontinuous-transition <- ((shaft X) (X180+ inc))
negative ((shaft X) (X180- inc)))
(:discontinuous-transition <- ((shaft X) (X180- dec))
positive ((shaft X) (X180+ dec)))))
(components (magnet magnet)
(rotor (rotor (impl 1)) (no-new-landmarks F-lat F-ang)
(ignore-qdir F-ang)
(quantity-spaces (X position-X-gspace)))
(shaft (one-terminal-shaft (impl 1))
(no-new-landmarks F-lat F-ang Cum-F-ang)
(ignore-qdir F-ang Cum-F-ang)
(quantity-spaces (X position-X-gspace))))

42

(constraints
((ADD PE (shaft KE) TE) (0 0 0))
((constant TE))
((constant (shaft I) Imax+))
((position positive)
->
((U- (shaft X) (rotor Orientation) (X+ Omax+))
(0 0) (X180+ 0))
((S- (shaft X) PE (O PE*) (X180+ 0)) (X+ PE+)))
((position negative)
->
((U+ (shaft X) (rotor Orientation) (X- Omax-))
(X180- 0) (0 0))
((s+ (shaft X) PE (X180- 0) (0 PE*)) (X- PE+))))
(connections (c1l (rotor magnet) (magnet north))
(c2 (rotor shaft) (shaft t))))

(define-component-implementation
2 motor
"Double magnet, single rotor"
(quantity-spaces
(defaults
((mechanical-rotation velocity) motor-velocity-qspace)))
(mode-variables
(position
(positive <- (or ((shaft X) ((0 X180+) nil))
((shaft X) (X180+ dec))
((shaft X) (X180+ std))))
(negative <- (or ((shaft X) ((X180- 0) nil))
((shaft X) (X180- inc))
((shaft X) (X180- std))))
(:discontinuous-transition <- ((shaft X) (X180+ inc))
negative ((shaft X) (X180- inc)))
(:discontinuous-transition <- ((shaft X) (X180- dec))
positive ((shaft X) (X180+ dec)))))
(components
(magnetl magnet)
(magnet2 magnet)
(rotor 2-field-rotor (no-new-landmarks F-lat F-ang)
(ignore-qdir F-ang))
(shaft (one-terminal-shaft (impl 2))
(no-new-landmarks F-lat F-ang Cum-F-ang)
(ignore-qdir F-ang Cum-F-ang)

(quantity-spaces (X position-90-gspace))))
(constraints
((position positive)
->
((U- (shaft X) (rotor Orientation) (X90+ Omax+))
(0 0) (X180+ 0))
((s- (shaft V) (shaft I) (O Imax+) (V* 0))))
((position negative)
->
((U+ (shaft X) (rotor Orientation) (X90- Omax-))
(x180- 0) (0 0))
((s+ (shaft V) (shaft I) (0 Imax-) (Vx 0)))))
(connections (c1 (rotor magnet+) (magnetl north))
(c2 (rotor magnet-) (magnet2 south))
(c3 (rotor shaft) (shaft t))))

(define-component-implementation
3 motor
"Double magnet, double rotor"
(quantity-spaces
(defaults
((mechanical-rotation force) angular-force-gspace)
((mechanical-rotation velocity) motor-velocity-qgspace)))
(mode-variables
(position
(positive <= (or ((shaft X) ((0 X180+) nil))
((shaft X) (X180+ dec))
((shaft X) (X180+ std))
((shaft X) (0 inc))
((shaft X) (0 std))
)
(negative <- (or ((shaft X) ((X180- 0) nil))
((shaft X) (X180- inc))
((shaft X) (X180- std))
((shaft X) (O dec))
((shaft X) (0 std))
)
(:discontinuous-transition <- ((shaft X) (X180+ inc))
negative ((shaft X) (X180- inc)))
(:discontinuous-transition <- ((shaft X) (X180- dec))
positive ((shaft X) (X180+ dec)))))
(components
(magnetl magnet)

43

44

(magnet2 magnet)
(rotorl 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang)
(quantity-spaces (Orientation orientation-gspace)))
(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang)
(quantity-spaces (Orientation orientation-gspace)))
(shaft (2-terminal-shaft (impl 1))
(no-new-landmarks F-latl F-lat2 F-angl F-ang?2
F-ang-sum Cum-F-ang)
(ignore-qdir F-angl F-ang2 F-ang-sum Cum-F-ang)
(quantity-spaces (X position-90-gspace))))
(constraints
((position positive)
-> ((U- (shaft X) (rotorl Orientation) (X90+ Omax+))
(0 0) (X180+ 0))
((U+ (shaft X) (rotor2 Orientation) (X90+ Omax-))
(0 0) (X180+ 0)))
((position negative)
-> ((U+ (shaft X) (rotorl Orientation) (X90- Omax-))
(X180- 0) (0 0))
((U- (shaft X) (rotor2 Orientation) (X90- Omax+))
(X180- 0) (0 0))))
(connections (c1l (rotorl magnet+) (rotor2 magnet+) (magnetl north))
(c2 (rotorl magnet-) (rotor2 magnet-) (magnet2 south))
(c3 (rotorl shaft) (shaft t1))
(c4 (rotor2 shaft) (shaft t2))))

