
A THEORY OF TELEOLOGY
APPROVED BYDISSERTATION COMMITTEE:

Copyright c
byDavid Wayne Franke1992

To Leo, Elmer, Verna and Hazel

A THEORY OF TELEOLOGYbyDAVID WAYNE FRANKE, B.S., M.S.
DISSERTATIONPresented to the Faculty of the Graduate School ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTINMay 1992

AcknowledgmentsAlthough the completion of a doctoral program is recognized as anindividual's achievement, such an accomplishment is only possible with theguidance and support faculty, friends, and family. I attempt to acknowledgehere those who have provided guidance, support, and inspiration for this work.My advisor, Professor Benjamin Kuipers, introduced me to this re-search area and provided the seeds for the ideas described in this dissertation.His patient guidance and constructive criticism have contributed greatly tothe completion of this research and dissertation. Professor Allen Emerson,Professor Ray Mooney, Professor Bruce Porter, and Dr. Michael Huhns pro-vided many insightful comments, questions, and suggestions in reviewing andevaluating this research. These committee members and the Computer Sci-ences faculty at the University of Texas at Austin have provided a stimulatingand challenging environment for graduate work. Professor Kuipers is also re-sponsible for building an excellent research group in Qualitative Reasoning atthe university, and I have bene�ted greatly through my association with thisgroup. In particular, I would like to thank Dan Berleant, David Bridgeland,Dan Clancy, Dan Dvorak, Adam Farquhar, Bert Kay, and Raman Rajagopalanfor many interesting discussions and useful ideas.The larger qualitative reasoning, functional reasoning, and model-based reasoning communities have been a wealth of ideas and support. I wouldlike to acknowledge the fruitful interaction with: the Functional Reasoningv

community at Ohio State University, particularly B. Chandrasekaran, AshokGoel, and Jon Sticklen; the model-based reasoning group at Vanderbilt, par-ticularly Gautam Biswas and Stefanos Maginaras, for their interest and helpin building CC; and Rich Doyle of the Jet Propulsion Laboratory.For their support and encouragement over the years and for theircontinuing friendship I thank David Burgess, Carroll Hall, Bill Read, and BillTurpin. Most important is the love and support of my family. My parents,JoAnn, Loren, Rose, and Leo have provided constant encouragement. Melissa,Megan, and Debbie have sacri�ced their time and activities that I might com-plete this accomplishment. I love you all. David Wayne FrankeThe University of Texas at AustinMay 1992
vi

A THEORY OF TELEOLOGYPublication No.David Wayne Franke, Ph.D.The University of Texas at Austin, 1995Supervising Professors: Benjamin J. KuipersA representation language for teleological descriptions, or descriptions of pur-pose, is de�ned. The teleology language, TeD, expresses the descriptions ofpurpose in terms of design modi�cations that guarantee the satisfaction ofdesign speci�cations. These speci�cations express potential behaviors the de-signed artifact should or should not exhibit. We de�ne an abstraction relationon behavior and implement model checking and classi�cation algorithms thatcompute this abstraction relation. The model checking algorithm determineswhether or not a behavior satis�es a speci�cation. The classi�cation algorithmprovides e�ective indexing of behaviors and teleological descriptions. We im-plement an acquisition technique for teleological descriptions and demonstratehow teleological descriptions can subsequently be used in diagnosis, explana-tion, case-based reasoning, design by analogy, and design reuse.We demonstrate the behavior language, teleology language, acquisi-tion of teleological descriptions, and application of teleological descriptions inexplanation, diagnosis, and design reuse via examples in the thermal, hydraulic,vii

electrical, and mechanical domains. We de�ne additional teleological operatorsthat express purposes like prevent, order, synchronize, maintain, and regulate,demonstrating the ability to represent common human-generated descriptionsof purpose in TeD. Expressing the purpose of preventing an undesirable behav-ior is unique to TeD, and is an example of TeD's ability to express purposesregarding missing behaviors and components removed from a design.The teleology language developed in this work represents a signi�cantadvance over previous work by providing a formal language that 1) is indepen-dent of any particular domain of mechanisms or behavior language, 2) canbe e�ectively acquired during the design process, and 3) provides an e�ectivemeans of classifying and indexing teleological descriptions.

viii

Table of ContentsAcknowledgments vAbstract viiTable of Contents ixList of Tables xviList of Figures xvii1. On Describing Purpose 11.1 Teleology : 11.2 Teleology, What's the Purpose? : : : : : : : : : : : : : : : : : : 51.2.1 Diagnosis : 61.2.2 Design : 71.2.3 Design Reuse : 81.3 A Life-Cycle Model : 101.4 Previous and Related Work : 131.5 Claims of This Work : 161.6 Outline of This Dissertation : 162. The Basic Idea 192.1 Goal : 192.2 Speci�cations as Drivers for Design : : : : : : : : : : : : : : : : 192.3 A Language for Purpose : 212.3.1 Modi�cations and Speci�cations : : : : : : : : : : : : : : 23ix

2.3.2 Guarantees : 242.3.3 The Need for Context : : : : : : : : : : : : : : : : : : : 252.4 Goals of TeD : 273. Ontology and Representation 283.1 An Ontology for Teleology : 283.2 Structure : 303.3 Design Modi�cation and History : : : : : : : : : : : : : : : : : : 353.4 Design Instantiation : 373.5 Behavior : 393.5.1 Single Behaviors : 403.5.2 Envisionment : 403.5.3 Example : 413.6 Design Speci�cations : 423.6.1 Scenarios : 423.6.2 Speci�cation Predicates : : : : : : : : : : : : : : : : : : 443.7 Teleology : 443.7.1 Primitive Teleological Operator : : : : : : : : : : : : : : 453.7.2 Expression in Modal Logic : : : : : : : : : : : : : : : : : 463.7.3 Example : 493.8 Additional Teleological Operators : : : : : : : : : : : : : : : : : 543.8.1 unGuarantees : 543.8.2 Preventing a Behavior : : : : : : : : : : : : : : : : : : : 553.8.3 Introducing a Behavior : : : : : : : : : : : : : : : : : : : 553.8.4 Conditional Behavior : 56x

4. Behavior Abstraction 594.1 Rationale : 594.2 Variable Abstraction : 614.3 Partial States : 654.4 Abstract Behaviors : 694.5 Scenarios : 714.6 Design Speci�cations for Behavior : : : : : : : : : : : : : : : : : 734.7 Composed Teleological Operators : : : : : : : : : : : : : : : : : 745. Language Properties 825.1 Generalization and Specialization : : : : : : : : : : : : : : : : : 825.1.1 Generalizing a Guarantee : : : : : : : : : : : : : : : : : 825.1.2 Specializing a Prevention : : : : : : : : : : : : : : : : : : 835.1.3 Generalizing an Introduction : : : : : : : : : : : : : : : : 835.1.4 Specializing a Conditional : : : : : : : : : : : : : : : : : 845.2 Generalizing Behavior Speci�cations : : : : : : : : : : : : : : : 846. Examples 866.1 Design Examples : 866.2 Circuit Example : 876.2.1 Evaluation 1 : 926.2.2 Evaluation 2 : 996.2.3 Modi�cation Teleology Summary : : : : : : : : : : : : : 1026.2.4 Alternate Design History : : : : : : : : : : : : : : : : : : 1046.3 Electric Motor Example : 1056.3.1 Structure : 107xi

6.3.2 Design Speci�cations : 1086.3.3 Behavior : 1106.3.4 Evaluation 1 : 1106.3.5 Evaluation 2 : 1176.3.6 Evaluation 3 : 1207. Applications 1267.1 Reusing Designs : 1267.1.1 Analogy : 1277.1.2 Redesign : 1287.1.3 Cased-Based Reasoning : : : : : : : : : : : : : : : : : : 1287.2 Diagnosis : 1298. Indexing 1318.1 Goal : 1318.2 Speci�cation Predicate Lattice : : : : : : : : : : : : : : : : : : : 1328.2.1 Variable Value Abstraction : : : : : : : : : : : : : : : : : 1328.2.2 Variable Abstraction : 1348.2.3 Design History Index : 1358.2.4 Initial Index Structure : : : : : : : : : : : : : : : : : : : 1358.3 Classi�cation : 1358.4 Queries : 1378.4.1 Explanation Queries : 1388.4.2 Reuse Queries : 1408.4.3 Diagnosis Queries : 143xii

9. Acquisition 1459.1 The Problem : 1459.2 Comparative Analysis : 1469.3 The Issue of Scope : 1489.3.1 Design Speci�cation Hierarchy : : : : : : : : : : : : : : : 1489.4 Planning : 14910.Previous and Related Work 15410.1 Introduction : 15410.2 Function versus Teleology : 15510.3 EQUAL (de Kleer) : 15610.3.1 Function vs. Teleology : : : : : : : : : : : : : : : : : : : 15810.4 Functional Representation, Functional Modeling : : : : : : : : : 15810.4.1 Function vs. Teleology : : : : : : : : : : : : : : : : : : : 16010.5 Responsibilities (Milne) : 16010.5.1 Function vs. Teleology : : : : : : : : : : : : : : : : : : : 16110.6 CDK Project (NASA Ames) : 16110.7 BIOTIC (Downing) : 16210.8 ASK (Gruber) : 16410.9 REDESIGN (Steinberg, Mitchell) : : : : : : : : : : : : : : : : : 16510.9.1 Function and Teleology : : : : : : : : : : : : : : : : : : : 16610.10Purpose-Directed Analogy (Kedar-Cabelli) : : : : : : : : : : : : 16711.Conclusions 16911.1 Accomplishments : 16911.2 Implementation : 171xiii

11.3 Scaling Up : 17111.4 Future Work : 17211.5 Epilogue : 173A.Steam Boiler Example 1A.1 Quantity Space De�nitions : 1A.2 Component De�nitions : 2A.3 Model De�nition : 5A.4 Design Speci�cations : 6A.5 Sample Trace : 6B.Circuit Example 22B.1 Quantity Space De�nitions : 22B.2 Component De�nitions : 22B.3 Model De�nitions : 31B.4 Design Speci�cations : 33C.Electric Motor Example 34C.1 Quantity Space De�nitions : 34C.2 Component De�nitions : 35C.3 Model De�nitions : 41C.4 Design Speci�cations : 47D.Behavior Abstraction Relations 48D.1 Abstraction Relation Table : 48D.2 Abstraction Relation De�nitions : : : : : : : : : : : : : : : : : : 48xiv

E.Teleology Operators 51E.1 Notation : 51E.2 Primitive Operators : 51E.3 Composed Operators : 51E.3.1 Prevents : 51E.3.2 Introduces : 52E.3.3 Conditionally Guarantees : : : : : : : : : : : : : : : : : 52E.3.4 Conditionally Prevents : : : : : : : : : : : : : : : : : : : 52E.3.5 Conditionally Introduces : : : : : : : : : : : : : : : : : : 53F.CC BNF 54F.1 Macros : 54F.2 Lower-Level Items : 54BIBLIOGRAPHY 57Vita
xv

List of Tables3.1 Modi�cation Language Syntax - Component Relative : : : : : : 383.2 Modi�cation Language Syntax - Environment Relative : : : : : 384.1 Abstraction Relation Summary : : : : : : : : : : : : : : : : : : 618.1 Domain-speci�c variable type names : : : : : : : : : : : : : : : 1368.2 Initial Index - Metrics : 136D.1 Abstraction Relation Summary : : : : : : : : : : : : : : : : : : 48

xvi

List of Figures1.1 CMOS Input Selection Circuit - Schematics : : : : : : : : : : : 41.2 Life Cycle Model : 123.1 Idealized Steam Boiler : 303.2 Boiler-Vessel Component De�nition in CC : : : : : : : : : : : : 333.3 Steam Boiler Model De�nition in CC : : : : : : : : : : : : : : : 343.4 Design Process Flow (Single Step) : : : : : : : : : : : : : : : : : 363.5 Initial Variable Values - Steam Boiler : : : : : : : : : : : : : : : 413.6 Behavior Tree - Steam Boiler : : : : : : : : : : : : : : : : : : : 413.7 Qualitative Plots from Qsim1 : : : : : : : : : : : : : : : : : : : 433.8 Steam Boiler - Model Checking Output : : : : : : : : : : : : : : 503.9 Modi�ed Steam Boiler : 503.10 Modi�ed Steam Boiler Model in CC : : : : : : : : : : : : : : : : 513.11 Steam Boiler Modi�cations : 523.12 Behavior Tree - Modi�ed Steam Boiler : : : : : : : : : : : : : : 523.13 Qualitative Plots for Modi�ed Steam Boiler : : : : : : : : : : : 523.14 Steam Boiler - Model Checking Output : : : : : : : : : : : : : : 533.15 Design Flow for the Steam Boiler2 : : : : : : : : : : : : : : : : : 54xvii

4.1 Component Type Hierarchy : 624.2 Variable Type Hierarchy : 646.1 Design Process Flow (Single Step) : : : : : : : : : : : : : : : : : 876.2 CMOS Input Selection Circuit (ISC1)- Schematic : : : : : : : : 886.3 Circuit Model Voltage Quantity Space (in CC) : : : : : : : : : : 896.4 Input Selection Circuit (ISC1) - CC Model (Top Level of Hierarchy) 896.5 Input Selection Circuit - Design Speci�cation : : : : : : : : : : : 906.6 Initial Variable Values : 916.7 Behavior Tree of Initial Circuit (ISC1) : : : : : : : : : : : : : : 926.8 Qualitative Plot for Initial Circuit (ISC1) : : : : : : : : : : : : : 926.9 Circuit with Feedback Transistor (ISC2) - Schematic : : : : : : 936.10 Design Modi�cation (�1) Adding Feedback Transistor : : : : : : 946.11 Circuit with Feedback Transistor (ISC2) - CC Model : : : : : : 956.12 Behavior Tree of Circuit with Feedback (ISC2) : : : : : : : : : : 966.13 Qualitative Plot for Circuit with Feedback (ISC2) : : : : : : : : 966.14 Input Selection Circuit - Design Speci�cation 2 : : : : : : : : : 976.15 Input Selection Circuit - Design Speci�cation 3 : : : : : : : : : 986.16 Behavior Tree of Circuit with Feedback (ISC2) - Discharging : : 1006.17 Qualitative Plot for Circuit with Feedback (ISC2) - Discharging 1006.18 Initial Variable Values - Vhi to 0 Transition : : : : : : : : : : : 1016.19 Qualitative Plot for Circuit with High Resistance Feedback : : : 101xviii

6.20 Input Selection Circuit - Design Speci�cation 3 : : : : : : : : : 1026.21 Design Flow for the Input Selection Circuit3 : : : : : : : : : : : 1036.22 Circuit with Transmission Gate - Schematic : : : : : : : : : : : 1046.23 Design Modi�cations to Replace Pass Transistor : : : : : : : : : 1046.24 Circuit with Transmission Gate - CC Model : : : : : : : : : : : 1056.25 Behavior Tree of Circuit with Transmission Gate : : : : : : : : : 1066.26 Qualitative Plot for Circuit with Transmission Gate : : : : : : : 1066.27 Electric Motor (motor1) - Initial Design : : : : : : : : : : : : : 1086.28 Motor - Initial Design (motor1) - CC Model4 : : : : : : : : : : : 1096.29 Behavior Tree (motor1) - Positive Starting Positions : : : : : : : 1116.30 Qualitative Plots (motor1) - Positive Starting Positions : : : : : 1116.31 Electric Motor (motor2) - Second Design : : : : : : : : : : : : : 1126.32 Single Rotor Commutator Shaft Component - CC Model : : : : 1136.33 Second Motor Design (motor2) - CC Model5 : : : : : : : : : : : 1146.34 Behavior Tree (motor2) - Starting Position X90+ : : : : : : : : : 1156.35 Qualitative Plots (motor2) - Starting Position X90+ : : : : : : : 1156.36 Electric Motor (motor3) - Third Design : : : : : : : : : : : : : : 1176.37 Third Motor Design (motor3) - CC Model6 : : : : : : : : : : : : 1186.38 Qualitative Plots (motor3) : 1196.39 Electric Motor (motor4) - Fourth Design : : : : : : : : : : : : : 1216.40 Fourth Motor Design (motor4) - CC Model7 : : : : : : : : : : : 122xix

6.41 Qualitative Plots (motor4) : 1236.42 Behavior Tree (motor4) - Starting Position 0 : : : : : : : : : : : 1246.43 Design Flow for the Motor8 : 1258.1 Generic Magnitude Abstraction Hierarchy : : : : : : : : : : : : 13410.1 Function in FR (Functional Representation) : : : : : : : : : : : 159

xx

Chapter 1On Describing Purpose1.1 TeleologyThe representation of real-world systems and mechanisms initiallywas concerned with the structure of such systems, and subsequently evolved toissues of representation and derivation of the behaviors of these systems. Exam-ination of real-world system behavior gave rise to derivation and understandingof causal relationships. Given this base of representation and derivation tech-niques for structure, behavior, and causality, the representation and derivationof descriptions of teleology or purpose is presented as the next ingredient ofhuman understanding of real-world systems to be studied. We assume thatreal-world systems are designed to achieve speci�c behaviors, and that eachcomponent and subsystem has been included in the design to contribute insome way to these behaviors.1 In teleology we intend to capture the manner inwhich a component, at any level of the structure hierarchy, contributes to thebehaviors of its ancestors in the structure hierarchy.One can understand both the utility of descriptions of structure, be-havior, causality, and purpose and the di�erences among these descriptionsby considering the questions that can be answered with this information. A1As de Kleer points out [deK85], the goals of e�cient design, manufacture, and main-tenance of artifacts dictate that designers avoid super
uous components in the design, andhence each component should contribute to the ultimate purpose of the design in some way.1

2structure description addresses questions of the form \How is this mechanismconstructed?" and \What are the physical (static) characteristics of this mech-anism?" A behavior description addresses questions of the form \What doesthe mechanism do?" or \What are the dynamic characteristics of the mecha-nism?" Representations of structure and behavior provide the framework fora class of problem-solving techniques called model-based reasoning (cf. Davisand Hamscher's discussion of model-based troubleshooting [DH88] and the pro-ceedings of the model-based reasoning workshops [MBR89, MBR90, MBR91]).Causal reasoning techniques build on this framework, providing analyses anddescriptions that address questions of the form \How does the mechanism ac-complish its behavior?" Finally, a teleological description addresses questionsof the form \Why is this portion of the mechanism designed in this way?" or\What is the purpose of this piece of the mechanism?"When examining human-generated descriptions of systems or mecha-nisms, one �nds that they are rich with descriptions of purpose, as well as de-scriptions of structure, behavior and causality. In fact, descriptions of purposeare very valuable in communicating and understanding design descriptions,since they convey an aspect of the design process here-to-fore not (automati-cally) captured or derivable from a declarative design description, namely thedesigners' intent. Consider the following design description segment in whichHerbert and Williams [HW87, p. 91] discuss modeling a pressurizer subsystemof a power plant:Figure 3 shows a schematic of a pressurizer subsystem, the mainpurpose of which is to control the pressure of the primary circuit bymaintaining a steam-water interface within the vessel through thecontrolled addition of heat and water spray.

3This brief excerpt contains a description of purpose, \: : : to control the pressureof the primary circuit : : :" as well as a causal account, \: : : by maintaining asteam-water interface within the vessel : : : ." An examination of the substruc-ture would show components whose purposes were \to maintain a steam-waterinterface," \to control the addition of heat," and \to control the addition ofwater spray."The thesis of this work contends that the description of purpose of acomponent, mechanism, or activity can be expressed in terms of speci�cationsor requirements for the system in which the component, mechanism, or activityis embedded. These speci�cations describe static (e.g., physical dimensions)and dynamic (behavior) characteristics of the system. Speci�cally, descriptionsof purpose are expressed as guarantees that these speci�cations hold for thedesign. Further, these descriptions can be captured during the design processor by examining design histories, and can subsequently be used in explanation,diagnosis, and design.As an example of this approach, consider an electrical engineer de-signing an input selection circuit.2 The engineer begins with speci�cationsdescribing the desired static (e.g., size) and dynamic (behavior) characteristicsof the resulting circuit design. For example, one behavior speci�cation for theinput selection circuit is \invert the data signal when the control signal is high(logic true) and leave the output unchanged when the control signal is low(logic false)." The engineer also begins with speci�cations from the domainof CMOS circuit design, such as \the input value to a logic gate should notmaintain a steady, intermediate value (voltage) between low and high, causing2This design example is discussed in detail in Chapter 6.

4
in

t1

ctl

data inv out in
t1

ctl

data inv out

t2

a. b.

Vdd

Figure 1.1: CMOS Input Selection Circuit - Schematicsthe gate to consume power by allowing current to
ow."Interacting with a design system, the engineer proposes a design, eval-uates the design with respect to the speci�cations, and makes modi�cations tothe design in an attempt to make the design meet the speci�cations. In thisinteraction, teleological descriptions can be acquired and subsequently used toassist the engineer in completing the design, as demonstrated in the followingexample.Engineer: Generate the possible behaviors of design 1 (see schematic in Fig-ure 1.1a.) for signal ctl high and signal in transitioning from low to high.Computer: The possible behaviors are: (displays the behaviors).Engineer: Evaluate the behaviors with respect to the design speci�cations.Computer: For signal in, the design does not meet speci�cation 5: \the inputvalue to a logic gate should not maintain a steady, intermediate value (voltage)between low and high, causing the gate to consume power by allowing currentto
ow." (If the design system has a database of teleological descriptions anda teleological description referencing this speci�cation exists in the database, arecommendation for modifying the design can be made.)

5Engineer: (Modi�es the design by adding feedback transistor t2, as shown inthe schematic in Figure 1.1b.) Generate the possible behaviors of design 2 forsignal ctl high and signal in transitioning from low to high.Computer: The possible behaviors are: (displays the behaviors).Engineer: Evaluate the behaviors with respect to the design speci�cations.Computer: The design meets all speci�cations. The purpose of the designmodi�cation transforming design 1 into design 2 is to guarantee speci�cation5. We de�ne representation languages for behavior descriptions, speci�-cations, and teleological descriptions that allow acquisition, classi�cation, andindexing of teleological descriptions. With these capabilities we can realize thedesign process described in this example.1.2 Teleology, What's the Purpose?We have characterized teleological descriptions as addressing ques-tions of the form \Why is this portion of the mechanism designed in thisway?" or \What is the purpose of this piece of the mechanism?" This identi�esone important use of teleological descriptions, namely explanation. de Kleer'sEQUAL system [deK85] generates teleological descriptions (of a form di�erentthan that de�ned herein) for the purpose of explanation of electrical circuits.The need for representing and expressing the purpose of a particular commandor command sequence is identi�ed for the LOX Expert System (LES) [SJD85],both for human consumption and for analysis by automated systems.The ability to express such explanations implies their use not only byhumans but also by systems that automate problem-solving tasks. The task

6domains of diagnosis and design are two domains that can utilize teleologicaldescriptions to extend the applicability and performance of automated problem-solving systems. Steinberg and Mitchell [SM84] point out that in the domain ofVLSI circuits, the role of information regarding the purpose of a circuit elementis very similar in the problem-solving tasks of design and diagnosis.1.2.1 DiagnosisDeriving and utilizing causal relationships is an approach currentlyused in explanation systems (e.g., Bylander and Chandrasekaran [BC85], Doyle[Doy86], and Kuipers [Kui87]) and diagnosis systems (e.g., Cantone et al.[CLMG85], Davis [Dav85], De Jong [DeJ85], Genesereth [Gen85], Milne [Mil85],Sembugamoorthy and Chandrasekaran [SC85], Steinberg and Mitchell [SM84],and White and Frederiksen [WF85]). However, in mechanisms with highly in-terconnected structure or feedback loops, causal relationships can exist betweenvirtually every pair of components of the mechanism (and between variables ofa mechanism model). As stated by Steinberg and Mitchell [SM84],The resulting focus (of causal reasoning) is generally broaderthan that determined from [the representation of purpose] becauseout of the many places in the circuit that can impact any given out-put speci�cation, only a small proportion of these involve circuitrywhose main purpose is to implement that speci�cation.In diagnosis, domain speci�c heuristics can be applied to select amongpotential causes, but are not applicable outside their particular domain. If anobserved symptom of a mechanism is considered either as an unwanted behavior(or a missing behavior), then a teleological description that relates a compo-nent of the mechanism with the prevention (introduction or guarantee) of that

7behavior provides a heuristic for selecting among potential causes. Certainly,teleological descriptions would not introduce any relationship not discoveredvia causal analysis, as purpose necessarily requires causality. Hence, teleolog-ical descriptions can provide a more productive initial focus of attention fordiagnosis.1.2.2 DesignMostow [Mos85] discusses the potential for improving the design pro-cess through capture and representation of design rationale. Franck [Fra89]points out that \Design is a form of teleological reasoning, in that from theintended purpose or anticipated behavior one can select elements that havethe adequate structure to do so." Teleological descriptions provide a meansfor representing design rationale. de Kleer [deK85] notes that disciplines suchas electrical engineering have developed specialized vocabularies for denotingthe purpose of mechanisms and components. Given the ability to capture andrepresent teleological descriptions (either generated by humans or programs),these descriptions can be used to classify mechanismdescriptions. Further, suchdescriptions can be used to index other design information, whose relevance isdetermined by the current concern of the designer (e.g., component size). Theability to realize these descriptions in a formal language will facilitate their useas knowledge about the design. Assuming that such a language can be identi-�ed that is independent of any particular domain of mechanisms, the languagewill allow teleological descriptions for mechanisms that include componentsfrom several domains, such as electrical, mechanical, and hydraulic.

81.2.3 Design ReuseDesign reuse is an area of current research in both CAE (computeraided engineering) environments (see work reported byMostow [Mos85], Mostowand Barley [MB87], and Huhns and Acosta [HA88]) and CASE (computer aidedsoftware engineering) environments (see discussions by Biggersta� and Richter[BR86] and Prieto-Diaz and Freeman [PF87], and collections of papers exam-ining reuse in software engineering [IEEE88, IEEE87, IEEE84]). In each, thereuse problem can be addressed by providing:1. Techniques for capturing and representing information by which a designcomponent should be classi�ed for subsequent retrieval, and2. A language for describing the characteristics of the design component thedesigner wishes to examine as a candidate for reuse.As stated by Mostow and Barley [MB87] in discussing reuse of design plans,For design by analogy, �nding a suitable design to retrieve froma repository of previous designs requires knowing where to look. Howcan designers avoid a time-consuming search through such a repos-itory when they've never seen the relevant entry or can't rememberwhere to �nd it? As we develop a larger database of design plans,we expect the process of �nding relevant ones to become a bottleneck: : : Teleological descriptions add another dimension by which designs canbe classi�ed and retrieved. For example, a designer may wish to examinecomponents that can control some variable (say tank
uid level) of a system

9under design. In the absence of a description of purpose, designers must relyon their mental inventory of likely components, structural features of likelycomponents, or speci�c behaviors of likely components in order to constructa query for the search. Further, designers will more likely miss innovativesolutions that do not �t their current mental model of how to solve the problem(i.e., what kind of component to use), such as an analogous problem solutionfrom another design domain (e.g., electrical vs hydraulic).Current reuse approaches are based on structure classi�cation andhierarchy or on classi�cations organized around keywords that represent be-havioral categories. The problem with classi�cation based on structure (andkeywords that correspond to speci�c structure abstractions) is that potentialreusers must know the speci�c design structure or abstraction in order to �ndthat design. Further, the designer has to know that the structure being re-quested actually addresses the problem to be solved, such as realizing a speci�cbehavior. The problem with a classi�cation based on behavior, represented ei-ther by keywords or by explicit behaviors and their abstraction, is twofold.First, the candidate components that might solve the designer's current prob-lem may have component level characteristics (e.g., behavior) that have noobvious correlation to the current design problem, such as eliminating someundesirable system level behavior. Second, indexing designs with respect totheir behavior does not help in situations in which the designer wants a candi-date design that does not exhibit certain undesirable behaviors. In summary,indexing designs and design components for reuse via teleological descriptionsprovides more semantic content for the reusing designer.In reusing an existing design, if the design does not match the currentrequirements exactly, it will require some modi�cation. As this design is being

10modi�ed, knowledge of the purpose of components will bene�t the (resuing)designer in much the same way teleological descriptions aid the diagnosis task.The task is driven by a change in the requirements, additional required or pro-hibited behaviors in reuse and modi�ed behavior on the part of the mechanismin diagnosis. When a requirement changes, a teleological description relatinga particular design decision to that requirement gives the reusing designer aninitial set of candidates for modi�cation. Teleological descriptions also helpthe designer understand the original purpose of components in the mechanismdesign. For example, a particular component may have been selected for cer-tain static properties like size, as well as the behavioral consequences of thecomponent. Steinberg and Mitchell's REDESIGN system [SM84] applies bothcausal reasoning and reasoning about purpose to accomplish the redesign of acircuit based on changes in the speci�cation for the circuit. As was claimed fordiagnosis, REDESIGN uses teleological descriptions to provide tighter focusfor selecting candidate components for modi�cation.1.3 A Life-Cycle ModelTo organize these uses of teleological descriptions, we describe a life-cycle for engineered mechanisms and identify the role of teleological descrip-tions in the various life-cycle stages. The life-cycle has the following stages(Figure 1.2):� Design stages{ Product speci�cation{ Initial design{ Design evaluation

11{ Design modi�cation� Support and Reuse{ Explanation{ Diagnosis{ Design reuseThe design stages capture teleological descriptions and can use tele-ological descriptions to achieve design reuse. Teleological descriptions cap-tured during design can be used in later stages when diagnosing, explaining,or reusing the designed artifact.The design process model used here is of the Propose-Critique-Modifyfamily described by Chandrasekaran [Cha90]. Our design process model startswith a set of speci�cations for the design, including physical characteristics anddescriptions of (required, prohibited, ...) behaviors. In addition to the speci-�cations of a particular design, there is often a set of speci�cations, or designprinciples, that describe general engineering practice for the domain at hand.These speci�cations include characteristics of the design required for manufac-turing, maintenance, standards conformance, and regulatory requirements.Given speci�cations for the design, the design process proceeds as aseries of structure modi�cations, starting from some initial structure. Accom-panying this series of structure descriptions is a corresponding series of evalua-tions of the design with respect to the various design speci�cations. Evaluationof dynamic characteristics (e.g., functional correctness, performance, and ther-mal operating characteristics) and static characteristics may require complexcomputations like simulation, timing analysis, formal veri�cation of function,

12
Product General Domain

Specifications

Initial Design

Design
Modifications

Support

Completed
Designs

Explanation Diagnosis

Evaluation

Reuse

Specifications

Figure 1.2: Life Cycle Model

13and thermal modeling. Ideally, this process continues until evaluation showsthat all speci�cations have been satis�ed, or amended so as to be satis�ed. Byexamining the changes to the structure in light of the speci�cations, descrip-tions as to the purpose of the design modi�cations can be inferred, as we willdemonstrate with an example.A hypothetical design system described by Abelson et al. [AEH*89]supports interaction between a designer and an intelligent computer assistantthat aides in the analysis and evaluation of a proposed design. During interac-tion with the design assistant, the designer identi�es an undesirable behaviorof the design (speci�cally, an oscillation at a particular frequency). The de-signer then creates a design modi�cation to correct this behavior (\an activestabilizer to damp the family B motions"). This is precisely the point at whicha description of purpose can be acquired. The purpose of the addition of the\active stabilizer" is \to damp the family B motions." The work describedherein de�nes a language for representing and indexing such purposes.1.4 Previous and Related WorkRepresentation, acquisition, and application of descriptions of pur-pose have been addressed in previous research, which we summarize here. De-tailed comparison of the work described in this dissertation (i.e., the Teleologi-cal Description (TeD) language) with previous research appears in Chapter 10.The two most signi�cant contributions discussed in the literature arede Kleer's EQUAL system [deK85] and the Functional Representation [SC85]work at Ohio State University. Representing purpose in design systems isaddressed in Steinberg and Mitchell's REDESIGN system [SM84], and an ap-proach to diagnosis called the theory of responsibilities has been developed by

14Milne [Mil85]. More recent e�orts in representing purpose have been under-taken by the Conservation of Design Knowledge (CDK) Project [BSZ89] atNASA Ames Research Center, in Gruber's ASK system [Gru91], and in medi-cal reasoning research in Downing's BIOTIC system [Dow90].de Kleer's EQUAL system [deK85] expresses teleological descriptionsin terms of behaviors of a component. Each description is based on causalassumptions on the parameters of the component. EQUAL identi�es a func-tional characterization (teleological description) by matching derived behaviorwith prescribed behavior prototypes that have been enumerated, named, andadded as domain speci�c knowledge. Limitations of this approach are that tele-ological descriptions are prescribed, domain speci�c, and limited to describingrelationships among variables of a single component.Functional representation (FR) described by Sembugamoorthy, Chan-drasekaran [SC85], Goel [Goe89], Sticklen, and Bond [SCB89] and functionalmodeling (FM) described by Sticklen et al. [ST90, SKB90] address 1) represent-ing \how a device functions" and 2) applying this information to explanation,diagnosis, and design. Each function de�nition in FR contains a ToMakeclause that references a particular behavior that the FR function is supposedto achieve. Keuneke [Keu91] extends the ToMake clause of FR to includethe \function types" ToMaintain, ToPrevent, and ToControl. The TeDlanguage can formally capture the semantics of these \purposes," providing ane�ective means of classifying and indexing FR descriptions.Steinberg and Mitchell's REDESIGN system [SM84] utilizes repre-sentations of purpose to focus the selection of candidate components for theredesign task. REDESIGN expresses teleological descriptions as \rules thatembody [...] general knowledge about circuit design tactics." These rules spec-

15ify decomposition steps for realizing a design in available components, and arecaptured independently of the design process and added to the design systemas domain speci�c knowledge.Milne [Mil85] describes an approach to automated troubleshootingcalled the theory of responsibilities. Responsibilities relate a particular compo-nent of a design to a desired output (behavior). Responsibilities are assignedautomatically based on second principles representing \the type of descriptionthat an electronics engineer uses to describe various building blocks of cir-cuits." This domain speci�c knowledge must be elicited from designers andrepresented, and the thoroughness of the responsibility assignments dependson the depth of understanding provided in the second principles.The Conservation of Design Knowledge (CDK) Project [BSZ89] atNASA Ames Research Center addresses the problems of representing and ac-quiring design rationale using a philosophy similar to TeD. TeD provides aformal language for representing design rationale descriptions captured in theCDK acquisition work, and the CDK work complements TeD by providingacquisition techniques.Downing's BIOTIC system [Dow90] critiques natural (e.g., humanand reptilian) circulatory models with respect to teleologies, desired global be-haviors of a system. The teleologies of BIOTIC correspond to design speci�ca-tions of the TeD language, and hence are prescribed.Gruber's ASK system [Gru91] elicits justi�cations from experts viaan interactive dialogue with the expert. TeD provides a formal language forrepresenting ASK explanations (teleological descriptions), provides indexingcapabilities for ASK explanations, and addresses acquisition of teleological de-scriptions during design.

161.5 Claims of This WorkThe claims of this work are:1. Descriptions of purpose can be represented formally in a language that isindependent of a particular domain of mechanisms or behavior descriptionlanguage (speci�cally the Teleological Description (TeD) language), andthese descriptions of purpose can be expressed in terms of the primitiveoperators Guarantees and unGuarantees,2. Descriptions of purpose can be e�ectively acquired in the design processgiven information available in current design methodologies, and3. The representation language facilitates the classi�cation and retrieval ofdescriptions of purpose for use in design explanation, design reuse, designby analogy, case-based reasoning, and diagnosis.1.6 Outline of This DissertationThe stated claims are achieved in the TeD (Teleological Description)language described herein. The basic ideas that formed this work are pre-sented to familiarize the reader with the concepts of the approach. The TeDlanguage is described in detail around a simple example: an idealized steamboiler design. We then describe behavior abstraction and properties of the TeDlanguage based on this abstraction. Two designs are investigated in detail, anelectronic circuit and an electromechanical motor, to demonstrate the breadthof the TeD language and acquisition of teleological descriptions. Applicationsof teleological descriptions in design explanation, design reuse, design by anal-ogy, and diagnosis are discussed, and the details of acquisition, classi�cationand retrieval of teleological descriptions for these tasks are presented. This

17work is compared to related work, and a summary of the contributions of thiswork and potential extensions of the research are presented.Chapter 2 describes the basic ideas of the teleology language TeD andits relationship to structure and behavior languages, namely that teleologicaldescriptions relate design modi�cations expressed in the structure language todesign speci�cations expressed in the behavior language. Further, a teleologicaldescription makes the statement that a modi�cation is made to guarantee oneor more design speci�cations for the design.Chapter 3 de�nes an ontology for teleology and how these elementsare expressed in the TeD language. The ontological elements are design speci-�cations (behaviors), design descriptions (structure), and design modi�cations(a history of structure modi�cations). Based on these elements we formallyde�ne the teleological description language TeD.Chapter 4 de�nes behavior abstraction and its role in speci�cationsand teleological descriptions. Behavior abstraction permits the expression ofdesign speci�cations involving 1) a subset of mechanism variables and 2) qual-itative behavior. Behavior abstraction is the basis for veri�cation of behaviorswith respect to speci�cations and for classi�cation and retrieval of teleologicaldescriptions. We also de�ne composed teleological operators to demonstratehow descriptions better matching human generated, prose descriptions of pur-pose can be formally represented.Chapter 5 presents theorems describing generalization and specializa-tion properties between teleological descriptions given generalization and spe-cialization properties between behaviors referenced by these descriptions. Thelanguage properties described in these theorems support design reuse based onteleological descriptions.

18 Chapter 6 explores detailed examples in the electronic circuit andelectromechanical domains, demonstrating the various languages (structure,behavior, teleology) and acquisition of teleological descriptions.Chapter 7 discusses the use of teleological descriptions in the taskdomains of design explanation, design reuse, design by analogy, and diagnosis.Chapter 8 describes an index structure based on behavior abstraction.This index structure supports the resolution of queries for explanation, designreuse, and diagnosis tasks discussed in Chapter 7.Chapter 9 describes techniques for acquiring teleological descriptions,with details of the acquisition technique implemented in this work.Chapter 10 reviews previous and related work in teleology and demon-strates where the TeD language has extended other work and how the otherapproaches can be expressed in the TeD language.Chapter 11 summarizes the claims and their support, citing the con-tributions, current limitations, and potential extensions of this work.

Chapter 2The Basic Idea2.1 GoalIn Chapter 1 we described the task of designing an input selectioncircuit (Figure 1.1) to meet design speci�cations. We address the problem ofrepresenting the purpose of adding the feedback transistor t2 (Figure 1.1b), thatpurpose being to eliminate the behavior in which the voltage at the inverterinput (in) is a steady value between low (logic value 0) and high (logic value1) voltage. The ideas described in this chapter are the conceptual basis for theteleology and behavior languages described in Chapter 3 and Chapter 4. Theselanguages express the purpose of adding the feedback transistor as� Guarantees �where � denotes the design modi�cation that adds the feedback transistor and� denotes the speci�cation (specification 5).2.2 Speci�cations as Drivers for DesignIn examining human generated descriptions of purpose (cf. [HW87],[Kow85], [McC88], [Ray86], [SS88], and [WMK89]), a common theme emerges.These descriptions relate design features (i.e., particular design decisions) todesign goals (speci�cations). In fact, the desire to achieve design goals is aprimary motivation of the design activity, succinctly stated by Herbert Simon:19

20 Synthetic or arti�cial objects { and more speci�cally prospectivearti�cial objects having desired properties { are the central objectiveof engineering activity and skill. The engineer, and more generallythe designer, is concerned with how things ought to be { how theyought to be in order to attain goals, and to function. [Sim81, p. 7]Design speci�cations are described in terms of behavioral (dynamic) charac-teristics, such as the desired range for the operating temperature of a steamboiler, and physical (static) characteristics, such as dimensions or weight of thedesired artifact. At the evaluation step of the design process (see Figure 1.2)the designer determines whether the design meets the speci�cations set out forthe design.1 In general the goal of the design task is that all speci�cations holdfor the design, or for design d and speci�cations fs1; : : : ; sng8 i; holds(si; d):Descriptions of purpose of design decisions are expressed in terms of spec-i�cation predicates like holds that relate designs and design speci�cations.For static characteristics, a speci�cation predicate might indicate whether theweight of the artifact is less than some limit, or whether the design artifactmeets certain regulatory requirements such as coding standards or expressionin a standard design representation language. Static characteristics can beeasily expressed in terms of a speci�cation predicate, although actual measure-ment or veri�cation may be a nontrivial computation. Dynamic characteristics(e.g. behavior) have a rich vocabulary in prose descriptions, using such verbs1This determination ranges from simple inspection by the designer to probabilistic mea-sures gained by simulation under some percentage of system inputs to certainty obtained viarigorous proof methods.

