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This dissertation describes CPA, a general-purpose mechanism for

expressing and implementing attention policies that control the allocation of

resources among sensory processing tasks in a robot or other advanced

intelligent system.  A wide variety of attention policies can be expressed in

this mechanism, which also supports soft real-time constraints on perceptual

processing.  Intelligent systems can become inundated with data, resulting

in perceptual overload and a consequent inability to formulate a timely or

appropriate response.  Perceptual overload is often modulated by a

perceptual attention mechanism that filters and prioritizes incoming data.

Most existing attention mechanisms are tailored to the specific task the

system is performing.  A general-purpose attention mechanism must have a

task-independent interface for controlling attention; support a

heterogeneous set of sensors; support heterogeneous methods for processing



sensor data; and support real-time throughput constraints.  The CPA is a

general-purpose attention mechanism that supports multimodal perceptual

attention.  Using it, an intelligent system can enact and control a variety of

attention policies for any type or combination of sensor or sensor data.  An

intelligent system dynamically creates multiple heterogeneous perception

tasks in accord with behavioral goals and installs them in the CPA.  The

CPA supports two general categories of perception tasks: detectors, which

do not retain information between perception cycles; and trackers, which

do.  Perception tasks are prioritized using an attention policy and are

executed using a priority-based scheduler.  A wide range of attention

policies can be expressed in this mechanism, including policies that

dynamically modify perception priorities, policies in which emergency input

overrides normal perception processing, and policies that dynamically

change the level of resistance to perceptual distractions.  Results show that

perception intervals as short as 100 milliseconds can be achieved with a

five-sensor robot under a variety of attention policies .  Analysis of the

system's performance under perceptual load shows that qualitatively

different attention policies can be realized in the attention mechanism.  We

show that intelligent systems can use the CPA to implement the four

primary characteristics of human perceptual attention: selective attention,

sustained attention, divided attention, and top-down control.



x

Table of Contents

List of Tables ............................................................................................. xiii

List of Figures ............................................................................................ xiv

Chapter 1: Introduction ................................................................................ 1

1.1 Attention in people and robots .................................................... 4

1.2 Overview of the dissertation ........................................................ 8

Chapter 2: Human Perception and Attention.............................................. 9

2.1 The structure of human perception ............................................10

2.2 A brief history of attention research...........................................12

2.3 Basic attention mechanisms........................................................14

2.4 Attention disorders and errors ....................................................16

2.5 Summary of human perceptual attention ...................................18

2.6 toward computational perceptual attention ...............................18

Chapter 3: Perception and Attention in Computers...................................20

3.1 Speed, sequential processing and sensor variety.........................20

3.2 Generality vs. speed requirements ..............................................21

3.3 Previous perceptual attention systems .......................................24

3.4 Attention-related problems in current systems ..........................27

Chapter 4: Computational Perceptual Attention........................................29

4.1 Computational environment .......................................................29

4.2 Design goals .................................................................................30

4.3 Components of the attention mechanism ...................................38



xi

4.4 CPA Implementation details.......................................................46

Chapter 5: An example: Robot Navigation.................................................47

5.1 A robot navigation problem........................................................48

5.2 Top-down formulation of perception tasks .................................50

5.3 Sensors .........................................................................................57

5.4 Object detectors ..........................................................................65

5.5 Navigation ...................................................................................73

5.6 Setting the attention policy ........................................................74

5.7 A second example: a newsgroup scanner ....................................75

Chapter 6: Measuring Perception Performance ..........................................80

6.1 The Q-measure ............................................................................81

6.2 Example 1: Comparing three attention policies .........................84

6.3 Example 2: Focus on priority objects under load.......................98

6.4 Example 3: Handling emergency input under load ..................101

6.5 Example 4: Adjusting the focus strength..................................103

6.6 Tuning an attention policy .......................................................107

Chapter 7: Related Work...........................................................................112

7.1 Exemplar perceptive intelligent agents.....................................115

7.2 Blackboard-based control methods ...........................................118

7.3 Distributed perception in expert systems .................................120

7.4 Multitarget multisensor tracking ..............................................120

7.5 Process scheduling .....................................................................123

Chapter 8: Summary and Future Work ....................................................129

8.1 Future work...............................................................................129



xii

Appendix 1: CPA Implementation Details................................................132

A1.1 CPA ...........................................................................................132

A1.2 Sensor.........................................................................................134

A1.3 Buffer .........................................................................................135

A1.4 Matcher......................................................................................137

A1.5 Detector .....................................................................................137

A1.6 Tracker ......................................................................................139

A1.7 Percept.......................................................................................139

Appendix 2:  Object tracking ....................................................................141

A2.1 Coordinate system and units.....................................................141

A2.2 Problem description...................................................................142

A2.3 Predicting the robot’s position..................................................143

A2.4 Predicting the object’s position.................................................144

Bibliography...............................................................................................147

Vita ...........................................................................................................154



xiii

List of Tables

Table 1.   Suggested values for the attention policy parameters.................75

Table 2.   Values used when computing the Q-measure. .............................81

Table 3.  The attention policy for Example 1. ...........................................92

Table 4.   Number of perceived objects for Example 2. .............................100

Table 5.   The attention policy for Example 2...........................................101

Table 6.   The attention policy for Example 3...........................................103

Table 7.   The attention policy for Example 4...........................................106

Table 8.   Values used when computing the Q-measure. ...........................110

Table 9.   Hints for tuning the attention parameter..................................111

Table 10.   Perception characteristics of Guardian....................................116

Table 11.   Perception characteristics of IPUS. .........................................117

Table 12.   Perception characteristics of blackboard control architectures.

..............................................................................................................119

Table 13.   Perception characteristics of multitarget tracking. .................121

Table 14.   Fields of the CPA class............................................................133

Table 15.   Methods of the CPA class........................................................134

Table 16.   Fields of the Sensor class. ........................................................135

Table 17.   Methods of the Sensor class. ....................................................135

Table 18.   Fields of the Buffer class..........................................................136

Table 19.   Methods of the Buffer class. ....................................................137

Table 20.   Fields of the Matcher class. .....................................................137

Table 21.   Methods of the Matcher class. .................................................137

Table 22.   Fields of the Detector class......................................................138

Table 23.   Methods of the Detector class..................................................138

Table 24.   Fields of the Tracker class. ......................................................139

Table 25.   Fields of the Percept class. ......................................................140

Table 26.   Methods of the Percept class ...................................................140



xiv

List of Figures

Figure 1.   Visual information flow in the human brain. 11

Figure 2.   A simple, but potentially inefficient, perception system. 22

Figure 3.   A better design for a perception system. 24

Figure 4.   Structure of the CPA. 30

Figure 5.   An exponential decay equation for activation level. 34

Figure 6.   A simple sensor. 39

Figure 7.  A sensor for sonar data. 39

Figure 8.   A rangefinder scan showing line segments (left) and raw data

(right). 49

Figure 9.   Contents of a position percept. 58

Figure 10.   Creating a position sensor. 58

Figure 11.   Creating position sensor percepts. 59

Figure 12.   A match function for odometry. 60

Figure 13.   Contents of a line-segments percept. 61

Figure 14.   A match function that also interfaces with a display. 61

Figure 15.   Perceiving laser rangefinder segments. 63

Figure 16.   Sensor streams and object detectors in the system. 65

Figure 17.   Simple detectors that display blobs and segments. 67

Figure 18.   A matcher function for left side doorways. 68

Figure 19.   The doorway-tracker class. 69

Figure 20.   A doorway detector. 70

Figure 21.   The initialize-tracker method for the doorway tracker. 72

Figure 22.   The doorway-tracking-fn method for a NIL percept. 72

Figure 23.  The doorway-tracking-fn method for real percepts. 73

Figure 24.   The match function for messages containing “lisp”. 76

Figure 25.   The perception function for the newsgroup scanner. 78

Figure 26.   The job scanner application. 79

Figure 27.   Test environment containing twenty-two objects. 85

Figure 28.   Tracking under heavy perceptual load. 87

Figure 29.   Perception performance without prioritization. 89

Figure 30.   Perception performance with uncertainty-based prioritization.

91



xv

Figure 31.   Mean Q-measure across 40 runs using the default attention

policy. 93

Figure 32.   Mean Q-measure with confidence intervals across 40 runs. 94

Figure 33.   Mean Q-measure across 40 runs using the second attention

policy. 95

Figure 34.   Mean Q-measure across 40 runs with confidence intervals. 96

Figure 35.   Combined graph of mean Q-measure for both experiments. 96

Figure 36.   Combined graph with confidence intervals for both

experiments. 97

Figure 37.   Combined graph for all three experiments. 98

Figure 38.   Graph of perceived objects for Example 2. 100

Figure 39.   Graph of perceived objects for Example 3. 102

Figure 40.   Activation of extraneous percepts varies with focus strength.

106

Figure 41.   A typical real-time intelligent agent. 113

Figure A1.   Robot egocentric coordinate system. 142

Figure A2.   Illustration of the object prediction problem. 143

Figure A3.   Geometry of the robot’s motion. 143

Figure A4.   A pedestrian approaching the robot. 145



1

Chapter 1: Introduction

This dissertation describes a general-purpose mechanism for

expressing and implementing attention policies that control the allocation of

resources among sensory processing tasks in a robot or other advanced

intelligent system.  A wide variety of attention policies can be expressed in

this mechanism, which also supports soft real-time constraints on perceptual

processing.

Advances in sensor technology have enabled the construction of

robots and other intelligent systems that utilize a large number of sensors.

These sensors produce a wide variety of data about the physical world,

often at very high data rates.  Some of the systems need to respond to

inputs within a very short period of time.  However, they can become

inundated with data, resulting in perceptual overload and a consequent

inability to formulate a timely or appropriate response.

In many systems, perceptual overload is modulated by a perceptual

attention mechanism that filters and prioritizes incoming data.  The most

common mechanism is one that spatially filters visual data by removing

portions of the input located outside a spatial focus  of attention.  This can

greatly reduce the amount of processing needed to produce a response, but

introduces the possibility of ignoring relevant input.  A few systems use

mechanisms based on visual features such as color and shape, or non-visual
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features such as numeric readings.  Most existing attention mechanisms are

tailored to the specific task the system is performing.

A general-purpose attention mechanism has four major requirements:

it must have a task-independent interface for controlling attention; it must

support a heterogeneous set of sensors; it must support heterogeneous

methods for processing sensor data; and it must support real-time

throughput constraints.  This dissertation introduces the CPA, a general-

purpose attention mechanism that supports multimodal perceptual

attention.  Using it, an intelligent system can enact and control a variety of

attention policies for any type or combination of sensor or sensor data.

An intelligent system using the CPA creates multiple heterogeneous

perception tasks in response to behavioral goals and installs them in the

CPA.  The set of perception tasks can dynamically change as behavioral

goals change.  The CPA supports two general categories of perception tasks:

detectors, which do not retain information between perception cycles; and

trackers, which do.  Each attention policy controls the length of the

perception interval, the allocation of perception time between the sets of

detectors and trackers, and the prioritization of sensors, detectors and

trackers.

Perception tasks are prioritized using parameters in the attention

policy and are then executed using a priority-based scheduler.  The

scheduler executes as many perception tasks as it can before the perception
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interval expires.  This behavior can result in starvation of low priority

tasks, in contrast to operating system schedulers which typically provide

guarantees of fairness and liveness.

A wide range of attention policies can be expressed in this

mechanism, including policies that dynamically modify perception priorities,

policies in which emergency input overrides normal perception processing,

and policies that dynamically change the level of resistance to perceptual

distractions.

We evaluate the attention mechanism in a robot navigation system

that requires high-speed perceptual throughput in order to effectively

control its motion.  The robot has five input streams that provide a mixture

of numeric and symbolic data.  The quality of perception is measured using

a perception quality metric that is a function of both the quantity and

quality of the input.  Results show that perception intervals as short as 100

milliseconds can be achieved under a variety of attention policies.  Analysis

of the system's performance under perceptual load shows that qualitatively

different attention policies can be realized in the attention mechanism.

We show that intelligent systems can use the attention mechanism to

implement the four primary characteristics of human perceptual attention:

selective attention, sustained attention, divided attention, and top-down

control.
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Future work will formalize constraints on the behavior of attention

policies, incorporate hard real-time scheduling methods for more precise

time management, define classes of domain-specific attention policies and

explore methods for automatically learning effective attention policies.

1.1 ATTENTION IN PEOPLE AND ROBOTS

In people, attention provides two main functions.  First, it prevents

perceptual overload.  The human senses take in far more information than

the human brain can process in time for it to be useful.  Attempting to

attend to multiple inputs at the same time causes interference and

performance degradation [Posner and DiGirolamo, 1998].  Attention helps

to select the most important information to process.  In a robot, an

attention mechanism can help prevent perceptual overload.

Even if a person could process all of the incoming information, he or

she would then be subject to response incoherence.  The amount of input

might generate so many potential responses that a person would be

overwhelmed trying to decide what to do and in what order.  Attention

helps to select the most important information to respond to.  A robot

could use an attention mechanism to help prevent response incoherence.