(define-component-implementation
4 motor
"Double magnet, triple rotor"
(quantity-spaces
(defaults
((mechanical-rotation force) angular-force-gspace)
((mechanical-rotation velocity) motor-velocity-qspace)))
(mode-variables
(position
(X0toX60+ <- (or ((shaft X) ((O X60+) nil))
((shaft X) (X60+ dec))
((shaft X) (0 inc))
((shaft X) (X60+ std))
((shaft X) (0 std))))
(X60+t0X120+ <- (or ((shaft X) ((X60+ X120+) nil))

45

((shaft X) (X120+ dec))

((shaft X) (X60+ inc))

((shaft X) (X120+ std))

((shaft X) (X60+ std))))
(X120+t0X180+ <- (or ((shaft X) ((X120+ X180+) nil))

((shaft X) (X180+ dec))

((shaft X) (X120+ inc))

((shaft X) (X180+ std))

((shaft X) (X120+ std))))
(X180-toX120- <- (or ((shaft X) ((X180- X120-) nil))

((shaft X) (X120- dec))

((shaft X) (X180- inc))

((shaft X) (X120- std))

((shaft X) (X180- std))))
(X120-toX60- <- (or ((shaft X) ((X120- X60-) nil))

((shaft X) (X60- dec))

((shaft X) (X120- inc))

((shaft X) (X60- std))

((shaft X) (X120- std))))
(X60-t0X0 <- (or ((shaft X) ((X60- 0) nil))

((shaft X) (0 dec))

((shaft X) (X60- inc))

((shaft X) (X60- std))))
(:discontinuous-transition <- ((shaft X) (X180+ inc))

X180-toX120- ((shaft X) (X180- inc)))
(:discontinuous-transition <- ((shaft X) (X180- dec))
X180+toX120+ ((shaft X) (X180+ dec)))))
(components

(magnetl magnet)

(magnet2 magnet)

(rotorl 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation Polarity)
(quantity-spaces (Orientation orientation-60-gspace)))

(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation)
(quantity-spaces (Orientation orientation-60-gspace)))

(rotor3 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)
(ignore-qdir F-ang) (display I Orientation)
(quantity-spaces (Orientation orientation-60-gspace)))

(shaft (3-terminal-shaft (impl 1))

(no-new-landmarks F-latl F-lat2 F-lat3
F-angl F-ang2 F-ang3 Cum-F-ang)
(display V1 X Cum-F-lat Cum-F-ang Position)

46

(connections (ci

(ignore-qdir F-angl F-ang2 F-ang3 Cum-F-ang)
(quantity-spaces (X position-30-gspace))))

(constraints

((position XOtoX60+)

-> ((M+ (shaft X) (rotori
((M- (shaft X) (rotor2
((U+ (shaft X) (rotor3

((position X60+toX120+)
-> ((U- (shaft X) (rotori

((M- (shaft X) (rotor2

((M+ (shaft X) (rotor3
((position X120+toX180+)
-> ((M- (shaft X) (rotoril

((U+ (shaft X) (rotor2

((M+ (shaft X) (rotor3
((position X180-toX120-)
-> ((M- (shaft X) (rotoril

((M+ (shaft X) (rotor2

((U- (shaft X) (rotor3

((position X120-toX60-)
-> ((U+ (shaft X) (rotori

((M+ (shaft X) (rotor2
((M- (shaft X) (rotor3
((position X60-toX0)
-> ((M+ (shaft X) (rotori
((U- (shaft X) (rotor2

((M- (shaft X) (rotor3

(rotor3
(rotori
(rotor3
(rotori
(rotor2
(rotor3

(c2

(c3
(c4
(cb

Orientation)) (0 0) (X60+ 060+))
Orientation)) (0 060+) (X60+ 0))
Orientation) (X30+ Omax-))

(0 060-) (X60+ 060-)))

Orientation) (X90+ Omax+))

(X60+ 060+) (X120+ 060+))
Orientation)) (X60+ 0) (X120+ 060-))
Orientation)) (X60+ 060-) (X120+ 0)))

Orientation)) (X120+ 060+) (X180+ 0))
Orientation) (X150+ Omax-))

(X120+ 060-) (X180+ 060-))
Orientation)) (X120+ 0) (X180+ 060+)))

Orientation)) (X180- 0) (X120- 060-))
Orientation)) (X180- 060-) (X120- 0))
Orientation) (X150- Omax+))

(X180- 060+) (X120~ 060+)))

Orientation) (X90- Omax-))

(X120- 060-) (X60- 060-))
Orientation)) (X120- 0) (X60- 060+))
Orientation)) (X120- 060+) (X60- 0)))

Orientation)) (X60- 060-) (0 0))
Orientation) (X30- Omax+))

(X60- 060+) (0 060+))
Orientation)) (X60- 0) (0 060-))))

(rotorl magnet+) (rotor2 magnet+)
magnet+) (magnetl north))
magnet-) (rotor2 magnet-)
magnet-) (magnet2 south))
shaft) (shaft t1))

shaft) (shaft t2))

shaft) (shaft t3))))