21as control, transfer, regulate, and prevent. Hence, we will investigate purposesrelative to behavioral characteristics in greater depth, showing that these verbscan be expressed in terms of a simpler, underlying language.To demonstrate the rich vocabulary used in prose descriptions of pur-pose, consider a steam power plant inside a petrochemical re�nery. One purposeof this power plant is to generate power (i.e., translate chemical energy to ther-mal and/or mechanical energy) for other operations in the re�nery. Further,the transmission and application of power via steam was chosen as opposedto electricity or chemicals (e.g., gas), since the manifestation of energy in theform of steam prevents the �re and petrochemical explosion hazard that existswhen using either electricity or chemical combustion.2.3 A Language for PurposeTeleological descriptions should provide the knowledge required toanswer questions of the form \What is the purpose of this structural entity(component or connection)?"2 We represent such structural entities as designmodi�cations. For a component or connection, it was either added as a newstructural element of the design or it replaced a component of the design. Fur-ther, removal of a component or connection is easily represented as a designmodi�cation. If just the structural entity itself were referenced without the de-sign modi�cation, one could not express the purpose of removing a componentor connection.Expressing teleological descriptions in terms of design modi�cations2Selection of a speci�c parameter value such as the size of a transistor can be viewed asselecting a speci�c component from a set of alternative components di�ering only in thatparameter value.

22has an intuitive justi�cation in that teleological descriptions expressed in proseor verbally are often structured as follows: \Suppose this release valve weren'tpresent in the design. Then the internal pressure of the steam boiler vesselmight exceed the rated maximum for the vessel and result in an explosion."Explanation of the purpose of speci�c parameter values like the release pointof the pressure valve or the size of a transistor is expressed in a similar manner.For example, \Suppose the release pressure of the valve were 2000 psi insteadof 1500 psi. Since the rated maximum safe pressure for the steam boiler vesselis 1600 psi, it could possibly explode."Teleological descriptions expressed in terms of design changes alsohave a pragmatic motivation. Those points in the design process when thedesigner evaluates a design with respect to the speci�cations naturally de�nea set of modi�cations made for one or more purposes. The evaluation prior tothe modi�cations identi�es one or more speci�cations that are not currentlymet by the design. The evaluation following the design modi�cation sequencedetermines whether the speci�cations the designer was attempting to addresshave been met. Consequently, these design evaluation points are precisely thepoints at which a description of purpose should and can be captured. Althoughcurrent CAD (computer aided design) and CAE (computer aided engineering)systems support design methodologies in which capture of teleological informa-tion can be included, these systems do not explicitly represent a methodologyand hence do not reason about or with the methodology.3 However, support ofdevelopment and veri�cation methodology has been researched (e.g., the Pro-grammer's Apprentice [RS84, Wat84]), and Fiduk et al. [FKKP90] describe3Systems currently provide a suite of tools, and the designers themselves are responsiblefor applying the appropriate tool to the appropriate data, in the correct sequence.

23current research in explicitly representing methodologies and reasoning aboutdesign activity with respect to methodologies. This methodology managementresearch will provide the methodological infrastructure for acquisition of teleo-logical descriptions.The following sections summarize the key insights for understandingour approach to representing purpose, the TeD language.2.3.1 Modi�cations and Speci�cationsThe �rst key insight is that a teleological description references:1. Design modi�cations (e.g., addition of a component, modi�cation of aspeci�c parameter value) made during the design process, and2. E�ects these changes have with respect to the design meeting its speci�-cations.Consider the case of a pressure release valve on the steam boiler, described byKuipers in [Kui85]. The steam boiler has a design speci�cation stating thatthe internal pressure should not exceed some maximum value, beyond whichthe boiler vessel might explode. The design modi�cation made to address thisspeci�cation is the addition of a pressure activated release valve. The purposeof the addition of the pressure release valve is to prevent the internal pressureof the boiler from exceeding some critical value at or beyond which the boilervessel might explode. We compare this description of purpose with behavioraland causal descriptions: a behavior description of the pressure release valuestates that the valve opens at some prescribed pressure and steam escapes thevessel via the pressure release valve; a causal description explains how thisbehavior is achieved (i.e., the internal workings of the valve). Neither the

24behavioral description nor the causal description captures why this behaviorwas desired, and hence why the pressure release valve was added to the design.2.3.2 GuaranteesThe second key insight is that behavior changes of the design artifactcan be expressed in terms of a teleological operator Guarantees. Informally,this teleological operator denotes a predicate function whose arguments are adesign modi�cation and a speci�cation predicate and whose truth value is de-termined by examining the speci�cation predicate in the context of the staticand dynamic characteristics of the unmodi�ed and modi�ed designs.4 This op-erator is justi�ed on two accounts, empirical and theoretical. As an empiricaljusti�cation, we make the observation that design requirements are often ex-pressed in terms of behaviors required or prohibited for the mechanism beingdesigned. This is most easily demonstrated in a stimulus-response speci�ca-tion of behavior: \When set of conditions (state) A occurs, the mechanismshould bring about condition set (state) B, possibly within a speci�ed timeconstraint." This is the essence of the ToMake clause of functional repre-sentation described by Sembugamoorthy and Chandrasekaran [SC85], namely\given an initial set of conditions, the purpose is to bring about (ToMake) someother set of conditions."As a formal basis we have de�ned the teleological operator in termsof the operators of modal logic [Tur84, Che80]. If one formulates the possi-ble static characterizations or dynamic behaviors of a mechanism as possibleworlds, then speci�cations can be viewed as \possibly," \necessarily," or \not4The teleological operator Guarantees is de�ned formally in Sections 3.7.1 and 3.7.2.

25possibly" holding in those possible worlds. A guaranteed speci�cation neces-sarily holds in all possible worlds (behaviors) of the mechanism.2.3.3 The Need for ContextThe �nal key insight is that while the structure and possible behaviorsof a system component can be described and understood outside the contextof the system in which the component is embedded, a description of purposecannot be described independent of such context. Simon identi�es the role ofcontext for functional explanation and description as follows:An important fact about this kind of explanation is that it de-mands an understanding mainly of the outer environment. : : : Inthis manner, the properties with which the inner environment hasbeen endowed are placed at the service of the goals in the context ofthe outer environment. [Sim81, p. 11,15]Clearly, structure descriptions make sense independent of the context of the en-closing system, since the structure of each component is described independentof any speci�c enclosing system. Similarly, potential component behaviors canbe derived independent of any speci�c enclosing system.5 Such component be-havior is described via a state representation in which the state is comprised ofvariables and values for those variables. The purpose of a component, however,can only be described in the context of the static and dynamic characteristicsof the system in which the component is embedded. Consider the steam boiler5The actual behaviors a component exhibits when embedded in a larger system may bea subset of the possible behaviors if the enclosing system restricts values of variables de�nedat the component's interface.

26example once again. The behavior of the release valve can be described interms of the valve aperture and the pressure against the valve. The purposeof the release valve, however, requires reference to the behavior of the systemin which the valve is embedded. For example, the purpose of the release valvewould not be \to open and close," as this would require further interpretationin the context of the system in which the valve operated.The need expressed here for languages for structure, behavior, causal,and teleology descriptions originates from Kuipers' identi�cation of structural,behavioral, and functional descriptions [Kui85, p. 170], where he states:The structural description consists of the individual variablesthat characterize the system and their interactions; it is derivedfrom the components of the physical device and their physical con-nections. The behavioral description describes the potential behav-iors of the system as a network of the possible qualitatively distinctstates of the system. I reserve the term functional description fora description that reveals the purpose of a structural component orconnection in producing the behavior of a system. Thus, the func-tion of a steam-release valve in a boiler is to prevent an explosion;the behavior of the system is simply that the pressure remains be-low a certain limit. The existing literature frequently obscures thisdistinction by using the term `function' to refer to behavior.6In conclusion, while structure, behavior, causal, and teleology lan-guages describe unique aspects of a mechanism, they are closely related in that6In the work described herein, the terms teleology or purpose will be used instead offunction, to avoid this confusion of the terms function and behavior.

27one language references another (e.g., a description in the teleology languagereferences behavior descriptions) and hence relies on that language for its ex-pression and derivation.2.4 Goals of TeDTo these insights we add the following additional goals for TeD:� To be independent of any particular structure or behavior language orspeci�c predicates used to express speci�cations. This allows the tech-niques and capabilities developed here to be applied to multiple modelingapproaches, including both qualitative and quantitative.� To be independent of any particular domain of mechanisms. Examplesgiven here include electrical, hydraulic, and thermal domains.� To allow hierarchical descriptions referencing predicates or other teleolog-ical descriptions. This will allow the construction of arbitrarily complexdescriptions of purpose.

Chapter 3Ontology and Representation3.1 An Ontology for TeleologyIn preparation for a discussion of a representation for teleologicaldescriptions, a discussion of an ontology1 for teleology is in order. Simon char-acterizes an ontology for purpose as follows:Ful�llment of purpose or adaptation to a goal involves a relationamong three terms: the purpose or goal, the character of the arti-fact, and the environment in which the artifact performs. [Sim81,p. 8]The ontological elements of the teleology language TeD are:� Design speci�cations (desired static and dynamic characteristics)� Design descriptions (structure, behavior)� Design modi�cationsThe ontological elements identi�ed by Simon are realized in TeD as follows:� Purpose or goal - Design speci�cations1The ontology identi�es the entities that are available for representing problem situations[Gre83]. 28

29� Character of the artifact - Design descriptions (structure, behavior)� Environment - Derived behaviorsWe describe the ontological elements of TeD in this chapter. Struc-ture, design modi�cation, and design history languages are described �rst. Wethen describe behavior and speci�cation languages, and �nally the teleologylanguage TeD. We discuss design speci�cations, providing intuitive de�nitionsfor the predicates, leaving the formal de�nitions for Chapter 4. Chapter 4 for-mally de�nes the speci�cation predicate occursIn which is used in teleologicaldescriptions concerning behaviors. In this chapter, we give the essential fea-tures of structure, design modi�cation, design history, behavior, and teleologylanguages, with an example language for each.To demonstrate the languages and concepts, we use an idealizedmodelof a steam boiler (the double heat
ow system de�ned by Kuipers [Kui85,p. 175], shown in Figure 3.1). The behaviors exhibited by the steam boilerdemonstrate the qualitative description of a system reaching equilibrium. Inone possible behavior, equilibrium occurs after the vessel's internal pressurehas exceeded some maximum value. A modi�ed design in which a pressuresensor is added eliminates this behavior, and the teleology language capturesthe intent of the design modi�cation, namely to eliminate the possibility thatthe internal pressure exceeds some maximum value and explodes. This par-ticular teleological description involves a behavior which is not exhibited byan implementation of the �nal design, a unique capability of TeD. We discussthis capability further when comparing the TeD language to other work inChapter 10.

30
Figure 3.1: Idealized Steam Boiler3.2 StructureMany languages for representing structure have been put forth (seestructure languages proposed by Abelson and Sussman [AS85], Davis [Dav85],de Kleer and Brown [dKB85], Forbus [For85], Franke and Dvorak [FD90],Kuipers [Kui85, Kui86], Williams [Wil85], and VHDL [VHDL87]) and eachhas associated behavior languages and envisioning semantics (discussed by deKleer [deK77], de Kleer and Brown [dKB82], and Kuipers [Kui82, Kui86]). Thestructure and behavior languages described herein abstract these existing lan-guage de�nitions to avoid basing the teleology language on a speci�c structureor behavior language and associated envisioning semantics.Davis and Hamscher [DH88] identify several common themes in rep-resenting structure:� Structure representation should be hierarchical;

31� Structure representation should be object centered and isomorphic to theorganization of the device;� Behavior can be represented by a set of expressions that capture theinterrelationships among the values on the terminals of the device.While the structure language described here supports these themes, itallows structure ontologies other than one component per physical object. Forexample, the ontological elements might be processes [For85] or generic mech-anisms [Kui89b] with descriptions of purpose associated with these elements.At the appropriate level of abstraction, a design description may consist ofprocesses or generic mechanisms as opposed to physical components.Structure languages used here describe models (designs) hierarchicallycomposed from simpler models called components [AS85, dKB85]. Hierarchy isachieved by applying this decomposition recursively to components. Each com-ponent has an interface, expressed in terms of terminals, that can be connectedto terminals of other components. Interactions between two components arerestricted to these connections. At some point in the hierarchy, components aredescribed in terms of the primitives of the associated behavior language. Wecall these primitives variables and behavior constraints.2 Formally, a structureD is a tuple hV;Q; qs; con;Ci; with2This representation retains su�cient generality to describe complex systems such as amicroprocessor. Variables represent the interface and internal state of the microprocessor andbehavior constraints represent the modi�cation the microprocessor makes on its internal stateand outputs based on the current internal state and input values. Such behavior constraintsmay be expressed as arbitrarily complex procedural code.

32 V - a set of variablesQ - a set of quantity spacesqs - a mapping from V to Qcon - a set of constraint typesC - a set of tuples hc; v1; : : : ; vn; cv1; : : : ; cvmiwhere c 2 con, vi 2 V , and cvi 2 qs(v1)� : : :� qs(vn).To demonstrate structure description, we describe the steam boilerexample in the structure language CC [FD90] which uses Kuipers'Qsim [Kui85,Kui86] behavior language.3 In this example we model temperatures, pressureand heat inside the boiler vessel, and the heat
ow from the heat source to theboiler vessel to the surrounding air, a heat sink. The model is constructed fromthree components, a
ame (heat source), a boiler vessel, and the surroundingair (heat sink). For the boiler vessel, variables expressing the di�erence betweenthe internal temperature and the
ame and air temperatures are also included.These temperature di�erence variables are referenced in constraints that relateheat
ow into and out of the boiler vessel to those temperature di�erences.Speci�cally, the heat
ow into the boiler vessel is a monotonically increasingfunction of the temperature di�erence between the
ame and the boiler vessel.As this di�erence increases, the heat
ow into the boiler vessel increases.The component types used to construct the steam boiler exampleare Boiler-Vessel, Heat-Source, and Heat-Sink. The Boiler-Vessel com-ponent de�nition (Figure 3.2) de�nes terminals, variables, and behavior con-straints introduced into a model when it is included. The steam boiler model(Figure 3.3) de�nes three component instances and connections among the ter-minals of these component instances. Using the hierarchical naming scheme of3The CC structure language allows de�nition of hierarchical component models fromwhich CC generates a qualitative di�erential equation (QDE) suitable for envisioning withQsim.

33(define-component-interfaceBoiler-Vessel"Boiler Vessel in thermal domain" thermal(terminals in out)(quantity-spaces(defaults (temperature temperature-qspace)(entropy heat-qspace))))(define-component-implementationprimitive Boiler-Vessel"Boiler Vessel for heat flow, in QSIM primitives"(terminal-variables (in (inFlow heat-flow (lm-symbol IF))(Tin temperature))(out (outFlow heat-flow (lm-symbol OF))(Tout temperature)))(component-variables(netFlow heat-flow display (lm-symbol NF))(heat entropy display (lm-symbol H))(pressure (hydraulic pressure) display (lm-symbol P)(quantity-space pressure-qspace))(T temperature display)(dTin temperature display(quantity-space base-quantity-space))(dTout temperature display(quantity-space base-quantity-space)))(constraints((ADD T dTin Tin) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ dTin inFlow) (0 0))((ADD T dTout Tout) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ dTout outFlow) (0 0))((ADD inFlow outFlow netFlow) (0 0 0))((d/dt heat netFlow));; Assume constant fluid/gas mass, so heat follows temperature((M+ heat T) (0 0) (Ha* AT*) (Hf* FT*))((M+ pressure T) (0 0) (Pa* AT*) (Pf* FT*)))) Figure 3.2: Boiler-Vessel Component De�nition in CC

34(define-component-interfaceSB "Steam Boiler" thermal(quantity-spaces(defaults (temperature temperature-qspace)(entropy heat-qspace)(heat-flow base-quantity-space))))(define-component-implementation1 SB"Simple steam boiler"(components(Vessel boiler-vessel (display netflow heat pressure TdTin dTout inFlow outFlow))(Flame heat-source)(Air heat-sink))(connections (p1 (Flame out) (Vessel in))(p2 (Vessel out) (Air in))))Figure 3.3: Steam Boiler Model De�nition in CCCC, these instances are: (SB vessel)(SB flame)(SB air)Again using the hierarchical naming scheme of CC, the variables contributedby component (SB vessel) to the variable set V are:(SB vessel inFlow)(SB vessel Tin)(SB vessel outFlow)(SB vessel Tout)(SB vessel netFlow)(SB vessel heat)(SB vessel pressure)(SB vessel T)(SB vessel dTin)(SB vessel dTout)

35Behavior constraints contributed by component (SB vessel) to the constraintset C are:(ADD (SB vessel T) (SB vessel dTin) (SB vessel Tin))(M+ (SB vessel dTin) (SB vessel inFlow))(ADD (SB vessel T) (SB vessel dTout) (SB vessel Tout))(M+ (SB vessel dTout) (SB vessel outFlow))(ADD (SB vessel inFlow) (SB vessel outFlow) (SB vessel netFlow))(d/dt (SB vessel heat) (SB vessel netFlow)))(M+ (SB vessel heat) (SB vessel T))(M+ (SB vessel pressure) (SB vessel T))The complete steam boiler example appears in Appendix A.3.3 Design Modi�cation and HistoryThe structure language provides a means for describing a single pointin the history or evolution of a design. A description of design history alsorequires a means for describing the transitions from one state of the design(distinct from a behavior state of an artifact or instance of the design) to an-other. The term design modi�cation denotes such a transition, and is a relationbetween two structure descriptions. A design history is a pair comprised of aninitial design (structure description) and a sequence of design modi�cations,4denoted (d0; h�1; �2; : : : ; �ni)where d0 is the initial design and �i are design modi�cations. This designhistory de�nes a sequence of designs (structure descriptions)d0; d1; : : : ; dn�1; dn4Representing a design history as an initial design and design modi�cations is commonin commercial CAE and CAD systems, providing a record of design changes and the abilityto undo design changes. For e�ciency, new \initial" designs are created periodically in suchsystems by applying the modi�cations and explicitly representing the new \initial" design.

36
di envisioning Ei specs

td’sstatusdesigner

verification

di+1

δi

...
...di - ith version of the designEi - envisionment for design di (see Section 3.5.2)specs - design speci�cationstd0s - teleological descriptions captured in veri�cationstatus - results of veri�cation�i - modi�cations generated by the designerFigure 3.4: Design Process Flow (Single Step)where di is the result of applying design modi�cation �i to design di�1. Thedesign history is captured during the initial design, evaluation, and designmodi�cation steps in the life-cycle model of Figure 1.2. Figure 3.4 gives a moredetailed process description for the evaluation (envisioning and veri�cation)and design modi�cation (designer) steps.To demonstrate design modi�cations, a simple language is de�nedhere. The language elements correspond roughly to structure editing opera-tions, although some editing operations will be a composition or sequence ofthe language primitives given here (e.g., \Replace component A with compo-nent B" is realized via \Delete component A" and \Add component B" withappropriate connections speci�ed). The modi�cation language primitives are:� Add-x to a component, where x is a component, connection, terminal,variable, quantity space, or constraint

37� Remove-x from a component, where x is a component, connection, termi-nal, variable, quantity space, or constraint� Rename-x, where x is a component instance, variable, or terminal� Change-x, where x is a parameter value (landmarks in a quantity space), aquantity space of a variable, a component implementation type, a variabletype, or the default domain of a component.� Create-x, where x is a new component type or quantity space. The newde�nition is a copy of an existing one, which will then be modi�ed.Primitives of the modi�cation language given in Table 3.1 are interpreted inthe context of a component de�nition, while those in Table 3.2 are interpretedin the editing environment, outside the context of any speci�c component.3.4 Design InstantiationGiven design de�nitions as described above, one instantiates a designby actually constructing the artifact speci�ed by the design description, bybuilding a model of the design suitable for simulation or analysis, or by somecombination of artifact and model. In any case, the design description is in-stantiated and variables are created. If a physical artifact is constructed, thevariables are in the artifact itself. One can talk about the state of an instan-tiated design, namely a function mapping variables to values. In terms of astructure description,s : V ! qs(v1)� : : :� qs(vn); where n = jV j:Accordingly, the value of variable v in state s is denoted s(v).

38(for-component htype descriptori(add-component hinstance namei htypei hoptionsi . hconnectionsi)(add-connection hconnection speci hconnection speci : : :)(add-terminal hterm-namei hterm-namei : : :)(add-terminal-variable hterm-namei hnamei htypei . hoptionsi)(add-component-variable hnamei htypei . hoptionsi)(add-constraint hconstrainti hconstrainti : : :)(remove-component hinstance namei hinstance namei : : :)(remove-connection hconnection speci hconnection speci : : :)(remove-terminal hnamei hnamei : : :)(remove-variable hnamei hnamei : : :)(remove-constraint hconstrainti hconstrainti : : :)(rename-component-instance hcurrent namei hnew namei)(rename-variable hcurrent namei hnew namei)(rename-terminal hcurrent namei hnew namei)(change-quantity-space hvariablei hquantity spacei)(change-component-implementation hinst-namei himpl-namei)(change-variable-type hnamei hnew typei)(change-domain hdomaini)) Table 3.1: Modi�cation Language Syntax - Component Relative
(create-new-component-type hexisting typei hnew type namei)(create-new-quantity-space hnamei hlm listihparenti hcvaluesi)(change-parameter-value hquantity space namei hnew qspacei)Table 3.2: Modi�cation Language Syntax - Environment Relative

39Although CC produces a
attened5 representation expressed as aQsim qualitative di�erential equation (QDE), no assumptions in the behav-ior or teleology languages are made based on whether a design instance isrepresented in a hierarchical form or a
attened form. In either case, repre-senting the state requires unique instances for those variables of the designwhich describe the design at the current abstraction level.6To complete the language for static characterization we require thede�nition of a consistent state, a state assigning variable values that are con-sistent with all behavior constraints imposed by the design.3.5 BehaviorA discussion of behavior requires an instantiation of a design in theform of a model, a physical artifact, or some combination of these two forms.The process of envisioning produces a characterization of the (possibly in�-nite) set of possible behaviors of the mechanism. We describe a behavior lan-guage, adopting existing terminology of behavior descriptions (see behaviorlanguage descriptions of de Kleer and Brown [dKB85], Forbus [For85], andKuipers [Kui85, Kui86]). For each pair of structure and behavior languagesthere is an envisioning semantics addressing issues such as valid transitionsbetween variable values, valid transitions between states, and representationsof time. We next describe the behavior language and envisionment propertiesrequired by the TeD language.5A
at representation expresses a model at the lowest level of abstraction, and is producedfrom a hierarchical representation. See [FD90] for details of the CC
attening procedure.6Modeling techniques such as time-scale abstraction [Kui87] may have lower abstractionlevels which are e�ectively instantaneous from the point of view of the current model, andhence can be described by variables of the current abstraction level.

403.5.1 Single BehaviorsTwo states s1 and s2 are said to be adjacent states if for each variablev, s2(v) is a legal next value of s1(v) (de�ned by the envisioning semantics ofthe behavior language and qs(v)). A behavior is a possibly in�nite sequence ofconsistent states hs0; s1; : : : ; sn; : : :i where si; si+1 are adjacent states. The �rststate of the sequence is called the initial state.3.5.2 EnvisionmentGiven the structure description for a design and an instance of thatdesign, the envisioning process produces a characterization of some or allof the possible behaviors of the instance. This characterization is called anenvisionment7 [deK77, dKB82, Kui82, Kui86]. The qualitative modeling ap-proach attempts to derive all the possible behaviors from a given set of initialstates, and hence provides the capability to generate such an envisionment. Atotal envisionment represents all possible behaviors of the design instance, andan attainable envisionment represents all possible behaviors from a speci�c setof initial states. In terms of structure description D, an attainable envision-ment of D from initial state s is written as E(fsg) and denotes the set of allbehaviors b of D where b = hs1; s2; : : : i and s1 = s. Letting S denote the set ofall states of D, a total envisionment of D is written as E(S) and abbreviatedas E.7The term envisionment is intended to include descriptions of behaviors generated froma design instance whose initial state is not an equilibrium, as well descriptions of behaviorsresulting from perturbations to a system in equilibrium [dKB82].

41(SB vessel T) = (AT* nil)(SB flame T) = (FT* std)(SB air T) = (AT* std)Figure 3.5: Initial Variable Values - Steam Boiler
1

2

3Figure 3.6: Behavior Tree - Steam Boiler3.5.3 ExampleTo demonstrate behavior description and envisionment, we returnto the steam boiler example and use the envisioning semantics and behaviorlanguage of Qsim. Our model of the steam boiler produces three qualitativelydistinct behaviors, shown graphically in the Qsim behavior tree in Figure 3.6.In the initial state of the model, the contents of the boiler vessel are at thesame temperature as the surrounding air, with the heat source (
ame) havinga temperature greater than that of the surrounding air. This initial state isdetermined by the variable values shown in Figure 3.5.The mechanism reaches an equilibriumwith the internal temperatureof the boiler vessel at some point between the temperature of the air and the
ame. The three possible behaviors are determined by the possible values forthe internal pressure when equilibrium is reached. This equilibrium pressurecan be either less than, equal to, or greater than the landmark value Pmax* inthe quantity space (0 Pa* Pmax* inf).

42Landmark Pa* represents the pressure (within the vessel) at air temperature.The qualitative plots (from Qsim) for variables (SB vessel T) and (SBvessel pressure) are shown in Figure 3.7. The initial state for this attainableenvisionment is determined by the variable assignments given in Figure 3.5 andis the �rst state given in each behavior.3.6 Design Speci�cationsFor the steam boiler example, the landmark Pmax* represents a max-imum safe value for the pressure inside the boiler vessel. A design speci�cationexpresses the fact that to achieve a correct design, the internal pressure ofthe boiler vessel should never exceed the maximum safe value. Hence, a de-signer will modify the design to eliminate the undesirable behavior from themechanism, namely the behavior in which this maximum is exceeded.3.6.1 ScenariosThe design speci�cation language identi�es behaviors or behavior ab-stractions (called scenarios, and de�ned in Chapter 4) and whether they arerequired or prohibited. For the steam boiler example, the behavior abstractionis an internal boiler vessel pressure greater than the safe maximum, Pmax*.We express the behavior abstraction as a sequence of states (in this case thesequence contains only one state), writtenhf(pressure ((Pmax* inf) ign))gi.8Branching is according to whether pressure reaches landmark Pmax*.

43
↑

. ↑ ↑ ↑ °

INF

FT*

SB-12

AT*

0

T0 T1 T2

(SB VESSEL T)

↑ ↑ ↑ ↑ °

INF

PF*

P-1

PMAX*

PA*

0

PA-*

PMAX-*

PF-*

MINF

T0 T1 T2

(SB VESSEL PRESSURE)Behavior 1
↑

. ↑ °

INF

FT*

SB-2

AT*

0

T0 T1

(SB VESSEL T)

↑ ↑ °

INF

PF*

PMAX*

P-0

PA*

0

PA-*

PMAX-*

PF-*

MINF

T0 T1

(SB VESSEL PRESSURE)Behavior 2
↑

. ↑ °

INF

FT*

SB-7

AT*

0

T0 T1

(SB VESSEL T)

↑ ↑ °

INF

PF*

PMAX*

PA*

0

PA-*

PMAX-*

PF-*

MINF

T0 T1

(SB VESSEL PRESSURE)Behavior 3Figure 3.7: Qualitative Plots from Qsim8

443.6.2 Speci�cation PredicatesTo develop the teleology language, we introduce the speci�cation pred-icate. A speci�cation predicate is evaluated in the context of a behavior, orpossible world, and its truth value indicates whether the speci�cation holds inthe behavior (possible world). We use the term possible world9 because thedesign created to meet the speci�cations will exhibit many di�erent possiblebehaviors, either because of di�erent initial conditions or inherent nondeter-minism in the design (e.g., a qualitative model). In expressing teleology, wewant to state that a speci�cation predicate holds in none, some, or all possi-ble behaviors (worlds) of a design. In the steam boiler example, we want tostate that in all possible behaviors of the design, the internal pressure does notexceed Pmax*. Modal logic provides an existing formalism for this purpose.Design speci�cations involve required or prohibited scenarios, and toexpress whether these speci�cations hold in a behavior, we introduce the speci-�cation predicate occursIn(�,b), where � is a behavior abstraction (scenario)and occursIn(�,b) is true for behavior (possible world) b if � abstracts b. Thespeci�cation predicate occursIn, behavior abstraction, and a speci�cation lan-guage are described in detail in Chapter 4.3.7 TeleologyThe teleology language relates design modi�cations (changes in struc-ture) to design speci�cations (desired static and dynamic characteristics). Withthe teleology language, we can formally express the designer's intent in mod-9The term \possible world" is taken from modal logic, which we will use in Section 3.7.2as a formal basis for teleological descriptions.

45ifying the steam boiler, namely to prevent the behavior in which the internalpressure exceeds Pmax*, possibly resulting in an explosion.Since the teleological description of an entity is context dependent, itis not possible to enumerate all possible teleological descriptions of an entity.In this work, the structure hierarchy and associated design speci�cations of thesystem in which a component is embedded provide the context in which teleo-logical descriptions of the component are developed or evaluated, as discussedin Section 2.3.3.3.7.1 Primitive Teleological OperatorTeleological operators are the language primitives for teleological de-scriptions. In the context of a design modi�cation, a single teleological operatorrelates the unmodi�ed design to the modi�ed design in terms of the speci�ca-tion predicates. In the following de�nitions, �i are speci�cation predicates,10 dand d0 are designs (structure descriptions), � a design modi�cation such that d0is the design obtained by applying � to d, and E and E0 are the envisionments1110Recall that speci�cation predicates are evaluated in the context of a speci�c behavior orpossible world.11We use the term envisionment to characterize not only the possible behaviors of a mech-anism, but also to characterize the possible physical con�gurations of the mechanism. Adesign may be underconstrained and allow more than one physical con�guration, particu-larly in the early stages of the design process. For example, alternative
oorplans for a VLSIchip will have di�erent dimensions giving di�erent total area, as well as di�erent timingcharacteristics.

46of d and d0, respectively. We de�ne the operator Guarantees as:12� Guarantees � , 8><>: 9 b 2 E; :�;and8 b0 2 E0; �:A teleological operator makes a statement about both the modi�edand unmodi�ed designs. The statement made for the unmodi�ed design is thenegation of the statement made for the modi�ed design (modulo the envision-ment, or set of possible worlds). This point may seem trivial, but is crucialin that it attributes the newly attained truth of the speci�cation predicate tothe design modi�cation. In other words, the design modi�cation was appliedto the unmodi�ed design, for which the speci�cation predicate was not true.Note that because of the assertion about the unmodi�ed design, the followingteleological descriptions are not equivalent:(� Guarantees �1) ^ (� Guarantees �2); and� Guarantees (�1 ^ �2):3.7.2 Expression in Modal LogicAs we discussed in Section 3.6.2, modal logic provides an existingformalism for expressing the statement that a speci�cation predicate holdsin none, some, or all possible behaviors (worlds) of a design. Modal logic(see Chellas [Che80]) adds the operators necessarily (written 2) and possibly(written 3) to �rst order logic. Given a �rst order predicate �, 2� (necessarily12When de�ning teleological operators we use a special-purpose notation in which the leftbrace indicates a structured conjunction related to the transformation from the unmodi�eddesign to the modi�ed design. Accordingly, the expression involving envisionment E (of theunmodi�ed design) is written above the expression involving envisionment E0 (of the modi�eddesign), indicating the transformation from the unmodi�ed to the modi�ed design.

47�) is true if � is true in all possible worlds and 3� (possibly �) is true if �is true in at least one possible world. To express teleological descriptions inmodal logic, we recognize that the envisioning process characterizes the possibleworlds for the design instance, where a possible world is one behavior or physicalcon�guration of the design. The modal operators possibly and necessarily canexpress that a speci�cation predicate is false in all possible worlds (necessarilynot), true in every possible world (necessarily), or true in at least one possibleworld (possibly).We use the model-theoretic approach to de�ne teleological descrip-tions in modal logic. This approach involves a model { a particular instanceof a set of possible worlds and truth assignments of logical sentences in thesepossible worlds. We derive the following bene�ts from the model-theoreticapproach:1. A set of logical sentences can be shown to be consistent by demonstratinga model for which the sentences are satis�able, and2. Model-checking techniques for verifying the truth of a set of logical sen-tences exist for various languages13.Amodel is expressed as an instance of a schema called a standard model. We usethe de�nition of a standard model from [Che80, p. 68]. GivenM = hW;R;P iwith1. W a set,13A model-checking algorithm has been implemented in this work, based on the behaviorabstraction relations de�ned in Chapter 4.

48 2. R a binary relation on W , and3. P a mapping from natural numbers to subsets of W ,M is a standard model. In the possible worlds interpretation, W is the set ofpossible worlds, R is a relation on W called the accessibility relation, and Prepresents the subsets of W for which predicates are true.Given the envisionment of a design instance, the design speci�cations,and procedures14 for determining the truth value of the design speci�cationsin each behavior (possible world) in the envisionment, we further re�ne thestandard model for expressing teleological descriptions in modal logic. Envi-sionments E and E0 de�ne the set of possible behaviors (possible worlds) of theunmodi�ed and modi�ed design. The mappings P and P 0 de�ne, for each spec-i�cation predicate �i, the set of behaviors (subsets of E and E0, respectively)in which �i is true. For the binary relation R, we de�ne �R� as158� 2 W; 8� 2 W; �R�:We de�ne the model schemasM = hW;R;P i and M0 = hW 0; R; P 0i with� W the set characterized by envisionment E,� W 0 the set characterized by envisionment E0,14This work is not directly concerned with techniques for verifying that design speci�cationshave been met, i.e., the problem of design veri�cation. While we have implemented a modelchecking algorithm based on behavior abstraction, we focus on using the results of designveri�cation to capture design rationale, namely the purpose of design modi�cations anddesign decisions.15The relation R is serial (for every � there is a � such that �R�), re
exive, symmetric,transitive, and euclidean (for every �, �, and
 if �R� and �R
 then �R
). These propertiesimply the validity of schemata D (2A! 3A), T (2A! A), B (A! 23A), 4 (2A! 22A)and 5 (3A ! 23A), respectively. See [Che80, p. 80].

49� P (i) = f� j � 2 W ^ :�i in �g, and� P 0(i) = f� j � 2 W 0 ^ �i in �g.Now we can express teleological operator Guarantees in terms of themodal operators 2 (necessarily) and 3 (possibly). For speci�cation predicate�1 and modelsM and M0, we de�ne Guarantees as:� Guarantees �1 , 8><>: M is a model for 3:�1andM0 is a model for 2�1:Note that M0 is a model for 2�1 if and only if P 0(1) = W , and M is a modelfor 3:�1 if and only if P (1) 6= fg.3.7.3 ExampleOne behavior exhibited by the initial steam boiler design (see Fig-ure 3.3 for the structure description, Figure 3.7 for the behavior) does notconform to the design speci�cation (prohibited �) and associated speci�ca-tion predicate :occursIn(�,b), where � is the behavior abstractionhf(pressure ((Pmax* inf) ign))gi.The model checking algorithm implemented in this work determines the factthat one behavior of the steam boiler does not meet the speci�cation. Outputof model checking is given in Figure 3.8.A modi�ed design containing a pressure sensor component whichtranslates pressure into an electrical voltage is proposed (see schematic in Fig-ure 3.9, CC de�nition in Figure 3.10). The pressure is sensed via the connec-tion with component vessel, and the electrical voltage is transmitted via theconnection with component flame. The heat source modi�es the temperature

50Checking behaviors againstDesign specification: DHF-NO-EXPLODEProhibited Scenarios:State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))Boolean Expression: TRUEDesign spec instantiation is #<Spec: PROHIBITED SC-0>:PROHIBITED:Scenario:State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))Boolean Expression: TRUEBehavior S-6 inconsistent with spec #<Spec: PROHIBITED SC-0>Figure 3.8: Steam Boiler - Model Checking Output

Figure 3.9: Modi�ed Steam Boiler

51(define-component-implementation2 SB"Steam boiler with pressure sensor"(components(Vessel boiler-vessel-modified(display netFlow heat pressure TdTin dTout inFlow outFlow))(Flame controlled-heat-source)(Air heat-sink)(Sensor pressure-sensor (display v)))(connections (p1 (Flame out) (Vessel in))(p2 (Vessel out) (Air in))(p3 (Vessel t) (Sensor in))(p4 (Sensor out) (Flame ctl))))Figure 3.10: Modi�ed Steam Boiler Model in CCbased on the voltage at the control terminal. This modi�ed design was createdwith the modi�cations shown in Figure 3.11 (possibly captured during inter-active editing by a designer). The complete modi�ed steam boiler componenthierarchy is given in Appendix A.The envisionment of the modi�ed design (with the initial variablevalues given in Figure 3.5) contains three behaviors shown graphically in thebehavior tree of Figure 3.12. Behaviors 2 and 3 are the same as behaviors2 and 3 of the original design. Behavior 1 has changed (see Figure 3.13),and the variable (SB vessel pressure) no longer exceeds landmark Pmax*.The model checking algorithm determines the fact that all behaviors of themodi�ed steam boiler meet the speci�cation. Output of model checking isgiven in Figure 3.14.We can now describe the purpose of the design modi�cation of Fig-ure 3.11 with respect to the design speci�cation (prohibited �) and asso-ciated speci�cation predicate :occursIn(�,b). Letting � denote the design

52(create-new-component-implementation SB 1 2)(for-component (SB 2)(replace-subcomponent vessel boiler-vessel-modified((display netFlow heat pressure T dTin dTout inFlow outFlow)))(replace-subcomponent flame controlled-heat-source nil)(add-subcomponent sensor pressure-sensor ((display v))(in (vessel t)) (out (flame ctl))))Figure 3.11: Steam Boiler Modi�cations
1

2

3Figure 3.12: Behavior Tree - Modi�ed Steam Boiler
↑

. ↑ ↑ ↑ °

INF

FT*

SB-13

AT*

0

T0 T1 T2

(SB VESSEL T)

↑ ↑ ↑ ↑ °

INF

PF*

PMAX*

P-1

PLIM*

PA*

0

PA-*

PMAX-*

PF-*

MINF

T0 T1 T2

(SB VESSEL PRESSURE)Behavior 1Figure 3.13: Qualitative Plots for Modi�ed Steam Boiler

53Checking behaviors againstDesign specification: DHF-NO-EXPLODEProhibited Scenarios:State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))Boolean Expression: TRUEDesign spec instantiation is #<Spec: PROHIBITED SC-0>:PROHIBITED:Scenario:State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))Boolean Expression: TRUEVerified specifications:#<Spec: PROHIBITED SC-0>Figure 3.14: Steam Boiler - Model Checking Outputmodi�cation that adds the pressure sensor, the teleological description is� Guarantees :occursIn(�; b): (3.1)Design modi�cation � may have resulted in other behavior changes betweenthe unmodi�ed and the modi�ed designs. The reason this particular purposewas identi�ed is because one of the behavior changes accomplished by � wasde�ned in a speci�cation. The steam boiler design history, evaluation steps,and acquired teleological description are shown in the context of the designprocess
ow in Figure 3.15.16Design SB1 is described in Figures 3.1 and 3.3. Envisionment E1 is described in Fig-ures 3.6 and 3.7. Design modi�cation � is described in Figure 3.11. Design SB2 is describedin Figure 3.9 and 3.10. Envisionment E2 is described in Figures 3.13 and 3.12. The ac-quired teleological description is equation 3.1. An sample trace of this design
ow is givenin Appendix A.

54
SB1 envisioning E1 specs

td’sstatusdesigner

verification

SB2

δ

envisioning E2 specs

td’s - 3.1status

verificationFigure 3.15: Design Flow for the Steam Boiler163.8 Additional Teleological OperatorsWe can de�ne additional teleological operators so that the teleologi-cal description given for the steam boiler example in the previous section moreclosely matches the prose description \The pressure sensor was added to thesteam boiler design to prevent the internal pressure from exceeding the safetylimit Pmax*". These additional operators are used in de�ning composed teleo-logical operators in Chapter 4.173.8.1 unGuaranteesWe de�ne the operator unGuarantees to facilitate the de�nition ofother operators. This operator expresses the fact that a speci�cation predicatetrue in all behaviors of the unmodi�ed design is now false in at least one17All these additional operators can be considered syntactic sugar. They are de�ned todemonstrate the construction of semantically more complex teleological expressions, andto demonstrate parallels to human generated descriptions of purpose. These parallels helpdemonstrate that teleological descriptions expressed in TeD capture the semantics of humangenerated descriptions, and are suitable for human consumption.