If these problems arise in a robot and we want to use an attention

mechanism, what form should it take?  Is a human-style attention

mechanism useful in a robot?  There are fundamental differences between

computers and people, which indicates that a computational perceptual
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attention mechanism may differ from a human attention mechanism.  A

computer’s fundamental processing speed is currently about six orders of

magnitude faster than the human brain and is increasing; it can retain

information longer and more accurately; and it can use different, more

powerful, sensors which can easily be added or removed.  Additionally, most

computers use a single sequential processor, while the human brain performs

much of its processing in parallel.  Furthermore, if it chooses to, a computer

can completely ignore certain inputs, or even entire streams of data, while

people have difficulty ignoring unwanted input.  Given these differences, are

the properties of a human attention mechanism useful in a robot?

In summary, the questions this dissertation addresses are:

1. Do robots need an attention mechanism? 

In our robot navigation work, we have found that robot controllers

require a perceptual latency (the time delay between when sensor

data is collected and when it is available for high-level processing) of

less than 200 milliseconds, and preferably closer to 100 milliseconds.

Some computer vision systems have even more stringent

requirements, with maximum latencies of approximately 30

milliseconds.  Processing a single object typically takes anywhere

from 1 to 10 milliseconds in our system.  So in the worst case, a

minimum of 10 objects in the visual field can cause the system to

exceed the 100-millisecond latency required for good performance.
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Robot sensors on current robots are capable of sensing dozens, if not

hundreds of distinct objects at a time.  Robots can use an attention

mechanism to reduce perceptual overload in several ways: by filtering

input to reduce the number of objects processed; by prioritizing

input so the most important input is processed first; and by ensuring

that the latency requirements are met even when the perceptual

system is under a heavy load.

2. What are the useful characteristics of human attention?  

Studies of human perception and attention have identified several

characteristics that are useful in certain situations.  These

characteristics include: early selection, where sensor input is heavily

filtered or blocked before it reaches the cognitive processor; late

selection, where sensor input is prioritized according to perceptual

goals related to high-level tasks; habituation, where repeated,

identical inputs are eventually reduced in priority or even ignored;

priming, where recently processed concepts influence the percepts

selected for processing; decay of activation, where the

“interestingness” of a percept decays exponentially over a relatively

short period of time; and inhibition of return, where objects in the

field of view which have been subject to recent scrutiny acquire a

reduced perception priority.  It is not difficult to envision scenarios

in which a robot can utilize some or all of these characteristics to
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improve its performance.

3. Which characteristics of human attention are not useful?

The answer to this question is somewhat task-dependent, but

extremes of human attentional behavior include autism, of which one

of the primary symptoms is an inability to shift the focus of

attention to novel items.  An attentional disorder at the other

extreme is attention deficit, which is the inability to maintain a focus

of attention for an appropriate amount of time.  There are also other,

more specific, disorders related to brain pathologies.  However,

except for extreme cases of these disorders, they can not be viewed as

strictly negative characteristics because they can be useful in certain

situations.  For example, an attention deficit may be of benefit to a

security guard who must be alert to anything unusual.  And

difficulty with shifting the focus of attention may be useful to a chess

player, who needs to concentrate for long periods of time on a

relatively small and static field of view.  Clearly, the attention

mechanism must be adaptable to different situations and exhibit a

wide range of behavior.

4. Given the differences between human and computer computation and

perception, what form should a computational attention mechanism

take?

This dissertation takes the view that computational attention should
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exhibit the flexibility and characteristics of human attention, without

attempting to duplicate the underlying architecture.  The single-

processor, multitasking computers that are prevalent today are so

different from the highly parallel human brain that a computational

attention mechanism requires a significantly different design.

Chapters 3 and 4 discuss the design tradeoffs and the architecture of

the resulting system in detail.

1.2 OVERVIEW OF THE DISSERTATION

Chapter 2 discusses characteristics of human attention in greater

detail.  Chapter 3 discusses previous work in robot perception and

attention, analyzes differences in human and robot attention, and sketches a

design for a general-purpose multimodal perceptual attention system.

Chapter 4 discusses the design and implementation of CPA (Computational

Perceptual Attention), a system for robot perceptual attention.  Chapter 5

evaluates the CPA in different perception scenarios and describes how to

use the CPA for robot navigation.  Chapter 6 discusses the Q-measure,

which measures perception quality and provides an indirect measure of the

performance of the attention mechanism.  A learning system can use the

performance measure to tune the attention mechanism.  Chapter 7 discusses

the relationship between the CPA and other mechanisms for attention, task

scheduling and object tracking.  Chapter 8 summarizes the dissertation and

discusses future research based on this work.
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Chapter 2: Human Perception and Attention

Attention is involved in the process of perception, somehow

enhancing or reducing the "interestingness" of various sensory inputs so that

some are attended to and others are not.  Attention is not completely

understood, but it appears to consist of a set of mechanisms that exhibit

different, sometimes opposing, effects.  Much of the research in attention

has focused on the visual sense (or visual mode, as psychologists would say),

both because it is easy to test and because it is complex enough to be

interesting.  Most of the remaining research has investigated attention in

auditory perception.  There has been some research on cross-modal

attention, usually involving combined visual and auditory perception.

In the early days of attention research, many investigators performed

experiments by subjecting themselves to various stimuli and reporting their

perceptions and thoughts about what had happened [LaBerge, 1995, chapter

2].  In the last half of the twentieth century the focus shifted to testing

volunteer subjects, often using standard double-blind tests to achieve more

objective results.  A typical test measures the reaction time to a stimulus

and the effect of preceding or coincident stimuli on the reaction times.

During the last half of the 1990s, the use of positron emission

tomography (PET) scans and other forms of brain observation have allowed

researchers to observe which parts of the brain are activated when different
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attention mechanisms are activated.  The results show that attention is

more widespread and non-localized than some had believed [Luck and

Girelli, 1998].

In developing a theory of perceptual attention for computer systems,

we are interested in attention mechanisms that improve perceptual

processing (so we can use them), and in attention disorders that hinder

perception (so we can avoid them).  We are also interested in how attention

mechanisms are activated, how they are controlled, and how such

mechanisms might differ if implemented on a fast, sequential computer than

on the slow, highly parallel human brain.

2.1 THE STRUCTURE OF HUMAN PERCEPTION

The human body contains multiple sensors that send information

through a network of nerves to the brain, where it is processed.  The brain

contains areas devoted to specific processing functions and specific sensor

input, although several of these areas may activate during any single act of

perception.  The sensory system is highly parallel in both input and

processing.  It is possible, for example, to monitor visual input while

listening to separate, unrelated conversations in each ear [Posner and

DiGirolamo, 1998].  Performance at such a task is not very good, but that it

can be done at all is a testament to the flexibility and power of the human

brain.
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Most research has focused on vision due to its complexity and the

ease of performing tests on subjects.  The visual pathways in the brain

illustrate the complexity of processing.  The figure below is based on one in

[Goodale and Humphrey, 1999].  It is a simplified representation of visual

information flow in the macaque brain.  Similar pathways have been found

in other primates and it is generally believed that this representation

applies to the human brain, too.  The darker lines represent greater

information flow.

Retina

Superior
Colliculus

LGNd

Pulvinar

Posterior
Parietal
Cortex
(Spatial

perception)

Inferotemporal
Cortex
(Object

recognition)

Primary
Visual
Cortex

Figure 1.   Visual information flow in the human brain.

The diagram shows that processing is separated by functionality

(object recognition vs. spatial perception) and that it occurs in stages.  We

do not yet know enough details about the types of processing that occur in
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the different brain regions to implement the same mechanism in computing

devices.

It is estimated that the human brain contains 1011 neurons, and 1014

pathways, implying a high degree of interconnectivity among the neurons.

Electrical impulses, triggered by chemical reactions, transfer information

from neuron to neuron.  The speed of these impulses is much slower than

the speed of electrical impulses in a computer.  For example, when

presented with a set of visual stimuli, the brain can shift its attention from

one object to another in 30 to 50 milliseconds [Niebur and Koch, 1998].

This is a mental shift, rather than a physical shift of visual attention; an

eye saccade requires about 200 milliseconds.  Perception can be directed to

certain inputs by visual or auditory cues.  The effect of these cues reaches a

peak in about 200ms and decays in a few hundred more milliseconds

[Niebur and Koch, 1998].  These times are illustrative of the fundamental

perceptual processing speeds of the human brain, which is obviously much

slower than a computer of today.

2.2 A BRIEF HISTORY OF ATTENTION RESEARCH

Aristotle, Lucretius, Descartes and Leibniz, among others, speculated

about the mechanisms of attention [Hatfield, 1998].  The modern era of

attention research began with William James, who was the first to outline a

theory of human attention [James, 1890].  His primary hypothesis was that

thought processes produce expectations of what we should perceive, which
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influences what we do perceive.  Other researchers, including Gibson, Von

Helmholtz, Wundt and Tichenor, hypothesized additional mechanisms

including spatial attention (attending to certain locations), and intentions

to act.  (Much of this historical background is from [Van der Heijden, 1992,

Chapter 2]).

The field of attention research experienced a revival in the 1950s.

Broadbent proposed his filter theory of attention in an attempt to explain

many of the existing experimental results [Broadbent, 1958].  This theory

postulates a low-level filter that allows only a limited number of percepts to

reach the brain at any time.  In this theory, the importance of conscious,

directed attention is minimized.  The part of attention involving low-level

filtering is now called early selection.

A few years later, the response selection theory of attention [Deutsch

and Deutsch, 1963] described an attention process in which nearly all of the

sensory input reaches a fairly high-level part of the brain, where it is then

processed if its activation is above a threshold that changes according to the

person's needs.  The part of attention involving high-level processing is now

called late selection.

Starting in 1960, Treisman proposed a series of models that

combined early and late selection into a model known as Feature

Integration Theory (FIT) [Treisman, 1988].  In FIT, features (colors,

shapes, and contrasts) are recognized in parallel and stored in feature maps.
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A three-dimensional location map independently stores pointers to locations

of all features.  Objects are then recognized as conjunctions of features.

Currently, Treisman and others believe that early selection (sensor and

feature attenuation) is most active when the perceptual load is high,

whereas late selection (object-based and location-based) is used when

perceptual load is low [Treisman, 1998].

Currently there is a variety of research using brain scans to trace

brain processing during perception [Luck and Girelli, 1998].  There have

also been advances in neurophysiological models of attention [Crick and

Koch, 1990; [Olshausen et al., 1993; Desimone and Duncan, 1995; Niebur

and Koch, 1998].  An excellent collection of papers covering current

research is [Parasuraman, 1998a].

2.3 BASIC ATTENTION MECHANISMS

Attention consists of a set of mechanisms for improving perception in

relation to the person’s current high-level goals.  Inside the attention

process there is a fundamental tension between the ability to notice certain

stimuli and the equally valuable ability to ignore stimuli.  Many of the

mechanisms have an opposing mechanism that counterbalances their effect.

What we think of as attention is a function of the push and pull of a

number of mechanisms, including selection, vigilance, control, and the

measurable effects of spatial focus, priming, inhibition of return and decay

[Parasuraman, 1998b].
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Selection is the ability to select the most important percepts from

the large set of incoming percepts.  This includes selection across modalities

and selection within a modality.  The discussion earlier in this chapter

mentioned the distinction between early selection (filtering percepts before

they reach conscious thought) and late selection (conscious selection of

percepts from a set of percepts).  In a computational model of attention, the

reasoning process should be able to control the entire attention process,

even if some of the mechanisms being controlled correspond to automatic

processes in the human brain.  An enhancement of this is divided attention,

in which percepts related to different goals are selected at the same time.

Vigilance, or sustained attention, ensures that perceptual goals are

maintained as long as necessary.  Ongoing perceptual goals can be

interrupted or impaired by unexpected high-priority inputs or by an

increase in sensory data rates.  An opposite mechanism is habituation, in

which repeated similar percepts are gradually reduced in importance.

Attentional control is the ability to interrupt and resume perceptual

activities as required.  In a complex system it is no small task to interrupt

and then correctly resume a process.  The other active goals may have

changed, meaning that the priority of the resumed process may need to be

adjusted.  This is almost surely a duty of the high-level reasoning process.

Spatial attention is a commonly-used visual filtering mechanism.

The sensory input in the spatial focus, commonly called the spotlight, has
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priority for processing.  This is a very effective method of reducing the

amount of input to be processed.  Computer vision systems often use spatial

attention as their primary, and sometimes only, attention mechanism.  An

opposing effect is inhibition of return, in which recently-scanned spatial

locations have a lower priority than normal.

Priming occurs when a spatial or perceptual cue facilitates perceiving

a stimulus that follows.  The facilitation typically results in a reduced time

to recognize or categorize a percept.  Its opposite is inhibition, in which a

cue impairs perceiving another stimulus.

The effects of priming and inhibition decay over a relatively short

period of time.  The brain rarely perceives a constant set of inputs.  The

world changes rapidly and one of the effects of decay is to ensure that cues

do not outlast the world in which they were generated.