C.4 Design Specifications

(for-component S (shaft)
(conditionally ((((((S V)
(required (((((S V) (Vx

(for-component S (shaft)
(conditionally ((((((S V)
(required (((((S V) (Vx

(for-component S (shaft)
(conditionally ((((((S V)
(required (((((S V) (Vx

(for-component S (shaft)
(prohibited (((((s V) ((0

47

(0 ign)))) true))
std)))) true))))

((0 Vx) ign)))) true))
std)))) true))))

(V* ign)))) true))
std)))) true))))

inf) ign))

((S Cum-F-lat) ((0 inf) std))))

true))

Appendix D

Behavior Abstraction Relations

D.1 Abstraction Relation Table

Relation ‘ Space ‘ Defined in Terms of
C. component types | assumed
C, variable names component types
c, variable types generic variable types
C, variable references | C, , C,;
C. values qualitative/quantitative values
L states L,, L.
C, behaviors C,
C, scenarios C,

Table D.1: Abstraction Relation Summary

D.2 Abstraction Relation Definitions

The relation C, (read “is a variable name less general or equal

to”) partially orders the space of variable names. For variable name n =

/

(ny,...,ng), 0’ =(nf,...,nY)

4 F :n’ — n such that

nC,n &< Vnle n if F(n})=n,, then
Ji < Jit1, (Order Preservation and Uniqueness)
n’ is a generalization of n;, (Name Abstraction)

The relation T, (read “is a variable less general or equal to”) par-

tially orders the space of variable references (names and types). For variables

48

49

v=(n,t)and v’ = (n', 1),

/

n L, n,

vC, v &
LT,

The relation C, (read “is a value less general than or equal to”)
partially orders the space of variable values. Considering only the magnitudes

of the qualitative values, for point values = and y,
v,y & =y
For point value @ and open interval value (y1, y2),
rCy (Y1,y2) © yr<a A < ys
For open interval values (21, 22) and (y1,y2),

(z1,22) Eo (Y1,12) & y1 < a1 A 22 <y

The direction of change values dec, std, and inc are all pairwise unordered,
and nil is more general than the other three values. To complete the definition
of C, ,x C, yifthemagnitude relationships described above hold, and either
the direction of change of x and y are the same or the direction of change of y
isnil.

The relation LC; (read “is a state less general than or equal to”)
partially orders the space of states and partial states. For (partial) state s with
variable set V,, and partial state p with variable set V,,,
3F:V, =V, such that
YoveV,,

sCyp & F(v) T, v, (Variable Abstraction)
s(F(v)) C, p(v), (Value Abstraction)

Vv, 09 € Vp, 01 # 09 = F(v1) # Flvg). (Uniqueness)

50

The relation T, (read “is a behavior less general than or equal to”)
partially orders the space of behaviors. For behavior b = (s1, $2,...) and be-

havior b' = (s7,s5,...),
3 F : b — b such that

v S;’ SIS f(‘s;) = S
b, b < Ji < Jit1, (Order Preservation)
sj, Cs sk, (State Abstraction)

Vst st € Ui# g = F(si) # F(s}). (Uniqueness)

J

The relation C, (read “is a scenario less general than or equal to”)

partially orders the space of scenarios. For scenarios o = (p, #) and o’ = (¢, '),
with p = (p1,...) and p' = (p},...),

p Ty p/ via mapping F': p' — p (BehaviorAbstraction)
o, o &
B = F'(B) (ConditionAbstraction).
where F'(3') denotes the rewriting of 3’ with respect to the mapping F' : p’ — p
(i.e. variable reference pi(v) in (' is replaced by p;(v), where p; = F'(pl)).

Scenarios o and o’ are equivalent if p T, p" and 8 < F'(3').

Appendix E

Teleology Operators

E.1 Notation

Teleological operators are the language primitives for teleological de-
scriptions. In the context of a design modification, a single teleological operator
relates the unmodified design to the modified design in terms of the specifica-
tion predicates. In the following definitions, ¢; are specification predicates, d
and d’ are designs (structure descriptions), ¢ a design modification such that d’
is the design obtained by applying ¢ to d, and E and E’ are the envisionments

of d and d', respectively.

E.2 Primitive Operators

dbek, -,
0 Guarantees ¢ & and
Vb ek, o
VbeE, o,
4 unGuarantees ¢ < < and
A0 e E, —¢.
E.3 Composed Operators
E.3.1 Prevents
dbek, o,
5 Prevents ¢ < ¢ and
Vb el -

51

52

Operator Prevents can be expressed in terms of Guarantees as

5 Prevents ¢ < ¢ Guarantees —¢.

E.3.2 Introduces

VbeE, -9,
0 Introduces ¢ & and
16 e E, ¢.

Introduces can be expressed in terms of unGuarantees as

0 Introduces ¢ < ¢ unGuarantees —¢.

E.3.3 Conditionally Guarantees

10 € E7 _'(qbl = ¢2)7
5 Conditionally when {¢;} Guarantees ¢, < ¢ and
Vo eE, ¢ = ¢

We can rewrite this operator in primitives as:

0 Guarantees ¢, = ¢,.

E.3.4 Conditionally Prevents

We can define the operator Conditionally Prevents, or condition-

ally preventing a scenario as follows:

db¢ E7 _'(qbl = _‘QbQ),
5 Conditionally when {¢;} Prevents ¢, < ¢ and
Vb e E/, qbl = _'qbg.