55behavior of the modi�ed design. The operator unGuarantees is de�ned asfollows: � unGuarantees � , 8><>: 8 b 2 E; �;and9 b0 2 E0; :�:Expressed in the modal operators, we have� unGuarantees �1 , 8><>: M is a model for 2�1;andM0 is a model for 3:�1:3.8.2 Preventing a BehaviorConsider a design modi�cation made to prevent or exclude an unde-sirable behavior, as was the case in the steam boiler example. A convenientoperator is Prevents, de�ned as follows:� Prevents � , 8><>: 9 b 2 E; �;and8 b0 2 E0; :�:Operator Prevents can be expressed in terms of Guarantees as� Prevents � , � Guarantees :�:Applied to the design modi�cation for the steam boiler, we have� Prevents occursIn(�; b):3.8.3 Introducing a BehaviorConsider a design modi�cation made to introduce or enable a par-ticular behavior abstraction, although the abstraction may not be guaranteedfor all possible behaviors of the design. A convenient operator is Introduces,de�ned as follows:

56 � Introduces � , 8><>: 8 b 2 E; :�;and9 b0 2 E0; �:Introduces can be expressed in terms of unGuarantees as� Introduces � , � unGuarantees :�:This is readily demonstrated by adding a negated predicate to the de�nitionof unGuarantees, giving� unGuarantees :� , 8><>: 8 b 2 E; :�;and9 b0 2 E0; �:which is the de�nition of Introduces.3.8.4 Conditional BehaviorFinally, consider a speci�cation predicate that expresses a desiredcharacteristic that is conditional, or if �1 is true (i.e., is observed or measured),then �2 must be true (observed or measured). To make such speci�cations andassociated teleological descriptions more intuitive, we introduce the operatorConditionally Guarantees and de�ne it directly as� Conditionally when f�1g Guarantees �2 , 8><>: 9 b 2 E; :(�1) �2);and8 b0 2 E0; �1) �2:Note that Conditionally Guarantees is a single operator of three argu-ments. We write this operator with the conditional argument in the middle forreadability. We can rewrite this operator in primitives as:� Guarantees �1) �2:

57We can de�ne the operator Conditionally Prevents, or conditionally pre-venting a scenario as follows:� Conditionally when f�1g Prevents �2 , 8><>: 9 b 2 E; :(�1) :�2);and8 b0 2 E0; �1) :�2:We can rewrite this operator in primitives as:� Guarantees �1) :�2:We can de�ne the operator Conditionally Introduces, or conditionally in-troducing a scenario as follows:� Conditionally when f�1g Introduces �2 , 8><>: 8 b 2 E; �1) :�2);and9 b0 2 E0; :(�1) :�2):We can rewrite this operator in primitives as:� unGuarantees �1) :�2:For conditional expressions involvingPrevents and Introduces, onemight be tempted to rewrite the expression directly in terms of Prevents orIntroduces. However, directly transforming such an expression to an implica-tion as was done for Guarantees violates the semantics of the Conditionallyoperator, namely that 1) the speci�cation predicate �2 holds when the possibleworlds considered are restricted to those in which speci�cation predicate �1holds and 2) that no statement is made about possible worlds in which thespeci�cation predicate �1 does not hold. For Prevents, an (incorrect) rewritesequence is � Conditionally when �1 Prevents �2rewritten as� Prevents �1) �2which is rewritten as� Guarantees :(�1) �2):

58This result cannot be true if there are any possible worlds in which the speci�-cation predicate �1 does not hold, since an implication with a false antecedentis always true. For Introduces, an (incorrect) rewrite sequence is� Conditionally when �1 Introduces �2is rewritten as� Introduces �1) �2which is rewritten as� unGuarantees :(�1) �2):This result can be satis�ed if there is one possible world in which the speci�-cation predicate �1 does not hold, since an implication with a false antecedentis always true.

Chapter 4Behavior Abstraction4.1 RationaleIn this chapter we formally develop the notion of behavior abstraction.In the task domain of design,1 behavior abstraction is important because designspeci�cations most often address only a single aspect or small number of aspectsof the artifact to be designed, such as the physical dimensions (length, width,height) or the behavior of some portion of the artifact. Consequently, oneneeds to represent and reason about behavior descriptions that reference onlypart of the artifact. Further, the design speci�cation may be given in termsmore general than the details of the designed artifact, such as stating that aparticular variable value should always be positive, although no speci�c positivevalue is speci�ed.To demonstrate behavior abstraction, recall the steam boiler examplediscussed in Chapter 3. The behavior in which the internal pressure of theboiler vessel instance vessel starts at 0 and goes to the positive value Pmax*is written as a sequence of three states,hf((vessel pressure) (0 nil))g,f((vessel pressure) ((0 Pmax*) inc))g,f((vessel pressure) (Pmax* std))gi1Hamscher [Ham91] discusses the relevance of behavior abstraction in the problem solvingdomain of diagnosis. 59

60This behavior abstracts the behavior of the entire system, since variables otherthan pressure are ignored. One possible generalization of this abstract behav-ior is obtained by replacing the component name vessel with the componenttype boiler-vessel. This abstraction describes the behavior in which theinternal pressure of any instance of boiler-vessel starts at 0 and goes tothe positive value Pmax*. A further generalization eliminates the intermediatestate, describing the behavior in terms of its initial and �nal states, orhf((boiler-vessel pressure) (0 nil))g,f((boiler-vessel pressure) (Pmax* std))giWe de�ne behavior abstraction in terms of state abstraction, and stateabstraction in terms of variable value, name, and type abstraction. We provethat each abstraction relation partially orders2 its respective space. Orderingbehaviors allows us to decide whether one behavior is more or less general thananother, or that no order exists between the behaviors. Table 4.1 summarizesthe abstraction relations, giving their respective spaces and the relations usedin each de�nition. For each relation, the strict inequality a <� b is de�ned asa v� b ^ a 6= b:We use the behavior abstraction relation to de�ne the speci�cation predicateoccursIn.Computing the abstraction relation is the basis for indexing and clas-sifying teleological descriptions (see Chapter 8) and the model checking algo-rithm used in acquiring teleological descriptions (see Chapter 9). The particular2We use the de�nition of a partial ordering relation in [Sto77, p. 82].

61Relation Space De�ned in Terms ofvc component types assumedvn variable names component typesvt variable types generic variable typesvv variable references vn , vtvx values qualitative/quantitative valuesvs states vv , vxvb behaviors vsv� scenarios vbTable 4.1: Abstraction Relation Summarydetails of the abstraction relations de�ned here are not critical for accomplish-ing indexing, classi�cation, and acquisition. The key requirement for thesecapabilities is that behaviors can be partially ordered.4.2 Variable AbstractionBehavior abstraction described in this chapter involves variables andtheir values, and we describe abstraction relations for variables as well as theirvalues. A variable (reference) is composed of a name and a type. The name isa hierarchical name, as described in Section 3.2. A fully quali�ed hierarchicalname uniquely identi�es a single variable in a design instance. The name canbe abstracted by removing individual elements from the list, such as removingall elements except the component name and the variable name. Additionally,the name can be abstracted by replacing an element (e.g., component name)with a generalization of that component.3 For example, in the domain ofelectronic circuits, a two input AND gate and a three input AND gate can be3For example, see the model hierarchy based on behavior described by Nayak, Joskowicz,and Addanki [NJA91].

62
2-input AND 3-input AND 2-input OR 3-input OR

n-input AND n-input OR

n-input Boolean

Figure 4.1: Component Type Hierarchygeneralized to n-input AND gate. Similarly, a two input OR and a three inputOR gate are generalized to n-input OR, and n-input AND and n-input OR canbe generalized to n-input Boolean gate, as shown in Figure 4.1.Variable type can be generalized via the generic variable types inbond graph modeling, described by Rosenberg and Karnopp [RK83]. Domainspeci�c types such as voltage and current (electrical domain) can be generalizedto e�ort and
ow, respectively. The most general type is designated >, (read\top"). To demonstrate a variable reference and its abstraction, consider acircuit design containing a 2-input AND gate (instance name g1), with variableVin representing the input voltage of an AND gate. The variable referencefor the input voltage of g1 is (g1 Vin). The reference can be abstracted to(2-input-AND Vin), referencing the input voltage of any 2-input AND gatein the circuit. Another possible abstraction is (g1 voltage), referencing anyvoltage variable of gate g1.We now de�ne the abstraction relations for variable names and forvariable types. We assume the abstraction relation vc partially orders the

63space of component types.4The relation vn (read \is a variable name less general or equal to")captures the notion of variable name abstraction. For variable name n =(n1; : : : ; nk), n0 = (n01; : : : ; n0l)n vn n0 , 8>>>>>><>>>>>>: 9 F : n0 ! n such that8 n0i 2 n0; if F(n0i) = nji ; thenji < ji+1; (Order Preservation and Uniqueness)n0i is a generalization of nji ; (Name Abstraction)Lemma 4.1 vn is re
exive.Proof: For n = (n1; : : : ; nk), de�ne F(ni) = ni. Now, the order preservation,uniqueness, and name abstraction (we assumed that the component abstractionis a partial order, and hence re
exive) conditions are satis�ed. 2Lemma 4.2 vn is anti-symmetric.Proof: For n = (n1; : : : ; nk), n0 = (n01; : : : ; n0l), �rst observe that if n vn n0 andn0 vn n, then we must have k = l in order to satisfy the uniqueness condition.With k = l, we can see that the mappings F 0 and F by which n vn n0 andn0 vn n hold, respectively, must be exactly F 0(n0i) = ni and F(ni) = n0i for theorder preservation condition to hold. Now, n0i must be a component abstractionof ni (for all i) and ni must be a component abstraction of n0i (for all i),which with the fact that component abstraction relation is a partial order (anassumption) gives us ni = n0i for all i, and n = n0. 2Lemma 4.3 vn is transitive.Proof: For variable names a = (a1; : : : ; al), b = (b1; : : : ; bm), c = (c1; : : : ; cn), leta vn b via mapping Fb and b vn c via mapping Fc. De�ne mapping F : c! aas F(ci) = Fb(Fc(ci)). Since both Fb and Fc satisfy the order preservationand uniqueness conditions, then F also satis�es the order preservation anduniqueness conditions. From the name abstraction conditions of Fb and Fc4This assumption is reasonable, requiring only that the component abstraction relationbe re
exive (a component type is \less general than or equal to" itself), anti-symmetric(if component type A is \less general than or equal to" component type B, and B is \lessgeneral than or equal to" A, then A and B are the same component type), and transitive(if component type A is \less general than or equal to" component type B, and B is \lessgeneral than or equal to" component type C, then A is \less general than or equal to" C).

64
effort flow displacement ...

voltage force current velocity charge displacementFigure 4.2: Variable Type Hierarchy(i.e., bi is more general than Fb(bi) and cj is more general than Fc(cj)) andfrom the transitivity of the component abstraction relation, we have ck is moregeneral than F(ck). Now, a vn c. 2Theorem 4.4 vn is a partial order.Proof: From Lemmas 4.1, 4.2, and 4.3. 2Theorem 4.5 The variable type abstraction relation (vt) is a partial order.Proof: Domain speci�c variable types such as voltage, current, and charge forthe electrical domain and force, velocity, and displacement for the mechani-cal domain are generalized as e�ort,
ow, and displacement. These genericvariable types are then abstracted to >. This hierarchy is shown in part inFigure 4.2, and the properties re
exive, anti-symmetric, and transitive can bedemonstrated. 2We de�ne the relation vv (read \is a variable less general or equalto") based on the relations vn and vt (both partial orders) as follows: Forvariables v = (n; t) and v0 = (n0; t0),v vv v0 , 8><>: n vn n0;andt vt t0:

65Variable abstraction requires both variable name and variable type abstractionsince the type of a variable name that is not fully quali�ed can be ambiguous.For example, a variable name can be abstracted to (X) in a design containingtwo component instances (of di�erent component type) that each de�ne a vari-able named X, but with di�erent variable type. A variable reference intended toabstract only variables named (X) of a speci�c type such as voltage requiresthe variable type as well. We now prove the assertion that vv is a partialorder.Lemma 4.6 vv is re
exive.Proof: For variable v = (n; t), n vn n (Lemma 4.1) and t vt t (Theorem 4.5).Now, v vv v. 2Lemma 4.7 vv is anti-symmetric.Proof: For variables v = (n; t) and v0 = (n0; t0). Suppose v vv v0 and v0 vv v.From the de�nition of vv , n vn n0, n0 vn n, t vt t0, and t0 vt t. FromLemma 4.2, we have n = n0, and from Theorem 4.5 we have t = t0. Now,v = v0. 2Lemma 4.8 vv is transitive.Proof: For variables u = (nu; tu), v = (nv; tv), and w = (nw; tw), supposeu vv v and v vv w. From the de�nition of vv , nu vn nv, nv vn nw, tu vt tv,and tv vt tw. From Lemma 4.3, we have nu vn nw, and from Theorem 4.5 wehave tu vt tw. Now, u vv w. 2Theorem 4.9 vv is a partial order.Proof: From Lemmas 4.6, 4.7, and 4.8. 24.3 Partial StatesA partial state is an abstraction of a state, possibly equal to the state.To the variable abstraction relation described in the previous section, we addtwo abstraction relations to achieve state abstraction. First, a partial statecan abstract a state by abstracting the variable value. This is accomplished by

66specifying a range for a variable value, such as x > 0. The relation vx (read\is a value less general than or equal to") captures this notion of variable valueabstraction. For example, for variable x with domain(x) the union of realnumbers (R) and open intervals on real numbers, the values 5; (4; 6); (0; inf),and R are related by vx as follows:5 vx (4; 6) vx (0; inf) vx R:We de�ne the relation vx for the space of qualitative values (qm; qd),where qm is a magnitude represented as a point or open interval taken from theunion of symbolic quantity spaces and R, and qd is one of fdec; std; inc; nilg.The relation vx is de�ned for in�nite domains (reals, rationals, integers) viathe < and � relations de�ned for these domains, and for �nite domains (quan-tity spaces) via the partial order imposed by the quantity space (which we willdenote with the relational operators <;�). Considering only the magnitudesof the qualitative values, for point values x and y,x vx y , x = y;For point value x and open interval value (y1; y2),x vx (y1; y2) , y1 < x ^ x < y2;For open interval values (x1; x2) and (y1; y2),(x1; x2) vx (y1; y2) , y1 � x1 ^ x2 � y2:The direction of change values dec, std, and inc are all pairwise unordered,and nil is more general than the other three values. To complete the de�nitionof vx , x vx y if the magnitude relationships described above hold, and eitherthe direction of change of x and y are the same or the direction of change of yis nil. We now prove the assertion that vx is a partial order.

67Lemma 4.10 vx is re
exive.Proof: For point value x, x = x) x vx x. For open interval value y = (y1; y2),y1 � y1 ^ y2 � y2) y vx y. 2Lemma 4.11 vx is anti-symmetric.Proof: For point values x and y, suppose x vx y and y vx x. From the de�ni-tion of vx , x = y. For point value x and interval value ;y = (y1; y2), y vx xis false. For interval values x = (x1; x2) and y = (y1; y2), suppose x vx y andy vx x. From de�nition of vx , y1 � x1, x2 � y2, x1 � y1, and y2 � x2, whichgives x1 = y1 and x2 = y2, and x = y. 2Lemma 4.12 <x is transitive.Proof: Suppose x vx y and y vx z. If z is a point value, then z = y, y isalso a point value, and x = y. Now, x vx z. If y is a point value, thenx = y, and x vx z. If x is a point value and y and z are interval values, thenz1 � y1 < x < y2 � z2, and x vx z. If x, y, and z are all interval values, thenz1 � y1 � x1 and x2 � y2 � z2, and x vx z. 2Theorem 4.13 vx is a partial order.Proof: From Lemmas 4.10, 4.11, and 4.12. 2The second abstraction relation for states eliminates variables fromconsideration (hence the name partial state). A variable is eliminated fromconsideration by assigning the variable a value that represents any possiblevalue for the variable. The relation vs (read \is a state less general than orequal to") de�nes an abstraction relation for states and partial states. For(partial) state s with variable set Vs, and partial state p with variable set Vp,s vs p , 8>>>>>>>>>>><>>>>>>>>>>>: 9 F : Vp ! Vs such that8 v 2 Vp;F(v) vv v; (Variable Abstraction)s(F(v)) vx p(v); (Value Abstraction)and8 v1; v2 2 Vp; v1 6= v2) F(v1) 6= F(v2): (Uniqueness)

68Lemma 4.14 vs is re
exive.Proof: For state s with variable set V, de�ne mapping F such that for v 2 V,F(v) = v. Clearly, the mapping satis�es the uniqueness condition. Further,the variable and value abstraction conditions are satis�ed, since both vv andvx are re
exive (Lemmas 4.6 and 4.10, respectively), giving F(v) vv v ands(F(v)) vx s(v). 2Lemma 4.15 vs is transitive.Proof: Let pi be (partial) states. Suppose p1 vs p2 via mappingF2 and p2 vs p3via mapping F3. From the de�nition of vs we have8 v 2 V2; F2(v) vv v; p1(F2(v)) vx p2(v); and8 v 2 V3; F3(v) vv v; p2(F3(v)) vx p3(v):De�ne F : p3 ! p1 as F2 � F3. From transitivity of vv (Lemma 4.8) wehave 8 v 2 V3;F(v) vv v, and from transitivity of vx (Lemma 4.12) we have8 v 2 V3; p1(F(v)) vx p3(v). Further, for v1; v2 2 V3, v1 6= v2) F3(v1) 6=F3(v2)) F2(F3(v1)) 6= F2(F3(v2)), and F(v1) 6= F(v2). Now, p1 vs p3. 2Lemma 4.16 vs is anti-symmetric.Proof: For states r and s with variable sets Vr and Vs, respectively, supposer vs s via mapping Fs and s vs r via mapping Fr. The uniqueness propertyof vs implies that jVrj = jVsj. Now consider the mappingH = Fr�Fs, notingthat H : Vs ! Vs and is one-to-one (from the uniqueness property of vs).Claim: H is the identity mapping on Vs.Claim proof: Suppose that H is not the identity mapping on Vs. Then thereexists v 2 Vs such that H(v) 6= v. Now consider the sequence H(v);H2(v); : : :.For each step in the sequence, we know Hi+1(v) vx Hi(v), since H(v) =Fr(Fs(v)) and vs is transitive (from Lemma 4.15), implying that H(v) vs v.If at any point the two are equal, we have violated the one-to-one property ofH, a contradiction. However, we cannot have <x at every point, since thereare �nitely many elements of Vs. Therefore, H is the identity mapping on Vs.2.Now, H = Fs � Fr = the identity map, and Fr = F�1s . Similarly, we can showthat Fs = F�1r . Now, 8v 2 Vs,s(v) = s(Fr(Fs(v))) vx r(Fs(v)) vx s(v); andv = Fr(Fs(v)) vv Fs(v) vv vand we have r(Fs(v)) = s(v) and Fs(v) = v. Similarly, 8v 2 Vr,r(v) = r(Fs(Fr(v))) vx s(Fr(v)) vx r(v); andv = Fs(Fr(v)) vv Fr(v) vv vand we have s(Fr(v)) = r(v) and Fr(v) = v. Now, r = s. 2

69Theorem 4.17 vs is a partial order.Proof: From Lemmas 4.14, 4.16, and 4.15. 24.4 Abstract BehaviorsIn addition to variable abstraction, value abstraction (point value toan interval, or interval to \wider" interval), and state abstraction (eliminatingvariables), behavior abstraction generalizes by eliminating certain states in thesequence. Hence, partial states of an abstract behavior need not be adjacentstates as de�ned in Section 3.5.1. To demonstrate this point, consider (in thebehavior language of Qsim) the behavior abstractionhf(x; (0; dec))g; f(x; (0; inc))gi:The states abstracted in this scenario cannot be adjacent in a behavior of themodel, but are allowed as a behavior abstraction The abstraction describesbehavior in which x at some time had the qualitative value (0, dec), and atsome later time (with an unspeci�ed number of intervening values) had thevalue (0, inc). In the semantics of Qsim, the variable x must take on aqualitative value whose direction of change is std between dec and inc.The basic idea of behavior abstraction is that there exists a corre-spondence between the abstraction and the behavior such that1. a partial state of the abstraction is assigned to a state of the behaviorwhich it abstracts, and2. the order of states implied by the assignment (i.e., the order of partialstates) is preserved in the abstracted behaviorThe relation vb (read \is a behavior less general than or equal to") de�nesthe abstraction relation on behaviors. Formally, for behavior b = hs1; s2; : : :i

70and behavior b0 = hs01; s02; : : :i,b vb b0 , 8>>>>>>>>>>><>>>>>>>>>>>: 9 F : b0 ! b such that8 s0i 2 b0; F(s0i) = sji ;ji < ji+1; (Order Preservation)sji vs s0i; (State Abstraction)and8 s0i; s0j 2 b0; i 6= j) F(s0i) 6= F(s0j): (Uniqueness)The symbol <b is read \is a behavior less general than" and requires for somes0i 2 b0 that sji <s s0i.Lemma 4.18 vb is re
exive.Proof: For behavior b = hs1; s2; : : : i, de�ne F : b! b as F(si) = si. F clearlysatis�es the order preservation and uniqueness properties. Further, si vs sifrom Lemma 4.14, and now b vb b. 2Lemma 4.19 vb is anti-symmetric.Proof: For behaviors b = hs1; : : : ; sii and b0 = hs01; : : : ; sji, suppose b vb b0 viamapping F 0 and b0 vb b via mapping F . The uniqueness property requiresthat i = j, and the order preservation property requires that F(sk) = s0k andF 0(s0k) = sk. From the de�nition of vb we have sk vs s0k and s0k vs sk, whichwith Lemma 4.16 gives sk = s0k for all k. Now, b = b0. 2Lemma 4.20 For behaviors b vb b0, (partial) states s0i and s0j of b0, and (par-tial) states ski = F(s0i) and skj = F(s0j) of b, i < j) ki < kj .Proof: Straightforward, from de�nition of vb and induction. 2Lemma 4.21 vb is transitive.Proof: For behaviors a, b, and c, suppose a vb b ^ b vb c. From the de�nitionof vb , there exist functions Fb : b! a and Fc : c! b such that8 bi 2 b; Fb(bi) = aji; ji < ji+1; aji vs bi; and8 ci 2 c; Fc(ci) = bji ; ji < ji+1; bji vs ci:De�ne F = Fb(Fc), so that F : c ! a. Now for F(ci) = aji, we need toshow ji < ji+1 (order preservation property), aji vs ci (state abstraction prop-erty), and the uniqueness property holds. Let bki = Fc(ci) and aji = Fb(bki).From the de�nition of vb , we have ki < ki+1, and from Lemma 4.20 we have

71ji < ji+1. From de�nition of vb , we have bki vs ci and aji vs bki. FromLemma 4.15, aji vs ci. Finally, for ci; cj 2 c, i 6= j) Fc(ci) 6= Fc(cj))Fb(Fc(ci)) 6= Fb(Fc(cj)), and F(ci) 6= F(cj). Now we have a vb c. 2Theorem 4.22 vb is a partial order.Proof: From Lemmas 4.18, 4.19, and 4.21. 24.5 ScenariosA scenario is a pair (p; �) where p = hp1; p2; : : : i is an abstract be-havior and � is a Boolean expression. We introduce the Boolean expression� in order to add constraints on the behavior expressed in terms of logicalconnectives (^;_;:), relational operators, constants, and variable values (e.g.,s1(v), where v is a variable in b). � can constrain the set of behaviors thatthe scenario abstracts. For example, if � is (p2(time)� p1(time)) < 10, thenscenario (p; �) abstracts behavior b = hb1; : : : i if b vb p via mapping F , andfor bi = F(p1), bj = F(p2), the inequality (bj(time)� bi(time)) < 10 holds.5For convenience in de�ning composed teleological operators later inthis chapter, notation for scenario concatenation and scenario merging is intro-duced. Let V be the set of variables of a design. For scenarios� = (p = hp1; : : : ; pni; �); �0 = (p0 = hp01; : : : ; p0mi; �0);where p references6 variables in Vp � V and p0 references variables in Vp0 � V,we de�ne [�;�0] as follows:[�;�0] = (hp1; : : : ; pn; p01; : : : ; p0mi; (� ^ �0)):5For variables with interval values, the expression is quanti�ed over all possible values inthe interval.6By \reference a variable" we mean the partial state de�nes a value for the variable otherthan \any possible value".

72For n = m, we de�ne [� k �0] as follows:[� k �0] = 8><>: (hq1; : : : ; qni; (� ^ �0))where qi = pi [p0i andfor v 2 (Vp \ Vp0); qi(v) = g:l:b:fpi(v); p0i(v)g:As was done for values, states, and behaviors, we de�ne an abstractionrelation (partial order) on scenarios. The relation v� (read \is a scenario lessgeneral than or equal to") is de�ned as follows: For scenarios � = (p; �) and�0 = (p0; �0), with p = hp1; : : : i and p0 = hp01; : : : i,� v� �0 , 8><>: p vb p0 via mapping F 0 : p0 ! p (BehaviorAbstraction)and�) F 0(�0) (ConditionAbstraction):whereF 0(�0) denotes the rewriting of �0 with respect to the mapping F 0 : p0 ! p(i.e., variable reference p0i(v) in �0 is replaced by pj(v), where pj = F 0(p0i)).Scenarios � and �0 are equivalent if p vb p0 and � , F 0(�0).Lemma 4.23 v� is re
exive.Proof: For scenario � = (p; �), de�ne mapping F 0 : p ! p as the identitymapping. From Lemma 4.18 we have p vb p. Since F 0 is the identity mappingon p, F 0(�) = �, in which case �) F 0(�). Now, � v� �. 2Lemma 4.24 v� is anti-symmetric.Proof: For scenarios � = (p; �) and �0 = (p0; �0), suppose � v� �0 via mappingF 0 and �0 v� � via mapping F . From p vb p0, p0 vb p, and Lemma 4.19, wehave p = p0. We can now choose the identity mapping for both F and F 0 sincep = p0 and v� is re
exive (Lemma 4.23). Now, �) F 0(�0), �0) F(�), and� � �0. 2Lemma 4.25 v� is transitive.Proof: For �i = (pi; �i), suppose �1 v� �2 and �2 v� �3. From p1 vb p2,p2 vb p3, and Lemma 4.21 we have p1 vb p3. GivenF2 : p2 ! p1 such that �1) F2(�2);F3 : p3 ! p2 such that �2) F3(�3);de�ne F = F2 � F3. We need to show that �1) F(�3). Recalling that theinterpretation for variables with interval values is that the expression is true

73for all possible point values of the interval, note that the mapping F2 restrictsinterval values to tighter intervals or to point values. Hence, (�2) F3(�3)))(F2(�2)) F2(F3(�3))). Since �1) F2(�2), we have �1) F(�3). Now,�1 v� �3. 2Theorem 4.26 v� is a partial order.Proof: From Lemmas 4.23, 4.24, and 4.25. 24.6 Design Speci�cations for BehaviorA design speci�cation states whether a scenario is required or prohib-ited. The syntax of a design speci�cation is one of(required �) or (prohibited �)where � is a scenario. A design speci�cation participates in a teleologicaldescription in the form of an associated speci�cation predicate. We de�ne thespeci�cation predicate occursIn(�,b) for scenario � = (p; �) as follows:occursIn(�; b) , 8><>: b vb p via mapping F : p! bandF(�) is true:A scenario is said to occur in an envisionment if it occurs in at least one behaviorof the envisionment. A set of scenarios f�1; : : : ; �ng occurs in a behavior b ifeach �i occurs in b. Note that each scenario can occur in the behavior via adi�erent instance of the function F . The speci�cation predicates associatedwith the basic design speci�cations are, respectively,occursIn(�,b), :occursIn(�,b)A design description can contain a precondition for the desired behavior asfollows:

74 (conditionally hlist of scenariosi(required hscenarioi)(prohibited hscenarioi))To simplify the expression of design speci�cations, we allow a symbolto be bound to a component type and then used in variable names in scenarios.The syntax for such a design speci�cation is:(for-component hsymboli htype descriptori(conditionally hlist of scenariosi(required hscenariosi)(prohibited hscenariosi)))For each instance of component type htype descriptori, the design speci�-cation is instantiated. Considering the steam boiler example of Chapter 3,the design speci�cation concerning the variable pressure in component typeboiler-vessel is(for-component X (boiler-vessel)(prohibited (((((X pressure) ((Pmax* inf) ign)))) true)))4.7 Composed Teleological OperatorsThe operators described here demonstrate the ability to de�ne seman-tically richer operators in terms of the three operatorsGuarantees, Prevents,and Conditionally Guarantees.7 When examining descriptions of purposegenerated by designers, verbs such as introduce, control, regulate, maximize,reduce, allow, order, and synchronize occur. The following de�nitions decom-pose such verbs into the teleological primitives directly or via previously de�nedverbs. This permits decomposition of such operators into a predetermined,small set of domain independent primitives.7Recall the fact that these operators can be written in terms of the single operatorGuarantees.

75Descriptions of purpose should be able to express constraints on sce-narios with respect to the time domain. For purposes involving temporal re-lationships, one representation approach for speci�cation predicates is tempo-ral logic, such as those described by Chandra and Misra [CM88], Emerson(CTL�) [ES85], Moszkowski [Mosz85], and Turner [Tur84] (temporal logics ofMcDermott, Allen, and Halpern, Manna, and Moszkowski). We give thirteende�nitions limited to expressions involving scenarios (�i) and the speci�cationpredicate occursIn(�i,b).The �rst two operators describe the manner in which two scenariosmay be related in time. These two operators are not concerned with the mag-nitude of time intervals other than the distinction between 0, �nite, and in�nitetime.8 Recall that �i are scenarios, d and d0 are design instances, � a designmodi�cation such that d0 is the design obtained by applying � to d, and E andE0 are the envisionments of d and d0, respectively. In these and subsequent tele-ological descriptions, the speci�cation predicate occursIn(�i,b) is abbreviatedas �i.1. � Orders �1; �2 ,8>>>>>><>>>>>>: 9 b 2 E (occursIn(�1; b) ^ occursIn(�2; b) ^:occursIn([�1;�2]; b)and8 b0 2 E0 (occursIn(�1; b0) ^ occursIn(�2; b0)))occursIn([�1;�2]; b0):This can be written in terms of primitives as� Conditionally when f�1; �2g Guarantees [�1;�2]:8The particular operators de�ned here are not derived from any particular temporal logic,and are merely hypothesized as useful in constructing teleological descriptions. For exam-ple, Hamscher [Ham91] identi�es synchronize as an interesting abstraction in describing thebehavior of electronic circuits.

76 2. � Synchronizes �1; �2 ,8>>>>>><>>>>>>: 9 b 2 E (occursIn(�1; b) ^ occursIn(�2; b)) ^:occursIn([�1 k �2]; b)and8 b0 2 E0 (occursIn(�1; b0) ^ occursIn(�2; b0)))occursIn([�1 k �2]; b0):This can be written in terms of primitives as� Conditionally when f�1; �2g Guarantees [�1 k �2]:Expressed with the modal operators,1. � Orders �1,�2 ,8>>>>>>>>>>><>>>>>>>>>>>: M is a model for3(occursIn(�1; b) ^ occursIn(�2; b) ^:occursIn([�1;�2]; b))andM0 is a model for2((occursIn(�1; b0) ^ occursIn(�2; b0)))occursIn([�1;�2]; b0)):2. � Synchronizes �1,�2 ,8>>>>>>>>>>><>>>>>>>>>>>: M is a model for3(occursIn(�1; b) ^ occursIn(�2; b) ^:occursIn([�1 k �2]; b))andM0 is a model for2((occursIn(�1; b0) ^ occursIn(�2; b0)))occursIn([�1 k �2]; b0)):The next four composed operators involve time, speci�cally the re-duction or increase of the time between the occurrence of states in behaviors,and guarantees of minimum or maximum values for time intervals between

77the occurrence of states in behaviors. The Boolean expression of a scenarioexpresses the temporal constraint. In the next four examples,�1 = (hp1; : : : ; pni; �1);�2 = (hq1; : : :i; �2)b = hs1; s2; : : : iThe variable t has value equal to the time at which the state occurred.3. � Guarantees Minimum Latency (n) Between �1; �2 ,8>>>>>><>>>>>>: 9 b 2 E (occursIn([�1;�2]; b) ^ F(pn) = si ^ F(q1) = sj) ^(sj(t)� si(t)) < nand8 b0 2 E0 (occursIn([�1;�2]; b0) ^ F 0(pn) = si ^ F 0(q1) = sj))(sj(t)� si(t)) � n:This can be written in primitives as� Conditionally when [�1;�2]Guarantees (hpn; q1i; (q1(t)�pn(t)) � n):4. � Guarantees Maximum Latency (n) Between �1; �2 ,8>>>>>><>>>>>>: 9 b 2 E (occursIn([�1;�2]; b) ^ F(pn) = si ^ F(q1) = sj) ^(sj(t)� si(t)) > nand8 b0 2 E0 (occursIn([�1;�2]; b0) ^ F 0(pn) = si ^ F 0(q1) = sj))(sj(t)� si(t)) � n:This can be written in primitives as� Conditionally when [�1;�2]Guarantees (hpn; q1i; (q1(t)�pn(t)) < n):5. � Guarantees Minimum Duration (n) For �1 ,8>>>>>><>>>>>>: 9 b 2 E (occursIn(�1; b) ^ F(p1) = si ^ F(pn) = sj) ^(sj(t)� si(t)) < nand8 b0 2 E0 (occursIn(�1; b0) ^ F 0(p1) = si ^ F 0(pn) = sj))(sj(t)� si(t)) � n:

78 This can be written in primitives as� Conditionally when �1 Guarantees (hp1; pni; (pn(t)� p1(t)) � n):6. � Guarantees Maximum Duration (n) For �1 ,8>>>>>><>>>>>>: 9 b 2 E (occursIn(�1; b) ^ F(p1) = si ^ F(pn) = sj) ^(sj(t)� si(t)) > nand8 b0 2 E0 (occursIn(�1; b0) ^ F 0(p1) = si ^ F 0(pn) = sj))(sj(t)� si(t)) � n:This can be written in primitives as� Conditionally when �1 Guarantees (hp1; pni; (pn(t)� p1(t)) < n):The remaining operator de�nitions make statements about scenariosover time, such as maintaining a scenario, or guaranteeing that a scenariowill occur exactly once or in�nitely many times. In the de�nition of operatorMaintains, the speci�cation predicate occursIn is generalized to apply tosingle states as well as sequences of states (behaviors).7. � Maintains �,8><>: 9 b 2 E; 9 s 2 b :occursIn(�; s);and8 b0 2 E0; 8 s0 2 b0 occursIn(�; s0):This can be written in primitives as� Guarantees 8 bi 2 b; occursIn(�; bi)The Maintains operator can be used to express purposes such asregulate or control, namely maintaining some condition such as a temperature

79between some speci�ed minimum and maximum. Such a scenario would looklike (hf(temp; (minTemp;maxTemp))gi; true):The next two operators express the purpose that once a particularevent or event sequence occurs, then some other event or event sequence isguaranteed to occur or prevented from occurring. For example, if some mech-anism parameter goes beyond a speci�ed range, then it is brought back intorange, possibly within some time constraint.8. � Subsequently (in �1) Guarantees �2 ,8><>: 9 b 2 E occursIn(�1; b) ^ :occursIn([�1;�2]; b)and8 b0 2 E0 occursIn(�1; b0)) occursIn([�1;�2]; b0):This can be written in primitives as� Conditionally when �1 Guarantees [�1;�2]:9. � Subsequently (in �1) Prevents �2 ,8><>: 9 b 2 E occursIn(�1; b) ^ occursIn([�1;�2]; b)and8 b0 2 E0 occursIn(�1; b0)) :occursIn([�1;�2]; b0):This can be written in primitives as� Prevents [�1;�2]:The next three operators express the purpose that a particular eventor event sequence occurs exactly once (Guarantees Single Occurrence),occurs in�nitely many times if it occurs at all (Guarantees Recurrence), oralways occurs in�nitely many times (Guarantees Recurring). For example,a mechanismmay require a periodic signal for synchronizing events or resettingitself.