2.4 ATTENTION DISORDERS AND ERRORS

As might be expected from the number of times one is told to “pay

attention”, perceptual attention does not always work correctly.  There are

several brain disorders and injuries that can affect attention.  One of the

most prevalent is attention deficit disorder (ADD) in which the ability to

focus attention is impaired.  Some of the recognized symptoms of ADD

[Swanson et al., 1998] include:

1. Inability to pay attention to details,
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2. Difficulty sustaining attention,

3. Difficulty organizing tasks,

4. Easily distracted by extraneous stimuli.

As mentioned in Chapter 1, some of these characteristics are, at times,

beneficial.

At the other end of the attention spectrum, one of the characteristics

of autism is the inability to change the focus of attention [Rodier, 2000].

Again, this characteristic can be beneficial in some tasks.  It appears that a

computational mechanism should be tunable to exhibit a wide spectrum of

behavior as deemed necessary.

There are situations where incorrect attentional behavior has had

disastrous consequences.  Everyone today is familiar with accidents caused

by people who are fiddling with their car stereo or talking on cellular

phones.  The most well-documented large-scale case of inattention is

probably that of Eastern Airlines flight 401, which crashed on December 29,

1972.  In that incident, the crew forgot to monitor the plane’s flight while

they attempted to visually determine whether its nose gear was properly

extended.  While they were distracted, the plane gradually descended and

crashed into the Everglades, killing over one hundred people.  The flight

crew received an alert from an automatic warning system 13 seconds before
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the crash, but were so focused on the nose gear that they could not react in

time to prevent the crash [NTIS, 1973].

2.5 SUMMARY OF HUMAN PERCEPTUAL ATTENTION

Human perception and perceptual processing is highly parallel, yet

relatively slow compared to the speed of today’s computers.  Attention is

not completely understood, but it appears to consist of a set of mechanisms

that exhibit different, sometimes opposing, effects.  Attention provides a

wide range of behaviors, from highly-focused to easily distractible.  A

computer-based perception process may need to exhibit equally flexible

behavior in order to accommodate a wide variety of tasks.

2.6 TOWARD COMPUTATIONAL PERCEPTUAL ATTENTION

Human perceptual attention exhibits a variety of mechanisms that

allow it to adapt to different tasks.  General-purpose perceptual attention

for computers should exhibit the same flexibility.  The following properties

of the human attention mechanism are key design goals for our

computational attention system.

1. Sustained attention:  the mechanism should allow the computer or

robot to set perceptual goals and maintain them over a period of

time.  The termination of a perceptual goal might be condition-

based, time-based or directed by a higher-level system.  Detection
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and tracking are two important classes of perceptual tasks that

should be sustainable.

2. Selective attention:  the mechanism should support selectivity in

forwarding sensor input to the reasoning component of the system.

Selectivity should be guided by features such as color, size, shape and

spatial location.

3. Divided attention : the ability to pursue more than one perceptual

goal at a time is very important.  Otherwise the performance of a

robot will be very limited—for example, navigation and object

recognition could not be performed at the same time, requiring the

robot to stop whenever it needed to detect objects.

4. Controllable:  top-down control is important, since perceptual goals

are related to other goals such as navigation.  Two key methods of

control are the ability to set perceptual goals and the ability to

dynamically prioritize perceptual goals.  The ability to be interrupted

by unexpected input should be adjustable since different tasks

require different strengths of perceptual focus.
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Chapter 3: Perception and Attention in Computers

The human brain and current digital computers differ significantly in

structure, speed and capabilities.  The design of perception systems is

greatly affected by these differences.

3.1 SPEED , SEQUENTIAL PROCESSING AND SENSOR VARIETY

The most important difference between the human brain and

computers is that most computers are single-processor machines, which

process information sequentially, while the human brain is a vastly parallel

system.  With the speed and capabilities of today’s multi-tasking operating

systems, it is easy to overlook this fundamental point.  Because of the

sequential nature of machine processing, the time to perform perception

tasks usually scales linearly with the number of objects detected.  As

sensors become more powerful, more objects will be detected, making it

unlikely that sensor processing will ever keep up with sensor acquisition.

The second most important difference is that computers have a

fundamental speed that is orders of magnitude faster than that of the

human brain.  The speed factor compensates somewhat for the sequential

processing, but not as much as one might hope, possibly because useful

operations like face and object recognition still take a relatively long time

and are not always accurate.
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The third most important difference is the variety of sensors

available to computers.  Humans have a fixed number of sensors, but robots

have access to an ever-growing catalogue of sensors, whose capabilities in

many cases equal or exceed human sensors.  Other sensors provide input

not available to people, such as infrared vision, GPS locations and compass

directions.  A robot can receive a huge quantity of data at a high data rate.

Furthermore, these sensors are more controllable than in people.  Robot

sensors can be turned off or completely ignored as desired, something that is

difficult with human senses [Posner and DiGirolamo, 1998].

All of these differences point to time management as a critical

component of computer perception.  This affects the design of the entire

perceptual system, as described in Chapter 4.

3.2 GENERALITY VS . SPEED REQUIREMENTS

The design process is complicated by a tension between generality

and the need for fast low-level sensor processing.  This research aims to

produce a general-purpose, multimodal, controllable perception system.

One can design a simple multimodal perception system as shown in the

figure below.  This design is pleasingly simple but it has several areas of

potential inefficiency.
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Sensor  3

Sensor 2

Sensor 1
Task 1

Task 2

Task 3

Task 4

Figure 2.   A simple, but potentially inefficient, perception system.

3.2.1 Data transmission times

A hidden cost of perception is the time required to transmit data

from the sensor to the task.  A robot whose components are distributed

across multiple systems may encounter significant transmission times.  On

one of our robots, we found that a rangefinder scan, which consists of 270

polar coordinates, takes several hundred milliseconds to transmit from one

machine to another using a distributed object system.  Since robot control

works best when the perceptual latency is less than 100ms, we could not

control the robot very well when transmitting raw sensor scans.  In the

CPA system described in this dissertation, the solution was to move sensor

post-processing from the task side to the sensor side of the connection so

that raw data sets need not be transmitted.
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3.2.2 Redundant processing

More than one task may be performing the same post-processing on

the raw data.  For example, in our robot the wall-following task and the

view-matching task both utilize line segments derived from rangefinder

data.  Line segment extraction takes 15-25 milliseconds, a non-negligible

amount of time.  Most or all post-processing of raw sensor data should be

performed before the task level and tasks should share the results.

3.2.3 No limits on processing time

The diagram above implicitly relies on an unspecified external

program to govern the amount of time a task can use.  There is no

guarantee that an important task will receive any time at all.  The CPA

system contains a scheduler that allocates time to perception tasks in order

of importance.

3.2.4 Solutions

As described above, a simple perception architecture can be the

source of numerous inefficiencies.  How do we solve the above problems?

As shown in the next chapters, we:

1. Add postprocessors to the sensor streams so tasks can share

processed, as well as raw, data.

2. Move all perceptual tasks that take a significant amount of time,

such as object recognition, into the perception module where they
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can be controlled and where they will be under the control of a real-

time task scheduler.

3. Implement a centralized attention manager that allocates time to

perception tasks according to their priority.

The resulting system is illustrated by the figure below.

Sensor  3

Sensor 2

Sensor 1
Task 1

Task 2

Task 3

Task 4

Attention

ManagerPre-proc

Pre-proc

Figure 3.   A better design for a perception system.

3.3 PREVIOUS PERCEPTUAL ATTENTION SYSTEMS

VISIT [Ahmad, 1991] processes 256x256 pixel images by moving a

spatial attention “spotlight” around the image.  A control system,

consisting of a connectionist network, controls the spotlight.  VISIT

implements inhibition of return (see Chapter 2) to aid in scanning the entire

image.  The network can be trained to move the spotlight based on

different characteristics of the image, including center of mass of the portion
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of the image inside the current spotlight, pixel clusters in the entire image,

and object features such as color and shape.  The attention mechanisms it

uses are spatial attention, attention control and inhibition of return.

VISIT is not multimodal and uses only spatial attention.  The

control mechanism must be trained separately for each task and can

perform only one task at a time.  The size of the control network is

proportional to the size of the image being processed, so changing the input

size requires creating and training a new control network.

There are numerous other visual attention systems that also manage

spatial attention.  These are popular because until recently computers were

not fast enough to process an entire camera frame in the time allowed, even

for relatively simple processing.  A useful optimization is to select only a

portion of the input to process.  Some of these systems are:

• A system that integrates bottom-up feature maps with top-down

model-based object knowledge using non-linear relaxation based on

energy minimization [Milanese et al., 1992].

• A connectionist system for constructing a saliency map that

emphasizes and de-emphasizes regions of the visual input for the

ALVINN autonomous navigation system.  The system learns to

handle difficult visual scenes that the general-purpose algorithm in

ALVINN can not handle [Baluja and Pomerleau, 1996].
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• The SCAN (Signal Channeling Attentional Network) model, which is

a sparsely-connected, scalable neural network that incorporates an

expectation-generating classifier network.  The classifier network

allows SCAN to be expectation-driven.  Like the other systems,

SCAN is used for directing spatial attention [Postma et al., 1997].

• An extension of ACT-R to incorporate visual attention and pattern

recognition [Anderson et al., 1995].  This system also uses spatial

attention, and does not appear to provide real-time guarantees.

• A spatial attention system for a social robot that incorporates top-

down motives and bottom-up feature maps [Breazeal and Scassellati,

1999].

One of the few multimodal systems is QuickSet, which manages voice

and pen input for interacting with a map [Cohen et al., 1997].  The user

can, for example, circle a location on the map and say, “What is this?” to

retrieve a description of the object at that location.  However, this is a

relatively easy perception problem, compared to managing perception on a

robot, because the inputs are relatively sparse and the maximum response

time limits are relatively long.

A system with broader goals and multimodal capabilities is a

perception planner for mobile robots [Xu and Vandorpe, 1994].  The system

uses sensor fusion to integrate readings from multiple sensors.  The
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perception planner adjusts sensor parameters, uses utility functions to

determine which perception tasks have a high priority, and selects fusion

techniques.  The planner also incorporates uncertainties in data or internal

states to adjust priorities of perception tasks.

In summary, most previous attention systems were unimodal and

focused on spatial attention.  Most are special-purpose mechanisms suited

only for the application they were designed for.  The CPA system described

in the next chapter provides a general-purpose multimodal solution to

perception processing.

3.4 ATTENTION -RELATED PROBLEMS IN CURRENT SYSTEMS

Chapter 2 mentioned the crash of Eastern Airlines flight 401, in

which the flight crew was so focused on another task that the plane flew

into the ground while they were distracted.  It is of interest to note that a

nearly identical situation has occurred in a computational system.

ModSAF is a complex battlefield simulation that includes simulated

helicopters flown by simulated helicopter pilots [Hill et al., 1997].  The pilot

agents must fly their helicopters while visually scouting for enemy tanks.  If

tanks are found, the helicopter scouts return to the main group and report

their findings.  In one scenario, three helicopters came over a hill and

suddenly encountered a field containing ninety tanks.  Unable to divide

their attention correctly, the simulated pilots concentrated on processing

visual information about the tanks.  Meanwhile the helicopters drifted out
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of position because the helicopter gauges and controls were ignored.

Consequently, one of the helicopters crashed into a hillside while the other

two helicopters crashed into each other.  Input from the helicopter controls

should not have been ignored while processing the visual input.  Instead,

perceptual tasks for the two operations (scanning and flying) should have

been interleaved.  Assuming the tasks were prioritized correctly, the CPA

system discussed in the Chapter 4 of this dissertation would handle this

correctly.

A second, less destructive, example is MIT's Intelligent Room project

[Coen, 1997].  This room contains a speech recognition system and a vision

system that tracks people and recognizes gestures.  It is a prototype of a

room where people can point at displays containing maps and ask questions

of the room's computer.  A recent video of the system shows a person

gesturing at a map, waiting a few seconds, and then asking a question.  The

system is apparently unable to process visual and audio input at the same

time.  To be fully functional, the room needs to be able to perceive multiple

sources of input at the same time.

These examples illustrate the need for a perceptual attention process

in modern intelligent agents.  The rest of this dissertation discusses the

design and implementation of a general-purpose attention process that will

be useful in multimodal systems like these.
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Chapter 4: Computational Perceptual Attention

This chapter discusses the design goals, operational characteristics

and implementation of a system, CPA, for multimodal computational

perceptual attention.  An example that uses the CPA in a robot navigation

task is discussed in Chapter 5.  Chapter 6 discusses ways to evaluate the

performance of the CPA.

4.1 COMPUTATIONAL ENVIRONMENT

CPA is designed for a single-processor, multi-tasking computational

environment.  It is designed to meet real time bounds, but since it does not

assume a real time operating system it is subject to processor contention

from unrelated processes, and can meet only soft real time bounds.  It is

compatible with a distributed system environment in which various

components run on separate machines.

The overall structure of the CPA is shown in the figure below.  The

various components are discussed in more detail later in this chapter.
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Sensor

CPA

Detectors

Trackers

Attn policy

Sensor

Sensor
Focus Set

Task

Figure 4.   Structure of the CPA.