We can rewrite this operator in primitives as:

6 Guarantees ¢; = —¢,.

33

E.3.5 Conditionally Introduces

We can define the operator Conditionally Introduces, or condi-

tionally introducing a scenario as follows:

VbEEv le :>_'¢2)7
4 Conditionally when {¢;} Introduces ¢, < ¢ and
3¥ e E/, _'(qbl = _‘qbg).

We can rewrite this operator in primitives as:

0 unGuarantees ¢, = —¢,.

Appendix F

CC BNF

F.1 Macros

(define—component—interface

interface-name string domain interface-clause™)
(define-component-implementation

implementation-name interface-name string impl-clause™)
(define-configuration

config-name config-lype-reference string config-clause™)
(define-quantity-space

gspace-name qspace [parent-clause] [conservation-clause])

F.2 Lower-Level Items

ce-constraint-spec ::=

constraint-spec

| Cconstraint-mode-condition -> constraint-spect)
component-type-reference ::=

interface-name

| Cinterface-name component-type-reference-details)
component-type-reference-details : :=

[instance-implementation-clause] [instance-mode-clause] parm-val®
config-name ::= symbol
config-type-reference ::= interface-name

| Cinterface-name instance-implementation-clause)
config-clause ::=

(interface-name component-type-reference-details)

| Cinstance-name component-type-reference-details)
connection-name ::= symbol
conservation-clause ::=

(conservation-correspondences conservation-correspondencet)
conservation-correspondence ::= (lmark Imark™)

54

35

constraint ::= (name vart other-info*)
constraint-mode-condition ::=
(mode-variable-reference mode-value)
| (AND constraint-mode-condition™)
| (NOT constraint-mode-condition)
| (OR constraint-mode-condition™)

constraint-spec ::= (constraint corresponding-values™)
corresponding-values ::= (lmark Imark™)

default-parent-clause ::= (hierarchical-parents default-parent-spec™)
default-parent-spec ::= (variable-type-spec gspace-spec)
default-gspace-clause ::= (defaults default-gspace-spec™)
default-gspace-spec ::= (variable-type-spec gspace-spec)

domain ::=

acoustic | electrical | hydraulic | mechanical
| mechanical-rotation | mechanical-translation | thermal
implementation-name ::= symbol
impl-clause ::=
(quantity-spaces [defaull-gspace-clause] [default-parent-clause])
| (terminal-variables (ferminal-name variable-spect)™)
| (component-variables wvariable-spect)
| (mode-variables (mode-variable-name mode-value-spect)™)
| (constraints cc-constraint-spect)
| (components (instance-name component-type-reference
instance-option*) ™)
| (connections ([connection-name] terminal-reference™)™)

instance-implementation-clause ::= (impl implementation-name)
instance-mode-clause ::= (mode (mode-variable-name mode-value))
instance-name ::= symbol

instance-option ::=

(display variable-name™)

| (ignore-qdir wvariable-name™)

| (no-new-landmarks variable-name*)

| (quantity-spaces (variable-name gspace-spec)™)
interface-clause ::=

(terminals terminal-name’)

| (parameters parameter-spect)

| (quantity-spaces [default-gspace-clause] [default-parent-clause])
interface-name ::= symbol
mag ::= Imark | (Umark Imark)
mode-value-spec ::= mode-value | (mode-value <= mode-value-condition)
mode-value ::= symbol

56

mode-value-condition ::=
(variable-reference test-val)
| (AND mode-value-condition™)
| (NOT mode-value-condition)
| (OR mode-value-condition™)

mode-variable-name ::= symbol

mode-variable-reference ::= mode-variable-name
| (instance-name™ mode-variable-name)

parameter-default ::= symbol

parameter-name ::= symbol

parameter-spec ::= parameter-name | (parameter-name parameter-default)

parameter-value ::= symbol

parm-val ::= (parameter-name parameter-value)

parent-clause ::= (parent ¢space-name)

gspace ::= ([minf]| lmark® 0 [mark® [inf])

gspace-name ::= symbol

gspace-spec ::=
gspace-name
| gspace [parent-clause] [conservation-clause]

terminal-name ::= symbol

terminal-reference ::= terminal-name | (instance-name terminal-name)
test-dir ::= inc | std | dec | nil

test-val ::= (mag test-dir)

variable-name ::= symbol

variable-name-alist ::= ((variable-name test-val) ™)

variable-name-list ::= (variable-name™)

variable-option ::=
display | ignore-qdir | no-new-landmarks
| (landmark-symbol symbol)
| (quantity-space gspace-spec)

variable-reference ::= variable-name | (instance-name® variable-name)
variable-spec ::= (variable-name variable-type-spec variable-option™)
variable-type-spec : := variable-type-name | (variable-type-name domain)

variable-type-name ::= symbol

[AS85]

BIBLIOGRAPHY

Harold Abelson, Gerald J. Sussman, The Structure and Interpretation
of Computer Programs, MIT Press, 1985.