8010. � Guarantees Single Occurrence � ,8><>: 9 b 2 E :occursIn(�; b) _ occursIn([�;�]; b)and8 b0 2 E0 occursIn(�; b0) ^ :occursIn([�;�]; b0):This can be written in primitives as� Guarantees � ^ Subsequently when � Prevents �or as � Guarantees � ^ Prevents [�;�]:In the following two de�nitions, behaviors b and b0 are written ashs0; s1; : : : i and hs00; s01; : : : i respectively.11. � Guarantees Recurrence �,8><>: 9 b 2 E occursIn(�; b) ^ 9 i � 0 :occursIn(�; hsi; : : : i)and8 b0 2 E0 occursIn(�; b0)) 8 i � 0 occursIn(�; hsi; : : : i):This can be written in primitives as� Subsequently when � Guarantees 8 i � 0 occursIn(�; hsi; : : : i):12. � Guarantees Recurring � ,8><>: 9 b 2 E 9 i � 0 :occursIn(�; hsi; : : : i)and8 b0 2 E0 8 i � 0 occursIn(�; hsi; : : : i):This can be rewritten as� Guarantees Recurrence � ^ � Guarantees �;or as � Guarantees 8 i � 0 occursIn(�; hsi; : : : i):

81The last operator expresses the purpose that a particular event orevent sequence (�2) should always be preceded by some other event or eventsequence (�1). This predecessor event or event sequence becomes a necessarycondition.13. � Guarantees �2 Requires �1 ,8><>: 9 b 2 E occursIn(�2; b) ^ :occursIn([�1;�2]; b)and8 b0 2 E0 occursIn(�2; b0)) occursIn([�1;�2]; b0):This can be written in primitives as� Conditionally when �2 Guarantees [�1;�2]:

Chapter 5Language Properties5.1 Generalization and SpecializationIn this chapter we investigate some properties of teleological descrip-tions with respect to design speci�cation generalization and scenario general-ization. These properties will be of interest when constructing an index ofdesigns and design modi�cations for reuse, when navigating this index, andwhen selecting designs and design modi�cations for reuse.For example, it will often be the case that the exact speci�cation a de-signer is addresing does not appear in the database of teleological descriptions.A design reuse implementation can identify teleological descriptions referencingspeci�cations \similar" to the desired speci�cation and propose these \similar"teleological descriptions to the designer. In particular, we exploit the logicalrelationship �1) �2 between speci�cation predicates �1 and �2. To modify adesign to prevent speci�cation predicate �1 from holding, a designer might di-rectly apply a modi�cation that prevents the weaker speci�cation predicate �2or augment the modi�cation to prevent �1. The propositions described in thischapter demonstrate how the TeD behavior and teleology languages and thebehavior abstraction relation v� support reuse via \similar" speci�cations.5.1.1 Generalizing a GuaranteeA design modi�cation that guarantees a speci�cation predicate alsoguarantees any generalization (i.e. weaker predicate) if the generalized predi-82

83cate is false in at least one possible world of the unmodi�ed design.Proposition 5.1 For speci�cation predicates �1, �2, design modi�cation �, if� �1) �2;� � Guarantees �1; and� 9 b 2 E;:�2;then � Guarantees �2.Proof: � Guarantees �1) 8 b0 2 E0; �1. With �1) �2, we have 8 b0 2 E0; �2.Given that 9 b 2 E, :�2, we have � Guarantees �2. 25.1.2 Specializing a PreventionA design modi�cation that prevents a speci�cation predicate also pre-vents any specialization (i.e. stronger predicate) if the specialized predicate istrue in at least one possible world of the unmodi�ed design.Proposition 5.2 For speci�cation predicates �1, �2, design modi�cation �, if� �1) �2;� � Prevents �2; and� 9 b 2 E; �1;then � Prevents �1.Proof: � Prevents �2) 8 b0 2 E0;:�2. With �1) �2, we have 8 b0 2 E0;:�1.Given that 9 b 2 E, �1, we have � Prevents �1. 25.1.3 Generalizing an IntroductionA design modi�cation that introduces a speci�cation predicate alsointroduces any generalization (i.e. weaker predicate) if the generalized predi-cate is false for all possible worlds of the unmodi�ed design.Proposition 5.3 For speci�cation predicates �1, �2, design modi�cation �, if� �1) �2;� � Introduces �1; and� 8 b 2 E;:�2;

84then � Introduces �2.Proof: � Introduces �1) 9b0 2 E0; �1. With �1) �2, we have 9 b0 2 E0; �2.Given that 8 b 2 E, :�2, we have � Introduces �2. 25.1.4 Specializing a ConditionalA design modi�cation that conditionally guarantees (prevents) a spec-i�cation predicate also guarantees (prevents) the speci�cation predicate condi-tional upon any specialization (i.e. stronger predicate) of the condition, giventhat the guaranteed (prevented) predicate is false in at least one possible worldof the unmodi�ed design in which the specialized condition is true.Proposition 5.4 For speci�cation predicates �; �1, �2, design modi�cation �,if � �1) �2;� � Conditionally when �2 Guarantees �; and� 9 b 2 E; �1 ^ :�;then � Conditionally (in �1) Guarantees �.Proof: � Guarantees (�2) �)) 8 b0 2 E0; �2) �. With �1) �2, we have8 b0 2 E0; �1) �. Given that 9 b 2 E, �1 ^ :�, we have �Guarantees �1) �,and � Conditionally (in �1) Guarantees �. 25.2 Generalizing Behavior Speci�cationsWe prove an implication from scenario generalization (abstraction) tothe occursIn speci�cation predicate, and then use this implication with theprevious propositions of the chapter.Proposition 5.5 If �1 v� �2, then occursIn(�1; b)) occursIn(�2; b).Proof: For behavior (possible world) b, consider scenario (b; true). FromoccursIn(�1,b), we have (b; true) v� �1. With �1 v� �2 and Lemma 4.25,we have (b; true) v� �2. Now, occursIn(�2,b). 2

85Proposition 5.6 For scenarios �1 and �2 and design modi�cation �, if� �1 v� �2;� � Guarantees occursIn(�1; b); and� 9 b 2 E;:occursIn(�2; b);then � Guarantees occursIn(�2; b).Proof: From Proposition 5.1 and Proposition 5.5. 2Proposition 5.7 For scenarios �1 and �2 and design modi�cation �, if� �1 v� �2;� � Prevents occursIn(�2; b); and� 9 b 2 E; occursIn(�1; b);then � Prevents occursIn(�1; b).Proof: From Proposition 5.2 and Proposition 5.5. 2Proposition 5.8 For scenarios �1 and �2 and design modi�cation �, if� �1 v� �2;� � Introduces occursIn(�1; b); and� 8 b 2 E;:occursIn(�2; b);then � Introduces occursIn(�2; b).Proof: From Proposition 5.3 and Proposition 5.5. 2Proposition 5.9 For scenarios �1, �2, � and design modi�cation �, if� �1 v� �2;� � Conditionally (in �2) Guarantees occursIn(�; b); and� 9 b 2 E; occursIn(�1; b) ^ :occursIn(�; b);then � Conditionally when �1 Guarantees occursIn(�; b).Proof: From Proposition 5.4 and Proposition 5.5. 2

Chapter 6Examples6.1 Design ExamplesIn this chapter we examine two detailed design examples to demon-strate the teleology language and behavior abstraction discussed in Chapters 3and 4. These examples demonstrate acquisition of teleological descriptions inthe design process. We use these examples and the acquired teleological de-scriptions in subsequent discussions of explanation, design reuse, and diagnosis.Acquisition issues are discussed in Chapter 9, and indexing teleological descrip-tions for explanation, design reuse, and diagnosis is discussed in Chapter 8. Thetwo examples explored here are� Input selection logic from a CMOS arithmetic logic unit (ALU) design[Ray86].� An electric motor design [KTY91].Both examples start with initial designs and speci�cations characterizing as-pects of the desired behavior. The initial designs are found to be inconsistentwith the design speci�cations, and a series of design modi�cations are madeto make the designs meet their respective speci�cations. The teleological de-scriptions associated with these modi�cations are developed for each set ofmodi�cations. A diagram describing this design
ow is given in Figure 6.1. Foreach design di we give a schematic, a CC model, and the initial values used86

87
di envisioning Ei specs

td’sstatusdesigner

verification

di+1

δi

...
...di - ith version of the designEi - envisionment for design dispecs - design speci�cationstd0s - teleological descriptions captured in veri�cationstatus - results of veri�cation�i - modi�cations generated by the designerFigure 6.1: Design Process Flow (Single Step)in envisioning. For each envisionment Ei we give a prose description of thebehaviors, a graphical representation of the envisionment (the Qsim behaviortree), and some representative qualitative plots generated by Qsim. For bothexamples we give the design speci�cations and describe the veri�cation resultsfor each design di. Design modi�cations, �i, generated by the designer aregiven in the structure modi�cation language described in Section 3.3. In theseexamples, envisioning is performed with Qsim, and veri�cation (determiningwhether speci�cations are satis�ed, and acquiring and classifying teleologicaldescriptions) is performed by code implemented by the author. Design modi-�cations are hand generated.6.2 Circuit ExampleConsider the input selection circuit in Figure 6.2, extracted from aCMOS arithmetic logic unit (ALU) design. The circuit contains a pass tran-

88
in

t1

ctl

data inv outFigure 6.2: CMOS Input Selection Circuit (ISC1)- Schematicsistor t1 and an inverter inv. In the ALU design, the signal ctl determines(controls) whether the signal data is passed into the logic portion of the ALU.The desired behavior of this circuit in terms of signals data, ctl, in, and out is:When the value of signal ctl is HIGH, the value of signal data istransmitted to signal in (i.e., they are electrically connected). Thisvalue is then inverted by inv (HIGH ! LOW or LOW ! HIGH),and the inverted value then becomes the value of signal out.The (logic) values of HIGH and LOW are landmarks of the quantity space inwhich the parameters data, ctl, in, and out range. These landmarks representthe desired values for signals in the circuit when no signal transitions are occur-ring. The CC quantity space for voltages in this circuit is shown in Figure 6.3.HIGH is represented by landmark Vhi and LOW is represented by landmark0.StructureThe top level of the hierarchical structural description (in structurelanguage CC) of the input selection circuit is shown in Figure 6.4. The completestructural description is expressed in several levels of hierarchy, and is given inAppendix B.

89(define-quantity-space MOS-voltage-qspace(Vhi- Vhi-Vtn Vtp 0 Vtn VhiVtp Vhi)(conservation-correspondences(Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn)))Figure 6.3: Circuit Model Voltage Quantity Space (in CC)(define-component-interfaceISC "Input select circuit" electrical(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace))(current base-quantity-space))(hierarchical-parents (voltage MOS-voltage-qspace))))(define-component-implementation1 ISC"N-trans for input select, capacitor for output load."(components(RV1 reference-voltage)(RV2 reference-voltage)(RV3 reference-voltage (ignore-qdir i))(t1 (MOS-transistor (impl N-channel-bidirectional))(display Ids))(inv Inverter)(C (capacitor (impl current-qspace)) (ignore-qdir i i2)))(connections(data (RV1 t) (t1 d))(ctl (RV2 t) (t1 g))(in (t1 s) (inv in))(out (inv out) (C t1))(w1 (RV3 t) (c t2))))Figure 6.4: Input Selection Circuit (ISC1) - CC Model (Top Level of Hierarchy)

90 (for-component X (inverter MOS-transistor)(prohibited (((((X Vg) ((0 Vhi) std)))) true)))Figure 6.5: Input Selection Circuit - Design Speci�cationDesign Speci�cationsA general domain speci�cation for CMOS design is: \signals shouldtake on an intermediate value between 0 and Vhi only during a transition from0 to Vhi or Vhi to 0". In particular, a logic component such as the invertershould not have an input signal with an intermediate value between 0 and Vhiand unchanging. The rationale for this design rule comes from the operatingcharacteristics of the CMOS inverter implementation, in which current
owswhen the input has value between 0 and Vhi but does not
ow when the inputhas value either 0 or Vhi.1 Hence, CMOS circuits consume power only whenswitching, as opposed to other implementation technologies such as nMOS thatconsume power during signal transition and at other times as well. We expressthis general domain speci�cation in Figure 6.5, which says that for transistorcomponents inside inverters, the scenario in which the gate voltage (Vg) of thetransistor is in the interval (0 Vhi) and steady is prohibited.BehaviorWe �rst examine the behavior of the circuit when the signal in hasvalue 0, signal out has the value Vhi, signal ctl has the value Vhi, and thesignal data has just assumed the value Vhi. The desired behavior is: \valueVhi is transmitted to in, and the inverter inv changes out to 0".1The actual value at which the inverter stops drawing current is determined by a thresholdvalue set by the manufacturing process used to produce the circuit.

91data (ISC RV1 V) = (Vhi std)ctl (ISC RV2 V) = (Vhi std)in (ISC t1 Vs) = (0 nil)out (ISC C V1) = (Vhi nil)(ISC RV3 V) = (0 std)(ISC C Q) = (Q* nil)(ISC C C) = (C* std)(ISC inv Vdd V) = (Vhi std)(ISC inv Vss V) = (0 std)(ISC inv Nt Cg) = (Cg* std)(ISC inv Nt Qg) = (0 nil)(ISC inv PT Cg) = (Cg* std)(ISC inv PT Qg) = (0 nil)(ISC t1 Cg) = (Cg* std)(ISC t1 Qg) = (Qg* std)Figure 6.6: Initial Variable ValuesThe operating characteristics of t1 (an n-channel MOS transistor) aresuch that when the signal data has value Vhi and the signal ctl has the valueVhi, the value transmitted to signal in is Vhi minus the threshold value (> 0)of t1 [MC80]. Landmark VhiVtp represents the value Vhi minus the thresholdvalue of t1. The landmark VhiVtp is between the landmark 0 and Vhi, andhence not a desired value for signal in.This operating characteristic is captured in the CC description of then-channel MOS transistor, and the associated behavior is demonstrated in theenvisionment of the ISCmodel generated byQsim from initial conditions shownin Figure 6.6. The envisionment predicts six qualitatively unique behaviors,shown in the behavior tree in Figure 6.7. The qualitative plot of variable (ISCt1 Vs) in behavior 6 is shown in Figure 6.8. This variable represents thevoltage at terminal s of transistor t1 and at terminal in of inverter inv. Thequalitative plot in Figure 6.8 shows a feature of all of the behaviors when signal

92
1

2

3

4

5

6Figure 6.7: Behavior Tree of Initial Circuit (ISC1)
↑
. . .

. .↑
. . .

. .↑
. . .

. .↑
. . .

. .°°°°°

VHI

VHIVTP

VTN

0

T0 T1 T2 T3 T4

(ISC T1 VS)Figure 6.8: Qualitative Plot for Initial Circuit (ISC1)values stabilize in the circuit, namely that signal (ISC t1 Vs) has the value(VhiVtp std).6.2.1 Evaluation 1The model checking algorithm2 implemented in this work determinesthat no behaviors satisfy the speci�cation of Figure 6.5. The designer's taskis to modify the design either structurally or via changes in parameter values(landmarks) to bring the behaviors in line with the speci�cation.2Based on the behavior abstraction relation v� given in Chapter 4.

93
in

t1

ctl

data inv out

t2

Vdd

Figure 6.9: Circuit with Feedback Transistor (ISC2) - SchematicStructure Modi�cationThe addition of the feedback transistor t2, a p-channel MOS transistor(see the schematic in Figure 6.9) modi�es the circuit behavior in the followingway (in terms of signals in and out):As signal in transitions from 0 to Vhi, signal out transitionsfrom Vhi to 0. As signal out moves away from Vhi and towards 0,transistor t2 electrically connects in with V dd, enabling a current
ow from V dd to in which in turn increases the value of in to thatof V dd (Vhi).The operating characteristics of a p-channel transistor are such that the valueVhi can be transmitted without degradation (i.e., not subject to any thresholdvalue). Consequently, the designer's modi�cation, the addition of t2, preventsthe scenario in which in reaches a value less than Vhi and remains steady.This design modi�cation is automatically captured in the design modi�cationlanguage (see Figure 6.10) and added to the circuit's design history. The mod-i�cation produces the new structure description shown in Figure 6.11.

94(for-component ISC(create-new-implementation 1 2))(for-component (ISC (impl 2))(remove-connection (C t1))(add-component t2 p-channel-feedback () (in (t2 s)))(add-component S (split (impl equipotential-current-space))((ignore-qdir I I1 I2) (display V)(no-new-landmarks I I1 I2))(out (S m))(w2 (S s1) (t2 g))(w3 (S s2) (C t1))))Figure 6.10: Design Modi�cation (�1) Adding Feedback TransistorModi�ed BehaviorThe envisionment of the modi�ed design characterizes 22 qualitativelydistinct behaviors, shown in Figure 6.12, with all behaviors having a �nal, qui-escent state in which the signal in is (Vhi std), the desired result. This wouldseem to meet the design speci�cation of prohibiting a steady but intermediatevalue for signal in. However, the model checking algorithm identi�es a behav-ior (see Figure 6.13) in which signal in (variable (ISC t1 Vs)) takes on anintermediate steady value during the transition from 0 to Vhi, and then moveson to value (Vhi std). This behavior is legal under the constraints imposedby the qualitative model of the circuit, and represents incomplete knowledgeof the speci�c capacitance values for the capacitors in the circuit.3 We modifythe speci�cation as shown in Figure 6.14 to state the condition \for transis-tor components inside inverters, the scenario in which the gate voltage (Vg) of3Capacitance for \wires" in the circuit are represented on the transistor gates, and do notappear explicitly as capacitor components.

95
(define-component-implementation2 ISC"N-trans for input select, P-trans for feedback."(components(RV1 reference-voltage)(RV2 reference-voltage)(RV3 reference-voltage (ignore-qdir I))(t1 (MOS-transistor (impl N-channel-bidirectional))(initable Qg Vs) (display Ids Vs))(t2 P-channel-feedback)(inv Inverter)(C (Capacitor (impl current-qspace)) (ignore-qdir i i2))(S (Split (impl equipotential-current-qspace))(ignore-qdir I I1 I2) (display V)(no-new-landmarks I I1 I2)))(connections(data (RV1 t) (t1 d))(ctl (RV2 t) (t1 g))(in (t1 s) (inv in) (t2 s))(out (inv out) (S m))(w1 (RV3 t) (C t2))(w2 (S s1) (t2 g))(w3 (S s2) (C t1))))Figure 6.11: Circuit with Feedback Transistor (ISC2) - CC Model

96
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22Figure 6.12: Behavior Tree of Circuit with Feedback (ISC2)
↑
...

..↑
...

..↑
...

..↑
...

..°.°.. . ..°
...

..↑
...

..°.°.° VHI

VHIVTP

VTN

0

T0 T1 T2 T3 T4 T5

(ISC T1 VS)Figure 6.13: Qualitative Plot for Circuit with Feedback (ISC2)

97(for-component X (inverter MOS-transistor)(conditionally ((((((X Vg) (0 std)))(((X Vg) ((0 Vhi) std)))) true))(required (((((X Vg) (Vhi std))))true))))Figure 6.14: Input Selection Circuit - Design Speci�cation 2the transistor is in the interval (0 Vhi) and steady must be followed by thescenario in which the gate voltage has value (Vhi std)". The model checkingalgorithm con�rms that all behaviors meet this speci�cation.TeleologyThe purpose of the design modi�cation that adds t2 to the inputselection circuit can be expressed in TeD as follows. Let �1 represent the designmodi�cation of adding t2 to the design (Figure 6.10), let �1 be the scenario(hf((inv MOS-transistor Vg) ((0 Vhi) std))gi,true)and let �2 be the scenario(hf((inv MOS-transistor Vg) (Vhi,std))gi,true).Then �1 Conditionally when f�1g Guarantees [�1;�2]:4 (6.1)The behavior that electrically connects in to V dd also addresses an-other problem that occurs when in has value Vhi and ctl transitions from Vhi4Recall that the speci�cation predicate occursIn(�,b) is abbreviated as �.

98 (for-component X (ISC)(for-component Y (X inverter MOS-transistor)(conditionally ((((((Y Vg) (Vhi ign))((X Nt Vg) (0 std)))) true))(prohibited (((((Y Vg) ((0 Vhi) std))((X Nt Vg) (0 std))))true)))))Figure 6.15: Input Selection Circuit - Design Speci�cation 3to 0. In this situation, in is no longer electrically connected to data, and be-comes a memory element which should preserve its value, Vhi. However, in theabsence of t2, the charge at in will dissipate and move the signal value awayfrom the landmark value Vhi, resulting in the value of signal out changing also(i.e., moving away from 0). By introducing t2, the charge at in is maintainedat Vhi, and hence the behavior in which in decreases in value is prevented. Thedesign speci�cation describing the desired behavior is given in Figure 6.15.The purpose of the design modi�cation that adds t2 can be expressedin TeD as follows. Let �3 and �4 be, respectively, the scenarios(hf((inv MOS-transistor Vg) (Vhi std)),((t1 Vg) (0 std))gi,true),(hf((inv MOS-transistor Vg) ((0 Vhi) ign)),((t1 Vg) (0 std))gi,true).Then �1 Conditionally when f�3g Prevents �4: (6.2)The design modi�cation of adding t2 to the circuit has been assignedthe purpose of guaranteeing the behavior that a steady value between 0 andVhi for signal in will be followed by the value Vhi, The steady, intermediatevalue will be transitory. Further, from starting conditions where in has value

99Vhi and ctl has value 0, the modi�cation prevents signal in from changing itsvalue.6.2.2 Evaluation 2While the �rst design modi�cation has addressed problems associatedwith signal in achieving and maintaining value Vhi, a new problem has beenintroduced by the �rst design modi�cation. When signal in has value Vhi,signal data has value 0, and signal ctl transitions from 0 to Vhi, the chargestored at in (representing the value Vhi) should be drawn o� via the connectionthrough t1. However, recall that current can
ow from V dd to in via theconnection provided by t2. If current
ows from V dd to in at a su�cientrate, an intermediate value will be reached for in such that the complementaryvalue at out is not high enough to \turn-o�" t2 (a p-channel transistor is o�when the gate voltage is Vhi). This behavior, shown in Figure 6.17, occurs inthe attainable envisionment, shown in Figure 6.16, generated from the initialconditions shown in Figure 6.18.The second design modi�cation changes the channel resistance of t2(to a high resistance value) to impede the current
ow and hence prevent thescenario in which in reaches an equilibrium point between Vhi and 0 during theVhi to 0 transition of in. A qualitative plot of the desired behavior is shown inFigure 6.19. The design speci�cation describing this desired behavior is givenin Figure 6.20.This purpose of the particular channel resistance value for t2 canbe expressed in TeD as follows. Let �2 represent the design modi�cation ofincreasing the channel resistance of t2, and let �5 be the scenario(hf((t1 Vg) (Vhi std)),((t1 Vd) (0 std))gi,true).

100
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24Figure 6.16: Behavior Tree of Circuit with Feedback (ISC2) - Discharging
↓

↓
↓

↓
°

VHI

VHIVTP

I-56

VTN

0

T0 T1 T2

(ISC T1 VS)Figure 6.17: Qualitative Plot for Circuit with Feedback (ISC2) - Discharging

101data (ISC RV1 V) = (0 std)ctl (ISC RV2 V) = (Vhi std)in (ISC t1 Vs) = (Vhi nil)Vdd (ISC t2 Vdd V) = (Vhi std)(ISC t2 Pt Vg) = (0 nil)(ISC inv Vdd V) = (Vhi std)(ISC inv Vss V) = (0 std)(ISC inv Nt Cg) = (Cg* std)(ISC inv Nt Qg) = (Qg* nil)(ISC inv Pt Cg) = (Cg* std)(ISC inv Pt Qg) = (Qg* nil)(ISC t1 Cg) = (Cg* std)(ISC t1 Qg) = (Qg* std)(ISC t2 Pt Qg) = (0 nil)(ISC t2 Pt Cg) = (Cg* std)out (ISC C V1) = (0 nil)(ISC RV3 V) = (0 std)(ISC C Q) = (0 nil)(ISC C C) = (C* std)Figure 6.18: Initial Variable Values - Vhi to 0 Transition
↓.....

↓.....
↓.....

↓.....↓.....↓.....↓.....↓.....
↓.....

↓.....
°.....°.....°

VHI

VHIVTP

VTN

0

T0 T1 T2 T3 T4 T5 T6

(ISC T1 VS)Figure 6.19: Qualitative Plot for Circuit with High Resistance Feedback

102 (for-component X (ISC)(for-component Y (X inverter MOS-transistor)(conditionally ((((((X Nt Vg) (Vhi std))((X Nt Vd) (0 std)))) true))(required (((((Y Vg) (0 std))))true)))))Figure 6.20: Input Selection Circuit - Design Speci�cation 3and let �6 be the scenario(hf((inv MOS-transistor Vg) (0 std))gi,true).Then �2 Conditionally when f�5g Guarantees �6: (6.3)6.2.3 Modi�cation Teleology SummaryTo summarize this example, t2 was added 1) to prevent the scenarioin which in reaches a steady value between 0 and Vhi when transitioning from0 to Vhi, and 2) to prevent the scenario in which the value of in decreasesfrom Vhi when in is acting as a memory element storing the value Vhi. Thechannel-resistance of t2 was set high to prevent the scenario in which in reachesan equilibrium value between 0 and Vhi during the transition from Vhi to 0.The input selection circuit design history, evaluation steps, and the acquiredteleological description are shown in the context of the design process
ow inFigure 6.21.5Design ISC1 is described in Figures 6.2 and 6.4. Envisionment E1 is described in Fig-ures 6.7 and 6.8. Design modi�cation �1 is described in Figure 6.10. Design ISC2 is describedin Figure 6.9 and 6.11. Envisionment E2 is described in Figures 6.13 and 6.12. Design ISC3is described in Section 6.2.2. Envisionment E3 is described in Figures 6.19. The acquiredteleological descriptions are equations 6.1, 6.2, and 6.3

103
ISC1 envisioning E1 specs

td’sstatusdesigner

verification

ISC2

δ1

envisioning E2 specs

td’s - 6.1,6.2statusdesigner

verification

ISC2a

δ2

envisioning E3 specs

td’s - 6.3status

verificationFigure 6.21: Design Flow for the Input Selection Circuit5

104
inTm

ctl

data inv out

~ctlFigure 6.22: Circuit with Transmission Gate - Schematic(for-component ISC(create-new-implementation 1 3))(for-component (ISC (impl 3))(remove-component t1)(add-component RV4 reference-voltage ((ignore-qdir I)))(add-component Tm transmission-gate ((display Isd Vsd))(data (Tm in))(ctl (Tm ctl))(in (Tm out)))(add-connection (w2 (RV4 t) (Tm ctl-bar))))Figure 6.23: Design Modi�cations to Replace Pass Transistor6.2.4 Alternate Design HistoryGiven the original input selection circuit design, an alternative de-sign modi�cation can be made to address the initial problem observed by thedesigner. Consider the circuit schematic in Figure 6.22, in which the pass tran-sistor t1 has been replaced by a CMOS transmission gate. The transmissiongate has operating characteristics such that it can transmit both Vhi and 0values without degradation with respect to voltage. The design modi�cationsthat add the transmission gate are shown in Figure 6.23, with the resultingstructure description shown in Figure 6.24.

105(define-component-implementation3 ISC"Transmission-gate for input selection."(components (RV1 reference-voltage)(RV2 reference-voltage)(RV3 reference-voltage (ignore-qdir I))(RV4 reference-voltage (ignore-qdir I))(Tm transmission-gate (display Isd Vsd))(I Inverter)(C (Capacitor (impl base-qspace))(ignore-qdir i i2)))(connections (data (RV1 t) (Tm in))(ctl (RV2 t) (Tm ctl))(in (Tm out) (I in))(out (I out) (C t1))(w1 (C t2) (RV3 t))(w2 (RV4 t) (Tm ctl-bar))))Figure 6.24: Circuit with Transmission Gate - CC ModelThe envisionment of this new design characterizes 24 qualitatively dis-tinct behaviors (see Figure 6.25), all of which assign value (Vhi std) to signalin in the �nal (quiescent) state, as shown in Figure 6.26. Using the �rst designspeci�cation, given in Figure 6.5, the purpose of the design modi�cation whichreplaces pass transistor (t1) with transmission gate (Tm) can be expressed inTeD as follows. Let �3 represent the design modi�cation of replacing t1 withtransmission gate Tm (Figure 6.23), Then�3 Prevents �1: (6.4)6.3 Electric Motor ExampleThe electric motor example discussed here is taken from Kiriyama,Tomiyama, and Yoshikawa [KTY91], who give an initial design and a series

106
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24Figure 6.25: Behavior Tree of Circuit with Transmission Gate
↑
...

..↑
...

..↑
...

..↑
...

..↑
...

..↑
...

..°.....°.....°.....°.....°.....°.....° VHI

VHIVTP

VTN

0

T0 T1 T2 T3 T4 T5 T6

(ISC INV S V)Figure 6.26: Qualitative Plot for Circuit with Transmission Gate

107of design modi�cations in an investigation of model building techniques foranalysis in various domains, speci�cally electrical, mechanical (rotation), andthermal.6 The desired behavior of the electric motor is to translate electriccurrent into mechanical rotation for use in some larger system in which theelectric motor is embedded. The particular design speci�cations regarding themotor behavior are:� Mechanical rotation in the positive direction at a speci�ed velocity.� No dead points (starting positions at which the motor will not rotate).� No unbalanced lateral forces on the motor shaft.6.3.1 StructureThe initial motor design (see schematic in Figure 6.27) contains threecomponents, a shaft, rotor, and magnet. An electric current through the coilof the rotor establishes a magnet �eld for the rotor, and the rotor-shaft con-nection gives the rotor-shaft assembly one degree of freedom, namely rotation.The magnetic attraction between the south pole of the rotor and the north poleof the magnet provides the force that initiates rotation of the rotor-shaft as-sembly. The top level of the hierarchical structure description (in CC) is givenin Figure 6.28, for positive positions of the rotor-shaft assembly. Appendix Cgives the complete motor example.6The larger goal discussed in [KTY91] is an intelligent CAD system expected to serve asan integrated modeling environment in which aspect models are automatically generated andtheir consistency are maintained. Such an environment provides the essential capabilities forcapturing teleological descriptions, namely model building and model analysis.7Mode variable declarations are ommitted in this �gure for space considerations. Thecomplete description is given in Appendix C.

108
MagnetN S

N S

Rotor

ShaftFigure 6.27: Electric Motor (motor1) - Initial Design6.3.2 Design Speci�cationsThe design speci�cations for the motor design given previously arecaptured in the following, precise speci�cations:(for-component S (shaft)(conditionally ((((((S V) (0 ign)))) true))(required (((((S V) (V* std)))) true))))(for-component S (shaft)(conditionally ((((((S V) ((0 V*) ign)))) true))(required (((((S V) (V* std)))) true))))(for-component S (shaft)(conditionally ((((((S V) (V* ign)))) true))(required (((((S V) (V* std)))) true))))(for-component S (shaft)(prohibited (((((S V) ((0 inf) ign))((S Cum-F-lat) ((0 inf) std))))true))The �rst three speci�cations describe the behavior that for any com-ponent of type shaft, if the rotational velocity of the shaft starts between 0 andthe desired velocity V* (inclusive), then the velocity should become constantat the desired velocity, V*. The last speci�cation states that for any positiveshaft velocity, the cumulative lateral force exerted on the shaft should be 0 andconstant.

109(define-component-interfacemotor "Electro-mechanical motor" mechanical(quantity-spaces(defaults ((magnetic force) polarity-qspace)((electrical current) motor-current-qspace)((mechanical-rotation force) angular-force-qspace))))(define-component-implementation1 motor "Single magnet, single rotor"(quantity-spaces(default ((mechanical-rotation velocity) motor-velocity-qspace)))(component-variables (PE energy (quantity-space (0 PE+ PE*)))(TE energy))(components (magnet magnet)(rotor (rotor (impl 1)) (no-new-landmarks F-lat F-ang)(ignore-qdir F-ang)(quantity-spaces (X position-X-qspace)))(shaft (one-terminal-shaft (impl 1))(no-new-landmarks F-lat F-ang Cum-F-ang)(ignore-qdir F-ang Cum-F-ang)(quantity-spaces (X position-X-qspace))))(constraints((ADD PE (shaft KE) TE))((constant TE))((constant (shaft I) Imax+))((position positive)->((U- (shaft X) (rotor Orientation) (X+ Omax+)) (0 0) (X180+ 0))((S- (shaft X) PE (0 PE*) (X180+ 0)) (X+ PE+)))((position negative)->((U+ (shaft X) (rotor Orientation) (X- Omax-)) (X180- 0) (0 0))((S+ (shaft X) PE (X180- 0) (0 PE*)) (X- PE+)))(connections (c1 (rotor magnet) (magnet north))(c2 (rotor shaft) (shaft t))))Figure 6.28: Motor - Initial Design (motor1) - CC Model7

1106.3.3 BehaviorThe �rst envisionment to examine is the attainable envisionment fromthe assertions that the initial velocity of the shaft is 0 and the initial shaftposition is between landmarks 0 and X180+, speci�cally(shaft V) = (0 nil)(shaft X) = ((0 X180+) nil)This envisionment (see Figure 6.29) has three initial states corresponding tothe three initial values (0 X+), X+, and (X+ X180+) for the shaft position.The behaviors with an initial shaft position at 0 or X180+ are quiescent in theinitial state, demonstrating dead points at which no rotation is provided. Allthree initial states shown in Figure 6.29 produce cyclic behaviors in which thedesired velocity V* may or may not be achieved, and possibly even exceeded.Further, the cumulative lateral force on the shaft is non-zero. These behaviorcharacteristics are shown in the qualitative plots in Figure 6.30.The attainable envisionment generated for an initial velocity of 0 andthe shaft starting in a negative position is essentially the same as the attainableenvisionment for a positive starting position. The attainable envisionmentsfor initial rotational velocities of (0 V*) and V* also show cyclic behaviors,some oscillating between positive and negative velocities (like a pendulum orundamped spring), and the others completing rotations. As was the case forinitial velocity 0, some behaviors have velocity exceeding the desired velocity,V*.6.3.4 Evaluation 1The �rst design modi�cation makes two changes to the initial motordesign. First, a second magnet is added to the design, placed opposite the

111
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 Figure 6.29: Behavior Tree (motor1) - Positive Starting Positions
↑....

.↑....
.↑....

.↑....
.°.....°.....

↓.....↓.....
↓.....↓.....

↓.....°.....°.
....↑

....
.↑

INF

M-16

V*

0

M-50

MINF

T0 T1 T2 T3 T4 T5 T6

(MOTOR SHAFT V)

°.
....↑

.....↑.....↑....
.↑

.

.

.

.

.

↑....
.↑.....↑.....↑....

.°.....↓.....↓

.

.

.

.

.

↓.....↓.....°

X180+

M-7

X+

0

X-

M-41

X180-

T0 T1 T2 T3 T4 T5 T6

(MOTOR SHAFT X)Figure 6.30: Qualitative Plots (motor1) - Positive Starting Positions

112
N SN S

N

S

+ -Figure 6.31: Electric Motor (motor2) - Second Designshaft from the �rst magnet and given the opposite magnetic orientation (withrespect to the shaft), as shown in the schematic in Figure 6.31. Further, theshaft is modi�ed so that the polarity of the rotor can be reversed as the shaftrotates through positions 0 and X180 (i.e., a commutator).Structure Modi�cationThe �rst design modi�cation includes the addition of a second magnetand the replacement of the shaft and rotor components. The new shaft com-ponent models the commutator for reversing the current
owing through therotor, and the new rotor component allows the rotor to be connected to bothmagnets.8 The new shaft component de�nition is shown in Figure 6.32. TheCC de�nition for the new motor design (motor2) is given in Figure 6.33. Notethat the S+ (S-) constraint relates the current to the shaft velocity, therebyconstraining the velocity to be less than or equal to landmark V*.8These connections provide for the interaction of the magnetic �elds of the rotor and themagnets, as the component-connection modeling approach dictates that such interactionsmust be explicitly declared.9Mode variable declarations are ommitted in this �gure for space considerations. Thecomplete description is given in Appendix C.

113(define-component-implementation2 one-terminal-shaft ""(terminal-variables(t (F-ang force)(V velocity)(F-lat (mechanical-translation force)(quantity-space motor-lateral-force-qspace))(I (electrical current))))(component-variables(X displacement)(Cum-F-ang force (quantity-space angular-force-qspace)))(constraints ((d/dt X V))((d/dt V Cum-F-ang))((minus Cum-F-ang F-ang) (F- F+) (0 0) (F+ F-))))Figure 6.32: Single Rotor Commutator Shaft Component - CC ModelModi�ed BehaviorTo generate the envisionment we assert the initial velocity of the shaftas 0 and the initial shaft position as X90+ (between 0 and X180+), speci�cally(shaft V) = (0 nil)(shaft X) = (X90+) nil)From this initial state, the envisionment is in�nite as indicated in the behaviortree in Figure 6.34. This corresponds the the number of rotations of the motorbefore the desired velocity, V*, is reached. The desired velocity is reached, af-ter some number of rotations, as shown in the qualitative plots in Figure 6.35.Starting positions (0 X90+) and (X90+ X180+) generate attainable envision-ments similar to that for starting position X90+. Starting positions of 0 andX180+ are still dead points. Similarly, for the negative starting shaft posi-tions, two initial states demonstrate dead points (positions 0 and X180-) andthe other three generate cyclic behaviors in which the velocity has the desiredvalue V*. For all starting positions, an initial velocity of either (0 V*) or V*

114
(define-component-implementation2 motor"Double magnet, single rotor"(quantity-spaces(defaults((mechanical-rotation velocity) motor-velocity-qspace)))(components(magnet1 magnet)(magnet2 magnet)(rotor 2-field-rotor (no-new-landmarks F-lat F-ang)(ignore-qdir F-ang))(shaft (one-terminal-shaft (impl 2))(no-new-landmarks F-lat F-ang Cum-F-ang)(ignore-qdir F-ang Cum-F-ang)(quantity-spaces (X position-90-qspace))))(constraints((position positive)->((U- (shaft X) (rotor Orientation) (X90+ Omax+))(0 0) (X180+ 0))((S- (shaft V) (shaft I) (0 Imax+) (V* 0))))((position negative)->((U+ (shaft X) (rotor Orientation) (X90- Omax-))(X180- 0) (0 0))((S+ (shaft V) (shaft I) (0 Imax-) (V* 0)))))(connections (c1 (rotor magnet+) (magnet1 north))(c2 (rotor magnet-) (magnet2 south))(c3 (rotor shaft) (shaft t))))Figure 6.33: Second Motor Design (motor2) - CC Model9

115
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17Figure 6.34: Behavior Tree (motor2) - Starting Position X90+
↑
...

..↑
...

..°.....°.°.°.°.°.....°.°.°.°.°

INF

V*

0

MINF

T0 T1 T2 T3 T4 T5

(MOTOR SHAFT V)

°
...

..↑
...

..↑
.

.

.

.

.

↑
...

..↑
...

..↑
...

..↑
...

..↑.....↑
...

..↑
...

..↑
...

..↑
...

..↑ X180+

X90+

0

X90-

X180-

T0 T1 T2 T3 T4 T5

(MOTOR SHAFT X)Figure 6.35: Qualitative Plots (motor2) - Starting Position X90+

116results in cyclic behavior with the desired velocity V*. In all behaviors with anon-zero velocity, the lateral force exerted on the shaft is non-zero.TeleologyWhile none of the design speci�cations have been met for all behav-iors of the design, we can identify some initial conditions for which a designspeci�cation has been met. Speci�cally, for starting positions other than 0 andX180, the design speci�cation regarding the desired rotational velocity for theshaft has been met. This purpose can be expressed in TeD as follows: Let �4represent the design modi�cation described previously, namely addition of asecond magnet and replacement of the shaft with a commutator shaft. Let �7,�8, and �9 be the conditional scenarios of the �rst three design speci�cations,namely �7 = (hf((shaft V) (0 ign))gi,true),�8 = (hf((shaft V) ((0 V*) ign))gi,true), and�9 = (hf((shaft V) (V* ign))gi,true).Let �10 be the required scenario of the �rst three design speci�cations, namely�10 = (hf((shaft V) (V* std))gi,true).Let �11 and �12 be the scenarios describing the shaft positions between 0 and180, namely�11 = (hf((shaft X) ((0 X180+) ign))gi,true), and�12 = (hf((shaft X) ((X180- 0) ign))gi,true).Then we can claim the following teleological descriptions involving �4:�4 Conditionally when f�7; �11g Guarantees �10 (6.5)�4 Conditionally when f�7; �12g Guarantees �10 (6.6)

117
N SN S

N

S

+ -

N

SFigure 6.36: Electric Motor (motor3) - Third Design�4 Conditionally when f�8g Guarantees �10 (6.7)�4 Conditionally when f�9g Guarantees �10 (6.8)6.3.5 Evaluation 2The second design modi�cation makes essentially one change to theprevious motor design, the addition of a second rotor to the shaft placed op-posite the �rst rotor (see schematic in Figure 6.36). The shaft component ismodi�ed to accommodate the second rotor.Structure Modi�cationThe second design modi�cation adds a second rotor and modi�es theshaft. The new shaft component models the commutator for reversing thecurrent
owing through both rotors, as the shaft rotates through positions 0and X180, and maintains opposite polarity in the two rotors. The de�nition forthe new motor design (motor3) is given in Figure 6.37.1010Mode variable declarations are ommitted in this �gure for space considerations. Thecomplete description is given in Appendix C.11Mode variable declarations are ommitted in this �gure for space considerations. Thecomplete description is given in Appendix C.

118(define-component-implementation3 motor"Double magnet, double rotor"(quantity-spaces(defaults((mechanical-rotation force) angular-force-qspace)((mechanical-rotation velocity) motor-velocity-qspace)))(components(magnet1 magnet)(magnet2 magnet)(rotor1 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation Polarity)(quantity-spaces (Orientation orientation-qspace)))(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation Polarity)(quantity-spaces (Orientation orientation-qspace)))(shaft (2-terminal-shaft (impl 1))(no-new-landmarks F-lat1 F-lat2 F-ang1 F-ang2F-ang-sum Cum-F-ang)(display V1 X Cum-F-lat Cum-F-ang Position)(ignore-qdir F-ang1 F-ang2 F-ang-sum Cum-F-ang)(quantity-spaces (X position-90-qspace))))(constraints((position positive)-> ((U- (shaft X) (rotor1 Orientation) (X90+ Omax+))(0 0) (X180+ 0))((U+ (shaft X) (rotor2 Orientation) (X90+ Omax-))(0 0) (X180+ 0)))((position negative)-> ((U+ (shaft X) (rotor1 Orientation) (X90- Omax-))(X180- 0) (0 0))((U- (shaft X) (rotor2 Orientation) (X90- Omax+))(X180- 0) (0 0))))(connections (c1 (rotor1 magnet+) (rotor2 magnet+) (magnet1 north))(c2 (rotor1 magnet-) (rotor2 magnet-) (magnet2 south))(c3 (rotor1 shaft) (shaft t1))(c4 (rotor2 shaft) (shaft t2))))Figure 6.37: Third Motor Design (motor3) - CC Model11

119
↑
...

..↑
...

..°.....°.°.°.°.°.....°.°.°.°.°

INF

V*

0

MINF

T0 T1 T2 T3 T4 T5

(MOTOR SHAFT V1)

°
...

..↑
...

..↑

.

.

.

.

.

↑
...

..↑
...

..↑
...

..↑
...

..↑.....↑
...

..↑
...

..↑
...

..↑
...

..↑ X180+

X90+

0

X90-

X180-

T0 T1 T2 T3 T4 T5

(MOTOR SHAFT X)

°.°.°.....°.°.°.°.°.....°.°.°.°.°

INF

F-LAT+

0

F-LAT-

MINF

T0 T1 T2 T3 T4 T5

(MOTOR SHAFT CUM-F-LAT)Figure 6.38: Qualitative Plots (motor3)Modi�ed BehaviorTo generate the envisionment we assert the initial velocity of the shaftas 0 and the initial shaft position as X90+ (between 0 and X180+), speci�cally(shaft V) = (0 nil)(shaft X) = (X90+ nil)The behavior of the motor3model matches the behavior of motor2 except thatthe cumulative lateral force of the shaft is now 0, since the lateral force impartedby each rotor is balanced by the other rotor.12 This can be seen in the valueof variable (S Cum-F-lat), which is (0 std) in all behaviors (see qualitativeplot in Figure 6.38. The behavior tree for motor3 matches the behavior treefor motor2 (Figure 6.34).12Balanced lateral force is asserted in the model via a CONSTANT constraint. The modelchecking algorithm does not use this information, since it looks only at the behaviors andthe speci�cations.