A high-level system, such as a robot navigation system, directs the

CPA to monitor sensor input for types of percepts that are relevant to its

current task.  The CPA delivers percepts to the focus set at regular time

intervals, the percepts having been filtered and prioritized according to the

task’s needs.  The task periodically retrieves percepts from the focus set for

processing.  The sensor buffers (one for each sensor) and the focus set act as

transfer points for percepts as they pass between the asynchronous sensor,

CPA and task processes.  As the high-level system performs different tasks,

it modifies the CPA to specialize it for the task at hand.

4.2 DESIGN GOALS

The primary purpose of the attention mechanism is to maintain a

focus set of important percepts by filtering and prioritizing perceptual input
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in response to the dynamically changing goals of the current task or tasks.

The design assumes the existence of sensors to provide input and a

cognitive mechanism to control the attention process by adding, removing

and prioritizing detectors as necessary.  The task does this by collecting the

perceptual components of high-level goals, from which perceptual goals can

be extracted.  The perceptual goals are then embodied in detectors and

trackers.  For example, in the task “Enter the door”, the component “door”

has perceptual features.  A knowledge base can hold the perceptual features

and associated parameters needed to detect a door using cameras,

rangefinders or other sensors.  This information is used to construct an

appropriate routine to detect the door and track its position relative to the

robot as the robot moves.  The detectors and trackers are activated and

deactivated by the high-level task as necessary.

To be useful, the input must become available to the cognitive

process fairly quickly.  For example, in a robot navigation controller the

correct speed and heading of the robot are a function of the current

perceptions, speed and heading.  We have found that the quality of

navigation control deteriorates rapidly when the perceptual latency, the

delay between the time of sensor input and the time the information is

available to the high-level system, is greater than 200 milliseconds.  Thus,

the design includes a real time bound that the CPA must adhere to.
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4.2.1 Design tradeoffs

The first factor complicating the design process is the tension

between generality and the need for fast low-level processing.  The CPA is

intended to be a general-purpose attention mechanism for multimodal

systems.  To that end, it is useful to abstract most operations to as high a

level as possible.  However, low-level operations such as visual object

recognition are complex tasks that often need to occur 10-30 times per

second.  This tradeoff was resolved by creating a class of perceptual tasks

called Detectors, which directly encapsulate low-level operations such as

object recognition.  A Detector feeds percepts directly to the focus set,

reducing delays in making results available to the high-level system.  A

second class of perceptual tasks, Trackers, represent tasks that retain

memory across perception intervals.  Trackers are more efficient than

Detectors at dealing with objects that have already been detected once.

The second factor complicating the design process is the obvious

opportunity for parallelism in multimodal, multi-tasking systems, which is

offset by the reality that single-processor computers are by far the most

prevalent type of system in use today.  The CPA incorporates a priority

scheduler based on dual queues for Detectors and Trackers.  The scheduler

assumes that only one processor is available.  It provides soft real-time

perceptual guarantees for the high-level system as long as each perceptual

tasks cooperates in meeting its deadline, which is prescribed by the
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scheduler.  An implementation based on multiple processes controlled by a

UNIX-class scheduler does not work as well (see Chapter 7).  Alternatively,

the system could use a true real-time scheduler and operating system that

would provide hard real-time guarantees for perceptual latencies.

A third design problem is the need for flexibility in sensor input.

One task may require unprocessed frames from cameras, while another may

need a list of the doorways found while processing those camera frames.

One task may require entire newsgroup articles, while another would like

only the nouns used in the article.  This problem was resolved by allowing a

“sensor stream” to consist of processed percepts as well as raw percepts

(although usually not both at the same time).  Following is a discussion of

each design goal.

4.2.2 Maintain a focus set

The primary purpose of the CPA mechanism is to maintain a set of

recent perceptions in an attentional focus1.  The percepts are ordered by

their activation level, which decays over time.  The decay function usually

has a very short half-life.  In order to reduce computation, the activation

level of a perception is computed only when the members of the focus set

need to be sorted, i.e. when the focus set is retrieved.

                                       
1 The attentional focus may or may not correspond to short-term memory.  We have

purposely made no attempt to map one onto the other, believing that if they are related

the operational characteristics of a limited short-term memory may emerge as a by-product

of normal processing.
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When psychologists measure decay of activation in people, the decay

curve is exponential [Peterson and Peterson, 1959] as shown in Figure 5.

activation(t) = ae−kt

Figure 5.   An exponential decay equation for activation level.

 The variable a is the initial activation level of the percept.  The

time t is in seconds.  The value k=0.554 produces a curve in which the

initial activation level decays by two-thirds after two seconds, which we

have found heuristically to produce a useful decay curve.  Higher values of k

cause the activation level to decay faster.

The percepts in the attentional focus are incoming percepts that

have been annotated by the detector or tracker that processed them during

the attention phase.  Typical annotations include a type indicator and some

computed values such as the distance to or size of the object.

Incoming percepts that correspond to items already in the focus set

should refresh the activation level of the pre-existing focus item, rather than

create an entirely new entry.  The appropriate detector, tracker and/or

sensor should contain the information needed to determine whether or not a

percept is new.  When a high-level task retrieves the contents of the focus

set, the focus set is emptied in preparation for the next set of percepts.
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4.2.3 Real-time delivery of percepts

The CPA has a time bound that specifies the maximum amount of

time allowed to update the focus set.  The time bound will typically be on

the order of 100 milliseconds for many robot-related tasks.  The importance

of sensors, detectors and trackers (discussed below) should determine the

amount of time allocated to each data item.  The CPA's performance (see

Chapter 6) should degrade gracefully when the CPA's requirements meet or

exceed the allotted time.  The overhead of computing the time allocation

for various detectors and trackers should not exceed 1% of the time bound.

In order to provide an appropriate amount of attention to detectors

and trackers, the available time is divided into two pools: detection and

tracking.  This provides a coarse method of limiting the amount of time

used for either task.

Under conditions of heavy perceptual load, some trackers will not be

called on a given attention cycle.  There are two cases when a tracker may

not be called during an attention cycle.  One is when there is no sensor data

for that tracker.  In this case, the attention mechanism calls the tracker

anyway with a NIL percept.  The tracker may wish to provide an estimate

of the object’s current position or other characteristics it is tracking.  The

second case is when the attention mechanism runs out of time.  In this case,

the tracker will be notified that it is being skipped.
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4.2.4 Multimodal perception

The CPA must support multiple asynchronous sensory input

streams, each of which may supply a different type of data.  The

importance of each sensor will often change while the CPA is executing.

Changes in sensor importance should be reflected in the amount of time the

CPA allocates to processing inputs from each sensor and/or in the priority

assigned to data from each sensor.  Each sensor stream should be buffered

and the buffer should have a fairly small capacity: three percepts, for

example.  This ensures that data in the buffer are current and provides a

coarse method of handling perceptual overload.

A sensor stream may contain raw data directly from the sensor, or it

may contain processed data, which is derived from the raw data.  The CPA

treats both types of sensor streams equally.

4.2.5 Adaptable attention policy

The attention policy consists of several adjustable values and

functions that are used to determine the allocation of time to the active

perceptual processing components.   The adjustable values include:

1. Attention time bound .  This parameter specifies the maximum

amount of time allowed to acquire perceptual input and update the

focus set.

2. Focus strength .  The focus strength determines the activation level

assigned to percepts that were not accepted by any of the active
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detectors or trackers.  They receive an activation of (1 – focus

strength).  For some tasks, these unexpected inputs may be

important, while other tasks may wish to ignore these inputs.  A

high focus strength means that the system will be less easily

distracted from its perceptual goals.

3. Decay rate .  The decay rate affects how quickly the activation level

of percepts in the focus set decays.  This is the constant k in the

decay equation presented earlier in this chapter.

4. Percentage of time allocated to object detection vs. object

tracking .  As discussed in Section 4.2.3, this is a coarse method of

adjusting the time allocated to detection and tracking.  For example,

if most of the time is allocated to object tracking, it is possible that

“new” objects will not be noticed.  This is desirable in some tasks,

but undesirable in others.

5. Priority of sensors .  A sensor’s priority affects the order in which

raw sensor percepts are processed.  A sensor’s priority may change as

the cognitive task changes.

6. Priority of detectors and trackers .  As described below, trackers

are created by detectors to track newly-detected objects.  Each

detector has a priority that specifies how important it is to the

current cognitive task.  This priority may change as the current task

changes.  A tracker’s priority is some combination of the priority it

inherited from the detector and the priority of the object it is

tracking.  This priority may change as the cognitive task changes.
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7. Prioritization functions .  Each detector and tracker needs to be

prioritized according to some value, but several values are present:

its sensor priority, its own priority, and its uncertainty in its tracked

parameters (for trackers).  The task can select the method of

integrating these values into one overall priority value.

An attention policy is an instantiation of the above parameters.  The

attention policy affects the contents of the focus set and, thus, the quality

of perception.  Chapter 6 discusses the Q-measure, which is used to measure

the quality of perception and, indirectly, the quality of the attention policy.

4.3 COMPONENTS OF THE ATTENTION MECHANISM

The previous section mentions several components such as sensors,

detectors and trackers.  This section describes each component in detail.

4.3.1 Sensor streams

In human attention, a sensor stream provides a steady and mostly

automatic stream of data.  In robots and machines, the sensory stream is

much more controllable and its contents can vary widely.  In the CPA

implementation, the Sensor class is derived from a Generator class, since a

sensor can be thought of as a generator of data (although in actuality it

may just be a conduit for the data).
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The code for a very simple sensor is shown below.  This sensor

produces odd numbers starting from 1, every 300ms.

int num=1;

loop:
  produce num;

  num = num + 2;
  sleep(0.3);
end loop;

Figure 6.   A simple sensor.

A more typical sensor might collect a robot’s sonar readings every

100ms and place them in the sensor stream:

loop:

  produce(robot7.getSonarData());
  sleep(0.1);
end loop;

Figure 7.  A sensor for sonar data.

Usually, each sensor runs in a separate thread, asynchronous with

the CPA and with each other.  It stores percepts in a sensor buffer, which is

typically a limited-capacity FIFO buffer.  The percepts in each sensor buffer

are retrieved periodically by the attention mechanism.  The sensor buffer
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acts as a coupling mechanism between the sensor and the attention

mechanism, which run in parallel, but asynchronously.

The details of the actual Sensor and Buffer classes, as well as all

other classes used in the CPA implementation are discussed at the end of

this chapter, and are used in the robot navigation system described in the

next chapter.

4.3.2 Percepts

All objects in the sensor buffers and the focus set are Percepts.  The

sensors produce raw percepts while the focus set may contain either raw

percepts or processed percepts.  A processed percept typically contains the

raw percept as well as some information derived from the raw percept.  For

example, the raw percept may be a set of laser rangefinder readings, while

the processed percept might be a percept representing an open door whose

existence has been determined by examining the set of rangefinder readings.

Another example is a raw percept representing one article from a jobs

newsgroup, with a processed percept representing a summary of a Java

programming job extracted from the article.

4.3.3 Detectors

A detector encapsulates an object recognition method for a high-level

percept.  The term “object recognition” is used here in its most abstract

sense, for detectors can be created for visual objects, audio objects, text
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objects, numeric values outside a certain range, prime numbers and so on.

A task should create a detector for every object type that it finds

interesting.  A detector receives raw or processed percepts from one or more

sensor streams.  If it detects the object it is looking for, it forwards the

percept to the focus set or creates one or more processed percepts and

forwards them to the focus set.  A detector may optionally instantiate a

tracker to monitor the object over time.

Normally, the CPA contains a default detector that is always active.

The default detector accepts any percept that was not accepted by any

other active detector or tracker.  It places the percept in the focus set with

an activation level of (1 – focusStrength).  This makes unexpected input

available to the ongoing task at an appropriate activation level.

4.3.4 Matchers

Matchers contain functions used by detectors and trackers to identify

percepts in sensory streams.  The matcher is extracted as a separate object

so it can be used in different detectors.  A matcher is task– and

sensor–independent, and can be parameterized to deal with different types

of data.  This allows, for example, a wall matcher to be used with different

sensor streams and to be specialized for different size walls.  Part of the

specification of a detector is a specification of its matcher and a set of

arguments that specialize the matcher for a specific task.
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4.3.5 Trackers

Trackers differ from detectors in that they retain knowledge of object

state between calls.  Their processing time is also allocated from a different

pool than that of the detectors.  They may use their state knowledge to

locate an object faster or to compute information (such as object speed)

that requires more than one raw percept to compute.  To prevent detectors

from generating trackers for objects that are already being tracked, a

tracker installs masks on detectors to prevent them from detecting certain

objects.  A common use of masks is to block the detector from seeing an

object in a certain spatial location.  Like detectors, a tracker either forwards

a raw percept to the focus set or instantiates a processed percept for the

focus set.

A tracker is called every attention cycle, if time allows.  Sometimes,

there may be time to call the tracker, but no sensor data for it on that

cycle.  If so, the tracker will be called with a NIL percept.  When this

happens, the tracker can still add a percept to the focus set.  The percept

usually contains an estimate of the object’s characteristics, based on the

amount of time that has passed since the last real percept was received2.