[AEH*89] Harold Abelson, Michael Eisenberg, Matthew Halfant, Jacob Katz-

[AL£2]

[BSZ89]

[BRS6]

[BCS5]

enelson, Elisha Sacks, Gerald J. Sussman, Jack Wisdom, Kenneth
Yip, “Intelligence in Scientific Computing” in Communications of

the ACM, Vol. 32, No. 5 (May 1989), pp. 546-562.

Mack W. Alford, “A Graph Model Based Approach to Specifica-
tions”, in Distributed Systems: Methods and Tools for Specification,
M. Paul and H. J. Siegert (eds.), Lecture Notes in Computer Science
No. 190, G. Goos and J. Hartmanis (eds.), Springer-Verlag, New
York, 1982, pp. 131-201.

Catherine Baudin, Cecilia Sivard, Monte Zweben, “Model-Based Ap-
proach to Design Rationale Conservation”, in Proceedings of the 1989
Workshop on Model-Based Reasoning, Detroit, August 20, 1989, pp.
88-90.

Ted Biggerstaff, Charles Richter, “Reusability Framework, Assess-
ment, and Directions”, MCC (Non Proprietary) Technical Report
No. STP-345-86, October 1986.

Tom Bylander, B. Chandrasekaran, “Qualitative Reasoning About
Physical Structures”, in SIGART Newsletter, Special Section on Rea-

57

38

soning About Structure, Behavior, and Function, B. Chandrasekaran,

Robert Milne eds., No. 93 (July 1985), pp. 22-24.

[CLMGS85] Richard R. Cantone, W. Brent Lander, Michael P. Marrone,

[CMSS]

[CMS5]

[Cha90]

[Che80]

[CM834]

[CF82]

[Dav85]

Michael W. Gaynor, “Automated Knowledge Acquisition in IN-
ATE Using Component Information and Connectivity”, in SIGART
Newsletter, Special Section on Reasoning About Structure, Behavior,
and Function, B. Chandrasekaran, Robert Milne eds., No. 93 (July
1985), pp. 32-34.

K. Many Chandra, Jayadev Misra, Parallel Program Design: A Foun-
dation, Addison-Wesley, Reading, Mass., 1988.

B. Chandrasekaran, Rob Milne, (eds.) “Special Section on Reasoning
About Structure, Behavior, and Function”, in SIGART Newsletter,
No. 93 (July 1985), pp. 4-54.

B. Chandrasekaran, “Design Problem Solving: A Task Analysis”, in
Al Magazine, Vol. 11 No. 4 (Winter 1990), pp. 59-71.

Brian F. Chellas, Modal Logic: An Introduction, Cambridge Univer-
sity Press, 1980.

W. F. Clocksin, C. S. Mellish, Programming in Prolog, Second Edi-

tion, Springer-Verlag, Berlin, 1984.

Paul R. Cohen, Edward A. Feigenbaum, The Handbook of Artificial
Intelligence, Vol. 111, Addison-Wesley, Reading, MA.

Randall Davis, “Diagnostic Reasoning Based on Structure and Be-

havior”, in Qualitative Reasoning About Physical Systems, Daniel G.

[DHSS]

[DeJ85]

[deKT77)

[deK85]

[dKBS2]

[dKBS5]

59

Bobrow, ed., The MIT Press, Cambridge, MA 1985, pp. 347-410.
Reprinted from Artificial Intelligence Vol. 24, 1984.

Randall Davis, Walter Hamscher, “Model-based Reasoning: Trou-
bleshooting” in Exploring Artificial Intelligence: Survey Talks from
the National Conferences on Artificial Intelligence, Howard Shrobe,
ed., Morgan Kaufmann Publishers, San Mateo, CA 1988, pp. 297-
346.

Kenneth De Jong, “Expert Systems for Diagnosing Complex Sys-
tem Failures”, in SIGART Neuwsletter, Special Section on Reason-
ing About Structure, Behavior, and Function, B. Chandrasekaran,

Robert Milne eds., No. 93 (July 1985), pp. 29-32.

Johan de Kleer, “Multiple Representation of Knowledge in a Mechan-
ics Problem Solver, in Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, Cambridge, MA, pp. 299-304.

Johan de Kleer, “How Circuits Work”, in Qualitative Reasoning
About Physical Systems, Daniel G. Bobrow, ed., The MIT Press,
Cambridge, MA 1985, pp. 205-280. Reprinted from Artificial Intelli-
gence Vol. 24, 1984.

Johan de Kleer, John Seely Brown, “Foundations of Envisioning”, in
Proceedings of the Second National Conference on Artificial Intelli-
gence, pp. 434-437.

Johan de Kleer, John Seely Brown, “A Qualitative Physics Based

on Confluences”, in Qualitative Reasoning About Physical Systems,

60

[dKBS6]

[Dow90]

[DoyS6]

[ES85]

Daniel G. Bobrow, ed., The MIT Press, Cambridge, MA 1985, pp.
7-83. Reprinted from Artificial Intelligence Vol. 24, 1984.

Johan de Kleer, John Seely Brown, “Theories of Causal Ordering”,
in Artificial Intelligence Vol. 29, No. 1 (July 1986), pp. 33-61.