120TeleologyIn the motor3 design, we have satis�ed the design speci�cation regard-ing lateral force on the shaft. This purpose can be expressed in TeD as follows:Let �5 represent the design modi�cation described previously, namely additionof a second rotor. Let �13 be the required scenario of the design speci�cationregarding lateral force on the shaft, namely�13 = (hf((shaft V) ((0 inf) ign)),((shaft Cum-F-lat) (0 std))gi,true).Then we can claim the following teleological description involving �5:�5 Guarantees �13: (6.9)6.3.6 Evaluation 3The third design modi�cation addresses the remaining design prob-lem, the dead points, by adding a third rotor (see Figure 6.39). The shaftcomponent is modi�ed to accommodate the third rotor.Structure Modi�cationThe third design modi�cation adds a third rotor and modi�es theshaft. The new shaft component models the commutator for reversing thecurrent
owing through all rotors as the shaft rotates and passes each rotorthrough positions 0 and X180. The rotors are distributed around the shaft soas to balance the lateral force exerted by each rotor. The de�nition for the newmotor design (motor4) is given in Figure 6.40.1313Mode variable declarations are ommitted in this �gure for space considerations. Thecomplete description is given in Appendix C.14Mode variable declarations and some constraints are ommitted in this �gure for spaceconsiderations. The complete description is given in Appendix C.

121
N SN S

N

S

+ - N

S

N

SFigure 6.39: Electric Motor (motor4) - Fourth DesignModi�ed BehaviorTo generate the envisionment we assert the initial velocity of the shaftas 0 and the initial shaft position as X90+ (between 0 and X180+), speci�cally(shaft V) = (0 nil)(shaft X) = (X90+ nil)The behavior of the motor4model matches the behavior of motor3 except thatall starting positions result in the desired shaft velocity (V*). This is shownin the qualitative plot in Figure 6.41, where the starting position is 0. Thebehavior tree for motor4 is similar in structure to the behavior tree for motor3and motor2 (Figure 6.34), and is shown in Figure 6.42.TeleologyIn the motor4 design, we have satis�ed the �rst design speci�cation inthe case where the shaft starts in positions 0 and 180, and the speci�cation isstill satis�ed for the other starting positions. The purpose can be expressed inTeD as follows: Let �6 denote the design modi�cation that adds the third rotor,and let �14 and �15 be the scenarios describing the starting shaft positions of 0and 180, namely

122(define-component-implementation4 motor"Double magnet, triple rotor"(quantity-spaces(defaults((mechanical-rotation force) angular-force-qspace)((mechanical-rotation velocity) motor-velocity-qspace)))(components(magnet1 magnet)(magnet2 magnet)(rotor1 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation Polarity)(quantity-spaces (Orientation orientation-60-qspace)))(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation)(quantity-spaces (Orientation orientation-60-qspace)))(rotor3 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation)(quantity-spaces (Orientation orientation-60-qspace)))(shaft (3-terminal-shaft (impl 1))(no-new-landmarks F-lat1 F-lat2 F-lat3F-ang1 F-ang2 F-ang3 Cum-F-ang)(display V1 X Cum-F-lat Cum-F-ang Position)(ignore-qdir F-ang1 F-ang2 F-ang3 Cum-F-ang)(quantity-spaces (X position-30-qspace))))(constraints((position X0toX60+)-> ((M+ (shaft X) (rotor1 Orientation)) (0 0) (X60+ O60+))((M- (shaft X) (rotor2 Orientation)) (0 O60+) (X60+ 0))((U+ (shaft X) (rotor3 Orientation) (X30+ Omax-))(0 O60-) (X60+ O60-)))((position X60+toX120+)-> ((U- (shaft X) (rotor1 Orientation) (X90+ Omax+))(X60+ O60+) (X120+ O60+))((M- (shaft X) (rotor2 Orientation)) (X60+ 0) (X120+ O60-))((M+ (shaft X) (rotor3 Orientation)) (X60+ O60-) (X120+ 0)))...)(connections (c1 (rotor1 magnet+) (rotor2 magnet+)(rotor3 magnet+) (magnet1 north))(c2 (rotor1 magnet-) (rotor2 magnet-)(rotor3 magnet-) (magnet2 south))(c3 (rotor1 shaft) (shaft t1))(c4 (rotor2 shaft) (shaft t2))(c5 (rotor3 shaft) (shaft t3))))Figure 6.40: Fourth Motor Design (motor4) - CC Model14

123
↑
...
..↑
...
..°.....°

INF

V*

0

MINF

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14

(MOTOR SHAFT V1)

°..
...↑..

...↑..
...↑...

..↑.....↑...
..↑...

..↑...
..↑...

..↑.....↑...
..↑...

..↑...
..↑...

..↑

.

.

.

.

.

↑...
..↑...

..↑...
..↑...

..↑.....↑...
..↑...

..↑...
..↑...

..↑.....↑...
..↑...

..↑...
..↑...

..↑.....↑...
..↑...

..↑...
..↑...

..↑

X180+
X150+

X120+
X90+

X60+
X30+

0

X30-
X60-

X90-
X120-

X150-
X180-

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14

(MOTOR SHAFT X)

°.....°

INF

F-LAT+

0

F-LAT-

MINF

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14

(MOTOR SHAFT CUM-F-LAT)

°.....°.....°.....°.....°
..
..
.°.....°.....°.....°.....°

..

..

.°.....°.....°.....°.....°
..
..
.°.....°.....°.....°.....°

..

..

.°.....°.....°.....°.....°
..
..
.°.....°.....°.....°.....°

.

.

.

.

.

°.....°.....°.....°.....°

X60-TOX0

X120-TOX60-

X180-TOX120-

X120+TOX180+

X60+TOX120+

X0TOX60+

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14

MOTOR_SHAFT.POSITIONFigure 6.41: Qualitative Plots (motor4)�14 = (hf((shaft X) (0 ign))gi,true),�15 = (hf((shaft X) (X180+ ign))gi,true).Then we can claim the following teleological description involving �6:�6 Conditionally when f�7; �14g Guarantees �10; (6.10)�6 Conditionally when f�7; �15g Guarantees �10: (6.11)The motor design history, evaluation steps, and the acquired tele-ological description are shown in the context of the design process
ow inFigure 6.43.15Design Motor1 is described in Figures 6.27 and 6.28. Envisionment E1 is described inFigures 6.29 and 6.30. Design Motor2 is described in Figure 6.31 and 6.33. EnvisionmentE2 is described in Figures 6.35 and 6.34. Design Motor3 is described in Figure 6.36 and6.37. Envisionment E3 is described in Figures 6.38 and 6.34. Design Motor4 is described inFigure 6.39 and 6.40. Envisionment E4 is described in Figures 6.41 and 6.42. The acquiredteleological descriptions are equations 6.5 through 6.11

124
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 Figure 6.42: Behavior Tree (motor4) - Starting Position 0

125
Motor1 envisioning E1 specs

td’sstatusdesigner

verification

Motor2

δ4

envisioning E2 specs

td’s - 6.5,6.6,6.7,6.8statusdesigner

verification

Motor4

δ5

envisioning E4 specs

td’s - 6.10,6.11status

verification

Motor3 envisioning E3 specs

td’s - 6.9statusdesigner

verification

δ6

Figure 6.43: Design Flow for the Motor15

Chapter 7Applications7.1 Reusing DesignsConsider the initial input selection circuit design (Figure 6.2) in thecontext of an accompanying database of design modi�cations and componentswhich have associated teleological descriptions.1 If the design modi�cationsof 1) adding the feedback transistor or 2) replacing the pass transistor witha transmission gate are recorded in a database with the associated teleologi-cal description of preventing the intermediate signal value, then these designmodi�cations are available to the designer via a query of the form \Show medesign modi�cations that prevent the behavior in which a signal maintains anintermediate value between 0 and Vhi". This query could be generated bythe designer, or alternatively generated by a design critic that examines thebehaviors of the design and compares those behaviors with the speci�cations.This design critic can then present discrepancies between the design's behav-ior and its speci�cations, and suggest possible modi�cations to correct thesediscrepancies.More generally, the goals of the designer at each individual designstep can be used to index a database of existing design modi�cations (includingcomplete components) to retrieve modi�cations or components for reuse. In1A design modi�cation or component may have several teleological descriptions associatedwith it, since the modi�cation may have resolved more than one design speci�cation.126

127particular, at each step the designer is attempting to modify some aspect ofthe design structure and/or behavior (via structure modi�cations) to bring thedesign in line with the speci�cations. The signi�cant capability introducedby this work is that the designer can access existing design modi�cations andcomponents in terms relevant to the task at hand, namely modifying the designso that it meets a particular design speci�cation. Indexing existing designinformation in terms of structural or behavioral aspects alone cannot providethis relevance. This index is discussed in Chapter 8, and addresses a signi�cantproblem in analogy and case-based reasoning systems.7.1.1 AnalogyIn analogy-based design reuse, behaviors referenced in teleological de-scriptions can be abstracted beyond particular domains by abstracting variabletypes, and hence provide a mechanism for retrieving design solutions from otherdomains (e.g. electrical versus mechanical). When such design modi�cationsor components are retrieved, they provide the designer with design solutionsfrom other design domains that can be applied in the current domain whensuitable structural analogies are made.For example, consider the design modi�cation made to the steamboiler (Figure 3.11). The pressure sensor translates pressure (e�ort in the hy-draulic domain) to voltage. An analogous component to the pressure sensor, atemperature sensor, translates temperature (e�ort in the thermal domain) tovoltage. In undertaking a design in which temperature as opposed to pressure isto be regulated, the teleological description giving the purpose of (the additionof) the pressure sensor as regulating the pressure can be recognized and re-trieved, providing a candidate analogous design, namely the steam boiler and

128pressure sensor. Further, the abstraction of the teleological description thatmatched the new design speci�cation (i.e., regulated temperature) gives partof the mapping from the base (analogous) design to the target design, namelythat pressure (e�ort) maps to temperature (e�ort).7.1.2 RedesignThe design
ow of Figure 1.2 is also relevant when an existing designis being modi�ed to meet a new set of speci�cations. Teleological descriptionscan assist in the redesign task in two ways. First, as a speci�cation is changed,any design modi�cations and components with teleological descriptions thatreference the speci�cation (e.g., required or prohibited behavior) are primarycandidates for modi�cation to meet the new speci�cations. Similar approachesto redesign are design plans (Steinberg and Mitchell [SM84]) and functionalrepresentations (Goel and Chandrasekaran [Goe89]). Second, as the designerexplores the space of possible design modi�cations, teleological descriptionsassociated with the current design structure provide the designer with infor-mation concerning what other behaviors of the design might be a�ected if aparticular component is modi�ed.7.1.3 Cased-Based ReasoningCase-based reasoning systems address reuse in a manner similar toanalogical reasoning systems by retrieving previous cases and adapting thesecases to the current situation. As Riesbeck and Schank state in [RS89], \Acase-based reasoner:� �nds those cases in memory that solved problems similar to the currentproblem, and

129� adapts the previous solution or solutions to �t the current problem, takinginto account any di�erence between the current and previous situations."Riesbeck and Schank [RS89] also point out that \Finding the relevant casesinvolves:� characterizing the input problem by assigning the appropriate features,and� retrieving the cases from memory with those features."The behavior and teleological description languages provide a meansfor characterizing the (input) problem, namely what (behavior) speci�cation isof interest, and the indexing capability built on these languages provides themeans for retrieving cases. We discuss indexing in Chapter 8.7.2 DiagnosisThe role of teleological descriptions in diagnosis is essentially that de-scribed for redesign, namely providing focus for selecting structural componentsthat are likely to account for observed or desired behaviors. This selection taskis called candidate or hypothesis generation in model-based diagnosis. Whenperforming model-based diagnosis (see Davis and Hamscher [DH88]), a set ofcandidate structure components is generated. This set contains those structuralcomponents that can possibly account for the missing or undesirable behaviors.Candidate evaluation is performed to determine whether each candidate canaccount for the aberrant behavior. Finally, candidate selection chooses a singlecandidate or set of candidates that best accounts for the aberrant behavior.

130 Techniques for generating the candidate set include dependency trac-ing and causal analysis. For devices with highly interconnected structure, thisset can be a large percentage of the structural components of the device, possi-bly all structural elements. Since all of these candidates may require evaluation,it is important to focus the candidate generation process where possible. Do-main speci�c heuristics can be applied to select among potential causes, butare not applicable outside their particular domain.Teleological descriptions provide an initial focus for candidate gener-ation, allowing an initial candidate set to be generated based on those struc-tural components known to have been placed in the design for the purposeof a�ecting the aberrant behavior. If an observed symptom of a mechanismis considered as an unwanted behavior (missing behavior), then a teleologicaldescription which relates a component of the mechanism with the prevention(introduction or guarantee) of that behavior provides a heuristic for selectionamong potential causes. Hence, teleological descriptions can provide a moreproductive initial focus of attention for candidate generation in diagnosis. Sucha candidate generation process is not claimed to be complete, since it is pos-sible that the candidate set generated in this way will not always contain thestructural component(s) causing the aberrant behavior.In the modi�ed input selection circuit (Figure 6.9), if the behaviorin which in takes on the value ((0 Vhi) std) is observed (i.e., an aberrantbehavior occurs), then component t2 is a likely candidate to examine, since thepurpose of adding t2 to the design was to eliminate the observed behavior.

Chapter 8Indexing8.1 GoalIn this chapter we describe an organization, for teleological descrip-tions, that facilitates retrieval for explanation, reuse, and diagnosis, as well asclassi�cation of newly acquired descriptions. This organization, or index struc-ture, provides two perspectives on the database of teleological descriptions,� speci�cation predicates and their abstractions, and� design history (modi�cation sequence for a design).We have implemented the computation of the abstraction relations described inChapter 4 to achieve classi�cation of new teleological descriptions and queryingfor teleological descriptions. We conclude this chapter by describing query oruse scenarios of the teleological description database for explanation, designreuse, and diagnosis. These queries answer to following questions:� Explanation: \What is the purpose of component X?"� Design Reuse: \How have previous designs addressed speci�cation �?"� Diagnosis: \What components have purposes referencing behavior B?"131

1328.2 Speci�cation Predicate LatticeThe primary organizing mechanism for the teleological descriptionindex is the speci�cation predicate lattice, which is based on the partial or-der v� (Theorem 4.26). The partial orders v� ; vb ; vs , and vv de�nethe generalization and specialization relationships between scenarios and theirabstractions. The abstractions used to generate the index are:1. Generalize the qualitative direction of change of variable values (dec, std,and inc become ign).2. Generalize the magnitudes of variable values to the quantity space(minf - 0 + inf)13. Generalize variable types:(a) Generalize the hierarchical variable name (remove a pre�x from thehierarchical name), followed by(b) Generalize the variable type per the type hierarchy in Figure 4.2.8.2.1 Variable Value AbstractionVariable values are abstracted with respect to the qualitative directionof change, and with respect to the qualitative magnitude. The quantity space(minf - 0 + inf) is selected for magnitude abstraction because it can expressthe following abstract values:1The landmarks - and + are a notational convenience for expressing values such as\bounded below by 0 and above by some �nite value", or (0 +). A �nite, positive value canbe expressed as (0 inf), but this form makes (0 (0 inf)) somewhat awkward.

133� Negative, zero, or positive. This quantity space is used in the qualita-tive reasoning approaches of de Kleer and Brown [dKB85] and Williams[Wil85]2 and can be expressed in this Qsim quantity space as (minf 0),0, and (0 inf).� A positive value bounded above, or (0 +).� A negative value bounded below, or (- 0).� A �nite, positive value with a positive lower bound, or (+ inf).� A �nite, negative value with an negative upper bound, or (minf -).� A �nite value with a negative lower bound, or (- inf).� A �nite value with a positive upper bound, or (minf +).� A �nite value with a negative lower bound and a positive upper bound,or (- +).� A value with a positive lower bound and positive upper bound. Such avalue has abstractions (0 +) and (+ inf), representing the upper andlower bounds, respectively.� A value with a negative lower bound and negative upper bound. Such avalue has abstractions (minf -) and (- 0), representing the upper andlower bounds, respectively.The abstraction hierarchy for the values of this quantity space isshown in Figure 8.1.2These qualitative values are often referred to as +,0,-.

134
(minf +) (- inf)

(- +) (0 inf)(minf 0)

0 (0 +) (+ inf)(- 0)(minf -)

(minf inf)

Figure 8.1: Generic Magnitude Abstraction Hierarchy8.2.2 Variable AbstractionThe relation vv is de�ned in terms of variable name abstraction andvariable type abstraction (see Section 4.2), and gives two ways of abstractingthe variable. First, a variable instance can be abstracted to represent anyoccurrence of the variable, such as the input voltage of an inverter instanceor the input voltage of a Boolean logic gate instance.3 This abstraction isaccomplished by abstracting the (hierarchical) variable name. Second, thevariable type can be abstracted from its speci�c domain to the correspondinggeneric type (see Table 8.1). For example, voltage in the electrical domain isabstracted to the generic type e�ort. Variable type abstraction is applied onlyafter the variable value magnitude has been abstracted, since speci�c landmarksare not meaningful across domains (e.g., electrical and thermal).3This abstraction is very useful because it allows a general behavior description to bewritten that can be intantiated for particular occurrences of a variable. Recall the generaldesign speci�cation for CMOS circuit design given in Chapter 6, which stated that the inputvoltage of a (any) logic gate in a design should not have the value ((0 Vhi) std).

1358.2.3 Design History IndexA design history provides a (sequential) index for accessing the teleo-logical descriptions associated with the design modi�cations referenced by thehistory. Explanation queries search the design history for design modi�cationsinvolving the addition, deletion, or modi�cation of speci�c design componentsor parameters. When found, the design modi�cation will give the teleologicaldescriptions associated with the modi�cation.8.2.4 Initial Index StructureThe initial index structure contains entries for single variable, singlestate behaviors representing the domains and variable types shown in Table 8.1and the qualitative values shown in Figure 8.1. Some statistics on the initialspeci�cation predicate lattice are shown in Table 8.2.8.3 Classi�cationThe classi�cation algorithm implements the behavior abstraction re-lations described in Chapter 4 and determines the position for teleological de-scriptions in the speci�cation lattice. The algorithm computes the sets rep-resenting the most speci�c generalizations (msg) and the most general spe-cializations (mgs) of the speci�cation predicates referenced by the teleologicaldescription. Each speci�cation predicate is added to the speci�cation predicatelattice \between" the msg and the mgs (i.e., as a specialization of each elementof msg and as a generalization of each element of mgs).A scenario � appears in the speci�cation predicate occursIn(�,b),either as the object of the teleological description or as the condition predicateof a conditional teleological description. When classifying a scenario, we gen-

136 e�ort
ow momentum displacementAcoustic pressure
ow momentum amountElectrical voltage current
ux-linkage chargeHydraulic pressure
ow momentum amountMechanical force velocity momentum displacementMech-Rotation force velocity momentum displacementMech-Translation force velocity momentum displacementThermal temperature
ow entropypower capacitance resistanceAcoustic power volume resistanceElectrical power capacitance resistanceHydraulic power volume resistanceMechanical power capacitance resistanceMech-Rotation power capacitance resistanceMech-Translation power capacitance resistanceThermal power capacitance resistanceTable 8.1: Domain-speci�c variable type namesNodes 3304Links 9502Leaf Nodes 1050Maximum Depth 7Average # Generalizations 2.9Average # Specializations 4.2Maximum # Generalizations 4Maximum # Specializations 15Table 8.2: Initial Index - Metrics

137erate two generalizations of the scenario and add them to the index as well.These generalizations are:1. The scenario with values abstracted to the quantity space(minf - 0 + inf),4 abstracting away the details of particular quantityspaces.2. Scenario 1 with variable types abstracted to the generic types shown inTable 8.1, abstracting away from a speci�c domain and allowing identi�-cation of analogous scenarios across di�erent domains.We select these generalizations out of the many that can be generated for tworeasons. First, we abstract scenarios away from speci�c quantity spaces sincequantity spaces are likely to di�er in landmark names and landmark order.This abstraction provides a connection or grouping in the lattice for scenarioscontaining variables of the same domain speci�c types with similar time varyingbehavior. Second, we abstract away from domain speci�c variable types toprovide a connection or grouping among scenarios containing variables of thesame generic types with similar time varying behavior. This second abstractionprovides the basis for design reuse across domains, namely using a teleologicaldescription originally captured in one domain (e.g., hydraulic) when designingin another domain (e.g., thermal).8.4 QueriesIn this section we describe query or use scenarios of the teleologicaldescription database for explanation, design reuse, and diagnosis. These queries4All possible abstractions based on wider intervals from a particular quantity space arenot recorded in the index, but are considered during search.

138answer the following questions:� Explanation: \What is the purpose of component X?"� Design Reuse: \How have previous designs addressed speci�cation �?"� Diagnosis: \What components have purposes referencing behavior B?"For presentation purposes, we express these queries via the following Prolog[CM84] predicates:� td(design-history,modi�cation,operator, spec)Succeeds when teleological description modi�cation operator spec occursin design-history.� references(modi�cation,component)Succeeds when modi�cation references structural entity component.� msg(spec,generalization)Succeeds when generalization is a most speci�c generalization of speci�-cation spec.� mgs(spec,specialization)Succeeds when specializations is a most general specialization of speci�-cation spec.8.4.1 Explanation QueriesFor explanation, queries of the teleological description database arerestricted to those descriptions involving modi�cations from the design historyof the mechanism being examined. In this case, queries are of the formtd(d ; Mod; Op; SpecPredicate); references(Mod; c) (8.1)

139where d is the design history of the mechanism being examined, and c is thecomponent or parameter for which an explanation is desired.For the steam boiler example from Chapter 3, an explanation queryasks \What is the purpose of the pressure sensor instance Sensor in the steamboiler design?". Using Query Form 8.1, let d be the steam boiler design his-tory and c the pressure sensor instance sensor. Having added the teleologicaldescription derived for the pressure sensor (Section 3.7.3) to the database, thequery variables are bound by the query as follows:� Mod - the modi�cation that adds the pressure sensor (Figure 3.11),� Op - Prevents, and� SpecPredicate - occursIn(�,b), where � is the scenario in which theinternal pressure exceeds the landmark Pmax*.This query and the retrieved teleological description are shown near the end ofSection A.5.For the input selection circuit from Chapter 6, an explanation queryasks \What is the purpose of the p-channel transistor instance PtFb in theinput selection circuit?". In Query Form 8.1, let d be the input selection circuitdesign history and c the p-channel transistor instance t2. Having added theteleological descriptions derived for the input selection circuit (Section 6.2.1)to the database, the query variables are bound by the query as follows:� Mod - the modi�cation that adds the transistor (�1),� Op - Conditionally when f�1g Guarantees, and� SpecPredicate - [�1;�2].

140 To further expand the set of explanations, the restriction con�ningthe search to the current design history can be lifted, allowing search for expla-nations of the purpose of the component in other design histories that employthat component. For the steam boiler example, the unrestricted query forteleological descriptions referencing instances of pressure-sensor istd(Dh; Mod; Op;SpecPredicate);references(Mod; pressure-sensor) (8.2)In this query, the design history is unrestricted, and the component typepressure-sensor is explicit. Such queries can help in understanding the usesof the component, but are not guaranteed to explain its purpose in the designof interest.8.4.2 Reuse QueriesIn a design reuse context, the designer is faced with the problem ofmodifying a design so that it meets speci�cations. Hence, the initial querymade by the designer will be one based on a speci�cation predicate of thedesign. While one can specify the appropriate teleological operator (Guaran-tees, if the speci�cation predicate is to hold everywhere, or Prevents if thespeci�cation predicate is to be prohibited), retrieving modi�cations based solelyon the speci�cation predicate can be of interest to the designer regardless ofthe teleological operator. For example, a design modi�cation that introduced aspeci�cation predicate in a previous design may be of interest when the reusingdesigner is attempting to prevent the speci�cation predicate from holding, be-cause the reusing designer may be able to reverse the design modi�cation thatintroduced the predicate and hence prevent it. The base query istd(Dh; Mod; Op; �) (8.3)where � is the speci�cation predicate of interest.

141Having added the teleological descriptions captured for the steamboiler and input selection circuit designs to the database, a reuse query retrievesthe appropriate design modi�cations for each design. For the steam boilerdesign, let � be the design speci�cation in which the internal pressure exceedsPmax*. The variables of Query Form 8.3 are bound by the query as follows:� Dh - the design history containing modi�cation Mod� Mod - the modi�cation that adds the pressure sensor (Figure 3.11), and� Op - Prevents.If the database contains other descriptions referencing the speci�cation predi-cate �, these are also retrieved. A more speci�c query can be constructed byreplacing the query variable Op with the explicit operator prevents.For the input selection circuit, let � be [�1;�2]. The variables of QueryForm 8.3 are bound by the query as follows:� Dh - the design history containing modi�cation Mod� Mod - �1, the modi�cation that adds the feedback transistor, and� Op - Conditionally when �1 Guarantees.It is likely, however, that the exact speci�cation predicate does notappear in the database, in which case the designer would like to retrieve de-sign modi�cations (i.e., teleological descriptions) concerned with speci�cationpredicates \close to" the one of interest. This \closeness" property is realizedby generalization and specialization links among speci�cation predicates in thedatabase of teleological descriptions. Consequently, the initial set of teleolog-ical descriptions retrieved for potential reuse should contain the most speci�c

142generalizations (msg) and the most general specializations (mgs) of the speci�-cation predicate of interest, �. Note that if � appears exactly in the database,this set will be f�g, the speci�cation predicate itself. This set is the union ofsolutions to the queries:msg(�; Spec);td(Dh; Mod;Op; Spec) (8.4)and mgs(�; Spec); td(Dh; Mod; Op; Spec): (8.5)To constrain the query with respect to a speci�c teleological operator such asGuarantees, one can use the queriestd(Dh; Mod; guarantees;Spec) (8.6)or td(Dh; Mod; [conditionally; �1; guarantees];Spec): (8.7)For queries involving conditional scenarios, the conditional scenariocan be replaced in the query (e.g., Query Form 8.7) by a query variable. Thispermits teleological descriptions with di�erent conditions, possibly empty ornot a generalization or specialization of the desired condition, to be retrievedfrom the database. The modi�cations referenced in these teleological descrip-tions can potentially be of use to the designer. For example, consider a design inwhich temperature must be maintained between prescribed limits (denote thisspeci�cation �1), and in which a modi�cation (denoted �) has been made thatbrings the temperature back within the prescribed range when perturbationspush the temperature above the upper limit. Letting �2 denote the condi-tion where the upper limit for temperature has been exceeded, the teleologicaldescription involving �is� Conditionally when �2 Guarantees [�2;�1]:

143Design modi�cation �can be useful to the design when attempting to make thedesign respond to perturbations that push the temperature below the lowerlimit.8.4.3 Diagnosis QueriesIn the context of diagnosis, we make the assumption that the speci�ca-tion predicates were satis�ed by the design, and that some portion of the mech-anism is broken. Consequently, queries of the teleological description databaseshould be restricted to those descriptions involving modi�cations from the de-sign history of the mechanism under diagnosis. In this case, queries are of theform td(d ; Mod; Op; �) (8.8)where d is the design history of the mechanism under diagnosis, and � is thespeci�cation predicate which no longer holds (i.e., the object of the diagnosis).If the speci�cation predicate describes a condition that should not occur, thequery can further restrict candidate descriptions by restricting the operator inthe query as either td(d ; Mod; prevents; �) (8.9)or td(d ; Mod; [conditionally;Spec; prevents]; �): (8.10)If the condition under diagnosis is not expressed precisely in terms of the spec-i�cation predicates of the design, then msg and mgs may be required in thequery. For the steam boiler example from Chapter 3, if the internal pressureof the boiler vessel is exceeding the desired maximum pressure Pmax*, an diag-nosis query asks \What component or subsystem of the steam boiler has thepurpose of enforcing the speci�cation in which the internal pressure exceeds

144landmark Pmax*?". In Query Form 8.8, let d be the steam boiler design historyand � the design speci�cation describing the scenario in which the internalpressure exceeds Pmax*. Having added the teleological description derived forthe pressure sensor (Section 3.7.3) to the database, the query variables arebound by the query as follows:� Mod - the modi�cation that adds the pressure sensor (Figure 3.11), and� Op - Prevents.The design modi�cation identi�es the addition of the pressure sensor (andassociated connections) as preventing the undesirable behavior, thereby givingan initial focus for diagnosis, namely the pressure sensor and its connections.For the case in which no teleological description referencing speci�-cation predicate � was captured during the mechanism design, and � is theobject of diagnosis (i.e. � is not satis�ed by the malfunctioning mechanism),retrieving teleological descriptions relative to � for other designs can potentiallyprovide some insight into the current diagnosis task. If the speci�cation pred-icate was established in a similar manner in both designs, then informationcaptured for one design can be applied in diagnosis of instances of the relateddesign. In this case, \similar manner" means the design modi�cations weresimilar, such as adding an instance of a particular component or modifying aspeci�c parameter of the design.

Chapter 9Acquisition9.1 The ProblemFor knowledge-based systems, acquiring the knowledge in a form us-able by that system is a principal concern. This is particularly true for sys-tems that rely on a database (knowledge base) of examples, such as analogicalreasoning systems [Hel88], design support systems, and case-based reasoningsystems [RS89]. Once captured, an e�ective indexing technique for classifyingand retrieving this knowledge is required. The semantics and form of teleolog-ical descriptions developed in this research provide a means for addressing theacquisition problem in the context of the design process model of Figure 1.2.In particular, the essential elements of teleological descriptions are availablein this design process, namely design speci�cations and design modi�cations.Further, the process includes evaluation steps, points at which it is determinedwhether the design meets the speci�cations and at which the correspondingteleological descriptions can be captured.Several acquisition approaches are possible, and one has been imple-mented in this work. These approaches can be applied either interactivelyduring design or to a replay of the design history. The acquisition approachesare:� Explicit description - the designer identi�es the design speci�cation andthe modi�cation that comprise the teleological description. The acqui-145

146 sition system can verify the fact that the modi�cation did result in thespeci�cation being met.� Explicit cue or Learn now - the designer explicitly invokes generation ofteleological descriptions at those points in the design process where aspeci�cation has been satis�ed.� Implicit cue - the designer states to the design system that the designspeci�cation being addressed is X. The system proposed by Abelson etal. [AEH*89] provides such an approach, with designer interactions suchas \Add an active stabilizer to damp the family B motions."� Automatic - the acquisition program observes design activity, noting de-sign modi�cations and evaluations, and automatically generates teleolog-ical descriptions.The approach implemented in this work can be described as the ex-plicit cue approach, and provides the implementation core for the other ap-proaches.9.2 Comparative AnalysisComparative and di�erential analyses are used to recognize the situa-tion that a design speci�cation has been met as a result of a design modi�cation.We compare design evaluations performed before and after the modi�cation todetermine if a previously unsatis�ed speci�cation is now satis�ed. Satisfactionof a speci�cation predicate is determined by a model checking algorithm thatcomputes the abstraction relations given in Chapter 4. In the designs examinedin this work, we use Qsim to model and simulate designs. The choice of Qsim

147allows strong statements about guarantees of the presence or absence of partic-ular behaviors since Qsim guarantees that all possible behaviors of the modelappear in the Qsim generated behavior tree [Kui89a]. To evaluate a design,we compare each behavior with the scenario � to determine the truth valueof the speci�cation predicate occursIn(�,b). After evaluating the unmodi�edand modi�ed designs, design speci�cations not met by the unmodi�ed designand now met by the modi�ed design are attributed to the design modi�cation.It is possible that a modi�cation does not ensure a speci�cation forall possible behaviors of a design, but does so for some behaviors. In thiscase, a conditional teleological description can be generated, with the conditiondescribing an initial state or state sequence common to the behaviors nowmeeting the speci�cation and not occurring in (i.e. abstracting) the behaviorsthat do not meet the speci�cation. For example, the �rst modi�cation to themotor design (see Figure 6.31) solved the dead point speci�cation for startingpositions between 0 and 180 and velocity 0, but did not eliminate the deadpoints for starting positions 0 or 180 with velocity 0.Acquisition in this manner can be applied to modeling and evaluationtechniques that do not guarantee the condition that all possible behaviors arerepresented if the evaluation technique can state those initial conditions underwhich it can guarantee the condition that the speci�cation predicate is true. Forexample, a quantitative modeling and simulation approach may be restrictedto making assertions about the truth value of a speci�cation predicate given aset of initial, quantitative values for the model (design).

1489.3 The Issue of ScopeIn considering acquisition of teleological descriptions, we must con-sider the appropriate level of behavior or speci�cation at which to attributea purpose of a design component or modi�cation. The example of a sparkplug's purpose in an automobile, suggested by Mooney [Moo89], best demon-strates this issue. What is the purpose of a spark plug in an automobile? Tomake the car go? To make the engine produce force? To make a piston go upand down? In this example, the number of possible speci�cations or desiredbehaviors would seem to be endless, given all the potential behaviors of theautomobile. We resolve this issue in the following paragraphs via a discussionconcerning the nature of large system speci�cations, how they are developed,and how they evolve.9.3.1 Design Speci�cation HierarchyAlthough not always explicitly represented, the design speci�cationsfor a large, complex system describe the desired behavior and physical charac-teristics of the system at the level at which a user interfaces with that system.In the case of the automobile, these speci�cations (implicit or explicit) statesuch things as the expected behavior when the steering wheel is turned or whenthe accelerator pedal is pushed down, or the miles per gallon achieved by thevehicle. The designer or design team elaborates the design speci�cations basedon past knowledge of such designs and on the initial functional and structuraldecompositions of the design (see discussions by Alford [Alf82] and Rich andShrobe [RS84]). For the automobile example, more detailed speci�cations forthe steering column and linkage are generated (e.g., X degrees of rotation of thesteering wheel translates to Y degrees of de
ection in the front tires), the en-

149gine (e.g., power curve characterization), and other functional and structuralcomponents of the design. Each of these elaborations can be related to thehigher level speci�cation to which it contributes.Teleological descriptions can be generated for any level of the spec-i�cation hierarchy. For a speci�c component or modi�cation, the associatedspeci�cation (associated via the teleological description) will usually make astatement about the desired behavior of the functional or structural level atwhich the component is included. For example, a speci�cation for the auto-mobile might be that it translates chemical energy (gasoline) into mechanicalenergy (motion). The purpose of the engine is then to guarantee this behavior.As the engine design is created (via functional and/or structural decomposi-tion), the speci�cation is decomposed, eventually resulting in a speci�cationfor each individual cylinder of the engine. This level of speci�cation will bereferenced by a teleological description for the spark plug, namely to guaranteethe behavior that the compressed fuel and air mixture is ignited and burns.Consequently, a teleological description will associate a modi�cation with aspeci�cation of the \nearest" structural parent (hierarchically) within whichthe modi�cation is made.9.4 PlanningPlanning systems (cf. Cohen and Feigenbaum [CF82], Nilsson [Nil80])including linear planning, nonlinear planning (cf. Fikes, Nilsson [FN71], andHart [FHN72]), and hierarchical planning (cf. Sacerdoti [Sac74, Sac77]) provideadditional examples of initial and evolved speci�cations in design. Planningsystems attempt to achieve some goal state, given an initial state and a setof operators on states. An example planning domain is robot manipulation, a

150simple characterization of which is the blocks world.In the blocks world, a goal state (speci�cation) and pre- and post-conditions of operators are given in terms of predicates such as on, onTable,holding, and emptyArm. For example, the goal state in which three blocks (A,B, and C) are stacked on one another on the table is written ason(A; B) ^ on(B; C) ^ onTable(C):To achieve this goal state, a planner can manipulate the state of the blocksworld via operators, such as pickUp, putDown, stack, and unStack, that trans-form one state into another. Each operator has a set of preconditions thatdetermine when the operator may be applied to a state. For example, the op-erator pickUp(x) requires the predicates clear(x) and emptyArm be true. Inaddition to these two sources of speci�cations, namely1. An initial speci�cation in the form of the goal state, and2. Preconditions for the application of operatorsthe planning system may decompose individual speci�cations during the courseof problem solving. In our example, the goal speci�cation might be decomposedinto on(A,B), on(B,C), and onTable(C) for purposes of the planning task.In planning tasks where operators and their preconditions are known,acquiring teleological descriptions is straightforward. If the application of anoperator achieves a particular speci�cation (operator precondition or subgoal),then the teleological description references that operator and that speci�cation.If a sequence of operator applications is required, then the entire sequence isreferenced by the teleological description as the modi�cation. In this way, theoperator applications (each with their respective teleological descriptions) used

151to achieve the various subgoals of a goal g can be referenced as a group, ormacromodi�cation (see Huhns and Acosta [HA88]), by a teleological description thatalso references the goal g.In our blocks world example, assume that the initial state is describedby onTable(C) ^ onTable(B) ^ on(A,B). The planning system (hopefully!)will generate a plan like:1. pickUp(A)2. putDown(A)3. pickUp(B)4. stack(B,C)5. pickUp(A)6. stack(A,B)Assuming the planning system generated the subgoals on(B,C) and on(A,B)and recognized the need to achieve subgoal on(B,C) �rst, we can generatethe following teleological descriptions (in the context of the plan), where Irepresents the initial state:1. pickUp(A)� (1) Guarantees clear(B)2. putDown(A)� (2) Guarantees emptyArm

152� (1,2)1 Conditionallywhen I2Guarantees clear(B) ^ emptyArm, pre-conditions for moving B.3. pickUp(B)� (3) Guarantees holding(B), precondition for operation 4.4. stack(B,C)� (4) Guarantees on(B,C), a subgoal generated by the planner.� (1,2,3,4) Conditionally when I Guarantees on(B,C).5. pickUp(A)� (5) Guarantees holding(A), precondition for operation 6.6. stack(A,B)� (6) Guarantees on(A,B), a subgoal generated by the planner.� (1,2,3,4,5,6) Conditionally when I Guarantees on(A,B) ^ on(B,C).There are two interesting observations to make from this planningexample. First, the \regressive" operation of removing A from B (operation1) does not cause a problem in expressing the purpose of operations, since1This notation indicates that all operators are applied, in the speci�ed order.2An explicit condition is given here to state that the operators are applied from the initialstate. A single operator (modi�cation) is assumed to be applied to the previous state of thedesign history

153the operation alone can be related to a speci�cation (clear(B)). Second, thecontext of solving speci�c goals provided by the planner allows teleological de-scriptions involving a composite modi�cation such as (1,2,3,4) to be recognizedand generated.Finally, with respect to the planning task, the greatest potential forteleological descriptions and their acquisition is to provide a database of ex-ample design modi�cations and their purpose, from which design modi�cationoperators can be learned.