If no time is available to call a tracker, its skipped method is called

to let it know that time has passed, but it wasn’t called.  Since time has run

                                       
2 This is somewhat equivalent to what occurs when a person moves through a room after

turning out the lights.  The relative position of objects is estimated based on the last

known position.
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out, the tracker should not perform any computationally-intensive tasks

inside the skipped method.

4.3.6 Focus Set

The focus set contains the list of percepts that have been accepted

by a detector or tracker.  Percepts arrive in the focus set with an initial

activation level that has been set by their detector or tracker.  When the

focus set is retrieved, the current activation level of each percept is

calculated using the decay equation described in Section 4.2.1.  Thus, the

task receives prioritized percepts that are relevant to the task and are

sorted according to the task’s priorities as embodied in the set of active

detectors and trackers.  When a task retrieves the contents of the focus set,

the default behavior is to clear the focus set.  However, if multiple tasks are

accessing the focus set without coordinating the use of perceptual input, it

may be desirable to retain the contents after retrieval.

4.3.7 CPA: the attention manager

The attention manager component, which has the same name as the

system, manages all the sensors, detectors, and trackers as well as the focus

set.  In order to detect a class of percepts, a higher-level task creates

detectors and adds them to the CPA, removing them when they are no

longer relevant.  Similarly, the task adds and removes sensors.  The task

can pause the CPA, which in turn pauses each of the sensors, detectors and
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trackers.  The CPA also manages the focus set, as detectors and trackers

add percepts to it.  The main loop of the CPA activates detectors and

trackers and monitors time used so that the loop can finish within the time

bound.  The CPA attention loop is shown in the figure below.

In Steps 3B and 4B, percepts are processed in order of sensor

priority, and trackers/detectors are processed in order of tracker/detector

priority.  The nested loops are required to maintain the order of processing.



45

1. Sensin g.

A. Sort the sensors using the sensor prioritization function.

B. Read a percept from each sensor buffer that contains data.

The percept order should reflect the relative sensor priorities.

2. Prio riti zation.

A.Sort the active trackers and detectors using the 

prioritization functions.

3. Tra ck ing.

A. Calculate the total time available for tracking, based on the

time bound and the percentage of time allocated to tracking.

B. For each percept p from 1B,

  For each tracker t,

    If tracking time has expired,

      End Step B

    Else if sensor(p) is in sensors(t),

      NewPercepts ← (trackingFunction(t))(p)

    FocusSet.add(NewPercepts).

C. while tracking time is available,

  For each tracker t not called in Step B,

    NewPercepts ← (trackingFunction(t))(NIL)

    FocusSet.add(NewPercepts).

D. For each tracker t not called in Steps B or C,

    skipped(t).

4. De tection.

A. Calculate the total time available for detection.  There may

be extra time available if the trackers did not use all of th eir

tracking time.

B. For each percept p from 1B,

  For each detector d,

    If detection time has expired,

      End Step B

    Else if sensor(p) is in sensors(d),

      NewPercepts ← (matchFunction(d))(p)

    FocusSet.add(NewPercepts).

C. If there is time left, call the default detector on any percept

that was not accepted by any detector or tracker.
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The purpose of this procedure is to add new percepts to the focus

set, under conditions that the contents of the focus set are both (a) current

and (b) concurrent.  Any changes to the above procedure should satisfy

these two conditions.

4.4 CPA I MPLEMENTATION DETAILS

Appendix 1 gives details of the classes used to implement the CPA:

CPA, Sensor, Buffer, Detector, Matcher, Tracker and Percept.  Chapter

5 provides a full example of a CPA-based system, and Chapter 6 provides

several examples that illustrate various facets of its behavior.
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Chapter 5: An example: Robot Navigation

This chapter presents a detailed example that uses the CPA in a

robot navigation problem.  At the end it presents in brief form a second,

completely different example that uses the CPA to scan newsgroup articles.

The specific procedures used here for robot navigation and object

recognition are instances of existing methods, e.g. [Kortenkamp, et al.,

1998].  The intent is to illustrate perception management using the CPA

and not necessarily to describe the best possible methods for navigation or

object recognition.

Robot navigation is a difficult problem for many reasons.  Physical

control of the robot’s speed and direction is governed by mathematical

models that must work within a system that does not have continuous

access to sensor data.  Sensing the environment with sufficient detail and

precision is an even more difficult problem.  The position of a wall or door

as detected by sensors contains uncertainty due to sensor error and

limitations in the sensor data processing.  This is complicated by relatively

large errors in the robot’s odometry information.  The robot is never exactly

sure where it is or where the external objects are.  Furthermore, the

consequences of making a navigation mistake can be disastrous.  Running

an expensive robot into a wall is neither good for the robot nor good for the

wall.
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This chapter discusses the perceptual problems of robot navigation in

the context of a specific example and how navigation can use a general-

purpose attention mechanism, the CPA described in Chapter 4, to manage

multimodal perception.  This chapter illustrates how the problem can be

addressed in our general-purpose framework without losing the efficiency of

handcrafted, low-level solutions.

5.1 A ROBOT NAVIGATION PROBLEM

In this example, a robot navigation system is directing a robot down

a hallway, intending to stop at a certain door.  It navigates by locating the

hallway walls and following a path between the two walls.  Additionally, it

must avoid any obstacles in its path.  In this example, we are using the

Flat robot simulator [Flat, 2000], although the implementation would be

nearly identical for a real robot with a similar interface3. Flat simulates a

robot in a 2-dimensional world.  It simulates not only the physical

movement of the robot, but several sensors, including laser rangefinders,

sonars, and an absolute positioning system.  The configuration used for this

example assumes two laser rangefinders, one on each side of the robot

mounted at a 45° angle outward from the center of the robot.  This

                                       
3 To ease the process of transferring navigation routines from the simulator to a real robot,

the software in our lab utilizes an interface layer that provides identical functionality in

both the simulator and the real robots.
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provides approximately a 270° scan around the robot at 1° resolution for a

distance of 25 meters.

Figure 8 below shows a single scan from a robot with dual

rangefinders.  The scan is an overhead view; the robot is the black dot in

the lower middle of each display and the robot’s current direction is always

toward the top of the window.

Figure 8.   A rangefinder scan showing line segments (left) and raw data

(right).
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Line segments extracted from the data are shown on the left side,

while the raw scan from the right rangefinder is shown on the right side.

(The two scans have a 90° overlap, so one scan is sufficient to view most of

the environment.)  To the human eye, the presence of a hallway is fairly

obvious in the set of line segments, as is the doorway on the right side of

the hallway.

5.2 TOP -DOWN FORMULATION OF PERCEPTION TASKS

Perception provides the robot with information about the external

world.  The robot uses that information along with its internal behavioral

goals to initiate, alter or terminate actions.  In addition to behavioral goals,

the robot will have perceptual goals.  For example, in order to go to a

specific room in a building, the robot has to detect and identify the room.

On its path to the room, it will need to recognize other objects such as

corridors and elevators that help it to determine its position.  If the robot

were to scan for all known objects at all times, the set of perception tasks

would be overwhelmingly large.  Thus, the perceptual goals are typically

determined at a high level and passed down to the perception mechanism as

needed.  This is known as top-down attention [Posner and DiGirolamo,

1998].  The robot may have a few important perception goals that are

active all the time, such as general obstacle detection, but most perception

goals are initiated from the cognitive part of the system.
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This section discusses methods that a system can use to instantiate

detectors and trackers from perceptual goals.  These have been

implemented in a prototype system but were not used in the detailed

examples of the next chapter.

5.2.1 Using spreading activation to find relevant objects

A general-purpose spreading activation process can collect a set of

relevant concepts from memory.  This section describes such a process that

collects objects into a structure called the SACK (Set of Activated Concept

Knowledge).  Perceptual features of the objects in the SACK are used to

create detectors and trackers.

A simple form of spreading activation [Anderson, 1984] can be used

to activate relevant concepts based on a set of primary concepts contained

in the current set of high-level goals (strategies).  For example, the goal Go

through the door contains the noun door which has perceptual

characteristics, so it would be placed in the SACK as a primary concept.

Once the primary concepts have been collected in this manner, secondary

concepts are then activated from the primary concepts using spreading

activation.  For a door, related secondary concepts might be doorknob,

doorframe and wall.  The activated concepts provide perceptual schemas or

templates that are used to instantiate detectors or trackers.

As the agent’s plan evolves, concepts can be added and removed

from the SACK according to the algorithm below.  Let G be the current set of
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behavioral goals, and P be the objects in the goals that have perceptual

characteristics.  Each element of the SACK has two components: an object

and its activation, which we will represent as (o, a), where 0 <= a <= 1.

Let the activation function f be a function such that f(x) < x.

1. Update the set of active behavioral goals G, and the related set P.

2. Initialize the SACK using the set P, with the activation of each object

set to 1:  SACK = {(pi, 1) | pi in P}.

3. For each concept c in the SACK,

  Activate(c.object).

The Activate function computes a transitive closure of relevant objects

over the set of perceptually relevant relations.  The algorithm terminates

when the activation level of an object drops below a defined minimum,

MIN_ACTIVATION.

Activate(c):

For each relevant relation r on c.object,

     Let w = r(c.object)

     If w is already in the SACK,

        Activation(w.object) =
           max(activation(w.object), activation(c.object))

     Else
        a = f(Activation(c.object))
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        If Activation(w.object) > MIN_ACTIVATION,
           SACK = SACK + (w, a)

           Activate(w).    ;; Recur on the new object.

The set of relevant relations in Step 3 includes spatially relevant

relations such as near and part-of, that are used to find related

perceptual objects for spreading activation.  This requires a rich set of

knowledge about perceptually observable objects.  The spreading process

ends at each object whose activation is below a threshold level.  The

activation must decrease at each successive recurrence in order to ensure

termination of Step 3.  Step 3 takes O(kd) time, where k is the average

branching factor of the spread, and d is the depth of the spread.  The

branching factor k increases as the number of perceptually-relevant relations

increases.  The depth d is related to the activation function f and the value

of MIN_ACTIVATION.

Once the SACK is constructed, the perceptual features of the objects

in the SACK are retrieved and used to direct perception.  For example, if

office-door is in the SACK, its features size, color and location can be used

to construct trackers.

In summary, the SACK is a network of concept knowledge whose

roots are in the current plan and whose contents change as the behavioral

goals of the robot change.  This allows the SACK to focus the attention of

the low-level perceptual system on perceptual tasks related to current goals.   
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5.2.2 Perception templates and schemas

A simpler, but less flexible, method of collecting perception tasks

uses perception templates in order to recognize a specific object.  For

example, many doors look alike and are differentiated by minor perceptual

details.  A door template specifies the typical size, shape and color of a

door.  When a specific door needs to be recognized, its perceptual details

are retrieved from a knowledge base and combined with the door template

to produce a description that a detector can use to recognize a door.  Since

the robot has many sensors, different templates will be instantiated

depending on which sensor(s) are utilized for the perceptual task.  Although

the detectors used in the examples of this dissertation use one specific

sensor, a sophisticated system with active sensors will need a sensor

planning module to allocate sensors to perceptual tasks.  Active sensors can

be directed in response to perceptual goals.  For example, if a camera is

being used to track an obstacle on the left side of the robot, it can not be

used to detect a doorway on the right side of the robot.

Individual perceptual templates are useful when perceptual

knowledge is relatively sparse.  But some knowledge bases may have much

more perceptual information.  For example, a hallway is a visually complex

scene consisting of doors, walls, lights, floors, nameplates, branching

corridors, trash cans, pedestrians, light switches and many other things.  A

naïve perceptual template for a hallway would generate too many
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perception tasks for the system to process.  In this case it would be better

to use a perception schema to specify a subset of the perceptual

characteristics that are to be used to detect the object.  While a template

specifies important features of objects, a schema specifies a set of objects

and the templates to use for those objects.  The use of schemas should

significantly reduce the perceptual cost for complex objects.  A potential

drawback of both templates and schemas is the possibility that the set of

templates and schemas is incomplete.

5.2.3 Retrieval using viewpoints

In a situation where schemas or templates are not available or

feasible, a knowledge base retrieval method based on viewpoints [Acker and

Porter, 1994] could be used to collect a set of relevant objects based on

dynamic goal-related criteria.  Using a perceptual viewpoint to perform a

memory retrieval will retrieve only (or mostly) objects relevant to

perception.  A viewpoint is similar to the schemas discussed above, but can

be more abstract and more dynamic, and thus applicable to more tasks.

Constructing the viewpoint templates is apparently the most difficult part

of the process.  It is possible that these could be dynamically generated by a

"viewpoint expert".  Further research in this area will determine how

applicable this approach is to the attention problem.
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5.2.4 Relevance to high-level attention goals

Section 2.6 lists four characteristics of human attention that are

important for high-quality attention.  They are: sustained attention, the

ability to set perceptual goals and maintain them over time;  selective

attention, the ability to selectively filter input based on features such as

color, size and shape; divided attention, the ability to pursue multiple

perceptual goals in parallel; and top-down control, the ability to control

perception based on high-level goals.  The mechanisms described in this

section, especially the SACK-based mechanism of Section 5.2.3, support all

four of these characteristics.