Keith Downing “The Qualitative Criticism of Circulatory Models via
Bipartite Teleological Analysis”, in Proceedings of the 1990 Workshop

on Qualitative Reasoning.

Richard J. Doyle, “Constructing and Refining Causal Explanations
from an Inconsistent Domain Theory”, in Proceedings of the Fifth

National Conference on Artificial Intelligence, 1986, pp. 5H38-544.

Allen Emerson, A. Prasad Sistla, “Deciding Full Time Branching
Logic”, in Information and Control, Vol. 61, No. 3, pp. 175-201.

[FKKP90] Kenneth W. Fiduk, Sally Kleinfeldt, Marta Kosarchyn, Eileen B.

[FHN72]

[FNT71]

Perez, “Design Methodology Management - A CAD Framework Ini-
tiative Perspective”, in Proceedings of the 27" ACM/IEEE Design
Automation Conference, June 24 - 28, 1990, Orlando.

Richard E. Fikes, P. E. Hart, Nils J. Nilsson, “Learning and Execut-
ing Generalized Plans”, in Artificial Intelligence, Vol. 3, (1972) pp.
251-288.

Richard E. Fikes, Nils J. Nilsson, “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving”, in Artificial
Intelligence, Vol. 2, (1971) pp. 189-208.

[For85]

[Frag9]

[FD90]

[Gen85]

[Goel9]

[Gre83]

[Gru9l]

61

Kenneth D. Forbus, “Qualitative Process Theory”, in Qualitative
Reasoning About Physical Systems, Daniel G. Bobrow, ed., The MIT
Press, Cambridge, MA 1985, pp. 85-168. Reprinted from Artificial
Intelligence Vol. 24, 1984.

Bruno Franck, “Qualitative Engineering at Various Levels of Con-
ception for Design and Evaluation of Structures”, in Proceedings of
the Conference on Industrial and Engineering Application of Al and
ES, ACM, 1989.

David W. Franke, Daniel L. Dvorak, “CC: Component Connection
Models for Qualitative Simulation, A User’s Guide”, TR AI90-126,

Dept. of Computer Sciences, The University of Texas at Austin.

Michael R. Genesereth, “The Use of Design Descriptions in Auto-
mated Diagnosis”, in Qualitative Reasoning About Physical Systems,
Daniel G. Bobrow, ed., The MIT Press, Cambridge, MA 1985, pp.
411-436. Reprinted from Artificial Intelligence Vol. 24, 1984.

Ashok Goel, B. Chandrasekaran, “Functional Representation of De-
signs and Redesign Problem Solving”, in Proceedings of the Fleventh
Joint International Conference on Artificial Intelligence, August

1989, Detroit, pp. 1388-1394.

James G. Greeno, “Conceptual Entities”, in Mental Models, Dedre
Gentner, Albert L. Stevens (eds.), Lawrence Erlbaum Associates,

Hillsdale, NJ, 1983, pp. 227-252.

Thomas Gruber, “Learning Why by Being Told What”, in IEEFE
FExpert Vol. 6, No. 4 (August 1991), pp. 65-75.

62

[Hel88]

[HWS7]

[Ham91]

[HASS]

[IEEESA]

[IEEEST]
[IEEESS]

[1S86al]

[1S86b]

[Keds5]

David H. Helman (ed.), Analogical Reasoning, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1988.

Michael R. Herbert, Gareth H. Williams, “An Initial Evaluation of
the Detection and Diagnosis of Power Plant Faults Using a Deep

Knowledge Representation of Physical Behaviour”, in FEzpert Sys-
tems, Vol. 4, No. 2, (May 1987), pp. 90-99.

Walter Hamscher, “Modeling Digital Circuits for Troubleshooting”,
in Artificial Intelligence Vol. 51, Nos. 1-3 (October 1991), pp. 223-
271.

Michael N. Huhns, Ramon D. Acosta, “ARGO: A System for Design
by Analogy”, in IEEE Expert Vol. 3, No. 3 (Fall 1988), pp. 53-68.

IEEFE Transactions on Software Fngineering issue on Software Re-

usability, Vol. SE-10, No. 5 (September 1984).
IEEE Software issue on Reuse Tools, Vol. 4, No. 4 (July 1987).
IEEE Software issue on CASE, Vol. 5, No. 2 (March 1988).

Yumi Iwasaki, Herbert A. Simon, “Causality in Device Behavior”, in

Artificial Intelligence Vol. 29, No. 1 (July 1986), pp. 3-32.

Yumi Iwasaki, Herbert A. Simon, “Theories of Causal Ordering: Re-
ply to de Kleer and Brown”, in Artificial Intelligence Vol. 29, No. 1
(July 1986), pp. 63-72.

Smadar Kedar-Cabelli, “Purpose-Directed Analogy”, in Proceedings
of the Seventh Annual Conference of the Cognitive Science Society,
1985, Irvine CA, pp. 150-159.

[Keu91]

[KTY91]

[Kow85]

[Kui82]

[Kui85]

[Kuis6]

[KuiS7]

[KuiS7]

63

Anne M. Kueneke, “Device Representation”, in IFEE Erpert Special
Track on Functional Reasoning, Vol. 6, No. 2 (April 1991), pp. 22-25.