Chapter 10Previous and Related Work10.1 IntroductionAlthough a large number of potential uses of teleological descriptionshave been cited in work on design explanation, design reuse, design by analogy,case-based reasoning, and diagnosis, few researchers have directly addressedthe formal representation and acquisition problems for descriptions of purpose.The two most signi�cant contributions discussed in the literature are de Kleer'sEQUAL system [deK85] and the Functional Representation [SC85] work atOhio State University. More recent e�orts in representing purpose have beenundertaken by the Conservation of Design Knowledge (CDK) Project [BSZ89]at NASA Ames Research Center and in Gruber's ASK system [Gru91], and inmedical reasoning research in Downing's BIOTIC system [Dow90]. Represent-ing purpose in design systems is addressed in the REDESIGN system [SM84]and an approach to diagnosis called the theory of responsibilities has been de-veloped by Milne [Mil85]. We compare the work described in this dissertationto these systems and approaches, and we point out where the TeD language hasextended previous capabilities and how TeD represents the descriptions usedin previous work.With respect to related research, the work described in this disser-tation achieves a set of capabilities that no related research has collected to-gether. Subsets of these capabilities can be found in related research. However,the classi�cation and retrieval capabilities supported by TeD are not provided154

155elsewhere, and the ability to described purposes regarding behaviors not ex-hibited by the mechanism (i.e., prevented behaviors such as explosion of thesteam boiler) and components removed from the mechanism is unique to TeD.We list here the key capabilities supported by the TeD language.� Formal language for representing purpose, with clearly de�ned semantics,as opposed to an ad hoc representation� Domain independent teleology language� Teleologies are not prescribed� Ability to express teleology regarding missing behaviors� Ability to express teleology regarding component removed from a design� Teleological descriptions reference behavior of any level of the structurehierarchy� Support for indexing and classi�cation� Teleological descriptions can be acquired by automated techniques� Teleological descriptions are task independent, and can be applied to ex-planation, design reuse, redesign, analogical design, case-based reasoning,and diagnosis.10.2 Function versus TeleologyAs pointed by Kuipers [Kui85], the existing literature frequently ob-scures the distinction between purpose and behavior by using the term func-tion to refer to behavior. For example, in their introduction to [CM85] Chan-drasekaran and Milne state:

156 In simple cases, the behavior [: : :] can be the function, but ingeneral, functional speci�cations involve teleology, i.e., an accountof the intentions for which the device is used.In this dissertation, the term function has not been used to avoid this confusion.In comparing this research to other work, a clear de�nition of the term functionused in other work is required. In particular, the term function is used todescribe behavior, teleology, or various combinations of behavior and teleology.We will attempt to clarify the meaning of the term function for work referencedin this chapter.10.3 EQUAL (de Kleer)de Kleer's EQUAL system [deK85] expresses teleological descriptionsin terms of behaviors of a component. Each such description is based on acausal assumption(s) on the parameters of the component. For example, if aresistor in an electrical circuit causally relates changes in voltage to changes incurrent, then the resistor is characterized as a voltage-sensor. A functional char-acterization (teleological description) is identi�ed by matching derived behaviorwith prescribed behavior prototypes which have been enumerated, named, andadded as domain speci�c knowledge. Two limitations of this approach are� Teleological descriptions are prescribed and domain speci�c, and� Teleological descriptions are limited to describing relationships amongvariables of a single component.To clarify this second point, a teleological description (in EQUAL) of a com-ponent cannot reference behaviors and parameters of other components of the

157system in which the component under analysis is embedded. For example, thepurpose of a valve in a system of pipes and tanks may be to prevent over
ow ofa speci�c tank. The parameters of the valve are a control input, a measure ofthe valve aperture, and a
ow rate. The level of a tank is sensed (via pressure,a level indicator, or some other technique) and relayed to the control input ofthe valve. EQUAL can only express teleology in terms of the parameters of thecomponent, and in this example the level of the associated tank is not a pa-rameter of the valve. Hence, the teleological description of the valve generatedby EQUAL would be \control
ow through the valve".TeD addresses both of these problems. First, a teleological description(in the TeD language) for a component (i.e., the design modi�cation that addedthe component) is generated from the speci�cations of the design in which thecomponent in included, and hence is not prescribed for the component.1 Second,TeD provides for abstraction of teleological descriptions, thereby allowing thesedescriptions to be applied across domains (electrical, thermal, etc.) in supportof design by analogy.For purposes of design explanation (a goal of the EQUAL system),EQUAL teleological descriptions can provide answers to queries of the form\What is the behavior of component X in the circuit?". However, queries ofthe form \Why is component X in this circuit?" cannot be answered beyond\to provide (component) behavior Y". EQUAL teleological descriptions willnot give any insight into the component's contribution to a design speci�ca-tion beyond one that de�nes the desired behavior observed at the componentterminals.1One could say that a design speci�cation is prescribed, but only in the context of thedesign in which the component is included, and not for the component itself.

158 The EQUAL approach does attempt to capture causal information(implicitly, via the derivation process) in a teleological description, while theTeD language does not. The relevance of this approach to causal reasoning isdebated in [IS86a, IS86b] and [dKB86].10.3.1 Function vs. TeleologyIn the EQUAL work, de Kleer uses the terms function and teleologyinterchangeably (\: : : the function of a circuit (i.e., its purpose) : : : ", [deK85, p.205]). In EQUAL, function is a combination of causal information (changes involtage \cause" changes in current) and behavior (voltage and current change).Because the teleological descriptions of a component are de�ned in terms ofthe behaviors observed at the component terminals, teleological descriptions inEQUAL will necessarily map one-to-one to these behaviors.10.4 Functional Representation, Functional ModelingThe functional representation (FR) [SC85, Goe89, SCB89] and func-tional modeling (FM) [ST90, SKB90] address 1) representing \how a devicefunctions" and 2) applying this information to explanation, diagnosis, and de-sign. The functional representation expresses functional knowledge at multiplelevels of abstraction in the following ontology [SC85]:� Structure - relationships among components and abstractions of compo-nents� Function - the response (what we call behavior) of the component to ex-ternal or internal stimuli

159FUNCTIONS:buzz: TOMAKE buzzing(buzzer)IF pressed (manual-switch)*PROVIDED assumption1BY behavior1: : :END FUNCTIONSFigure 10.1: Function in FR (Functional Representation)� Behavior - how a device achieves its function. We call this a causalexplanation or representation� Generic knowledge - causal knowledge compiled from various domains,such as Kircho�'s laws in electrical circuits� Assumptions. We call these constraints or preconditions.With respect to teleological descriptions, the interesting ontological element ofFR is Function. Each function de�nition in FR contains a ToMake clause (seeFigure 10.1, taken from [SC85]) which references a particular behavior (in theQsim or TeD sense) that the FR function is supposed to achieve. The ToMakeclause states the purpose of the FR function.In TeD, given a state description of the behavior (buzzing(buzzer)),the IF condition behavior (pressed(switch)), and the assumptions in the PRO-VIDED clause, we can write a teleological description for the FR function.Let �Make, �If , and �i be the respective state descriptions listed above. Theteleological description for the FR function is� Conditionally fin �If ; �ig Guarantees �Make

160where � is a design modi�cation that incorporates the FR function into thelarger design. Consequently, TeD provides a formal language for expressingthe ToMake clause and condition clauses in FR. Keuneke [Keu91] extends theToMake clause of FR to include the \function types" ToMaintain, ToPre-vent, and ToControl. The TeD language can formally capture the semanticsof these \purposes", or function types as shown in Chapters 3 and 4.By expressing an FR purpose in TeD, we combine several clauses ofthe FR description with a formal language for which we have indexing and clas-si�cation capabilities. This formal language also provides a means for clearlyde�ning the semantics of Keuneke's function types.10.4.1 Function vs. TeleologyAs is obvious from the de�nition of FR ontological elements, func-tion in FR describes a desired behavior via the ToMake clause and conditionclauses, and also references a causal description (the FR behavior) of how theFR function (behavior) is achieved.10.5 Responsibilities (Milne)[Mil85] describes an approach to automated troubleshooting calledthe theory of responsibilities. Responsibilities relate a particular component ofa design (e.g., analog circuit) to a desired output (behavior) in the formhoutputi htime-intervali hvaluei by hcomponentsiResponsibilities are assigned automatically based on second principles whichhave been provided to the system. These second principles represent \the typeof description that an electronics engineer uses to describe various building

161blocks of circuits", and are used in causal simulation to develop the responsibil-ity assignments. These second principles represent domain speci�c knowledgethat must be elicited from designers and represented. The thoroughness of theresponsibility assignments depends on the depth of understanding provided inthe second principles. If only limited understanding is available in the form ofsecond principles, then responsibilities can only be assigned in a limited way.The approach taken in the theory of responsibilities resembles the FRwork and the work described in this dissertation in that responsibilities asso-ciate components with behaviors of the system incorporating the component.The TeD language provides a formal basis for these representations, and theTeD implementation provides an acquisition technique that does not rely onthe availability of second principles.10.5.1 Function vs. TeleologyThe theory of responsibilities work uses the term function to mean the(expected) behavior at the component terminals. A responsibility is analogousto a teleological description in this work.10.6 CDK Project (NASA Ames)The Conservation of Design Knowledge (CDK) Project addresses theproblems of representing and acquiring design rationale. The CDK acquisitionapproach is very similar to the approach taken in this work, and is based on asimilar philosophy of design rationale. [BSZ89] states:This work assumes that the goal of the designer is to satisfy a setof (changing) requirements and that the rationale for design deci-sions can be inferred by comparing how di�erent design alternatives

162 meet the design requirements. : : :Our �rst strategy is to simulatethe behavior of two designs, collect the set of requirements that werea�ected, and compare the ways in which they are met. To accom-plish this, our system must represent design requirements and modelthe structure and behavior of alternative designs. Then the impactof these designs on their respective requirements could be evaluated.TeD provides a formal language for representing design rationale de-scriptions captured in the CDK acquisition work. The CDK work complementsthe work on TeD by providing acquisition techniques. Insu�cient informationregarding the details of the CDK project representation is available to judgeits strengths and weaknesses with respect to TeD.10.7 BIOTIC (Downing)BIOTIC [Dow90] critiques natural (e.g., human, reptilian) circulatorymodels with respect to teleologies, desired global behaviors of a system. Forcirculatory systems, example teleologies are oxygen transport or carbon diox-ide dissipation. BIOTIC critiques circulatory systems from two perspectives, astatic or \zero-order" perspective and a dynamic or \�rst-order" perspective,called the Bipartite Teleological Model (BTM). The formalization of BTMidenti�es four teleologies, transport, conservation, accumulation, and dissipa-tion. The topology (structure) of the circulatory systems are described in termsof producers, consumers,
ow mixers, and connections among these elements.Quantities modeled in these topologies are concentrations, gradients, exchangerates, and
ows. For the static perspective, \recommended" behaviors of pro-ducer and consumer
ows and gradients are enumerated. For the dynamicperspective, tendencies for producer and consumer quantities are enumerated.

163Given these recommended behaviors for each teleology, BIOTIC can then cri-tique various circulatory systems with respect to each teleology. These critiquesevaluate each topology's ability to meet the teleology by assigning ratings inthe range -1 to 1 to the systems behaviors (compared to the behaviors recom-mended for the speci�c teleology), and produces an explanation that relatesthe salient topological relationships to teleological satisfaction.The teleologies of BIOTIC correspond to design speci�cations of thework described in this dissertation2. The explanations generated by BIOTICcorrespond to the teleological descriptions of this work. For example, in cri-tiquing a model of the reptilian circulatory system, the following explanationis generated:The steady ventricular output along with the parallelism of GMand GL permits the desired a) increase of
ow to the consumptionregion, GL, and b) decrease of
ow to the production region.In the TeD language, the structural and component behavioral features ofsteady ventricular output and parallelism of GM and GL comprise the designmodi�cation, and the desired behaviors expressed in a) and b) comprise thespeci�cation predicate of a teleological description. Note that the desired be-haviors (speci�cations) a) and b) are derived from the top level speci�cation(BIOTIC teleology) concerning (carbon dioxide) dissipation.With respect to the work described herein, the most interesting capa-bilities of BIOTIC are 1) application to natural systems and 2) the acquisition2It should be noted that BIOTIC addresses teleology in natural, evolved systems whilethis work addresses teleology in engineered systems. We avoid the concomitant philosophicaland theological debate.

164of teleological descriptions (BIOTIC explanations).10.8 ASK (Gruber)The ASK [Gru91] system elicits justi�cations from experts via aninteractive dialogue with the expert. The characteristics of these justi�cationsare [Gru91, p. 73]:1. Justi�cations are represented in terms of SITUATIONS (structure, as-sumed operating conditions), CHOICES (design alternatives), and FEA-TURES (models, initial conditions, predicted behaviors).2. The representation is implemented in a TASK-SPECIFIC ARCHITEC-TURE that can apply justi�cations to perform some task3. Examples are elicited in a COMPUTATIONAL CONTEXT OF USE(design evaluation), where situations and choices are re
ected in the stateof the system4. Justi�cations are elicited by asking for RELEVANT FEATURES, se-lected from a �nite set of possible features provided by the system5. EXPLANATIONS ARE GENERATED by mapping from relevant fea-tures to intended behaviors.These characteristics can be realized as a combination of TeD teleological de-scriptions, the design environment in which they are captured, and some taskenvironment in which they will be used (e.g., design explanation). ASK situ-ations and choices correspond to TeD design histories (designs and modi�ca-tions). ASK features (as predicted behaviors) correspond to TeD design speci�-cations. The ASK computational context of use is the design evaluation step in

165acquiring TeD descriptions. The step of asking for relevant features identi�esthe structural elements (modi�cations to structure, component behavior, orparameters), and explanation generation associates the relevant features (TeDdesign modi�cations) with intended behaviors (TeD design speci�cations).The contribution of TeD is a formal language for representing teleo-logical descriptions (ASK explanations) and the associated indexing capabil-ities provided by the language. The TeD representation also supports moreautomated acquisition of teleological descriptions during design.10.9 REDESIGN (Steinberg, Mitchell)The REDESIGN system [SM84] utilizes representations of purposeto focus the selection of candidate components for the redesign task. Theseteleological descriptions occur in a design plan, which \is characterized in termsof implementation rules that embody [...] general knowledge about circuitdesign tactics". These rules specify decomposition steps for realizing a designin available components. For example, a rule speci�es how the OR of twofunctions is accomplished (introduce an OR-gate) or speci�es how parallel inputcan be converted into serial input (introduce a shift register). All such rulesapplied to create the design can be organized into the design plan, which thenrecords the role of individual components in the larger design.Steinberg and Mitchell give the following example to demonstrate thekind information they attempt to capture:\Because the address inputs to the ROM6475 must be stable forat least 500 nsec, while the input Characters are stable for only 300nsec, a latch (LATCH74175) is used to capture the input Character,

166 and hold these data values for an acceptable duration."To represent this description in the TeD language, let � denote the additionof \LATCH74175" to the circuit, and let � denote the behavior \capture theinput Characters and hold the address inputs to ROM6475 stable for at least500 nsec". The teleological description is then� Guarantees �:Descriptions of purpose in the REDESIGN system are represented inthe form of implementation rules. These rules are captured independently of thedesign process and added to the design system as domain speci�c knowledge.Automatic acqusition of implementation rules is proposed as future work. TheTeD language supports acquisition of these descriptions as design occurs, pro-viding a means for capturing the information from which such implementationrules can be derived (as described in Section 9.4). Given state representationsof the desired behaviors of a circuit (e.g., OR'ed functions or parallel to serialtransmission), REDESIGN descriptions of purpose can be expressed in the TeDlanguage.10.9.1 Function and TeleologyThe REDESIGN work makes a distinction between function and pur-pose, where function de�nes the (expected) behavior at component terminals,and purpose identi�es the component's role in the larger context of the behaviorof the design that includes the component.

16710.10 Purpose-Directed Analogy (Kedar-Cabelli)The purpose-directed analogy system of [Ked85] requires a representa-tion of purpose or function of artifacts to direct the construction of analogies.In particular, these descriptions of purpose are used to identify the relevantattributes of artifacts to be used in the analogy. The example given is forthe concept HOT-CUP, representing objects whose purpose is to enable thedrinking of hot liquids. If a cup were to be used for some other purpose, sayornamental, then di�erent attributes would be meaningful in the analogy. Theapproach to representing function uses predicates such as enables with argu-ments such as operations (e.g. drinking) and substances (e.g., hot liquid). Adomain theory is developed in which attributes imply structural features whichin turn imply preconditions to actions which can be combined to achieve somegoal (i.e., the purpose of the artifact). In this system, the relationships betweenattributes, structure, and function are prescribed and domain speci�c.The TeD language provides a formal, domain independent represen-tation of purpose that could be used in purpose directed analogy. Further, theTeD representation provides a means for retrieving potential analogy examples.In the case of the concept HOT-CUP, one aspect or speci�cation of the goal todrink a hot liquid is the insulating property of the material from which the cupis constructed. If � represents the scenario in which heat is rapidly transmittedfrom the liquid in the cup to the hand holding the cup, then we can write theteleological description � Prevents �where � represents the selection of styrofoam as the material from which the cupis constructed. The behavior involved in this teleological description, namelythe transmission of heat, can assist in the selection of analogy candidates by

168identifying those designs which incorporate an insulator, i.e., something thatprevents the transmission of heat.

Chapter 11Conclusions11.1 AccomplishmentsThe contribution of this work is the ability to represent descriptions ofpurpose so that these descriptions can be reasoned about (acquired, classi�ed,and retrieved) and reasoned with in design (explanation, reuse, analogy), case-based reasoning, and diagnosis. We believe that this is an important endeavorfor arti�cial intelligence, as Schank points out more generally:: : : the AI [is] also in collecting the actual experiences of theexperts and indexing them so that reminding and, hence, learning[can] take place. [Sch91, p. 45]The crux of AI is in the representation of [this] knowledge, thecontent-based indexing of [this] knowledge, and the adaptation andmodi�cation of this knowledge through the exercise of this knowl-edge. [Sch91, p. 47]This work has addressed the �rst two points here, namely the representationof teleological descriptions (knowledge) and the content-based indexing of thisknowledge. The claims laid out in Chapter 1 for this work were:1. Descriptions of purpose can be represented formally in a language that isindependent of a particular domain of mechanisms or behavior description169

170 language (speci�cally the Teleological Description (TeD) language), andthese descriptions of purpose can be expressed in terms of the primitiveoperators Guarantees and unGuarantees,2. Descriptions of purpose can be e�ectively acquired in the design processgiven information available in current design methodologies, and3. The representation language facilitates the classi�cation and retrieval ofdescriptions of purpose for use in design explanation, design reuse, designby analogy, case-based reasoning, and diagnosis.These claims are supported as follows:1. The teleological description and behavior abstraction languages describedin Chapters 3 and 4, respectively, provide a formal language that is in-dependent of any speci�c domain of mechanisms. This independence isdemonstrated in the examples described in Chapters 2 and 6.2. An acquisition technique is described in Chapter 9 and has been imple-mented. Other research (cf. [Gru91], [BSZ89]) addresses the acquisitionproblem directly, providing additional acquisition approaches.3. Teleological descriptions can be classi�ed and retrieved as described inChapter 8. Further, retrieval via this index is well suited for the tasks ofdesign explanation, design reuse, design by analogy, case-based reasoning,and diagnosis because queries are posed in terms of the problem to besolved as opposed to the technique for solving the problem.

17111.2 ImplementationThe ideas put forth in this dissertation have been implemented forthe structure language CC [FD90] and the behavior language of Qsim [Kui85,Kui86]. The example designs for the steam boiler (Chapter 3), input selectioncircuit (Chapter 6), and electromechanicalmotor (Chapter 6) are represented inCC and simulated in Qsim. The teleological descriptions at each modi�cationstep described for the designs are captured, and classi�ed in the index structuredescribed in Chapter 8. Diagnosis and reuse queries via the index are alsoimplemented.11.3 Scaling UpA critical question regarding the representation, acquisition, and in-dexing approaches is \Do they scale up?". We believe they will, and supportthis claim with observations about design speci�cations for real world, engi-neered systems and the design methodologies employed to produce the designs.First, consider the issues of representation and indexing. Althoughthe complete speci�cation of a real world system may be many pages long in itstext description, it is structured (usually hierarchically) with each individualspeci�cation making a concise statement about some static property or dynamicproperty (behavior) the designed system should exhibit. Hence, the scenariorepresentation used to express behaviors will be adequate for the task. Researchand progress in� requirement (speci�cation) representation and capture, and� methodological (design process) support

172will also contribute to the scale up of this work, since each of these endeavorto formally represent, reason about, and reason with design speci�cations.Now, consider the issue of acquisition. As with representation and in-dexing, work in requirements and methodology support consider speci�cationsas �rst class objects, hence making them accessible to acquisition techniques.To capture the fact that system requirements have in fact been met in a sys-tem design (currently available in products such ad RDD-100 and Teamwork,and called requirements traceability), requirements and methodology supportsystems will (automatically or via human intervention) trace veri�cation stepswith respect to requirements and hence identify those points at which teleolog-ical descriptions can be acquired.Finally, with respect to acquisition, our experience has been that in-dividual designers make design modi�cations whose purpose is to satisfy one ora small number of individual speci�cations, simply because the high complex-ity of making and verifying changes that address many speci�cations makesthe design process unmanageable. For example, software development organi-zations employ control systems for software maintenance that require changesto the source code to be identi�ed with the speci�cation (usually in the formof a user problem report, i.e., a speci�cation the software does not meet) thechange is intended to address. The designers (maintainers) are then assignedthe task of addressing individual problem reports, or a small number of relatedproblem reports.11.4 Future WorkThis work provides a basis for the following related research activities:

173� Extension to other domains, particularly software design. Issues of designexplanation, design by analogy, design reuse, and diagnosis are also ofconcern in the domain of software engineering. Investigation should focuson the di�erences (if any) in speci�cations, behavior description, andveri�cation techniques from the design of physical systems.� Integration with task speci�c problem solvers: design explanation, case-based reasoners, and diagnosis systems.� Integration into a design environment: address integration issues in-cluding: explicit representation of and reasoning with design process ormethodology models; explicit representation of teleological description ac-quisition and use (explanation, design reuse) in the design process model;access to various representations of design data.� Scaling up: building a knowledge-base of descriptions for real, workingsystems that can subsequently be used in real world design, case-basedreasoning, and diagnosis systems.� Ex post facto acquisition: acquisition of teleological descriptions fromdesigns for which only the �nal design and no design history is available.� Probabilistic Guarantees: representation and acquisition of teleologicaldescriptions that describe the purpose of increasing or decreasing theprobability of a particular behavior (suggested by Michael Huhns).11.5 EpilogueIn reviewing this work to compose a conclusion, many of the detailsseem straightforward now, partly from focusing on the problem for several years

174and partly because the goals of this research have been re�ned along with theresults. A more fundamental reason for this observation is that much of whathas been formalized here is understood and practiced intuitively by designers.This type of contribution is noted by Polya [Pol73, p. 57] when he quotes thenineteenth century mathematician Bernard Bolanzo:I do not think at all that I am able to present here any procedureof investigation that was not perceived long ago by all men of talent;and I do not promise at all that you will �nd here anything quitenew of this kind. But I shall take pains to state in clear wordsthe rules and ways of investigation which are followed by all ablemen, who in most cases are not even conscious of following them.Although I am free from the illusion that I shall fully succeed evenin doing this, I still hope that the little that is presented here mayplease some people and have some applications afterwards.In summary, this work attempts to formalize an aspect of intelligentbehavior, namely reasoning about and reasoning with descriptions of purpose.

Appendix ASteam Boiler ExampleA.1 Quantity Space De�nitions(define-quantity-space temperature-qspace (0 AT* FT* inf))(define-quantity-space heat-qspace (0 Ha* Hf* inf))(define-quantity-space heat-flow-qspace(minf F-* 0 F* inf)(conservation-correspondences (F-* F*)))(define-quantity-space liquid-flow-qspace(minf Fmax-* 0 Fmax* inf)(conservation-correspondences (Fmax-* Fmax*)))(define-quantity-space simple-pressure-qspace(minf Pf-* 0 Pf* inf)(conservation-correspondences (Pf-* Pf*)))(define-quantity-space pressure-qspace(minf Pf-* Pmax-* Pa-* 0 Pa* Pmax* Pf* inf)(parent simple-pressure-qspace)(conservation-correspondences(Pf-* Pf*) (Pa-* Pa*) (Pmax* Pmax-*)))(define-quantity-space modified-pressure-qspace(minf Pf-* Pmax-* Pa-* 0 Pa* Plim* Pmax* Pf* inf)(parent pressure-qspace)(conservation-correspondences(Pf-* Pf*) (Pa-* Pa*) (Pmax* Pmax-*)))(define-quantity-space voltage-qspace (0 Vmax*))1

2A.2 Component De�nitions(define-component-interfaceHeat-Source"Heat source in thermal domain" thermal(terminals out))(define-component-implementationprimitive Heat-Source"Heat source in thermal domain, in QSIM primitives"(terminal-variables (out (f heat-flow)(t temperature independent))))(define-component-interfaceHeat-Sink"Heat sink in thermal domain" thermal(terminals in))(define-component-implementationprimitive Heat-Sink"Heat sink in thermal domain, in QSIM primitives"(terminal-variables (in (f heat-flow)(t temperature independent))))(define-component-interfaceBoiler-Vessel"Boiler Vessel in thermal domain" thermal(terminals in out)(quantity-spaces(defaults (temperature temperature-qspace)(entropy heat-qspace))))(define-component-implementationprimitive Boiler-Vessel"Boiler Vessel for heat flow, in QSIM primitives"(terminal-variables(in (inFlow heat-flow (lm-symbol IF))(Tin temperature))(out (outFlow heat-flow (lm-symbol OF))(Tout temperature)))(component-variables(netFlow heat-flow display (lm-symbol NF))(heat entropy display (lm-symbol H))(pressure (hydraulic pressure)

3display (lm-symbol P)(quantity-space pressure-qspace))(T temperature display)(dTin temperature display(quantity-space base-quantity-space))(dTout temperature display(quantity-space base-quantity-space)))(constraints((ADD T dTin Tin) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ dTin inFlow) (0 0))((ADD T dTout Tout) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ dTout outFlow) (0 0))((ADD inFlow outFlow netFlow) (0 0 0))((d/dt heat netFlow));; Assume constant fluid/gas mass, so heat follows temperature((M+ heat T) (0 0) (Ha* AT*) (Hf* FT*))((M+ pressure T) (0 0) (Pa* AT*) (Pf* FT*))))(define-component-interfaceControlled-Heat-Source"Controlled heat source in thermal domain" thermal(terminals out ctl))(define-component-implementation1 Controlled-Heat-Source"Controlled heat source, in QSIM primitives"(terminal-variables (out (f heat-flow)(t temperature))(ctl (v (electrical voltage)(quantity-space voltage-qspace))))(constraints ((S- v t (0 FT*) (Vmax* AT*)))))(define-component-interfaceBoiler-Vessel-Modified"Boiler Vessel with Instrumentation Terminal" thermal(terminals in out t)(quantity-spaces(defaults (temperature temperature-qspace)(entropy heat-qspace))))(define-component-implementationprimitive Boiler-Vessel-Modified

4 "Boiler Vessel with instrumentation terminal, in QSIM primitives"(terminal-variables(in (inFlow heat-flow (lm-symbol IF))(Tin temperature))(out (outFlow heat-flow (lm-symbol OF))(Tout temperature))(t (p (hydraulic pressure)(quantity-space modified-pressure-qspace))))(component-variables(netFlow heat-flow display (lm-symbol NF))(heat entropy display (lm-symbol H))(pressure (hydraulic pressure)display (lm-symbol P)(quantity-space modified-pressure-qspace))(T temperature display)(dTin temperature display(quantity-space base-quantity-space))(dTout temperature display(quantity-space base-quantity-space)))(constraints((ADD T dTin Tin) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ dTin inFlow) (0 0))((ADD T dTout Tout) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ dTout outFlow) (0 0))((ADD inFlow outFlow netFlow) (0 0 0))((d/dt heat netFlow));; Assume constant fluid/gas mass, so heat follows temperature((M+ heat T) (0 0) (Ha* AT*) (Hf* FT*))((M+ pressure T) (0 0) (Pa* AT*) (Pf* FT*))((M+ pressure p) (Pf-* Pf-*) (Pmax-* Pmax-*) (Pa-* Pa-*) (0 0)(Pa* Pa*) (Plim* Plim*) (Pmax* Pmax*) (Pf* Pf*))))(define-component-interfacePressure-Sensor"Pressure sensor, voltage output" hydraulic(terminals in out))(define-component-implementation1 Pressure-Sensor"Pressure sensor, voltage output, in QSIM primitives"(terminal-variables

5(in (p pressure (quantity-space modified-pressure-qspace)))(out (v (electrical voltage) (quantity-space voltage-qspace))))(constraints ((S+ p v (Plim* 0) (Pmax* Vmax*)))))A.3 Model De�nition(define-component-interfaceSB "Steam Boiler" thermal(quantity-spaces(defaults (temperature temperature-qspace)(entropy heat-qspace)(heat-flow base-quantity-space))))(define-component-implementation1 SB"Simple steam boiler"(components(Vessel boiler-vessel (display netflow heat pressure TdTin dTout inFlow outFlow))(Flame heat-source)(Air heat-sink))(connections (p1 (Flame out) (Vessel in))(p2 (Vessel out) (Air in))))(define-component-implementation2 SB"Steam boiler with pressure sensor"(components(Vessel boiler-vessel-modified(display netFlow heat pressure TdTin dTout inFlow outFlow))(Flame controlled-heat-source)(Air heat-sink)(Sensor pressure-sensor (display v)))(connections (p1 (Flame out) (Vessel in))(p2 (Vessel out) (Air in))(p3 (Vessel t) (Sensor in))(p4 (Sensor out) (Flame ctl))))(defun Steam-Boiler-Sim (model text)

6 (let* ((initial-values (translate-cc-name-alistmodel'(((Vessel t) (AT* nil))((Flame f) ((minf 0) nil))((Flame t) (FT* std))((Air t) (AT* std)))))(sim (make-sim))(initial-state (make-new-state:from-qde model:assert-values initial-values:text text:sim sim)))(qsim initial-state)(qsim-display initial-state)sim))A.4 Design Speci�cations(define-design-specificationDHF-No-Explode(prohibited (((((Pressure) ((PMax* inf) ign)))) true)))A.5 Sample TraceCC and TeD demo - Steam Boiler example. Initial Steam Boilerde�nition (in CC):(define-component-interface SB"Steam Boiler"(quantity-spaces(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)((THERMAL ENTROPY) HEAT-QSPACE)((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))(define-component-implementation SB 1"Simple steam boiler"(components

7(VESSEL BOILER-VESSEL (DISPLAY NETFLOW HEAT PRESSURE T DTINDTOUT INFLOW OUTFLOW))(FLAME HEAT-SOURCE)(AIR HEAT-SINK))(connections(P1 (FLAME OUT) (VESSEL IN))(P2 (VESSEL OUT) (AIR IN))))Boiler Vessel component de�nition (in CC):(define-component-interface BOILER-VESSEL"Boiler Vessel in thermal domain"(terminals IN OUT)(quantity-spaces(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)((THERMAL ENTROPY) HEAT-QSPACE))))(define-component-implementation BOILER-VESSEL PRIMITIVE"Boiler Vessel for heat flow, in QSIM primitives"(terminal-variables(IN (INFLOW HEAT-FLOW (LM-SYMBOL IF)) (TIN TEMPERATURE))(OUT (OUTFLOW HEAT-FLOW (LM-SYMBOL OF)) (TOUT TEMPERATURE)))(component-variables(NETFLOW HEAT-FLOW DISPLAY (LM-SYMBOL NF))(HEAT ENTROPY DISPLAY (LM-SYMBOL H))(PRESSURE (HYDRAULIC PRESSURE)DISPLAY (LM-SYMBOL P)(QUANTITY-SPACE PRESSURE-QSPACE))(T TEMPERATURE DISPLAY)(DTIN TEMPERATURE DISPLAY (QUANTITY-SPACE BASE-QUANTITY-SPACE))(DTOUT TEMPERATURE DISPLAY(QUANTITY-SPACE BASE-QUANTITY-SPACE)))(constraints((ADD T DTIN TIN) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ DTIN INFLOW) (0 0))((ADD T DTOUT TOUT) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ DTOUT OUTFLOW) (0 0))((ADD INFLOW OUTFLOW NETFLOW) (0 0 0))((D/DT HEAT NETFLOW))((M+ HEAT T) (0 0) (HA* AT*) (HF* FT*))((M+ PRESSURE T) (0 0) (PA* AT*) (PF* FT*))))

8 Heat source and heat sink de�nitions (in CC):(define-component-interface HEAT-SOURCE"Heat source in thermal domain"(terminals OUT))(define-component-implementation HEAT-SOURCE PRIMITIVE"Heat source in thermal domain, in QSIM primitives"(terminal-variables(OUT (F HEAT-FLOW) (T TEMPERATURE INDEPENDENT))))(define-component-interface HEAT-SINK"Heat sink in thermal domain"(terminals IN))(define-component-implementation HEAT-SINK PRIMITIVE"Heat sink in thermal domain, in QSIM primitives"(terminal-variables(IN (F HEAT-FLOW) (T TEMPERATURE INDEPENDENT))))Design speci�cation for the Steam Boiler. This speci�cation statesthat the pressure should not exceed a maximum expressed as the landmarkPmax*.Design specification: DHF-NO-EXPLODEProhibited Scenarios:State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))Boolean Expression: TRUEConstructing the QDE for the Steam Boiler from the CC de�nition.Information regarding the model variables is displayed.Model stats: 12 variables, 0 mode variables, 10 constraints.Model variable quantity spaces:Hierarchical name Quantity Space Internal CC name(SB AIR F) (MINF 0 INF) SB_AIR.F@P2(SB VESSEL OUTFLOW) [d] (MINF 0 INF) SB_VESSEL.OUTFLOW@P2

9(SB VESSEL INFLOW) [d] (MINF 0 INF) SB_VESSEL.INFLOW@P1(SB FLAME F) (MINF 0 INF) SB_FLAME.F@P1(SB VESSEL DTOUT) [d] (MINF 0 INF) SB_VESSEL.DTOUT(SB VESSEL DTIN) [d] (MINF 0 INF) SB_VESSEL.DTIN(SB VESSEL T) [d] (0 AT* FT* INF) SB_VESSEL.T(SB VESSEL PRESSURE) [d] (MINF PF-* PMAX-* PA-* 0PA* PMAX* PF* INF)SB_VESSEL.PRESSURE(SB VESSEL HEAT) [d] (0 HA* HF* INF) SB_VESSEL.HEAT(SB VESSEL NETFLOW) [d] (MINF 0 INF) SB_VESSEL.NETFLOWEffort variable equivalence classes:Quantity space: (0 AT* FT* INF) SB.EFFORT_THERMAL@P2(SB VESSEL TOUT)(SB AIR T)Quantity space: (0 AT* FT* INF) SB.EFFORT_THERMAL@P1(SB FLAME T)(SB VESSEL TIN)The QDE constructed from the CC model.(define-QDE SB_1(quantity-spaces(SB_VESSEL.NETFLOW (minf 0 inf) "(SB VESSEL NETFLOW)")(SB_VESSEL.HEAT (0 ha* hf* inf) "(SB VESSEL HEAT)")(SB_VESSEL.PRESSURE (minf pf-* pmax-* pa-* 0 pa* pmax* pf* inf)"(SB VESSEL PRESSURE)")(SB_VESSEL.T (0 at* ft* inf) "(SB VESSEL T)")(SB_VESSEL.DTIN (minf 0 inf) "(SB VESSEL DTIN)")(SB_VESSEL.DTOUT (minf 0 inf) "(SB VESSEL DTOUT)")(SB.EFFORT_THERMAL@P1 (0 at* ft* inf) "(SB FLAME T)")(SB_FLAME.F@P1 (minf 0 inf) "(SB FLAME F)")(SB_VESSEL.INFLOW@P1 (minf 0 inf) "(SB VESSEL INFLOW)")(SB.EFFORT_THERMAL@P2 (0 at* ft* inf) "(SB VESSEL TOUT)")(SB_VESSEL.OUTFLOW@P2 (minf 0 inf) "(SB VESSEL OUTFLOW)")(SB_AIR.F@P2 (minf 0 inf) "(SB AIR F)"))(constraints((ADD SB_VESSEL.T SB_VESSEL.DTIN SB.EFFORT_THERMAL@P1)(0 0 0) (at* 0 at*) (ft* 0 ft*))((M+ SB_VESSEL.DTIN SB_VESSEL.INFLOW@P1) (0 0))((ADD SB_VESSEL.T SB_VESSEL.DTOUT SB.EFFORT_THERMAL@P2)(0 0 0) (at* 0 at*) (ft* 0 ft*))

10 ((M+ SB_VESSEL.DTOUT SB_VESSEL.OUTFLOW@P2) (0 0))((ADD SB_VESSEL.INFLOW@P1 SB_VESSEL.OUTFLOW@P2 SB_VESSEL.NETFLOW))((D/DT SB_VESSEL.HEAT SB_VESSEL.NETFLOW))((M+ SB_VESSEL.HEAT SB_VESSEL.T) (0 0) (ha* at*) (hf* ft*))((M+ SB_VESSEL.PRESSURE SB_VESSEL.T) (0 0) (pa* at*) (pf* ft*))((MINUS SB_FLAME.F@P1 SB_VESSEL.INFLOW@P1)(minf inf) (inf minf) (0 0))((MINUS SB_VESSEL.OUTFLOW@P2 SB_AIR.F@P2)(minf inf) (inf minf) (0 0)))(independent SB.EFFORT_THERMAL@P2 SB.EFFORT_THERMAL@P1)(text (("Simple steam boiler")))(layout(SB_VESSEL.OUTFLOW@P2 SB_VESSEL.INFLOW@P1 SB_VESSEL.DTOUT)(SB_VESSEL.DTIN SB_VESSEL.T SB_VESSEL.PRESSURE)(SB_VESSEL.HEAT SB_VESSEL.NETFLOW))(other(IGNORE-QDIRS)(NO-NEW-LANDMARKS)(CC-INFO . (SB (impl 1)))(CC-MODE-ASSUMPTIONS))) Simulating the model in QSIM. Behavior tree and qualitative plotsare shown in Figures 3.6 and 3.7.Run time: 0.200 seconds to initialize a state.Run time: 0.940 seconds to simulate 7 states.Send Images to [s screen / f file / b both / n nowhere] -> sQualitative time plots. Enter T=behavior Tree,Space or N=Next behavior (1 of 3), behavior number,O=Other commands, Q=Quit: tQualitative time plots. Enter T=behavior Tree,Space or N=Next behavior (1 of 3), behavior number,O=Other commands, Q=Quit: 1Qualitative time plots. Enter T=behavior Tree,Space or N=Next behavior (1 of 3), behavior number,O=Other commands, Q=Quit: q

11Checking the behavior tree against the design speci�cation. Any dis-crepencies will be noted.Checking behaviors againstDesign specification: DHF-NO-EXPLODEProhibited Scenarios:State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))Boolean Expression: TRUEDesign spec instantiation is #<Spec: PROHIBITED SC-0>:PROHIBITED:Scenario:State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))Boolean Expression: TRUEBehavior S-6 inconsistent with spec #<Spec: PROHIBITED SC-0>Modifying the design. This modi�cation involves the following editingoperations:� First operation: replace the vessel component with another that has asensor terminal (component type boiler-vessel-modi�ed).� Second operation: replace the heat source (
ame) component with an-other that has a control input (component-type controlled-heat-source).� Third operation: add a pressure sensor that translates pressure sensed inthe boiler vessel to voltage at the control input of the heat source.Edit command 1:(REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED((DISPLAY NETFLOW HEAT PRESSURE TDTIN DTOUT INFLOW OUTFLOW)))Edit command 2:(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)Edit command 3:(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR

12 ((DISPLAY V)) (IN (VESSEL T)) (OUT (FLAME CTL)))Modi�ed boiler vessel component de�nition.(define-component-interface BOILER-VESSEL-MODIFIED"Boiler Vessel with Instrumentation Terminal"(terminals IN OUT T)(quantity-spaces(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)((THERMAL ENTROPY) HEAT-QSPACE))))(define-component-implementation BOILER-VESSEL-MODIFIED PRIMITIVE"Boiler Vessel with instrumentation terminal, in QSIM primitives"(terminal-variables(IN (INFLOW HEAT-FLOW (LM-SYMBOL IF)) (TIN TEMPERATURE))(OUT (OUTFLOW HEAT-FLOW (LM-SYMBOL OF)) (TOUT TEMPERATURE))(T (P (HYDRAULIC PRESSURE)(QUANTITY-SPACE MODIFIED-PRESSURE-QSPACE))))(component-variables(NETFLOW HEAT-FLOW DISPLAY (LM-SYMBOL NF))(HEAT ENTROPY DISPLAY (LM-SYMBOL H))(PRESSURE (HYDRAULIC PRESSURE)DISPLAY (LM-SYMBOL P)(QUANTITY-SPACE MODIFIED-PRESSURE-QSPACE))(T TEMPERATURE DISPLAY)(DTIN TEMPERATURE DISPLAY (QUANTITY-SPACE BASE-QUANTITY-SPACE))(DTOUT TEMPERATURE DISPLAY (QUANTITY-SPACE BASE-QUANTITY-SPACE)))(constraints((ADD T DTIN TIN) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ DTIN INFLOW) (0 0))((ADD T DTOUT TOUT) (0 0 0) (AT* 0 AT*) (FT* 0 FT*))((M+ DTOUT OUTFLOW) (0 0))((ADD INFLOW OUTFLOW NETFLOW) (0 0 0))((D/DT HEAT NETFLOW))((M+ HEAT T) (0 0) (HA* AT*) (HF* FT*))((M+ PRESSURE T) (0 0) (PA* AT*) (PF* FT*))((M+ PRESSURE P) (PF-* PF-*) (PMAX-* PMAX-*) (PA-* PA-*) (0 0)(PA* PA*) (PLIM* PLIM*) (PMAX* PMAX*) (PF* PF*))))Steam boiler de�nition after applying edit command:

13(REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED((DISPLAY NETFLOW HEAT PRESSURE TDTIN DTOUT INFLOW OUTFLOW)))(define-component-interface SB"Steam Boiler"(quantity-spaces(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)((THERMAL ENTROPY) HEAT-QSPACE)((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))(define-component-implementation SB MODIFIED"Simple steam boiler"(components(VESSEL BOILER-VESSEL-MODIFIED (DISPLAY NETFLOW HEAT PRESSURE TDTIN DTOUT INFLOW OUTFLOW))(FLAME HEAT-SOURCE)(AIR HEAT-SINK))(connections(P1 (FLAME OUT) (VESSEL IN))(P2 (VESSEL OUT) (AIR IN))))Modi�ed heat source component de�nition.(define-component-interface CONTROLLED-HEAT-SOURCE"Controlled heat source in thermal domain"(terminals OUT CTL))(define-component-implementation CONTROLLED-HEAT-SOURCE 1"Controlled heat source, in QSIM primitives"(terminal-variables(OUT (F HEAT-FLOW) (T TEMPERATURE))(CTL (V (ELECTRICAL VOLTAGE) (QUANTITY-SPACE VOLTAGE-QSPACE))))(constraints((S- V T (0 FT*) (VMAX* AT*)))))Steam boiler de�nition after applying edit command:

14(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)(define-component-interface SB"Steam Boiler"(quantity-spaces(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)((THERMAL ENTROPY) HEAT-QSPACE)((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))(define-component-implementation SB MODIFIED"Simple steam boiler"(components(FLAME CONTROLLED-HEAT-SOURCE)(VESSEL BOILER-VESSEL-MODIFIED (DISPLAY NETFLOW HEAT PRESSURE TDTIN DTOUT INFLOW OUTFLOW))(AIR HEAT-SINK))(connections(P1 (FLAME OUT) (VESSEL IN))(P2 (VESSEL OUT) (AIR IN))))Pressure sensor component de�nition.(define-component-interface PRESSURE-SENSOR"Pressure sensor, voltage output"(terminals IN OUT))(define-component-implementation PRESSURE-SENSOR 1"Pressure sensor, voltage output, in QSIM primitives"(terminal-variables(IN (P PRESSURE (QUANTITY-SPACE MODIFIED-PRESSURE-QSPACE)))(OUT (V (ELECTRICAL VOLTAGE) (QUANTITY-SPACE VOLTAGE-QSPACE))))(constraints((S+ P V (PLIM* 0) (PMAX* VMAX*)))))Steam boiler de�nition after applying edit command 3:

15(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR((DISPLAY V)) (IN (VESSEL T)) (OUT (FLAME CTL)))(define-component-interface SB"Steam Boiler"(quantity-spaces(defaults ((THERMAL TEMPERATURE) TEMPERATURE-QSPACE)((THERMAL ENTROPY) HEAT-QSPACE)((THERMAL HEAT-FLOW) BASE-QUANTITY-SPACE))))(define-component-implementation SB MODIFIED"Simple steam boiler"(components(SENSOR PRESSURE-SENSOR (DISPLAY V))(FLAME CONTROLLED-HEAT-SOURCE)(VESSEL BOILER-VESSEL-MODIFIED (DISPLAY NETFLOW HEAT PRESSURE TDTIN DTOUT INFLOW OUTFLOW))(AIR HEAT-SINK))(connections((SENSOR OUT) (FLAME CTL))((SENSOR IN) (VESSEL T))(P1 (FLAME OUT) (VESSEL IN))(P2 (VESSEL OUT) (AIR IN))))Constructing the QDE for the modi�ed Steam Boiler from the CCde�nition. Information regarding the model variables is displayed.Model stats: 14 variables, 0 mode variables, 13 constraints.Model variable quantity spaces:Hierarchical name Quantity Space Internal CC name(SB AIR F) (MINF 0 INF) SB_AIR.F@P2(SB VESSEL OUTFLOW) [d] (MINF 0 INF) SB_VESSEL.OUTFLOW@P2(SB VESSEL INFLOW) [d] (MINF 0 INF) SB_VESSEL.INFLOW@P1(SB FLAME F) (MINF 0 INF) SB_FLAME.F@P1(SB VESSEL DTOUT) [d] (MINF 0 INF) SB_VESSEL.DTOUT(SB VESSEL DTIN) [d] (MINF 0 INF) SB_VESSEL.DTIN(SB VESSEL T) [d] (0 AT* FT* INF) SB_VESSEL.T(SB VESSEL PRESSURE) [d] (MINF PF-* PMAX-* PA-* 0

16 PA* PLIM* PMAX* PF* INF)SB_VESSEL.PRESSURE(SB VESSEL HEAT) [d] (0 HA* HF* INF) SB_VESSEL.HEAT(SB VESSEL NETFLOW) [d] (MINF 0 INF) SB_VESSEL.NETFLOWEffort variable equivalence classes:Quantity space: (0 AT* FT* INF) SB.EFFORT_THERMAL@P2(SB VESSEL TOUT)(SB AIR T)Quantity space: (0 AT* FT* INF) SB.EFFORT_THERMAL@P1(SB FLAME T)(SB VESSEL TIN)Quantity space: (MINF PF-* PMAX-* PA-* 0 PA* PLIM* PMAX* PF* INF)SB.EFFORT_HYDRAULIC@C-7669(SB SENSOR P)(SB VESSEL P)Quantity space: (0 VMAX*) SB.EFFORT_ELECTRICAL@C-7668(SB SENSOR V) [d](SB FLAME V)The QDE constructed from the CC model.(define-QDE SB_MODIFIED(quantity-spaces(SB_VESSEL.NETFLOW (minf 0 inf) "(SB VESSEL NETFLOW)")(SB_VESSEL.HEAT (0 ha* hf* inf) "(SB VESSEL HEAT)")(SB_VESSEL.PRESSURE(minf pf-* pmax-* pa-* 0 pa* plim* pmax* pf* inf)"(SB VESSEL PRESSURE)")(SB_VESSEL.T (0 at* ft* inf) "(SB VESSEL T)")(SB_VESSEL.DTIN (minf 0 inf) "(SB VESSEL DTIN)")(SB_VESSEL.DTOUT (minf 0 inf) "(SB VESSEL DTOUT)")(SB.EFFORT_ELECTRICAL@C-7668 (0 vmax*) "(SB SENSOR V)")(SB.EFFORT_HYDRAULIC@C-7669(minf pf-* pmax-* pa-* 0 pa* plim* pmax* pf* inf)"(SB SENSOR P)")(SB.EFFORT_THERMAL@P1 (0 at* ft* inf) "(SB FLAME T)")(SB_FLAME.F@P1 (minf 0 inf) "(SB FLAME F)")(SB_VESSEL.INFLOW@P1 (minf 0 inf) "(SB VESSEL INFLOW)")(SB.EFFORT_THERMAL@P2 (0 at* ft* inf) "(SB VESSEL TOUT)")(SB_VESSEL.OUTFLOW@P2 (minf 0 inf) "(SB VESSEL OUTFLOW)")(SB_AIR.F@P2 (minf 0 inf) "(SB AIR F)"))

17(constraints((S+ SB.EFFORT_HYDRAULIC@C-7669 SB.EFFORT_ELECTRICAL@C-7668(PLIM* 0) (PMAX* VMAX*)) (plim* 0) (pmax* vmax*))((S- SB.EFFORT_ELECTRICAL@C-7668 SB.EFFORT_THERMAL@P1(0 FT*) (VMAX* AT*)) (0 ft*) (vmax* at*))((ADD SB_VESSEL.T SB_VESSEL.DTIN SB.EFFORT_THERMAL@P1)(0 0 0) (at* 0 at*) (ft* 0 ft*))((M+ SB_VESSEL.DTIN SB_VESSEL.INFLOW@P1) (0 0))((ADD SB_VESSEL.T SB_VESSEL.DTOUT SB.EFFORT_THERMAL@P2)(0 0 0) (at* 0 at*) (ft* 0 ft*))((M+ SB_VESSEL.DTOUT SB_VESSEL.OUTFLOW@P2) (0 0))((ADD SB_VESSEL.INFLOW@P1 SB_VESSEL.OUTFLOW@P2 SB_VESSEL.NETFLOW))((D/DT SB_VESSEL.HEAT SB_VESSEL.NETFLOW))((M+ SB_VESSEL.HEAT SB_VESSEL.T) (0 0) (ha* at*) (hf* ft*))((M+ SB_VESSEL.PRESSURE SB_VESSEL.T) (0 0) (pa* at*) (pf* ft*))((M+ SB_VESSEL.PRESSURE SB.EFFORT_HYDRAULIC@C-7669)(pf-* pf-*) (pmax-* pmax-*) (pa-* pa-*) (0 0) (pa* pa*)(plim* plim*) (pmax* pmax*) (pf* pf*))((MINUS SB_FLAME.F@P1 SB_VESSEL.INFLOW@P1)(minf inf) (inf minf) (0 0))((MINUS SB_VESSEL.OUTFLOW@P2 SB_AIR.F@P2)(minf inf) (inf minf) (0 0)))(independent SB.EFFORT_THERMAL@P2)(text (("Simple steam boiler")))(layout(SB_VESSEL.OUTFLOW@P2 SB_VESSEL.INFLOW@P1SB.EFFORT_ELECTRICAL@C-7668)(SB_VESSEL.DTOUT SB_VESSEL.DTIN SB_VESSEL.T)(SB_VESSEL.PRESSURE SB_VESSEL.HEAT SB_VESSEL.NETFLOW))(other(IGNORE-QDIRS)(NO-NEW-LANDMARKS)(CC-INFO . (SB (impl MODIFIED)))(CC-MODE-ASSUMPTIONS))) Simulating the model in QSIM. Behavior tree and qualitative plotsare shown in Figures 3.12 and 3.13.Run time: 0.240 seconds to initialize a state.Run time: 1.200 seconds to simulate 7 states.

18Send Images to [s screen / f file / b both / n nowhere] -> sQualitative time plots. Enter T=behavior Tree,Space or N=Next behavior (1 of 3), behavior number,O=Other commands, Q=Quit: tQualitative time plots. Enter T=behavior Tree,Space or N=Next behavior (1 of 3), behavior number,O=Other commands, Q=Quit: 1Qualitative time plots. Enter T=behavior Tree,Space or N=Next behavior (1 of 3), behavior number,O=Other commands, Q=Quit: qChecking the behavior tree against the design speci�cation. Any dis-crepencies will be noted.Checking behaviors againstDesign specification: DHF-NO-EXPLODEProhibited Scenarios:State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))Boolean Expression: TRUEDesign spec instantiation is #<Spec: PROHIBITED SC-0>:PROHIBITED:Scenario:State Sequence: ((SB_VESSEL.PRESSURE ((PMAX* INF) IGN)))Boolean Expression: TRUEVerified specifications:#<Spec: PROHIBITED SC-0>Classifying the teleological description for the veri�ed speci�cation.Classifying <TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))Value (PMAX* INF) abstracted to (+ INF)Variable type (HYDRAULIC EFFORT) abstracted to EFFORT

19Classifying <IN "Abstract (generic type, qmag) scenario.">Classifying <IN "Abstract (domain type, generic qmag) scenario.">Classifying <IN "Full scenario.">Query design history for purpose of a modi�cation. What were thepurpose(s) of design modi�cation Delta1?<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))Structure inspection:#<Structure DESIGN-MODIFICATION 1670C2B>[0: NAME] DELTA1[1: EDIT-COMMANDS]((REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED (#))(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR (#) (IN #) (OUT #)))[2: HISTORY] <DH for (SB (IMPL 1))>[3: TDS] (<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>)))>> 1#<List 1670C49>[0] (REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED((DISPLAY NETFLOW HEAT PRESSURE T DTIN DTOUT INFLOW OUTFLOW)))[1] (REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)[2] (ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR((DISPLAY V)) (IN (VESSEL T)) (OUT (FLAME CTL)))>> :U#<Structure DESIGN-MODIFICATION 1670C2B>[0: NAME] DELTA1[1: EDIT-COMMANDS]((REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED (#))(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR (#) (IN #) (OUT #)))[2: HISTORY] <DH for (SB (IMPL 1))>[3: TDS] (<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>)))

20>> 2#<Structure DESIGN-HISTORY 1670C0B>[0: INITIAL-DESIGN] (SB (IMPL 1))[1: MODIFICATIONS] (DELTA1)>> :U#<Structure DESIGN-MODIFICATION 1670C2B>[0: NAME] DELTA1[1: EDIT-COMMANDS]((REPLACE-SUBCOMPONENT VESSEL BOILER-VESSEL-MODIFIED (#))(REPLACE-SUBCOMPONENT FLAME CONTROLLED-HEAT-SOURCE NIL)(ADD-SUBCOMPONENT SENSOR PRESSURE-SENSOR (#) (IN #) (OUT #)))[2: HISTORY] <DH for (SB (IMPL 1))>[3: TDS] (<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>)))>> 3#<List C7C801>[0] <TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))>> 0#<Structure TD C7C78B>[0: MODIFICATION] DELTA1[1: CONDITION] NIL[2: RESULT] ((<IV SB_VESSEL.PRESSURE>))[3: OPERATOR-NEGATED?] NIL[4: RESULT-NEGATED?] T>> 2#<List C7C721>[0] (<IV SB_VESSEL.PRESSURE>)>> 0#<List C7C719>[0] <IV SB_VESSEL.PRESSURE>>> 0#<Structure INDEX-VARIABLE C7C6FB>[0: NAME] SB_VESSEL.PRESSURE[1: TYPE] (HYDRAULIC EFFORT)[2: QMAG] (PMAX* INF)[3: QDIR] IGN[4: QSPACE] (MINF PF-* PMAX-* PA-* 0 PA* PLIM* PMAX* PF* INF)

21>> :Q Query index for teleological descriptions matching a spec.Design specification: DHF-NO-EXPLODEProhibited Scenarios:State Sequence: (((PRESSURE) ((PMAX* INF) IGN)))Boolean Expression: TRUETd's addressing the specification:<TD DELTA1 PREVENTS ((<IV SB_VESSEL.PRESSURE>))

Appendix BCircuit ExampleB.1 Quantity Space De�nitions(define-quantity-space MOS-voltage-qspace(Vhi- Vhi-Vtn Vtp 0 Vtn VhiVtp Vhi)(conservation-correspondences(Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn)))(define-quantity-space MOS-positive-voltage-qspace(0 Vtn VhiVtp Vhi)(parent MOS-voltage-qspace))(define-quantity-space MOS-current-qspace(Imax- 0 Imax)(conservation-correspondences (Imax- Imax)))B.2 Component De�nitions(define-component-interfaceReference-Voltage"Reference voltage" electrical(terminals t)(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace)))))(define-component-implementationprimitive Reference-Voltage"Reference Voltage in QSIM primitives"(terminal-variables (t (v voltage independent)(i current)))(constraints ((CONSTANT v)))) 22

23(define-component-interfaceSplit"Split one flow into two" electrical(terminals m s1 s2)(quantity-spaces(defaults (voltage MOS-positive-voltage-qspace)(current base-quantity-space))))(define-component-implementationEquipotential-base-qspace Split"Flows are synchronized in direction and 0 value"(terminal-variables (m (v voltage)(i current))(s1 (v1 voltage)(i1 current))(s2 (v2 voltage)(i2 current)))(constraints((SUM-ZERO i i1 i2) (0 0 0))((M- i i1) (minf inf) (0 0) (inf minf))((M- i i2) (minf inf) (0 0) (inf minf))((M+ v v1) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))((M+ v v2) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))))(define-component-implementationEquipotential-current-qspace Split"Flows are synchronized in direction and 0 value"(terminal-variables(m (v voltage)(i current (quantity-space MOS-current-qspace)))(s1 (v1 voltage)(i1 current (quantity-space MOS-current-qspace)))(s2 (v2 voltage)(i2 current (quantity-space MOS-current-qspace))))(constraints((SUM-ZERO i i1 i2) (0 0 0) (Imax Imax- 0) (Imax 0 Imax-)(Imax- Imax 0) (Imax- 0 Imax))((M- i i1) (0 0))((M- i i2) (0 0))((M+ v v1) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))((M+ v v2) (0 0) (Vtn Vtn) (VhiVtp VhiVtp) (Vhi Vhi))))

24(define-component-interfacecapacitor"Electrical Capacitor" electrical(terminals t1 t2)(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace))(current MOS-current-qspace))(hierarchical-parents (voltage MOS-voltage-qspace))))(define-component-implementationcurrent-qspace capacitor"Electrical capacitor in QSIM primitives"(terminal-variables(t1 (v1 voltage (quantity-space MOS-positive-voltage-qspace))(i current display))(t2 (v2 voltage (quantity-space MOS-positive-voltage-qspace))(i2 current)))(component-variables(v voltage display (quantity-space MOS-voltage-qspace))(c capacitance independent (quantity-space (0 C*)))(q charge (quantity-space (0 Q*))))(constraints((ADD v v2 v1) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((MULT v c q) (Vhi C* Q*))((d/dt q i))((MINUS i i2) (imax imax-) (0 0) (Imax- Imax))((CONSTANT c))))(define-component-implementationbase-qspace capacitor"Electrical capacitor in QSIM primitives"(terminal-variables(t1 (v1 voltage (quantity-space MOS-positive-voltage-qspace))(i current display (quantity-space base-quantity-space)))(t2 (v2 voltage (quantity-space MOS-positive-voltage-qspace))(i2 current (quantity-space base-quantity-space))))(component-variables(v voltage display (quantity-space MOS-voltage-qspace))

25(c capacitance independent (quantity-space (0 C*)))(q charge (quantity-space (0 Q*))))(constraints((ADD v v2 v1) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((MULT v c q) (Vhi C* Q*))((d/dt q i))((MINUS i i2) (inf minf) (0 0) (minf inf))((CONSTANT c))))(define-component-interfaceMOS-transistor"MOS transistor" electrical(terminals g s d)(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace))(current MOS-current-qspace))(hierarchical-parents (voltage MOS-voltage-qspace))))(define-component-implementationN-channel-bidirectional MOS-transistor"N channel, bidirectional transistor"(terminal-variables(g (Vg voltage (quantity-space MOS-positive-voltage-qspace))(Ig current (quantity-space base-quantity-space)))(s (Vs voltage (quantity-space MOS-positive-voltage-qspace))(Isd current))(d (Vd voltage (quantity-space MOS-positive-voltage-qspace))(Ids current)))(component-variables(Vsd voltage (quantity-space MOS-voltage-qspace))(Vds voltage (quantity-space MOS-voltage-qspace))(Vgs voltage (quantity-space MOS-voltage-qspace))(Vgd voltage (quantity-space MOS-voltage-qspace))(channel1 resistance (quantity-space (0 C1*))(landmark-symbol ch))(channel2 resistance (quantity-space (0 C2*))(landmark-symbol ch))(channel12 resistance (quantity-space (0 C12* C3*))

26 (landmark-symbol ch))(channel resistance (quantity-space (0 Ch*))(landmark-symbol ch))(Qg charge (quantity-space (0 Qg*)))(Cg capacitance independent (quantity-space (0 Cg*))))(constraints((ADD Vsd Vd Vs) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((MINUS Vsd Vds) (Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn) (0 0)(Vhi Vhi-) (VhiVtp Vhi-Vtn) (Vtn Vtp))((ADD Vgd Vd Vg) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((ADD Vgs Vs Vg) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((S+ Vgd channel1 (Vtn 0) (Vhi C1*)))((S+ Vgs channel2 (Vtn 0) (Vhi C2*)))((ADD channel1 channel2 channel12) (0 0 0) (C1* 0 C12*)(0 C2* C12*) (C1* C2* C3*))((S+ channel12 channel (0 0) (C12* Ch*)))((MULT Vsd channel Isd) (Vhi Ch* Imax) (Vhi- Ch* Imax-))((MINUS Ids Isd) (Imax- Imax) (0 0) (Imax Imax-));; Gate capacitance constraints((MULT Vg Cg Qg) (Vhi Cg* Qg*))((D/DT Qg Ig))))(define-component-implementationP-channel-bidirectional MOS-transistor"P channel transistor in QSIM primitives"(terminal-variables(g (Vg voltage (quantity-space MOS-positive-voltage-qspace))(Ig current (quantity-space base-quantity-space)))(s (Vs voltage (quantity-space MOS-positive-voltage-qspace))(Isd current))

27(d (Vd voltage (quantity-space MOS-positive-voltage-qspace))(Ids current)))(component-variables(Vsd voltage (quantity-space MOS-voltage-qspace))(Vds voltage (quantity-space MOS-voltage-qspace))(Vgs voltage (quantity-space MOS-voltage-qspace))(Vgd voltage (quantity-space MOS-voltage-qspace))(channel1 resistance (quantity-space (0 C1*))(landmark-symbol ch))(channel2 resistance (quantity-space (0 C2*))(landmark-symbol ch))(channel12 resistance (quantity-space (0 C12* C3*))(landmark-symbol ch))(channel resistance (quantity-space (0 Ch*))(landmark-symbol ch))(Qg charge (quantity-space (0 Qg*)))(Cg capacitance independent (quantity-space (0 Cg*))))(constraints((ADD Vsd Vd Vs) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((MINUS Vsd Vds) (Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn) (0 0)(Vhi Vhi-) (VhiVtp Vhi-Vtn) (Vtn Vtp))((ADD Vgd Vd Vg) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((ADD Vgs Vs Vg) (Vhi- Vhi 0) (Vhi-Vtn VhiVtp 0) (Vhi-Vtn Vhi Vtn)(Vtp Vtn 0) (Vtp Vhi VhiVtp)(0 0 0) (0 Vtn Vtn) (0 VhiVtp VhiVtp) (0 Vhi Vhi)(Vtn 0 Vtn) (Vtn VhiVtp Vhi)(VhiVtp 0 VhiVtp) (VhiVtp Vtn Vhi) (Vhi 0 Vhi))((S- Vgd channel1 (Vhi- C1*) (Vtp 0)))((S- Vgs channel2 (Vhi- C2*) (Vtp 0)))((ADD channel1 channel2 channel12) (0 0 0) (C1* 0 C12*)(0 C2* C12*) (C1* C2* C3*))((S+ channel12 channel (0 0) (C12* Ch*)))((MULT Vsd channel Isd) (Vhi Ch* Imax) (Vhi- Ch* Imax-))((MINUS Ids Isd) (Imax- Imax) (0 0) (Imax Imax-));; Gate capacitance constraints

28 ((MULT Vg Cg Qg) (Vhi Cg* Qg*))((D/DT Qg Ig))))(define-component-implementationN-channel-source-at-Vss MOS-transistor"N channel transistor - source at Vss (0)"(terminal-variables(g (Vg voltage (quantity-space MOS-positive-voltage-qspace))(Ig current (quantity-space base-quantity-space)))(s (Vs voltage (quantity-space (0)))(Isd current))(d (Vd voltage (quantity-space MOS-positive-voltage-qspace))(Ids current)))(component-variables(Vsd voltage (quantity-space MOS-voltage-qspace))(channel resistance (quantity-space (0 Ch*))(landmark-symbol ch))(Qg charge (quantity-space (0 Qg*)))(Cg capacitance independent (quantity-space (0 Cg*))))(constraints((M- Vsd Vd) (Vhi- Vhi) (Vhi-Vtn VhiVtp) (Vtp Vtn) (0 0))((CONSTANT Vs 0))((S+ Vg channel (Vtn 0) (Vhi Ch*)))((MULT Vsd channel Isd) (Vhi- Ch* Imax-))((MINUS Ids Isd) (0 0) (Imax Imax-));; Gate capacitance constraints((MULT Vg Cg Qg) (Vhi Cg* Qg*))((D/DT Qg Ig))))(define-component-implementationP-channel-drain-at-Vdd MOS-transistor"P channel transistor - drain at Vdd (Vhi)"(terminal-variables(g (Vg voltage (quantity-space MOS-positive-voltage-qspace))(Ig current (quantity-space base-quantity-space)))(s (Vs voltage (quantity-space MOS-positive-voltage-qspace))(Isd current))(d (Vd voltage (quantity-space (0 Vhi)))(Ids current)))(component-variables(Vsd voltage (quantity-space MOS-voltage-qspace))

29(Vgd voltage (quantity-space MOS-voltage-qspace))(channel resistance (quantity-space (0 Ch*))(landmark-symbol ch))(Qg charge (quantity-space (0 Qg*)))(Cg capacitance independent (quantity-space (0 Cg*))))(constraints((M+ Vsd Vs) (Vhi- 0) (Vhi-Vtn Vtn) (Vtp VhiVtp) (0 Vhi))((CONSTANT Vd Vhi))((M+ Vgd Vg) (Vhi- 0) (Vhi-Vtn Vtn) (Vtp VhiVtp) (0 Vhi))((S- Vgd channel (Vhi- Ch*) (Vtp 0)))((MULT Vsd channel Isd) (Vhi- Ch* Imax-))((MINUS Ids Isd) (0 0) (Imax Imax-));; Gate capacitance constraints((MULT Vg Cg Qg) (Vhi Cg* Qg*))((D/DT Qg Ig))))(define-component-interfaceP-Channel-Feedback"P-channel transistor with Vdd at drain" electrical(terminals g s)(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace))(current MOS-current-qspace))(hierarchical-parents (voltage MOS-voltage-qspace))))(define-component-implementation1 P-Channel-Feedback"P-Channel-Feedback from P-Channel with drain at Vdd, and Vdd"(components(Vdd reference-voltage (ignore-qdir I))(Pt (MOS-transistor (impl P-channel-drain-at-Vdd))(ignore-qdir Ids Isd Ig) (display Ids Vg)))(connections (w (Vdd t) (Pt d))(g (Pt g))(s (Pt s))))(define-component-interfaceTransmission-Gate"CMOS transmission gate (N, P in parallel)" electrical(terminals in out ctl ctl-bar)

30(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace))(current MOS-current-qspace))(hierarchical-parents (voltage MOS-voltage-qspace))))(define-component-implementationtransistors Transmission-Gate"P-channel and N-channel transistors in parallel."(components(Pt (MOS-transistor (impl P-channel-bidirectional))(display Ids Qg))(Nt (MOS-transistor (impl N-channel-bidirectional))(display Ids Qg)))(connections (in (Pt s) (Nt s))(out (Pt d) (Nt d))(ctl (Pt g))(ctl-bar (Nt g))))(define-component-interfaceInverter "Inverter composed from transistors" electrical(terminals in out)(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace))(current MOS-current-qspace))(hierarchical-parents (voltage MOS-voltage-qspace))))(define-component-implementationtransistors Inverter"P-channel and N-channel transistors."(components(Vdd reference-voltage (ignore-qdir i))(Vss reference-voltage (ignore-qdir i))(Pt (MOS-transistor (impl P-channel-drain-at-Vdd))(initable Qg Vg Vs) (ignore-qdir Ids Isd Ig)(display Ids Qg) (no-new-landmarks Ig))(Nt (MOS-transistor (impl N-channel-source-at-Vss))(initable Qg Vg Vd) (ignore-qdir Ids Isd Ig)(display Ids Qg) (no-new-landmarks Ig))(S (Split (impl equipotential-base-qspace))(ignore-qdir I I1 I2) (display V I)(no-new-landmarks I I1 I2)))(connections (w1 (Vdd t) (Pt d))

31(w2 (Vss t) (Nt s))(w3 (S s1) (Pt g))(w4 (S s2) (Nt g))(in (S m))(out (Pt s) (Nt d))))B.3 Model De�nitions(define-component-interfaceISC "Input selection circuit" electrical(quantity-spaces(defaults (voltage (0 Vhi) (parent MOS-voltage-qspace))(current base-quantity-space))(hierarchical-parents (voltage MOS-voltage-qspace))))(define-component-implementation1 ISC"N-trans for input select, capacitor for output load."(components(RV1 reference-voltage)(RV2 reference-voltage)(RV3 reference-voltage (ignore-qdir i))(t1 (MOS-transistor (impl N-channel-bidirectional))(display Ids Vs))(inv Inverter)(C (capacitor (impl current-qspace))(ignore-qdir i i2)))(connections (w1 (RV1 t) (t1 d))(w2 (RV2 t) (t1 g))(w3 (t1 s) (inv in))(w4 (inv out) (C t1))(w5 (RV3 t) (c t2))))(define-component-implementation2 ISC"N-trans for input select, P-trans for feedback."(components(RV1 reference-voltage)(RV2 reference-voltage)(RV3 reference-voltage (ignore-qdir I))

32 (t1 (MOS-transistor (impl N-channel-bidirectional))(display Ids Vs))(t2 P-channel-feedback)(inv Inverter)(C (Capacitor (impl current-qspace)) (ignore-qdir i i2))(S (Split (impl equipotential-current-qspace))(ignore-qdir I I1 I2) (display V)(no-new-landmarks I I1 I2)))(connections (w1 (RV1 t) (t1 d))(w2 (RV2 t) (t1 g))(w3 (t1 s) (inv in) (t2 s))(w4 (inv out) (S m))(w5 (C t2) (RV3 t))(w6 (S s1) (t2 g))(w7 (S s2) (C t1))))(define-component-implementation3 ISC"Transmission-gate for ramp input."(components(RV1 reference-voltage)(RV2 reference-voltage)(RV3 reference-voltage (ignore-qdir I))(RV4 reference-voltage (ignore-qdir I))(Tm transmission-gate (display Isd Vsd))(inv Inverter)(C (Capacitor (impl base-qspace))(ignore-qdir i i2)))(connections (w1 (RV1 t) (Tm in))(w2 (RV2 t) (Tm ctl))(w3 (RV4 t) (Tm ctl-bar))(w4 (Tm out) (inv in))(w5 (inv out) (C t1))(w6 (C t2) (RV3 t))))

33B.4 Design Speci�cations(for-component X (inverter MOS-transistor)(prohibited (((((X Vg) ((0 Vhi) std)))) true)))(for-component X (inverter MOS-transistor)(conditionally ((((((X Vg) (0 std)))(((X Vg) ((0 Vhi) std)))) true))(required (((((X Vg) (Vhi std))))true))))(for-component X (ISC)(for-component Y (X inverter MOS-transistor)(conditionally ((((((Y Vg) (Vhi ign))((X Nt Vg) (0 std)))) true))(prohibited (((((Y Vg) ((0 Vhi) std))((X Nt Vg) (0 std))))true)))))(for-component X (ISC)(for-component Y (X inverter MOS-transistor)(conditionally ((((((X Nt Vg) (Vhi std))((X Nt Vd) (0 std)))) true))(required (((((Y Vg) (0 std))))true)))))

Appendix CElectric Motor ExampleC.1 Quantity Space De�nitions(define-quantity-space position-X-qspace (X180- X- 0 X+ X180+)(conservation-correspondences (X180- X180+) (X- X+)))(define-quantity-space positive-qspace (0 inf))(define-quantity-space polarity-qspace (South 0 North)(conservation-correspondences (South North)))(define-quantity-space angular-force-qspace (F- 0 F+)(conservation-correspondences (F- F+)))(define-quantity-space orientation-qspace (Omax- 0 Omax+)(conservation-correspondences (Omax- Omax+)))(define-quantity-space orientation-60-qspace(Omax- O60- 0 O60+ Omax+)(conservation-correspondences (Omax- Omax+) (O60- O60+)))(define-quantity-space motor-current-qspace (Imax- 0 Imax+)(conservation-correspondences (Imax- Imax+)))(define-quantity-space motor-velocity-qspace (minf 0 V* inf))(define-quantity-space position-90-qspace (X180- X90- 0 X90+ X180+)(conservation-correspondences (X180- X180+) (X90- X90+)))(define-quantity-space position-30-qspace(X180- X150- X120- X90- X60- X30- 0X30+ X60+ X90+ X120+ X150+ X180+)(conservation-correspondences (X180- X180+) (X150- X150+)(X120- X120+) (X90- X90+) (X60- X60+) (X30- X30+)))(define-quantity-space motor-velocity-qspace (minf 0 V*))34

35(define-quantity-space motor-lateral-force-qspace(minf F-lat- 0 F-lat+ inf)(conservation-correspondences (F-lat- F-lat+)))C.2 Component De�nitions(define-component-interfacerotor "Rotor for electromechanical motor" mechanical-rotation(terminals shaft magnet))(define-component-implementation1 rotor ""(terminal-variables(shaft (F-ang force)(V velocity)(F-lat (mechanical-translation force))(I (electrical current)))(magnet (F-mag (magnetic force))))(component-variables(Polarity (magnetic force) (quantity-space polarity-qspace))(Repulsion force (quantity-space angular-force-qspace))(PotentialF force (quantity-space angular-force-qspace))(Orientation displacement (quantity-space orientation-qspace)))(constraints((M+ I Polarity) (Imax- South) (0 0) (Imax+ North))((mult F-mag Polarity Repulsion) (0 0 0) (South North F-)(North South F-) (South South F+) (North North F+))((minus Repulsion PotentialF) (F- F+) (0 0) (F+ F-))((mult PotentialF Orientation F-ang) (F- Omax- F+) (F- Omax+ F-)(0 0 0) (F+ Omax- F-) (F+ Omax+ F+))((U- V F-lat (0 0)) (minf minf) (inf minf))))(define-component-interfacemagnet "Magnet for electromechanical motor" magnetic(terminals north south))(define-component-implementation1 magnet ""(terminal-variables

36 (north (F-north force (quantity-space polarity-qspace)))(south (F-south force (quantity-space polarity-qspace))))(constraints ((constant F-north north))((constant F-south south))))(define-component-interfaceone-terminal-shaft"Single terminal shaft for electromechanical motor"mechanical-rotation(terminals t))(define-component-implementation1 one-terminal-shaft ""(terminal-variables(t (F-ang force)(V velocity (quantity-space motor-velocity-qspace))(F-lat (mechanical-translation force))(I (electrical current))))(component-variables(X displacement)(Cum-F-ang force (quantity-space angular-force-qspace))(KE energy))(constraints ((d/dt X V))((d/dt V Cum-F-ang))((minus Cum-F-ang F-ang) (F- F+) (0 0) (F+ F-))((U+ V KE (0 0)) (minf inf) (inf inf))))(define-component-interface2-field-rotor"Rotor for electromechanical motor, two magnetic fields"mechanical-rotation(terminals shaft magnet- magnet+))(define-component-implementation1 2-field-rotor"Rotor for electromechanical motor, two magnetic fields"(terminal-variables(shaft (F-ang force)(V velocity (quantity-space motor-velocity-qspace))(F-lat (mechanical-translation force)(quantity-space motor-lateral-force-qspace))(I (electrical current)))

37(magnet+ (F-mag+ (magnetic force)))(magnet- (F-mag- (magnetic force))))(component-variables(Polarity (magnetic force) (quantity-space polarity-qspace))(Repulsion- force (quantity-space angular-force-qspace))(Repulsion+ force (quantity-space angular-force-qspace))(PotentialF force (quantity-space angular-force-qspace))(Orientation displacement (quantity-space orientation-qspace)))(constraints((M+ I Polarity) (Imax- South) (0 0) (Imax+ North))((mult F-mag- Polarity Repulsion-) (0 0 0) (South North F-)(North South F-) (South South F+) (North North F+))((mult F-mag+ Polarity Repulsion+) (0 0 0) (South North F-)(North South F-) (South South F+) (North North F+))((add Repulsion+ PotentialF Repulsion-)(0 0 0) (F- F+ F+) (F+ F- F-))((mult PotentialF Orientation F-ang) (F- Omax- F+) (F- Omax+ F-)(0 0 0) (F+ Omax- F-) (F+ Omax+ F+))((U- V F-lat (0 0)) (minf minf) (V* F-lat-))))(define-component-implementation2 one-terminal-shaft ""(terminal-variables(t (F-ang force)(V velocity)(F-lat (mechanical-translation force)(quantity-space motor-lateral-force-qspace))(I (electrical current))))(component-variables(X displacement)(Cum-F-ang force (quantity-space angular-force-qspace)))(constraints ((d/dt X V))((d/dt V Cum-F-ang))((minus Cum-F-ang F-ang) (F- F+) (0 0) (F+ F-))))(define-component-interface2-terminal-shaft "Two terminal motor shaft" mechanical-rotation(terminals t1 t2)(quantity-spaces(defaults(velocity motor-velocity-qspace)(force angular-force-qspace)

38 ((mechanical-translation force) motor-lateral-force-qspace)((electrical current) motor-current-qspace))))(define-component-implementation1 2-terminal-shaft "Two terminal motor shaft"(terminal-variables (t1 (F-ang1 force)(V1 velocity)(F-lat1 (mechanical-translation force))(I1 (electrical current)))(t2 (F-ang2 force)(V2 velocity)(F-lat2 (mechanical-translation force))(I2 (electrical current))))(component-variables (X displacement)(Cum-F-ang force)(Cum-F-lat (mechanical-translation force)))(mode-variables(position(positive <- (or (X ((0 X180+) nil))(X (X180+ dec))(X (X180+ std))))(negative <- (or (X ((X180- 0) nil))(X (X180- inc))(X (X180- std))))(:discontinuous-transition <- (X (X180+ inc))negative (X (X180- inc)))(:discontinuous-transition <- (X (X180- dec))positive (X (X180+ dec)))))(constraints((d/dt X V1))((d/dt V1 Cum-F-ang))((sum-zero F-ang1 F-ang2 Cum-F-ang) (F- F- F+) (0 0 0) (F+ F+ F-))((minus I1 I2) (Imax- Imax+) (0 0) (Imax+ Imax-))((equal V1 V2) (0 0) (V* V*))((constant Cum-F-lat 0))((position positive) -> ((S- V1 I1 (0 Imax+) (V* 0))))((position negative) -> ((S- V1 I2 (0 Imax+) (V* 0))))))(define-component-interface3-terminal-shaft "Three terminal motor shaft" mechanical-rotation(terminals t1 t2 t3)(quantity-spaces(defaults

39(velocity motor-velocity-qspace)(force angular-force-qspace)((mechanical-translation force) motor-lateral-force-qspace)((electrical current) motor-current-qspace))))(define-component-implementation1 3-terminal-shaft "Three terminal motor shaft"(terminal-variables (t1 (F-ang1 force)(V1 velocity)(F-lat1 (mechanical-translation force))(I1 (electrical current)))(t2 (F-ang2 force)(V2 velocity)(F-lat2 (mechanical-translation force))(I2 (electrical current)))(t3 (F-ang3 force)(V3 velocity)(F-lat3 (mechanical-translation force))(I3 (electrical current))))(component-variables (X displacement)(Cum-F-ang force)(Cum-F-lat (mechanical-translation force)))(mode-variables(position(X0toX60+ <- (or (X ((0 X60+) nil))(X (X60+ dec))(X (0 inc))(X (X60+ std))(X (0 std))))(X60+toX120+ <- (or (X ((X60+ X120+) nil))(X (X120+ dec))(X (X60+ inc))(X (X120+ std))(X (X60+ std))))(X120+toX180+ <- (or (X ((X120+ X180+) nil))(X (X180+ dec))(X (X120+ inc))(X (X180+ std))(X (X120+ std))))(X180-toX120- <- (or (X ((X180- X120-) nil))(X (X120- dec))(X (X180- inc))(X (X120- std))

40 (X (X180- std))))(X120-toX60- <- (or (X ((X120- X60-) nil))(X (X60- dec))(X (X120- inc))(X (X60- std))(X (X120- std))))(X60-toX0 <- (or (X ((X60- 0) nil))(X (0 dec))(X (X60- inc))(X (X60- std))))(:discontinuous-transition <- (X (X180+ inc))X180-toX120- (X (X180- inc)))(:discontinuous-transition <- (X (X180- dec))X180+toX120+ (X (X180+ dec)))))(constraints((d/dt X V1))((d/dt V1 Cum-F-ang))((sum-zero F-ang1 F-ang2 F-ang3 Cum-F-ang)(F- F- F- F+) (0 0 0 0) (F+ F+ F+ F-))((equal V1 V2) (0 0) (V* V*))((equal V1 V3) (0 0) (V* V*))((constant Cum-F-lat 0))((position X0toX60+) ->((S- V1 I1 (0 Imax+) (V* 0)))((equal I1 I2) (Imax- Imax-) (0 0) (Imax+ Imax+))((minus I1 I3) (Imax- Imax+) (0 0) (Imax+ Imax-)))((position X60+toX120+) ->((S- V1 I1 (0 Imax+) (V* 0)))((equal I2 I3) (Imax- Imax-) (0 0) (Imax+ Imax+))((minus I1 I3) (Imax- Imax+) (0 0) (Imax+ Imax-)))((position X120+toX180+) ->((S- V3 I3 (0 Imax+) (V* 0)))((equal I1 I3) (Imax- Imax-) (0 0) (Imax+ Imax+))((minus I1 I2) (Imax- Imax+) (0 0) (Imax+ Imax-)))((position X180-toX120-) ->((S- V3 I3 (0 Imax+) (V* 0)))((equal I1 I2) (Imax- Imax-) (0 0) (Imax+ Imax+))((minus I1 I3) (Imax- Imax+) (0 0) (Imax+ Imax-)))((position X120-toX60-) ->((S- V2 I2 (0 Imax+) (V* 0)))((equal I2 I3) (Imax- Imax-) (0 0) (Imax+ Imax+))((minus I1 I3) (Imax- Imax+) (0 0) (Imax+ Imax-)))((position X120-toX60-) ->