In the SACK algorithm described in the previous section, perceptual

goals are in effect as long as their corresponding behavioral goals are active,

which is sustained attention.  The templates and their associated detectors

provide selective attention.  The ability to activate multiple detectors and

trackers provides divided attention.  And the template, schema and

spreading activation methods of producing perceptual goals all provide top-

down control.  I conclude that the CPA, in conjunction with top-down

generation of perceptual goals, provides all of the key characteristics of

human attention, and thus a solid foundation for general-purpose

computational perceptual attention.
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5.3 SENSORS

The Flat robot simulator provides several simulated sensors.  In this

example we will use absolute positioning and laser rangefinder information.

In addition, we will use several streams of processed rangefinder data,

including jumps (discontinuities in the data), line segments, blobs (clumps

of rangefinder readings) and the robot’s linear and angular velocities as

determined from the readings of the absolute positioning sensor.  The latter

are provided by a set of utilities collectively known as the dead-reckoning.

5.3.1 Absolute positioning

The Flat simulator provides the absolute position and orientation of

the robot in the simulated world4.  The difference between successive

readings can be used to determine the robot’s linear and angular velocities.

The system needs velocity information in order to predict the future

position of objects based on their last observed position and the robot and

object velocities.  Flat is able to send position information at most every

100 milliseconds.  In this example, let’s assume that the navigator needs

updated position information every 200 milliseconds (0.2 seconds).

First we’ll define a class (see Figure 9) to represent the speed and

position information calculated from the position information.

                                       
4 A real robot usually provides odometry readings, which are much less precise than

absolute position information.  However, at this time Flat does not provide standard

odometry data.
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Next, we’ll define the sensor that collects the position information

from Flat and creates the incoming percepts.  First, we create the position

sensor (see Figure 10).

Next is the function to acquire position readings and create a

position percept (see Figure 11).  This function is used in the position

sensor to acquire data and convert it to a percept.

T-position-percept   

  Pos ;; position (x y)
  Orientation ;; angle (degrees)

  Linear-velocity ;; meters/sec
  Rot-velocity ;; degrees/sec

Figure 9.   Contents of a position percept.

(make-instance ‘T-sensor
  :name “Position sensor”

  :cpa    cpa
  :priority priority

  :generator-fn   #position-perception
  :generator-args  nil))

Figure 10.   Creating a position sensor.
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(defun position-perception (sensor &OPTIONAL

    (interval 0.2))
  "Produces a list of (position linear-velocity rot-velocity).

Converts to meters."

  (let ((position  nil)
         (stream    (output-stream sensor))

         (data       nil))

    (loop
      ;;   "Returns (time x y z theta)  sec,mm,mm,mm,degrees"

      (setq data (cdr (get-robot-reckoning-position "Spot”)))

     ;; We reflect across the X-axis to convert
      ;; the readings into a standard egocentric coordinate system.

      (when data
           (setq position

                  (make-instance 'T-position-percept
                       :pos    (make-instance ’T-point-2d

:x (/ (first data) 1000.0)
:y (/ (- (second data)) 1000.0))

                       :orientation      (fourth data)
                       :linear-velocity  (/ (second

(get-robot-reckoning-v
 "Spot"))   1000.0)

                       :rot-velocity     (- (/ (second
(get-robot-reckoning-w

"Spot"))   1000.0))))
      (store stream

                (make-instance 'T-percept
 :cpa           (cpa sensor)

 :sensor        sensor
 :timestamp  (get-time-milliseconds)

 :value         position
 :tag           :POSITION)))

       (sleep interval))))

Figure 11.   Creating position sensor percepts.
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Finally, we create a simple match function for the position detector.

This function matches any position input so that it can be placed in the

focus set and made available to other system components.

(defmethod position-match-fn
    ((matcher T-matcher) (percept T-percept) (detector T-detector)
     max-detection-time)

  (declare (ignore max-detection-time))

  ;; Always matches the position input.
  (instantiate percept detector *high-priority* :POSITION))

Figure 12.   A match function for odometry.

5.3.2 Line segments from laser rangefinder data

The laser rangefinders in our robots (both simulated and real)

provide both raw and processed data.  One of the types of processed data

consists of line segments extracted from the raw data.  To the human eye,

it is obvious which parts of the data form line segments, but it is non-trivial

to compute them from the raw data [Guil et al., 1995].  In this example, we

treat line segments as a separate sensor stream.  The simulator will provide

segments every 0.3 seconds.

As in the odometry sensor above, we’ll first create a percept type to

hold the line segments.  The segments-percept contains the line segments as
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computed by the simulator, the same set of line segments converted to the

robot’s coordinate system, and the robot position at the time the segments

were produced.

T-segments-percept   
  Raw-segments

  Converted-segments
  Robot-pos

Figure 13.   Contents of a line-segments percept.

(defmethod segment-match-fn-with-display

    ((matcher T-matcher) (percept T-percept) (detector T-detector)
     max-detection-time)

  (declare (ignore max-detection-time))

  ;; Always matches the set of segments input.
  (instantiate percept template *high-priority* :SEGMENTS)

  ;; Send the line segments to a display.

  (display-segments percept)
  )

Figure 14.   A match function that also interfaces with a display.

The simple match function in Figure 14 is essentially identical to the

position-match-fn shown above.  In addition, the match function can be

used to direct segments to a display as part of the user interface.  Since all

segments pass through the match function, it is an ideal place to add a call

to a display function.
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The function to retrieve laser segments has many parameters that

control how line segments are extracted from the data.  These parameters

are passed into the rangefinder-segment-perception function, which

collects the returned line segments and creates a percept.
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(defun rangefinder-segment-perception

     (sensor min_theta max_theta k_max_distance
      k_discontinuity_thresh k_squid_window_size

      k_squid_window_std_dev k_colinear_range_thresh
      k_colinear_theta_thresh k_colinear_contig_thresh

      k_min_segment_length k_use_filter k_filter_window_size)

  (let ((segments       nil)  ;; from the sensor
(raw-segments  nil)  ;; same data, but in object form

(stream           (output-stream sensor))
)

    (loop
      (setq segments

(get-laser-segments min_theta max_theta k_max_distance
                  k_discontinuity_thresh k_squid_window_size

                  k_squid_window_std_dev k_colinear_range_thresh

                  k_colinear_theta_thresh k_colinear_contig_thresh
                  k_min_segment_length k_use_filter
                  k_filter_window_size))

      (when segments

(setq raw-segments (make-segment-objects segments))
(store stream

       (make-instance 'T-percept
 :cpa        (cpa sensor)

 :sensor     sensor
 :timestamp  (get-time-milliseconds)

 :tag        :SEGMENTS
 :value      (make-instance 'T-segments-percept

       :raw-segments raw-segments
       :converted-segments

                                      (fix-flat-segments-2d raw-segments)
       :robot-pos

       (fix-position
(cdr (get-robot-reckoning-position

      (flat-data-robot-name *robot-state*))))
       ))))

      (sleep 0.4)

      )))

Figure 15.   Perceiving laser rangefinder segments.
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5.3.3 Blobs from laser rangefinder data

A blob is defined as a set of points that are near each other but

collectively far from other data points.  Parameters control the formation of

blobs by setting minimum and maximum values for size, maximum distance

between the blob’s points and minimum distance of the blob from other

readings.  The blob perception is almost identical to line segment

perception, the major difference being a call to get-laser-blobs instead of

get-laser-segments.  Some objects that form blobs in the laser data include

table and chair legs, human legs, lamp stands and smallish objects like

robots and computers when seen from certain angles.

5.3.4 Doorways from laser rangefinder data

The laser rangefinder module provides a quick, but error-prone,

method for detecting the possible presence of a doorway in the rangefinder

field of view.  It is based on the presence of a discontinuity, or jump, in the

rangefinder data. At a doorway, the rangefinder readings will suddenly

increase as the rangefinder beam sees through the doorway into the room or

corridor beyond.  This quick detection method has a high false positive rate,

but a negligible false negative rate.  We will use this test as a quick

doorway detector, but the associated tracker will use a more accurate test

involving line segments.  The sensor to retrieve a list of possible doorways is
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nearly identical to the blob and segment sensors.  The low-level function it

calls is get-laser-doorways.

The figure below shows the sensor streams and object detectors in

the system.  The object detectors are described in the next section.

Abs Position

Laser Rangefinder

Simple Doorways

Blobs

Line Segments

Doorway

Hallway

Obstacle

Sensors Detectors

Figure 16.   Sensor streams and object detectors in the system.

5.4 OBJECT DETECTORS

For this example, we need several detectors: a wall detector, a

doorway detector, a box detector and a blob detector.  First, we will create

a couple of simple detectors that cause line segments and blobs to be

displayed on the user interface as they are processed.  These are shown in

Figure 17 below.

As an example of a more complex detector and tracker, the door

detector is presented below.  It is one of the most complex detectors

developed so far.  The other detectors are similar in that they detect and

track objects based on characteristics of one or more line segments or blobs.
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5.4.1 A doorway detector and tracker

To detect doorways, we’ll use two different methods.  The laser

rangefinder module provides a method for detecting doorways that is quick

but also produces many false positives.  We will use this method in the

detector, but the tracker, which must be more accurate, will use a slower

but more accurate method that examines line segments.  First, we need a

matcher:



67

(setq segment-matcher
  (add-matcher *my-cpa*

       (make-instance   'T-matcher
 :name            "segment-display-matcher"
 :cpa               *my-cpa*

 :match-fn       #'segment-match-fn-with-display)))

 ;; This matcher gets all the blobs and displays them
 ;; on the Flat display.

(setq blob-matcher
  (add-matcher *my-cpa*

       (make-instance   'T-matcher
 :name            "blob-display-matcher"
 :cpa               *my-cpa*
 :match-fn       #'blob-match-fn-with-display)))

(setq segment-detector
  ;; This detector triggers on any segment input
  ;; and sends it to the display.
  (make-instance   'T-detector
    :name          "Segment display"
    :cpa             *my-cpa*
    :sensor          segment-sensor
    :priority        1.0
    :matcher       segment-matcher))

(setq blob-detector

  ;; This detector triggers on any blob input
  ;; and sends it to the display.

  (make-instance   'T-detector
    :name             "Blob display"
    :cpa                *my-cpa*
    :sensor            blob-sensor
    :priority          1.0
    :matcher          blob-matcher))

Figure 17.   Simple detectors that display blobs and segments.

Usually, the robot is looking for a specific doorway and knows

whether it is on the right side of the hallway or the left side.  A design
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decision is whether to distinguish between the right-side and left-side

doorways in the matching function or whether to make the distinction at

the detector level.  If distinguished during matching, the two categories of

doorways will be available to all detectors, possibly eliminating duplicate

code in detectors, so we will use the matcher to do a quick check that

determines which side of the hallway the doorway is on.  The figure below

shows a left-side doorway match function.  It uses a simple doorway

detector based on large jumps in the rangefinder data, as described earlier.

The percept contains the angle of the jump and the distance to the jump.

;; Uses a tracker
(defmethod simple-left-side-doorway-match-fn
    ((matcher T-matcher) (percept T-percept) (detector T-detector))

  (let ((data (value percept)))

    (when (and (>= -25.0 (angle data) -110.0)
   (not (angle-masked-p detector (angle data))))

        (track percept detector *high-priority* :LEFT-SIDE-DOORWAY)

        )
      )
    )

Figure 18.   A matcher function for left side doorways.

Note that this match function activates a tracker by using the track

method rather than the instantiate method used in previous examples.

Also, since it uses a tracker it checks to see whether a mask has been set on

the doorway position before creating a tracker.  This prevents a
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pathological situation where a detector repeatedly instantiates trackers for

the same object.  In this case, the mask is an egocentric angular range that

covers the expected location of the doorway.  It is adjusted each time the

tracker is called.

The track method creates a tracker, which is a subclass of detector.

In this case, it will create an instance of doorway-tracker, shown below.  A

doorway tracker is a subclass of tracker with two additional doorway-

specific fields.

T-doorway-tracker   

  Last-doorway-position
  Last-update-time

Figure 19.   The doorway-tracker class.

After the tracker has been created, the CPA will call an initialize-

tracker method, at which time the tracker can initialize itself.  Now that we

have some of the tracker foundation laid, let’s look at the definition of the

doorway detector:
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 (make-instance   'T-detector

    :name          "Left side doorways"
    :cpa              *my-cpa*

    :sensor           simple-laser-doorway-sensor
    :priority         0.85

    :matcher        left-side-matcher
    :tracking-fn    #’doorway-tracking-fn

    :tracker-type  'T-doorway-tracker
    :mask-fn        #'create-mask-for-doorway

    :sensor-fn       #'(lambda () segment-sensor)
    ))

Figure 20.   A doorway detector.

This detector uses several fields not used in previous examples.  The

tracker-type provides the type of tracker to create for an object.  The

tracking-fn performs a function similar to the matcher, but in the context

of a tracker.  The CPA calls the mask-fn of a tracker once every attention

cycle.  The sensor-fn indicates which sensor stream(s) the newly-

instantiated tracker should be linked to.  In this case, the tracker’s sensor

stream (segment-sensor) is different from the detector’s sensor (simple-

laser-doorway-sensor) because the detector uses the simple doorway

detector while the tracker uses a more precise detector based on collinear

line segments.  The track method creates a new tracker object, calls

instantiate-tracker and returns the new tracker, which is then added to the

CPA.