Takashi Kiriyama, Tetsuo Tomiyama, Hiroyuki Yoshikawa, “Model
Generation in Design”, in Working Papers for QR-91, Fifth Interna-
tional Workshop on Qualitative Reasoning about Physical Systems,
May 19-22, 1991, Austin, TX, pp. 93-108.

Thaddeus J. Kowalski, An Artificial Intelligence Approach to VLSI
Design, 1985, Kluwer Academic Publishers, Boston.

Benjamin J. Kuipers, “Getting the Envisionment Right”, in Proceed-
ings of the Second National Conference on Artificial Intelligence, pp.
209-212.

Benjamin J. Kuipers, “Commonsense Reasoning about Causality:
Deriving Behavior from Structure”, in Qualitative Reasoning About
Physical Systems, Daniel G. Bobrow, ed., The MIT Press, Cam-
bridge, MA 1985, pp. 169-203. Reprinted from Artificial Intelligence
Vol. 24, 1984.

Benjamin J. Kuipers, “Qualitative Simulation”, in Artificial Intelli-

gence, Vol. 29, No. 3, (September 1986), pp. 289-338.

Benjamin J. Kuipers, “Qualitative Simulation as Causal Explana-
tion”, in IKEFE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-17, No. 3 (May/June 1987), pp. 432-444.

Benjamin J. Kuipers, “Abstraction by Time-Scale in Qualitative Sim-
ulation”, in Proceedings of the Sixth National Conference on Artifi-

cial Intelligence, Seattle, July 1987, pp. 621-625.

64

[Kui89a] Benjamin J. Kuipers, “Qualitative Reasoning: Modeling and Simula-
tion with Incomplete Knowledge”, Automatica, Vol 25, No. 4 (1989),
pp- H71-585.

[Kui89b] Benjamin Kuipers, “Generic Mechanisms”.

[MC80] Carver Mead, Lynn Conway, Introduction to VLSI Systems, Addison-
Wesley Publishing, Reading Mass., 1980.

[MBR89] Proceedings of the 1989 Workshop on Model-Based Reasoning.
[MBR90] Proceedings of the 1990 Workshop on Model-Based Reasoning.
[MBROI1] Proceedings of the 1991 Workshop on Model-Based Reasoning.

[McC88] Anna Marguerite McCann, “The Roman Port of Cosa”, in Scientific
American, Vol. 258, No. 3, (March 1988), pp. 102-109.

[Mil85] Robert Milne, “A Theory of Responsibilities”, in SIGART Newslet-
ter, Special Section on Reasoning About Structure, Behavior, and
Function, B. Chandrasekaran, Robert Milne eds., No. 93 (July 1985),
pp- 25-29.

[Moo89] Raymond Mooney, private communication.

[Mos85] Jack Mostow, “Towards a Better Model of the Design Process”, in
Al Magazine, Vol. 6, No. 1 (Spring 1985), pp. 44-57.

[MB87] Jack Mostow, Mike Barley, “Automated Reuse of Design Plans”, in
Proceedings of the International Conference on FEngineering Design,

August 1987, Boston, MA, pp. 632-647.

65

[Mosz85] Ben Moszkowski, “A Temporal Logic for Multilevel Reasoning about

[NJAOL]

[NilS80]

[Pol73]

[PFST]

[Ray86]

[RS84]

[RS89]

Hardware”, in Computer, Vol. 18, No. 5 (February 1985), pp. 10-19.

P. Pandurang Nayak, Leo Joskowicz, Sanjaya Addanki, “Automated
Model Selection using Context-Dependent Behaviors”, in Working
Papers for QR-91, Fifth International Workshop on Qualitative Rea-
soning about Physical Systems, May 19-22, 1991, Austin, TX, pp.
10-24.

Nils J. Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto,
CA, 1980.

George Polya, How To Solve It: A New Aspect of Mathematical
Method, Second Edition, Princeton University Press, Princeton, NJ,
1973.

Ruben Prieto-Diaz, Peter Freeman, “Classifying Software for Reusa-

bility”, in IEEE Software, Vol. 4, No. 1 (January 1987), pp. 6-16.
Joe Raymond, private communication.

Charles Rich, Howard E. Shrobe, “Initial Report on a LISP Pro-
grammer’s Apprentice”, in Interactive Programming Environments,
D. Barstow, H. Shrobe, E. Sandewall (eds.), McGraw-Hiull, New
York, 1984, pp. 443-463. Reprinted from [EEFE Transactions on Soft-
ware Engineering, Vol. SE-4, No. 6 (November 1978), pp. 456-467.

Christopher K. Riesbeck, Roger C. Schank, “Case-Based Reasoning:
An Overview”, in Inside Case-Based Reasoning, Lawrence Erlbaum,

Hillsdale, NJ, 1989.

66

[RKS3]

[SacT74]

[SacT7]

[SJD85]

[Sch91]

[SC85]

SS88]

[Sim81]

[SM84]

Ronald C. Rosenberg, Dean C. Karnopp, Introduction to Physical
System Dynamics, McGraw-Hill, New York, 1983.