41((S- V2 I2 (0 Imax+) (V* 0)))((equal I1 I3) (Imax- Imax-) (0 0) (Imax+ Imax+))((minus I1 I2) (Imax- Imax+) (0 0) (Imax+ Imax-)))))C.3 Model De�nitions(define-component-interfacemotor "Electromechanical motor" mechanical(quantity-spaces(defaults ((magnetic force) polarity-qspace)((electrical current) motor-current-qspace)((mechanical-rotation force) angular-force-qspace))))(define-component-implementation1 motor"Single magnet, single rotor"(quantity-spaces(default((mechanical-rotation velocity) motor-velocity-qspace)))(component-variables (PE energy (quantity-space (0 PE+ PE*)))(TE energy))(mode-variables(position(positive <- (or ((shaft X) ((0 X180+) nil))((shaft X) (X180+ dec))((shaft X) (X180+ std))))(negative <- (or ((shaft X) ((X180- 0) nil))((shaft X) (X180- inc))((shaft X) (X180- std))))(:discontinuous-transition <- ((shaft X) (X180+ inc))negative ((shaft X) (X180- inc)))(:discontinuous-transition <- ((shaft X) (X180- dec))positive ((shaft X) (X180+ dec)))))(components (magnet magnet)(rotor (rotor (impl 1)) (no-new-landmarks F-lat F-ang)(ignore-qdir F-ang)(quantity-spaces (X position-X-qspace)))(shaft (one-terminal-shaft (impl 1))(no-new-landmarks F-lat F-ang Cum-F-ang)(ignore-qdir F-ang Cum-F-ang)(quantity-spaces (X position-X-qspace))))

42(constraints((ADD PE (shaft KE) TE) (0 0 0))((constant TE))((constant (shaft I) Imax+))((position positive)->((U- (shaft X) (rotor Orientation) (X+ Omax+))(0 0) (X180+ 0))((S- (shaft X) PE (0 PE*) (X180+ 0)) (X+ PE+)))((position negative)->((U+ (shaft X) (rotor Orientation) (X- Omax-))(X180- 0) (0 0))((S+ (shaft X) PE (X180- 0) (0 PE*)) (X- PE+))))(connections (c1 (rotor magnet) (magnet north))(c2 (rotor shaft) (shaft t))))(define-component-implementation2 motor"Double magnet, single rotor"(quantity-spaces(defaults((mechanical-rotation velocity) motor-velocity-qspace)))(mode-variables(position(positive <- (or ((shaft X) ((0 X180+) nil))((shaft X) (X180+ dec))((shaft X) (X180+ std))))(negative <- (or ((shaft X) ((X180- 0) nil))((shaft X) (X180- inc))((shaft X) (X180- std))))(:discontinuous-transition <- ((shaft X) (X180+ inc))negative ((shaft X) (X180- inc)))(:discontinuous-transition <- ((shaft X) (X180- dec))positive ((shaft X) (X180+ dec)))))(components(magnet1 magnet)(magnet2 magnet)(rotor 2-field-rotor (no-new-landmarks F-lat F-ang)(ignore-qdir F-ang))(shaft (one-terminal-shaft (impl 2))(no-new-landmarks F-lat F-ang Cum-F-ang)(ignore-qdir F-ang Cum-F-ang)

43(quantity-spaces (X position-90-qspace))))(constraints((position positive)->((U- (shaft X) (rotor Orientation) (X90+ Omax+))(0 0) (X180+ 0))((S- (shaft V) (shaft I) (0 Imax+) (V* 0))))((position negative)->((U+ (shaft X) (rotor Orientation) (X90- Omax-))(X180- 0) (0 0))((S+ (shaft V) (shaft I) (0 Imax-) (V* 0)))))(connections (c1 (rotor magnet+) (magnet1 north))(c2 (rotor magnet-) (magnet2 south))(c3 (rotor shaft) (shaft t))))(define-component-implementation3 motor"Double magnet, double rotor"(quantity-spaces(defaults((mechanical-rotation force) angular-force-qspace)((mechanical-rotation velocity) motor-velocity-qspace)))(mode-variables(position(positive <- (or ((shaft X) ((0 X180+) nil))((shaft X) (X180+ dec))((shaft X) (X180+ std))((shaft X) (0 inc))((shaft X) (0 std))))(negative <- (or ((shaft X) ((X180- 0) nil))((shaft X) (X180- inc))((shaft X) (X180- std))((shaft X) (0 dec))((shaft X) (0 std))))(:discontinuous-transition <- ((shaft X) (X180+ inc))negative ((shaft X) (X180- inc)))(:discontinuous-transition <- ((shaft X) (X180- dec))positive ((shaft X) (X180+ dec)))))(components(magnet1 magnet)

44 (magnet2 magnet)(rotor1 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang)(quantity-spaces (Orientation orientation-qspace)))(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang)(quantity-spaces (Orientation orientation-qspace)))(shaft (2-terminal-shaft (impl 1))(no-new-landmarks F-lat1 F-lat2 F-ang1 F-ang2F-ang-sum Cum-F-ang)(ignore-qdir F-ang1 F-ang2 F-ang-sum Cum-F-ang)(quantity-spaces (X position-90-qspace))))(constraints((position positive)-> ((U- (shaft X) (rotor1 Orientation) (X90+ Omax+))(0 0) (X180+ 0))((U+ (shaft X) (rotor2 Orientation) (X90+ Omax-))(0 0) (X180+ 0)))((position negative)-> ((U+ (shaft X) (rotor1 Orientation) (X90- Omax-))(X180- 0) (0 0))((U- (shaft X) (rotor2 Orientation) (X90- Omax+))(X180- 0) (0 0))))(connections (c1 (rotor1 magnet+) (rotor2 magnet+) (magnet1 north))(c2 (rotor1 magnet-) (rotor2 magnet-) (magnet2 south))(c3 (rotor1 shaft) (shaft t1))(c4 (rotor2 shaft) (shaft t2))))(define-component-implementation4 motor"Double magnet, triple rotor"(quantity-spaces(defaults((mechanical-rotation force) angular-force-qspace)((mechanical-rotation velocity) motor-velocity-qspace)))(mode-variables(position(X0toX60+ <- (or ((shaft X) ((0 X60+) nil))((shaft X) (X60+ dec))((shaft X) (0 inc))((shaft X) (X60+ std))((shaft X) (0 std))))(X60+toX120+ <- (or ((shaft X) ((X60+ X120+) nil))

45((shaft X) (X120+ dec))((shaft X) (X60+ inc))((shaft X) (X120+ std))((shaft X) (X60+ std))))(X120+toX180+ <- (or ((shaft X) ((X120+ X180+) nil))((shaft X) (X180+ dec))((shaft X) (X120+ inc))((shaft X) (X180+ std))((shaft X) (X120+ std))))(X180-toX120- <- (or ((shaft X) ((X180- X120-) nil))((shaft X) (X120- dec))((shaft X) (X180- inc))((shaft X) (X120- std))((shaft X) (X180- std))))(X120-toX60- <- (or ((shaft X) ((X120- X60-) nil))((shaft X) (X60- dec))((shaft X) (X120- inc))((shaft X) (X60- std))((shaft X) (X120- std))))(X60-toX0 <- (or ((shaft X) ((X60- 0) nil))((shaft X) (0 dec))((shaft X) (X60- inc))((shaft X) (X60- std))))(:discontinuous-transition <- ((shaft X) (X180+ inc))X180-toX120- ((shaft X) (X180- inc)))(:discontinuous-transition <- ((shaft X) (X180- dec))X180+toX120+ ((shaft X) (X180+ dec)))))(components(magnet1 magnet)(magnet2 magnet)(rotor1 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation Polarity)(quantity-spaces (Orientation orientation-60-qspace)))(rotor2 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation)(quantity-spaces (Orientation orientation-60-qspace)))(rotor3 2-field-rotor (no-new-landmarks F-lat F-ang Orientation)(ignore-qdir F-ang) (display I Orientation)(quantity-spaces (Orientation orientation-60-qspace)))(shaft (3-terminal-shaft (impl 1))(no-new-landmarks F-lat1 F-lat2 F-lat3F-ang1 F-ang2 F-ang3 Cum-F-ang)(display V1 X Cum-F-lat Cum-F-ang Position)

46 (ignore-qdir F-ang1 F-ang2 F-ang3 Cum-F-ang)(quantity-spaces (X position-30-qspace))))(constraints((position X0toX60+)-> ((M+ (shaft X) (rotor1 Orientation)) (0 0) (X60+ O60+))((M- (shaft X) (rotor2 Orientation)) (0 O60+) (X60+ 0))((U+ (shaft X) (rotor3 Orientation) (X30+ Omax-))(0 O60-) (X60+ O60-)))((position X60+toX120+)-> ((U- (shaft X) (rotor1 Orientation) (X90+ Omax+))(X60+ O60+) (X120+ O60+))((M- (shaft X) (rotor2 Orientation)) (X60+ 0) (X120+ O60-))((M+ (shaft X) (rotor3 Orientation)) (X60+ O60-) (X120+ 0)))((position X120+toX180+)-> ((M- (shaft X) (rotor1 Orientation)) (X120+ O60+) (X180+ 0))((U+ (shaft X) (rotor2 Orientation) (X150+ Omax-))(X120+ O60-) (X180+ O60-))((M+ (shaft X) (rotor3 Orientation)) (X120+ 0) (X180+ O60+)))((position X180-toX120-)-> ((M- (shaft X) (rotor1 Orientation)) (X180- 0) (X120- O60-))((M+ (shaft X) (rotor2 Orientation)) (X180- O60-) (X120- 0))((U- (shaft X) (rotor3 Orientation) (X150- Omax+))(X180- O60+) (X120- O60+)))((position X120-toX60-)-> ((U+ (shaft X) (rotor1 Orientation) (X90- Omax-))(X120- O60-) (X60- O60-))((M+ (shaft X) (rotor2 Orientation)) (X120- 0) (X60- O60+))((M- (shaft X) (rotor3 Orientation)) (X120- O60+) (X60- 0)))((position X60-toX0)-> ((M+ (shaft X) (rotor1 Orientation)) (X60- O60-) (0 0))((U- (shaft X) (rotor2 Orientation) (X30- Omax+))(X60- O60+) (0 O60+))((M- (shaft X) (rotor3 Orientation)) (X60- 0) (0 O60-))))(connections (c1 (rotor1 magnet+) (rotor2 magnet+)(rotor3 magnet+) (magnet1 north))(c2 (rotor1 magnet-) (rotor2 magnet-)(rotor3 magnet-) (magnet2 south))(c3 (rotor1 shaft) (shaft t1))(c4 (rotor2 shaft) (shaft t2))(c5 (rotor3 shaft) (shaft t3))))

47C.4 Design Speci�cations(for-component S (shaft)(conditionally ((((((S V) (0 ign)))) true))(required (((((S V) (V* std)))) true))))(for-component S (shaft)(conditionally ((((((S V) ((0 V*) ign)))) true))(required (((((S V) (V* std)))) true))))(for-component S (shaft)(conditionally ((((((S V) (V* ign)))) true))(required (((((S V) (V* std)))) true))))(for-component S (shaft)(prohibited (((((S V) ((0 inf) ign))((S Cum-F-lat) ((0 inf) std))))true))

Appendix DBehavior Abstraction RelationsD.1 Abstraction Relation TableRelation Space De�ned in Terms ofvc component types assumedvn variable names component typesvt variable types generic variable typesvv variable references vn , vtvx values qualitative/quantitative valuesvs states vv , vxvb behaviors vsv� scenarios vbTable D.1: Abstraction Relation SummaryD.2 Abstraction Relation De�nitionsThe relation vn (read \is a variable name less general or equalto") partially orders the space of variable names. For variable name n =(n1; : : : ; nk), n0 = (n01; : : : ; n0l)n vn n0 , 8>>>>>><>>>>>>: 9 F : n0 ! n such that8 n0i 2 n0; if F(n0i) = nji ; thenji < ji+1; (Order Preservation and Uniqueness)n0i is a generalization of nji ; (Name Abstraction)The relation vv (read \is a variable less general or equal to") par-tially orders the space of variable references (names and types). For variables48

49v = (n; t) and v0 = (n0; t0), v vv v0 , 8><>: n vn n0;t vt t0:The relation vx (read \is a value less general than or equal to")partially orders the space of variable values. Considering only the magnitudesof the qualitative values, for point values x and y,x vx y , x = y;For point value x and open interval value (y1; y2),x vx (y1; y2) , y1 < x ^ x < y2;For open interval values (x1; x2) and (y1; y2),(x1; x2) vx (y1; y2) , y1 � x1 ^ x2 � y2:The direction of change values dec, std, and inc are all pairwise unordered,and nil is more general than the other three values. To complete the de�nitionof vx , x vx y if the magnitude relationships described above hold, and eitherthe direction of change of x and y are the same or the direction of change of yis nil. The relation vs (read \is a state less general than or equal to")partially orders the space of states and partial states. For (partial) state s withvariable set Vs, and partial state p with variable set Vp,s vs p , 8>>>>>>>>>>><>>>>>>>>>>>: 9 F : Vp ! Vs such that8 v 2 Vp;F(v) vv v; (Variable Abstraction)s(F(v)) vx p(v); (Value Abstraction)8 v1; v2 2 Vp; v1 6= v2) F(v1) 6= F(v2): (Uniqueness)

50 The relation vb (read \is a behavior less general than or equal to")partially orders the space of behaviors. For behavior b = hs1; s2; : : :i and be-havior b0 = hs01; s02; : : :i,b vb b0 , 8>>>>>>>>>>><>>>>>>>>>>>: 9 F : b0 ! b such that8 s0i 2 b0; F(s0i) = sji ;ji < ji+1; (Order Preservation)sji vs s0i; (State Abstraction)8 s0i; s0j 2 b0; i 6= j) F(s0i) 6= F(s0j): (Uniqueness)The relation v� (read \is a scenario less general than or equal to")partially orders the space of scenarios. For scenarios � = (p; �) and �0 = (p0; �0),with p = hp1; : : : i and p0 = hp01; : : : i,� v� �0 , 8><>: p vb p0 via mapping F 0 : p0 ! p (BehaviorAbstraction)�) F 0(�0) (ConditionAbstraction):whereF 0(�0) denotes the rewriting of �0 with respect to the mapping F 0 : p0 ! p(i.e. variable reference p0i(v) in �0 is replaced by pj(v), where pj = F 0(p0i)).Scenarios � and �0 are equivalent if p vb p0 and � , F 0(�0).

Appendix ETeleology OperatorsE.1 NotationTeleological operators are the language primitives for teleological de-scriptions. In the context of a design modi�cation, a single teleological operatorrelates the unmodi�ed design to the modi�ed design in terms of the speci�ca-tion predicates. In the following de�nitions, �i are speci�cation predicates, dand d0 are designs (structure descriptions), � a design modi�cation such that d0is the design obtained by applying � to d, and E and E0 are the envisionmentsof d and d0, respectively.E.2 Primitive Operators� Guarantees � , 8><>: 9 b 2 E; :�;and8 b0 2 E0; �:� unGuarantees � , 8><>: 8 b 2 E; �;and9 b0 2 E0; :�:E.3 Composed OperatorsE.3.1 Prevents � Prevents � , 8><>: 9 b 2 E; �;and8 b0 2 E0; :�:51

52Operator Prevents can be expressed in terms of Guarantees as� Prevents � , � Guarantees :�:E.3.2 Introduces� Introduces � , 8><>: 8 b 2 E; :�;and9 b0 2 E0; �:Introduces can be expressed in terms of unGuarantees as� Introduces � , � unGuarantees :�:E.3.3 Conditionally Guarantees� Conditionally when f�1g Guarantees �2 , 8><>: 9 b 2 E; :(�1) �2);and8 b0 2 E0; �1) �2:We can rewrite this operator in primitives as:� Guarantees �1) �2:E.3.4 Conditionally PreventsWe can de�ne the operator Conditionally Prevents, or condition-ally preventing a scenario as follows:� Conditionally when f�1g Prevents �2 , 8><>: 9 b 2 E; :(�1) :�2);and8 b0 2 E0; �1) :�2:We can rewrite this operator in primitives as:� Guarantees �1) :�2:

53E.3.5 Conditionally IntroducesWe can de�ne the operator Conditionally Introduces, or condi-tionally introducing a scenario as follows:� Conditionally when f�1g Introduces �2 , 8><>: 8 b 2 E; �1) :�2);and9 b0 2 E0; :(�1) :�2):We can rewrite this operator in primitives as:� unGuarantees �1) :�2:

Appendix FCC BNFF.1 Macros(define-component-interfaceinterface-name string domain interface-clause+)(define-component-implementationimplementation-name interface-name string impl-clause+)(define-configurationcon�g-name con�g-type-reference string con�g-clause+)(define-quantity-spaceqspace-name qspace [parent-clause] [conservation-clause])F.2 Lower-Level Itemscc-constraint-spec ::=constraint-specj (constraint-mode-condition -> constraint-spec+)component-type-reference ::=interface-namej (interface-name component-type-reference-details)component-type-reference-details ::=[instance-implementation-clause] [instance-mode-clause] parm-val�con�g-name ::= symbolcon�g-type-reference ::= interface-namej (interface-name instance-implementation-clause)con�g-clause ::=(interface-name component-type-reference-details)j (instance-name component-type-reference-details)connection-name ::= symbolconservation-clause ::=(conservation-correspondences conservation-correspondence+)conservation-correspondence ::= (lmark lmark+)54

55constraint ::= (name var+ other-info�)constraint-mode-condition ::=(mode-variable-reference mode-value)j (AND constraint-mode-condition+)j (NOT constraint-mode-condition)j (OR constraint-mode-condition+)constraint-spec ::= (constraint corresponding-values�)corresponding-values ::= (lmark lmark+)default-parent-clause ::= (hierarchical-parents default-parent-spec+)default-parent-spec ::= (variable-type-spec qspace-spec)default-qspace-clause ::= (defaults default-qspace-spec+)default-qspace-spec ::= (variable-type-spec qspace-spec)domain ::=acoustic j electrical j hydraulic j mechanicalj mechanical-rotation j mechanical-translation j thermalimplementation-name ::= symbolimpl-clause ::=(quantity-spaces [default-qspace-clause] [default-parent-clause])j (terminal-variables (terminal-name variable-spec+)+)j (component-variables variable-spec+)j (mode-variables (mode-variable-name mode-value-spec+)+)j (constraints cc-constraint-spec+)j (components (instance-name component-type-referenceinstance-option�)+)j (connections ([connection-name] terminal-reference+)+)instance-implementation-clause ::= (impl implementation-name)instance-mode-clause ::= (mode (mode-variable-name mode-value)+)instance-name ::= symbolinstance-option ::=(display variable-name+)j (ignore-qdir variable-name+)j (no-new-landmarks variable-name+)j (quantity-spaces (variable-name qspace-spec)+)interface-clause ::=(terminals terminal-name+)j (parameters parameter-spec+)j (quantity-spaces [default-qspace-clause] [default-parent-clause])interface-name ::= symbolmag ::= lmark j (lmark lmark)mode-value-spec ::= mode-value j (mode-value <- mode-value-condition)mode-value ::= symbol

56mode-value-condition ::=(variable-reference test-val)j (AND mode-value-condition+)j (NOT mode-value-condition)j (OR mode-value-condition+)mode-variable-name ::= symbolmode-variable-reference ::= mode-variable-namej (instance-name+ mode-variable-name)parameter-default ::= symbolparameter-name ::= symbolparameter-spec ::= parameter-name j (parameter-name parameter-default)parameter-value ::= symbolparm-val ::= (parameter-name parameter-value)parent-clause ::= (parent qspace-name)qspace ::= ([minf] lmark� 0 lmark� [inf])qspace-name ::= symbolqspace-spec ::=qspace-namej qspace [parent-clause] [conservation-clause]terminal-name ::= symbolterminal-reference ::= terminal-name j (instance-name terminal-name)test-dir ::= inc j std j dec j niltest-val ::= (mag test-dir)variable-name ::= symbolvariable-name-alist ::= ((variable-name test-val)+)variable-name-list ::= (variable-name+)variable-option ::=display j ignore-qdir j no-new-landmarksj (landmark-symbol symbol)j (quantity-space qspace-spec)variable-reference ::= variable-name j (instance-name+ variable-name)variable-spec ::= (variable-name variable-type-spec variable-option�)variable-type-spec ::= variable-type-name j (variable-type-name domain)variable-type-name ::= symbol

BIBLIOGRAPHY[AS85] Harold Abelson, Gerald J. Sussman, The Structure and Interpretationof Computer Programs, MIT Press, 1985.[AEH*89] Harold Abelson, Michael Eisenberg, Matthew Halfant, Jacob Katz-enelson, Elisha Sacks, Gerald J. Sussman, Jack Wisdom, KennethYip, \Intelligence in Scienti�c Computing" in Communications ofthe ACM, Vol. 32, No. 5 (May 1989), pp. 546-562.[Alf82] Mack W. Alford, \A Graph Model Based Approach to Speci�ca-tions", in Distributed Systems: Methods and Tools for Speci�cation,M. Paul and H. J. Siegert (eds.), Lecture Notes in Computer ScienceNo. 190, G. Goos and J. Hartmanis (eds.), Springer-Verlag, NewYork, 1982, pp. 131-201.[BSZ89] Catherine Baudin, Cecilia Sivard, Monte Zweben, \Model-Based Ap-proach to Design Rationale Conservation", in Proceedings of the 1989Workshop on Model-Based Reasoning, Detroit, August 20, 1989, pp.88-90.[BR86] Ted Biggersta�, Charles Richter, \Reusability Framework, Assess-ment, and Directions", MCC (Non Proprietary) Technical ReportNo. STP-345-86, October 1986.[BC85] Tom Bylander, B. Chandrasekaran, \Qualitative Reasoning AboutPhysical Structures", in SIGART Newsletter, Special Section on Rea-57

58 soning About Structure, Behavior, and Function, B. Chandrasekaran,Robert Milne eds., No. 93 (July 1985), pp. 22-24.[CLMG85] Richard R. Cantone, W. Brent Lander, Michael P. Marrone,Michael W. Gaynor, \Automated Knowledge Acquisition in IN-ATE Using Component Information and Connectivity", in SIGARTNewsletter, Special Section on Reasoning About Structure, Behavior,and Function, B. Chandrasekaran, Robert Milne eds., No. 93 (July1985), pp. 32-34.[CM88] K. Many Chandra, Jayadev Misra, Parallel Program Design: A Foun-dation, Addison-Wesley, Reading, Mass., 1988.[CM85] B. Chandrasekaran, Rob Milne, (eds.) \Special Section on ReasoningAbout Structure, Behavior, and Function", in SIGART Newsletter,No. 93 (July 1985), pp. 4-54.[Cha90] B. Chandrasekaran, \Design Problem Solving: A Task Analysis", inAI Magazine, Vol. 11 No. 4 (Winter 1990), pp. 59-71.[Che80] Brian F. Chellas, Modal Logic: An Introduction, Cambridge Univer-sity Press, 1980.[CM84] W. F. Clocksin, C. S. Mellish, Programming in Prolog, Second Edi-tion, Springer-Verlag, Berlin, 1984.[CF82] Paul R. Cohen, Edward A. Feigenbaum, The Handbook of Arti�cialIntelligence, Vol. III, Addison-Wesley, Reading, MA.[Dav85] Randall Davis, \Diagnostic Reasoning Based on Structure and Be-havior", in Qualitative Reasoning About Physical Systems, Daniel G.

59Bobrow, ed., The MIT Press, Cambridge, MA 1985, pp. 347-410.Reprinted from Arti�cial Intelligence Vol. 24, 1984.[DH88] Randall Davis, Walter Hamscher, \Model-based Reasoning: Trou-bleshooting" in Exploring Arti�cial Intelligence: Survey Talks fromthe National Conferences on Arti�cial Intelligence, Howard Shrobe,ed., Morgan Kaufmann Publishers, San Mateo, CA 1988, pp. 297-346.[DeJ85] Kenneth De Jong, \Expert Systems for Diagnosing Complex Sys-tem Failures", in SIGART Newsletter, Special Section on Reason-ing About Structure, Behavior, and Function, B. Chandrasekaran,Robert Milne eds., No. 93 (July 1985), pp. 29-32.[deK77] Johan de Kleer, \Multiple Representation of Knowledge in a Mechan-ics Problem Solver, in Proceedings of the Fifth International JointConference on Arti�cial Intelligence, Cambridge, MA, pp. 299-304.[deK85] Johan de Kleer, \How Circuits Work", in Qualitative ReasoningAbout Physical Systems, Daniel G. Bobrow, ed., The MIT Press,Cambridge, MA 1985, pp. 205-280. Reprinted from Arti�cial Intelli-gence Vol. 24, 1984.[dKB82] Johan de Kleer, John Seely Brown, \Foundations of Envisioning", inProceedings of the Second National Conference on Arti�cial Intelli-gence, pp. 434-437.[dKB85] Johan de Kleer, John Seely Brown, \A Qualitative Physics Basedon Con
uences", in Qualitative Reasoning About Physical Systems,

60 Daniel G. Bobrow, ed., The MIT Press, Cambridge, MA 1985, pp.7-83. Reprinted from Arti�cial Intelligence Vol. 24, 1984.[dKB86] Johan de Kleer, John Seely Brown, \Theories of Causal Ordering",in Arti�cial Intelligence Vol. 29, No. 1 (July 1986), pp. 33-61.[Dow90] Keith Downing \The Qualitative Criticism of Circulatory Models viaBipartite Teleological Analysis", in Proceedings of the 1990 Workshopon Qualitative Reasoning.[Doy86] Richard J. Doyle, \Constructing and Re�ning Causal Explanationsfrom an Inconsistent Domain Theory", in Proceedings of the FifthNational Conference on Arti�cial Intelligence, 1986, pp. 538-544.[ES85] Allen Emerson, A. Prasad Sistla, \Deciding Full Time BranchingLogic", in Information and Control, Vol. 61, No. 3, pp. 175-201.[FKKP90] Kenneth W. Fiduk, Sally Kleinfeldt, Marta Kosarchyn, Eileen B.Perez, \Design Methodology Management - A CAD Framework Ini-tiative Perspective", in Proceedings of the 27th ACM/IEEE DesignAutomation Conference, June 24 - 28, 1990, Orlando.[FHN72] Richard E. Fikes, P. E. Hart, Nils J. Nilsson, \Learning and Execut-ing Generalized Plans", in Arti�cial Intelligence, Vol. 3, (1972) pp.251-288.[FN71] Richard E. Fikes, Nils J. Nilsson, \STRIPS: A New Approach to theApplication of Theorem Proving to Problem Solving", in Arti�cialIntelligence, Vol. 2, (1971) pp. 189-208.

61[For85] Kenneth D. Forbus, \Qualitative Process Theory", in QualitativeReasoning About Physical Systems, Daniel G. Bobrow, ed., The MITPress, Cambridge, MA 1985, pp. 85-168. Reprinted from Arti�cialIntelligence Vol. 24, 1984.[Fra89] Bruno Franck, \Qualitative Engineering at Various Levels of Con-ception for Design and Evaluation of Structures", in Proceedings ofthe Conference on Industrial and Engineering Application of AI andES, ACM, 1989.[FD90] David W. Franke, Daniel L. Dvorak, \CC: Component ConnectionModels for Qualitative Simulation, A User's Guide", TR AI90-126,Dept. of Computer Sciences, The University of Texas at Austin.[Gen85] Michael R. Genesereth, \The Use of Design Descriptions in Auto-mated Diagnosis", in Qualitative Reasoning About Physical Systems,Daniel G. Bobrow, ed., The MIT Press, Cambridge, MA 1985, pp.411-436. Reprinted from Arti�cial Intelligence Vol. 24, 1984.[Goe89] Ashok Goel, B. Chandrasekaran, \Functional Representation of De-signs and Redesign Problem Solving", in Proceedings of the EleventhJoint International Conference on Arti�cial Intelligence, August1989, Detroit, pp. 1388-1394.[Gre83] James G. Greeno, \Conceptual Entities", in Mental Models, DedreGentner, Albert L. Stevens (eds.), Lawrence Erlbaum Associates,Hillsdale, NJ, 1983, pp. 227-252.[Gru91] Thomas Gruber, \Learning Why by Being Told What", in IEEEExpert Vol. 6, No. 4 (August 1991), pp. 65-75.

62[Hel88] David H. Helman (ed.), Analogical Reasoning, Kluwer Academic Pub-lishers, Dordrecht, The Netherlands, 1988.[HW87] Michael R. Herbert, Gareth H. Williams, \An Initial Evaluation ofthe Detection and Diagnosis of Power Plant Faults Using a DeepKnowledge Representation of Physical Behaviour", in Expert Sys-tems, Vol. 4, No. 2, (May 1987), pp. 90-99.[Ham91] Walter Hamscher, \Modeling Digital Circuits for Troubleshooting",in Arti�cial Intelligence Vol. 51, Nos. 1-3 (October 1991), pp. 223-271.[HA88] Michael N. Huhns, Ramon D. Acosta, \ARGO: A System for Designby Analogy", in IEEE Expert Vol. 3, No. 3 (Fall 1988), pp. 53-68.[IEEE84] IEEE Transactions on Software Engineering issue on Software Re-usability, Vol. SE-10, No. 5 (September 1984).[IEEE87] IEEE Software issue on Reuse Tools, Vol. 4, No. 4 (July 1987).[IEEE88] IEEE Software issue on CASE, Vol. 5, No. 2 (March 1988).[IS86a] Yumi Iwasaki, Herbert A. Simon, \Causality in Device Behavior", inArti�cial Intelligence Vol. 29, No. 1 (July 1986), pp. 3-32.[IS86b] Yumi Iwasaki, Herbert A. Simon, \Theories of Causal Ordering: Re-ply to de Kleer and Brown", in Arti�cial Intelligence Vol. 29, No. 1(July 1986), pp. 63-72.[Ked85] Smadar Kedar-Cabelli, \Purpose-Directed Analogy", in Proceedingsof the Seventh Annual Conference of the Cognitive Science Society,1985, Irvine CA, pp. 150-159.

63[Keu91] Anne M. Kueneke, \Device Representation", in IEEE Expert SpecialTrack on Functional Reasoning, Vol. 6, No. 2 (April 1991), pp. 22-25.[KTY91] Takashi Kiriyama, Tetsuo Tomiyama, Hiroyuki Yoshikawa, \ModelGeneration in Design", in Working Papers for QR-91, Fifth Interna-tional Workshop on Qualitative Reasoning about Physical Systems,May 19-22, 1991, Austin, TX, pp. 93-108.[Kow85] Thaddeus J. Kowalski, An Arti�cial Intelligence Approach to VLSIDesign, 1985, Kluwer Academic Publishers, Boston.[Kui82] Benjamin J. Kuipers, \Getting the Envisionment Right", in Proceed-ings of the Second National Conference on Arti�cial Intelligence, pp.209-212.[Kui85] Benjamin J. Kuipers, \Commonsense Reasoning about Causality:Deriving Behavior from Structure", in Qualitative Reasoning AboutPhysical Systems, Daniel G. Bobrow, ed., The MIT Press, Cam-bridge, MA 1985, pp. 169-203. Reprinted from Arti�cial IntelligenceVol. 24, 1984.[Kui86] Benjamin J. Kuipers, \Qualitative Simulation", in Arti�cial Intelli-gence, Vol. 29, No. 3, (September 1986), pp. 289-338.[Kui87] Benjamin J. Kuipers, \Qualitative Simulation as Causal Explana-tion", in IEEE Transactions on Systems, Man, and Cybernetics, Vol.SMC-17, No. 3 (May/June 1987), pp. 432-444.[Kui87] Benjamin J. Kuipers, \Abstraction by Time-Scale in Qualitative Sim-ulation", in Proceedings of the Sixth National Conference on Arti�-cial Intelligence, Seattle, July 1987, pp. 621-625.

64[Kui89a] Benjamin J. Kuipers, \Qualitative Reasoning: Modeling and Simula-tion with Incomplete Knowledge", Automatica, Vol 25, No. 4 (1989),pp. 571-585.[Kui89b] Benjamin Kuipers, \Generic Mechanisms".[MC80] Carver Mead, Lynn Conway, Introduction to VLSI Systems, Addison-Wesley Publishing, Reading Mass., 1980.[MBR89] Proceedings of the 1989 Workshop on Model-Based Reasoning.[MBR90] Proceedings of the 1990 Workshop on Model-Based Reasoning.[MBR91] Proceedings of the 1991 Workshop on Model-Based Reasoning.[McC88] Anna Marguerite McCann, \The Roman Port of Cosa", in Scienti�cAmerican, Vol. 258, No. 3, (March 1988), pp. 102-109.[Mil85] Robert Milne, \A Theory of Responsibilities", in SIGART Newslet-ter, Special Section on Reasoning About Structure, Behavior, andFunction, B. Chandrasekaran, Robert Milne eds., No. 93 (July 1985),pp. 25-29.[Moo89] Raymond Mooney, private communication.[Mos85] Jack Mostow, \Towards a Better Model of the Design Process", inAI Magazine, Vol. 6, No. 1 (Spring 1985), pp. 44-57.[MB87] Jack Mostow, Mike Barley, \Automated Reuse of Design Plans", inProceedings of the International Conference on Engineering Design,August 1987, Boston, MA, pp. 632-647.

65[Mosz85] Ben Moszkowski, \A Temporal Logic for Multilevel Reasoning aboutHardware", in Computer, Vol. 18, No. 5 (February 1985), pp. 10-19.[NJA91] P. Pandurang Nayak, Leo Joskowicz, Sanjaya Addanki, \AutomatedModel Selection using Context-Dependent Behaviors", in WorkingPapers for QR-91, Fifth International Workshop on Qualitative Rea-soning about Physical Systems, May 19-22, 1991, Austin, TX, pp.10-24.[Nil80] Nils J. Nilsson, Principles of Arti�cial Intelligence, Tioga, Palo Alto,CA, 1980.[Pol73] George Polya, How To Solve It: A New Aspect of MathematicalMethod, Second Edition, Princeton University Press, Princeton, NJ,1973.[PF87] Ruben Prieto-Diaz, Peter Freeman, \Classifying Software for Reusa-bility", in IEEE Software, Vol. 4, No. 1 (January 1987), pp. 6-16.[Ray86] Joe Raymond, private communication.[RS84] Charles Rich, Howard E. Shrobe, \Initial Report on a LISP Pro-grammer's Apprentice", in Interactive Programming Environments,D. Barstow, H. Shrobe, E. Sandewall (eds.), McGraw-Hiull, NewYork, 1984, pp. 443-463. Reprinted from IEEE Transactions on Soft-ware Engineering, Vol. SE-4, No. 6 (November 1978), pp. 456-467.[RS89] Christopher K. Riesbeck, Roger C. Schank, \Case-Based Reasoning:An Overview", in Inside Case-Based Reasoning, Lawrence Erlbaum,Hillsdale, NJ, 1989.

66[RK83] Ronald C. Rosenberg, Dean C. Karnopp, Introduction to PhysicalSystem Dynamics, McGraw-Hill, New York, 1983.[Sac74] Earl D. Sacerdoti, \Planning in a Hierarchy of Abstraction Spaces",in Arti�cial Intelligence, Vol. 5 (1974), pp. 115-135.[Sac77] Earl D. Sacerdoti, A Structure for Plans and Behavior, Elsevier, NewYork, 1977.[SJD85] Ethan A. Scarl, John R. Jamieson, Carl I. Delaune, \Process Moni-toring and Fault Location at the Kennedy Space Center", in SIGARTNewsletter, Special Section on Reasoning About Structure, Behavior,and Function, B. Chandrasekaran, Robert Milne eds., No. 93 (July1985), pp. 38-44.[Sch91] Roger C. Schank, \Where's the AI", in AI Magazine. Vol. 12, No. 4(Winter 1991), pp. 38-49.[SC85] V. Sembugamoorthy, B. Chandrasekaran, \Functional Representa-tion of Devices as Deep Models", in SIGART Newsletter, SpecialSection on Reasoning About Structure, Behavior, and Function, B.Chandrasekaran, Robert Milne eds., No. 93 (July 1985), pp. 21-22.[SS88] Lawrence K. Shapiro, Howard I. Shapiro, \Construction Cranes", inScienti�c American, Vol. 258, No. 3, (March 1988), pp. 72-79.[Sim81] Herbert A. Simon, Sciences of the Arti�cial, Second Edition, MITPress, Cambridge, Mass., 1981.[SM84] Louis I. Steinberg, Tom M. Mitchell, \A Knowledge Based Approachto VLSI CAD: The REDESIGN System", in Proceedings of the 21stDesign Automation Conference, 1984, pp. 412-418.

67[SCB89] Jon Sticklen, B. Chandrasekaran, W. E. Bond, \Applying a Func-tional Approach for Model-Based Reasoning", in Proceedings of the1989 Workshop on Model-Based Reasoning, Detroit, August 20, 1989,pp. 165-176.[ST90] Jon Sticklen, Rula Tufankji, \Utilizing a Functional Approach forModeling Biological Systems", AI/KBS Laboratory Report 1990:#2,Department of Computer Science, Michigan State University, 1990.[SKB90] Jon Sticklen, Ahmed Kamel, W. E. Bond, \A Model-Based Ap-proach for Organizing Quantitative Computations", AI/KBS Labo-ratory Report 1990:#3, Department of Computer Science, MichiganState University, 1990.[Sto77] Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Ap-proach to Programming Language Theory, MIT Press, Cambridge,Mass., 1977.[Tur84] Raymond Turner, \Logics for Arti�cial Intelligence", Halsted Press,New York, 1984.[VHDL87] IEEE Standard VHDL Language Reference Manual, IEEE Std.1076-1987.[Wat84] Richard C. Waters, \The Programmer's Apprentice: KnowledgeBased Program Editing", in Interactive Programming Environments,D. Barstow, H. Shrobe, E. Sandewall (eds.), McGraw-Hiull, NewYork, 1984, pp. 464-486. Reprinted from IEEE Transactions on Soft-ware Engineering, Vol. SE-8, No. 1 (January 1982), pp. 1-12.

68[WF85] Barbara Y. White, John R. Frederiksen, \QUEST: QualitativeUnderstanding of Electrical System Troubleshooting", in SIGARTNewsletter, Special Section on Reasoning About Structure, Behav-ior, and Function, B. Chandrasekaran, Robert Milne eds., No. 93(July 1985), pp. 34-37.[Wil85] Brian C. Williams, \Qualitative Analysis of MOS Circuits", in Qual-itative Reasoning About Physical Systems, Daniel G. Bobrow, ed.,The MIT Press, Cambridge, MA 1985, pp. 281-346. Reprinted fromArti�cial Intelligence Vol. 24, 1984.[WMK89] Howard G. Wilson, Paul B. MacCready, Chester R. Kyle, \Lessonsof Sunraycer", in Scienti�c American, Vol. 260, No. 3, (March 1989),pp. 90-97.

VITADavid Wayne Franke was born on April 8, 1954, in Enid, Oklahoma.He received his high school diploma from Enid High School in May, 1972, a B.S.in Mathematics from the University of Oklahoma in May, 1976, and a M.S inComputer Science from the Pennsylvania State University in November, 1977.He has worked for Texas Instruments, Inc. (1978-1985) as a Senior Member ofthe Technical Sta� in operating systems, computer architecture, and arti�cialintelligence. He has also worked for the Microelectronics and Computer Tech-nology Corporation (1986-1991) as a Senior Member of the Technical Sta� inarti�cial intelligence in design, design reuse, and hardware/software codesign.He currently works for the Trilogy Development Group.In the fall of 1985, he joined the Department of Computer Sciences atThe University of Texas at Austin as a graduate student where he has pursuedresearch in qualitative modeling and representation of descriptions of purpose.Permanent address: 8913 Scottish Pastures Dr.Austin, Texas 78750-3571This dissertation was typeset1 with LaTEX by the author.1LaTEX document preparation system was developed by Leslie Lamport as a special versionof Donald Knuth's TEX program for computer typesetting. TEX is a trademark of theAmerican Mathematical Society. The LaTEX macro package for The University of Texas atAustin dissertation format was written by Khe-Sing The.