Finally, let’s look at the tracking function.  As described in Chapter

4, once a tracker is created, its tracking function is called every attention
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cycle whether or not there is sensor data available.  If data is available, the

data is checked to see whether the doorway is still visible.  If so, its position

and the uncertainty in the position are updated.

If data is not available, or if the doorway is not visible, its current

position is estimated based on the last known position and the robot’s speed

and direction.  Appendix 2 discusses how to estimate the position of objects

when the robot and the object are moving.  In this case, of course, the

doorway is assumed to be stationary.  The doorway estimator contains code

to perform the position estimation and to determine the uncertainty in the

estimate.
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;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )

  )

(defmethod initialize-tracker ((this T-doorway-tracker)

                                        (percept T-percept))
  "Initialize the tracker after creating it."

  ;; Percept has (theta jump-size) for a doorway

  ;; theta is in degrees.
  (setf (last-update-time       this) (timestamp percept))

  (setf (last-doorway-position this) nil)
  (setf (sensor this)                     *segment-sensor*)

  (setf (uncertainty this)              0.0)

  ;; Set a mask.
  (let ((angle (- (car (value percept)))))

    (add-mask (detector this) this (list (- angle 15.0)
                   (+ angle 15.0))))

  (resume *segment-sensor*))

Figure 21.   The initialize-tracker method for the doorway tracker.

;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings
 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )

(defmethod doorway-tracking-fn

             ((this T-doorway-tracker) (percept NULL) id time)
  "Uses the percept to update the location, or creates a
virtual percept if none is provided.  Returns the instantiated percept

so it can be placed in the Focus Set.
Time is in ms."

  ;; if the uncertainty is too high, we may have lost

  ;; track of the data.  If so, deactivate the tracker.
  (when (> (uncertainty this) *uncertainty-limit*)

    (remove-tracker (cpa this) this)
    (return-from DOORWAY-TRACKING-FN nil))
  ;; otherwise, estimate the doorway’s position at this time

  (estimate-doorway-position this id time))

Figure 22.   The doorway-tracking-fn method for a NIL percept.
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;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )
  )

(defmethod doorway-tracking-fn ((this T-doorway-tracker)

                                             (percept T-Percept) id time)
  "Uses the percept to update the location, or creates a

virtual percept if none is provided.  Returns the instantiated percept
so it can be placed in the Focus Set."

  ;; calculate the doorway position based on data.
  (setq doorway (find-doorway-in-segments this percept id time))

  (cond (doorway
               (instantiate
                  (make-instance 'T-percept

                    :cpa    (cpa this)
                    :sensor (sensor percept)

                    :timestamp  (get-time-milliseconds)
                    :value  (list doorway-angle (/ doorway-dist 1000.0)))

                  this *high-priority* :TRACKED-DOORWAY)))

           (T     ;; If we get here, we didn't find the doorway.
             ;; if we don't have a last-doorway-position, then

             ;; the possible doorway was a false alarm.
             ;; If so, delete this tracker.

             (cond ((null (last-doorway-position this))
                       (remove-tracker (cpa this) this)
                       )

                       (T    ;; Otherwise, call the estimator
                          (doorway-tracking-fn this nil id time))))))

Figure 23.  The doorway-tracking-fn method for real percepts.

5.5 NAVIGATION

The previous sections have described the sensors, detectors and

trackers needed for robot navigation.  To put it into action, we create an

instance of the CPA as described at the end of Chapter 4 and set its

timebound to 100 milliseconds.  The navigation system can then retrieve



74

an updated focus set every 100 milliseconds and use the contents in order to

control the robot’s motion.  It uses the wall percepts to guide the robot’s

path down the hallway and the doorway percepts to determine a stopping

point.  As it detects obstacles, it must maneuver around them, and it can

stop at fuel stations to recharge its batteries.

As discussed in Chapter 1, high-quality robot control requires very

short perceptual latencies.  In this example, we set a time bound of 100

milliseconds in order to produce high-quality control.  However, the sensors

do not provide input that fast, so the trackers need to have high-quality

position estimators to support the controller.

5.6 SETTING THE ATTENTION POLICY

Chapter 6 discusses how to measure the performance of perception,

which is affected by the attention policy or policies in effect during a task.

Normally, a task will make several adjustments to the attention policy while

it is being performed.  The parameters of the attention policy were

discussed in Section 4.2.5.  The table below provides appropriate values for

the attention parameters of this problem and briefly discusses the reasons

behind each choice. Section 6.6 discusses ways to tune the attention policy

if perception-related problems arise.

Time bound 100 milliseconds Must be short; perceptual
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latency affects robot

control.

Focus strength 0.6 Too high a value risks

ignoring unexpected

input.

Detection % 20% Detectors are fast in this

example; don’t need

much time.

Sensor priority 1.0 All sensors are equally

important.

Detector

priority

Obstacles: 0.95

Walls:  0.9

Doorways: 0.8

Boxes: 0.4

Can’t afford to hit

anything, but can always

back up to find a door.

Prioritization

functions

priority(x)
   × uncertainty(x)

For detectors, just use

the detector priority.  For

trackers, use this

equation.  As an object’s

uncertainty rises, its

tracker acquires a higher

priority.

Table 1.   Suggested values for the attention policy parameters.

5.7 A SECOND EXAMPLE : A NEWSGROUP SCANNER

As another example, and to illustrate the flexibility of the attention

mechanism, this section includes a completely different kind of application.

The application searches newsgroups for job postings that mention Java or

LISP.  The sensor in this application reads messages from several *.jobs

newsgroups.  A percept is an entire message, stored as a list of strings, one
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line per string.  Two detectors search for messages containing keywords

such as “Java” and “LISP”.  The task is to find and print the articles

containing relevant jobs.  The first figure presents the match function from

the matcher.  The second figure presents the perception routine, which

relies on a small set of functions to access articles via the NNTP protocol.

The third figure presents the top-level application that uses the focus set to

list relevant articles.

The match function below finds articles containing the word “LISP”.

Matchers for other keywords or sets of keywords would be nearly identical

to this one.

;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )

;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (detector T-detector))

  (let* ((data    (value percept))
 (article  (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept detector *high-priority* :LISP)

      )))

Figure 24.   The match function for messages containing “lisp”.
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(defun newsgroup-article-perception (sensor newsgroup-token)

  "TOKEN is a string which will be used to find
newsgroups.  Examples are \"jobs\" or \"mac\"."

  ;; Reads an article every 0.25 seconds.

  (let ((newsgroups   nil)
(max-article  0)

(min-article  0)
(group        nil)

(article      nil)
(stream       (output-stream sensor))

)

    (open-news "newshost.cc.utexas.edu")
    (setq newsgroups (filter-newsgroups (news-list) newsgroup-token))

    (close-news)

    (dolist (newsgroup newsgroups)
      (multiple-value-setq (group min-article max-article)

(parse-newsgroup-info newsgroup))

      (when (> max-article min-article)
(format *standard-output* "~2%Opening ~a, ~d articles"

group (1+ (- max-article min-article)))
(open-news)

(get-article-range group)
(loop

  (setq article (get-article))
  (store stream

 (make-instance 'T-percept
   :cpa        (cpa sensor)

   :sensor     sensor
   :timestamp  (get-time-milliseconds)

   :value      (make-instance 'news-article-percept
 :group    group

 :article  article)))
  (unless (next-article)

    (return))
  (sleep *newsgroup-article-sleep-time*)

  )
(close-news)

)))

  (format *standard-output* "~2%Done with newsgroups"))
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Figure 25.   The perception function for the newsgroup scanner.
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(defun job-scanner ()

  (let ((articles       nil)

(lisp-articles  nil)
(java-articles  nil)

)

    (loop
      (setq lisp-articles  nil)

      (setq java-articles  nil)
      (setq articles (focus *my-cpa*))  ;; retrieve the focus set

      (setq java-articles

(remove-if-not #'(lambda (article)
   (eq (tag article) :JAVA))

       articles))

      (setq lisp-articles
(remove-if-not #'(lambda (article)

   (eq (tag article) :LISP))
       articles))

      (when lisp-articles
(format *standard-output* "~%LISP: ~{ ~a~}" lisp-articles))

      (when java-articles

(format *standard-output* "~%JAVA: ~{ ~a~}" java-articles))

      (when (or lisp-articles java-articles)
(terpri *standard-output*))

      (sleep 0.3)

      )
    )

  )

Figure 26.   The job scanner application.
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Chapter 6: Measuring Perception Performance

Chapters 4 and 5 describe and discuss various facets of the attention

mechanism, including attention policies and how they can affect perception.

This chapter discusses a method of measuring the quality of an attention

policy while a task is in progress and methods for using the measure to

learn or fine-tune an attention policy.  This measure, called the Q-measure,

evaluates the performance of perception for a given task.  Since perception

is managed by attention, the Q-measure is a useful measure of the quality

of the attention mechanism.

Attention, as defined in this thesis, involves receiving sensor data,

detecting and tracking objects that are contained in or computed from the

sensor data, and filtering and prioritizing the resulting percepts.  The best

measure of the quality of attention would be one that compares the

resulting prioritized list of percepts with a correctly prioritized list.

However, the correctly prioritized list is difficult to define, and if we could

define it and compute it efficiently we wouldn’t even need an attention

mechanism.

Another good measure is one that compares the set of objects that

are detected or tracked against the desired set of objects.  In a completely

known world this provides an accurate quality measure.  We can set up

experiments in which the world is completely known, and use this measure

to get an accurate evaluation of the quality of different attention policies.
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Even if the world is not completely known, this measure can be

approximated.  The Q-measure defined in this chapter is based on the ratio

of detected objects to desired objects.

6.1 THE Q-MEASURE

The Q-measure defined in this section is a measure of the perceptual

system’s performance on a given task at a given time.  For simplicity, we

will drop the parameters and refer to it as simply Q.  The table below lists

the variables used in the formulas of this chapter.  Nd is the number of

objects to detect.  In a controlled environment, this can easily be

determined.  In a real-world task, this can be determined either from the

number of active detectors or estimated from a model of the environment

and the task.  Similarly, Nt is the number of objects to track.  The variables

d and t represent the number of objects actually detected and tracked,

respectively.

Nd Number of objects to detect.

Nt Number of objects to track.

d Number of objects detected.

t Number of objects tracked.

Table 2.   Values used when computing the Q-measure.
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A simple form of the Q-measure is the ratio:

Q =
d + t

Nd + Nt

(1)

but that formula is limited in that it measures the quantity of perception,

but not the quality.  Each tracker, and in some cases each detector,

measures the uncertainty in the characteristic (location, color, etc.) that it

tracks.  An object being tracked with a high uncertainty is of lower quality

than an object being tracked with a low uncertainty.   The uncertainty is a

strictly task-specific value.  For example, tracking a moving object requires

the robot’s speed and direction of travel, the object’s speed and travel, as

well as its location relative to the robot.  If each of these has associated

uncertainties, as is typical, the predicted position of the object will be an

elliptical region.  The area of the region is a measure of the uncertainty in

the prediction, and thus in the ability to track the object.

We’ll define uncertainty as a number from 0 to 1, where 0.0

represents absolute certainty, and certainty as the value one minus the

uncertainty.  We define the certainty sums Cd and Ct as the sum of the

certainties of all objects detected or tracked, respectively.

Ct = 1− u(i)( )
i =1

t

∑ ,  where u(i) is the uncertainty in object i.

The Q-measure now becomes:
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Q =
Td + Tt

Vd + Vt

Q =
Cd + Ct

Nd + Nt

(2)

When all objects are detected and tracked with absolute certainty, this

equation is identical to the first one.

A final modification of the Q-measure takes into account the value of

an object.  Valuable objects tracked with low uncertainty are much more

important to a task than low-value or high-uncertainty objects.  We define

the value v of an object to be a number from 0 to 1.  It is typically a

function of one or more of the priority of the sensor(s) that perceived it, the

priority of the detector or tracker that is handling it, or other task-

dependent characteristics.  The sums Vd and Vt are computed using a

combination of the objects’ values and certainties using the following

formula:

Vt = v(i)
i=1

t

∑ , where v(i) is the value of the object.

Tt = v(i)*(1− u(i))
i=1

t

∑ , where v(i) is the value of the object.

The final version of the Q-measure is now:

(3)
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The value of an object will undoubtedly vary in relation to changing

goals, so the Q-measure is not necessarily constant over time for a fixed set

of objects and system load.

The following sections contain several experiments that use attention

policies to handle different tasks and use the Q-measure to measure

performance.

6.2 EXAMPLE 1: C OMPARING THREE ATTENTION POLICIES

As described above, Q-measure can be used to measure the

performance of an attention policy.  Assuming that an application has good

object detectors and trackers, the primary factor affecting perception

quality is the amount of time available for perception.  In the experiment

described below, a robot moving into a room must detect and track twenty-

two objects.  In three runs described below, the robot uses three different

attention policies while the Q-measure is recorded.  The first policy is a

default policy, where perceptual tasks are executed in the order received.