Earl D. Sacerdoti, “Planning in a Hierarchy of Abstraction Spaces”,
in Artificial Intelligence, Vol. 5 (1974), pp. 115-135.

Earl D. Sacerdoti, A Structure for Plans and Behavior, Elsevier, New
York, 1977.

Ethan A. Scarl, John R. Jamieson, Carl I. Delaune, “Process Moni-
toring and Fault Location at the Kennedy Space Center”, in SIGART
Newsletter, Special Section on Reasoning About Structure, Behavior,
and Function, B. Chandrasekaran, Robert Milne eds., No. 93 (July
1985), pp. 38-44.

Roger C. Schank, “Where’s the AI”, in AI Magazine. Vol. 12, No. 4
(Winter 1991), pp. 38-49.

V. Sembugamoorthy, B. Chandrasekaran, “Functional Representa-
tion of Devices as Deep Models”, in SIGART Newsletter, Special
Section on Reasoning About Structure, Behavior, and Function, B.

Chandrasekaran, Robert Milne eds., No. 93 (July 1985), pp. 21-22.

Lawrence K. Shapiro, Howard I. Shapiro, “Construction Cranes”, in

Scientific American, Vol. 258, No. 3, (March 1988), pp. 72-79.

Herbert A. Simon, Sciences of the Artificial, Second Edition, MIT
Press, Cambridge, Mass., 1981.

Louis I. Steinberg, Tom M. Mitchell, “A Knowledge Based Approach
to VLSI CAD: The REDESIGN System”, in Proceedings of the 21°
Design Automation Conference, 1984, pp. 412-418.

[SCB8Y]

[ST90]

[SKB90]

[Sto77]

[Tur84]

67

Jon Sticklen, B. Chandrasekaran, W. E. Bond, “Applying a Func-
tional Approach for Model-Based Reasoning”, in Proceedings of the
1989 Workshop on Model-Based Reasoning, Detroit, August 20, 1989,
pp- 165-176.

Jon Sticklen, Rula Tufankji, “Utilizing a Functional Approach for
Modeling Biological Systems”, AI/KBS Laboratory Report 1990:#2,

Department of Computer Science, Michigan State University, 1990.

Jon Sticklen, Ahmed Kamel, W. E. Bond, “A Model-Based Ap-
proach for Organizing Quantitative Computations”, AI/KBS Labo-
ratory Report 1990:#3, Department of Computer Science, Michigan
State University, 1990.

Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory, MIT Press, Cambridge,
Mass., 1977.

Raymond Turner, “Logics for Artificial Intelligence”, Halsted Press,
New York, 1984.

[VHDL87] IEEE Standard VHDL Language Reference Manual, IEEE Std.

[Wat84]

1076-1987.

Richard C. Waters, “The Programmer’s Apprentice: Knowledge
Based Program Editing”, in Interactive Programming Environments,
D. Barstow, H. Shrobe, E. Sandewall (eds.), McGraw-Hiull, New
York, 1984, pp. 464-486. Reprinted from [EEFE Transactions on Soft-
ware Engineering, Vol. SE-8, No. 1 (January 1982), pp. 1-12.

68

[WF85] Barbara Y. White, John R. Frederiksen, “QUEST: Qualitative
Understanding of Electrical System Troubleshooting”, in SIGART
Newsletter, Special Section on Reasoning About Structure, Behav-
ior, and Function, B. Chandrasekaran, Robert Milne eds., No. 93
(July 1985), pp. 34-37.

[Wil85] Brian C. Williams, “Qualitative Analysis of MOS Circuits”, in Qual-
itative Reasoning About Physical Systems, Daniel G. Bobrow, ed.,
The MIT Press, Cambridge, MA 1985, pp. 281-346. Reprinted from
Artificial Intelligence Vol. 24, 1984.

[WMKS89] Howard G. Wilson, Paul B. MacCready, Chester R. Kyle, “Lessons
of Sunraycer”, in Scientific American, Vol. 260, No. 3, (March 1989),
pp- 90-97.

VITA

David Wayne Franke was born on April 8, 1954, in Enid, Oklahoma.
He received his high school diploma from Enid High School in May, 1972, a B.S.
in Mathematics from the University of Oklahoma in May, 1976, and a M.S in
Computer Science from the Pennsylvania State University in November, 1977.
He has worked for Texas Instruments, Inc. (1978-1985) as a Senior Member of
the Technical Staff in operating systems, computer architecture, and artificial
intelligence. He has also worked for the Microelectronics and Computer Tech-
nology Corporation (1986-1991) as a Senior Member of the Technical Staff in
artificial intelligence in design, design reuse, and hardware/software codesign.

He currently works for the Trilogy Development Group.

In the fall of 1985, he joined the Department of Computer Sciences at
The University of Texas at Austin as a graduate student where he has pursued

research in qualitative modeling and representation of descriptions of purpose.

Permanent address: 8913 Scottish Pastures Dr.
Austin, Texas 78750-3571

This dissertation was typeset’ with IATEX by the author.

1IATEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TEX program for computer typesetting. TgX is a trademark of the
American Mathematical Society. The INIpX macro package for The University of Texas at
Austin dissertation format was written by Khe-Sing The.