This is unlikely to be a good policy for most applications.  The second

policy prioritizes detectors and trackers using their overall importance, and

for trackers combines this with their uncertainty in the location of objects

they are tracking.  This results in much better quality perception under

load.  The third policy processes the detectors and trackers in a generic

round robin fashion.  The perception quality using this method is between

that of the other two policies.



85

Figure 27.   Test environment containing twenty-two objects.

In the experiment, the robot is placed at the lower edge of the room

shown in Figure 27 above.  It moves upward into the room, gradually

emerging from the narrow corridor so that all of the objects are visible.

There are two types of objects in the room, boxes and balls.  In this

experiment, both types of objects have the same priority.  The simulation is

running in the Flat robot simulator: the room is 20 meters on each side, the

boxes are 1 meter square, the balls are about the same diameter as a human

leg, and the robot is about half a meter in diameter.



86

In this example, detectors have no uncertainty and trackers have an

uncertainty that increases linearly on each attention cycle in which sensors

provide no data about the tracked object.  When data arrives and the

tracker can “see” the object again, the uncertainty is reset to zero.

As the robot moves out of the corridor and into the center of the

room, it gradually detects and tracks each of the objects in the room.  The

Q-measure begins near 0, then moves toward 1.0 as the robot gradually

perceives all of the objects.  The experiment then artificially increases the

time required to perform perception operations in order to simulate

increased perceptual load.  Perception loads of 2, 4, 6, 8 and 10 times

normal are simulated, with each phase lasting 8 seconds.  The perception

load then returns to normal.  The only difference in the two runs is the

attention policy.
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Figure 28.   Tracking under heavy perceptual load.

Figure 28 shows the tracking display for this application as it

appears when the system is under 8 times normal load.  The left side shows

the line segments and blobs that have been detected, superimposed on the

rangefinder data.  The front edges of the boxes are clearly visible and the

circles indicate blobs.  Note that two of the box edges, denoted by the

larger circles, are also blobs.  These are not confused with the balls in the

room because they are larger than the known size of a ball.  The right side

of Figure 28 shows the location of tracked objects, denoted by circles,

superimposed on the rangefinder data.  It shows that although the sensors

are detecting all 22 objects, the system only has time to track 6 objects

with a 100ms timebound.
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6.2.1 Run 1: a simple attention policy – no prioritization

The simplest attention policy maintains a list of detectors and

trackers, and allocates time to them in the order they happen to appear on

the list, until time is exhausted.  The graph in Figure 29 shows the Q-

measure over time for this attention policy.  The Q-measure initially

reaches a value near 1.0 around cycle 80.  It then decreases in stair steps as

the perceptual load increases, returning to a high value at the end of the

experiment when perceptual load returns to normal.  The Q-measure is not

constant within each interval because the sensors are slower than the

attention cycle, causing the tracking uncertainty to vary.

As perceptual load increases, the application doesn’t have time to

track all the objects and eventually loses track of all but a handful of the

twenty-two objects in the room. Predictably, the performance decreases

drastically as perception load increases.  However, the next section discusses

a better attention policy that maintains a higher quality of perception.
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Performance without prioritization
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Figure 29.   Perception performance without prioritization.

6.2.2 Run 2: prioritization using uncertainties

As described in Chapters 4 and 5, the attention mechanism allows an

application to prioritize detectors and trackers using prioritization

functions.  The test described below uses an attention policy whose

prioritization function takes into account the tracking uncertainty.  The

sorting order of a detector or tracker is determined by the product of its

priority and its uncertainty.  Under heavy perceptual load, only a few

trackers can be called each attention cycle.  Over time the uncertainty rises

in trackers that are not called.  As the uncertainty rises higher, those
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trackers rise in the sorted list of trackers until they are near the top.  When

they are called, their uncertainty drops to zero.  This process results in a

type of round robin scheduling where every tracker is called often enough so

that all objects can be tracked at a moderate level of uncertainty.  (A built-

in round-robin scheduler would be as effective in this example, but would

not be as effective in general usage because it would not take into account

dynamically changing priorities.  Also, moving objects have a higher

uncertainty than stationary objects, meaning the uncertainties would

change at different rates, something a round-robin scheduler is not prepared

to deal with.)  The perception quality rises due to better time allocation

within the set of trackers.   The figure below shows the Q-measure over the

course of this run.

The stair step effect is reduced, although the variance at each level

increases due to the fluctuating uncertainties.  As Section 6.2.3 shows, the

mean Q-measure in this run is significantly higher than that of the first run

when the system is under load.
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Performance with uncertainty-based prioritization
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Figure 30.   Perception performance with uncertainty-based prioritization.

These two examples illustrate several points.  First, the quality of

perception can become quite low under heavy time pressure.  Second, the

quality can be improved significantly by adjusting the attention policy.

Third, the adjustable parameters of the attention mechanism are sufficient

to allow scheduling rules such as round robin scheduling to emerge as one

instance of an attention policy.

Table 3 provides the attention policy settings for this example.
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Time bound 100ms (default)

Focus strength 0.8 (default)

Decay rate 0.554  (default)

Detection % 20% (default)

Default detector Default detector

Sensor priorities HIGH: 0.8, LOW: 0.6

Priority of detectors and

trackers

HIGH: 0.8, LOW: 0.6

Prioritization functions Run 1: none

Run 2: p = Mean of the sensor and

                detector/tracker priorities.

        Priority = p × uncertainty

Table 3.  The attention policy for Example 1.

6.2.3 Comparing the two runs

An additional test was performed in which both versions of the

experiment were run 40 times.  The changes in perceptual load were

synchronized so that the runs could be overlaid for comparison purposes.  In

order to get comparable runs, care was taken to perform a full garbage

collection between each run.  This ensured that, although garbage collection

was active during each run, it did not consume a significant amount of

processing time.  Also, both the LISP session and the Flat robot simulator

were restarted at least every 4 runs.  The mean Q-measure for each

attention cycle, plus the standard deviation and a 99% confidence interval

on the mean were calculated for each of the attention cycles across the 40

runs.  The results are shown below.
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Figure 31 shows the mean Q-measure for the 40 runs of the default

attention policy experiment described in Section 6.2.1.  The averaged curve

is a bit smoother than that presented in Figure 29 for one run, but it has

the same general shape.
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Figure 31.   Mean Q-measure across 40 runs using the default attention

policy.
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Default Attention Policy Means over 40 runs 
with 99% confidence intervals
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Figure 32.   Mean Q-measure with confidence intervals across 40 runs.

Figure 32 presents the same data with error bars indicating 99%

confidence intervals on each mean.  As the graph indicates, the confidence

intervals are fairly small.

Figures 33 and 34 show the same data for the experiment of Section

6.2.2, which uses a more sophisticated attention policy.  Again, the mean

data reflects the data from the original run shown in Figure 30.  The mean

of the Q-measure values under heavy perceptual load is above 0.4, as

opposed to the mean from the runs using the default attention policy, which

was just above 0.2.  The confidence intervals for the second attention policy

are noticeably wider than the confidence intervals for the default attention

policy.  This reflects the greater variability in the Q-measure using that

attention policy.
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Uncertainty-based Attention Policy Means over 40 Runs
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Figure 33.   Mean Q-measure across 40 runs using the second attention

policy.

Figures 35 and 36 present a combined view of both graphs, for

comparison purposes.  In Figure 36, the 99% confidence intervals are non-

overlapping when the perceptual load is 4x or higher.  This shows that the

CPA can be used to implement attention policies that exhibit significantly

different performance under load.  The attention policies in these

experiments are just two of the many different types of attention policies

that can be implemented in the CPA.
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Uncertainty-based Attention Policy Means over 40 Runs
with 99% Confidence Intervals
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Figure 34.   Mean Q-measure across 40 runs with confidence intervals.

Default Attention Policy Means over 40 runs
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Figure 35.   Combined graph of mean Q-measure for both experiments.
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Default Attention Policy Means over 40 runs 
with 99% confidence intervals
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Figure 36.   Combined graph with confidence intervals for both

experiments.

The next three sections contain simpler examples that illustrate

specific behaviors of the CPA.

6.2.4 Using a generic round robin policy

The experiment described above was also performed using a generic

round robin attention policy.  Under this policy, if the full set of detectors

or trackers was not executed on one attention cycle, execution on the next

cycle resumed at the point it left off.  These results were combined with the

results above to produce the graph in Figure 37.  The corresponding graph

with error bars is not presented because the error bars for the three lines

form a nearly continuous region of black bars, rendering the graph

unreadable.



98

Attention Policy Means, Multiple Runs
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Figure 37.   Combined graph for all three experiments.

A z-test shows that the round robin policy and the uncertainty-based

policy are statistically different at 142 of the 181 data points (78.5%) and at

every point in the interval of highest load.

6.3 EXAMPLE 2: F OCUS ON PRIORITY OBJECTS UNDER LOAD

This example illustrates the capability to prioritize perceptual input

and the effect of that prioritization on the results of perception under heavy

perceptual load.  In this example there are two sensor streams.  The objects

in one are given a high priority (0.8) by their detector.  The objects in the

other have a lower priority (0.6).  At the start of the run, the system is
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running at normal load (1x) and an equal number of objects of each type

are present in the focus set (the output of the attention process).

As the run continues, the load increases to 2x, 4x, 6x, 8x and 10x as

the system continues to process objects.  Each phase lasts for 8 seconds,

which is 80 attention cycles.  As the table and chart below show, at a load

of 2x, the attention mechanism is able to maintain the same level of

performance (7 objects of each type).  At 4x, however, it can not perceive

all of the objects, so it continues to perceive 7 of the high-priority objects,

but the number of low-priority objects drops to 3.  Note that the relative

object counts are a by-product of the prioritization and filtering process

prescribed by the attention policy rather than by a deliberate decision to

reduce the number of objects of a certain type.

At a perceptual load of 6x normal, the low-priority objects are rarely

perceived.  As the table and graph below show, the system can occasionally

allocate time to perceive one low-priority item.  The number of objects

given in the accompanying table is an average over time, and therefore is

fractional.  At 8x and 10x the number of high-priority objects is decreased.

When the load returns to normal, the system’s performance almost

immediately returns to the level achieved at the beginning of the run.  The

system is quite responsive to change.
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Figure 38.   Graph of perceived objects for Example 2.

Perceptual Load Number of high-

priority objects

Number of low-

priority objects

1x 7 7

2x 7 7

4x 7 3

6x 7 0.114

8x 5 0

10x 3 0

Table 4.   Number of perceived objects for Example 2.
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The attention policy settings for Example 2 are in the Table 5.

Time bound 100ms (default)

Focus strength 0.8 (default)

Decay rate 0.554  (default)

Detection % 5%

Default detector None

Sensor priorities HIGH: 0.8, LOW: 0.6

Priority of detectors and trackers HIGH: 0.8, LOW: 0.6

Prioritization functions priority = Mean of the sensor

and detector/tracker priorities.

Table 5.   The attention policy for Example 2.

6.4 EXAMPLE 3: H ANDLING EMERGENCY INPUT UNDER LOAD

This example illustrates the ability to perceive high-priority sensor

input that is only occasionally received.  This example is based on the same

system used in Example 2: one sensor stream containing high-priority (0.8)

data and a second, lower priority (0.6), sensor stream.  A third sensor

stream contains emergency priority (1.0) data, but only occasionally

contains data.

During the example run, the system starts at a 1x load, and 7

objects are perceived from each of the two standard streams (HIGH and

LOW in the chart of Figure 39).  This is the phase labeled “Normal” in the

chart.  After a short time, the system load increases to 4x, which causes the

number of low-priority objects to drop to 3, just as in Example 2.  This is

to illustrate responsiveness under load in the next phase.  In the third,
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“Emergency”, stage the EMERGENCY stream starts sending output,

whereupon the system immediately perceives 7 objects from that stream

(the maximum possible) as well as 3 objects from the HIGH stream.  The

LOW stream count drops to zero since there is no time left to perceive

objects from it.  After the emergency input is finished, the system

immediately returns to the previous state, and then to the original state as

the load drops back to 1x.  The chart below shows the behavior of the

system over time.  The attention policy settings for this example are in

Table 6.
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Example 3: Handling emergency input

High Low Emergency

Figure 39.   Graph of perceived objects for Example 3.
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Time bound 100ms (default)

Focus strength 0.8 (default)

Decay rate 0.554  (default)

Detection % 5%

Default detector None

Sensor priorities HIGH: 0.8, LOW: 0.6,

EMERGENCY: 1.0

Priority of detectors and trackers HIGH: 0.8, LOW: 0.6,

EMERGENCY: 1.0

Prioritization functions priority = Mean of the sensor

and detector/tracker priorities.

Table 6.   The attention policy for Example 3.

6.5 EXAMPLE 4: A DJUSTING THE FOCUS STRENGTH

This example illustrates use of the focus strength parameter to

adjust the activation level of extraneous input.  As discussed in Chapters 2

and 3, people have varying abilities to ignore input that is not relevant to

the current task(s).  An extreme inability to ignore extraneous input can

interfere with task performance and is called attention deficit disorder.  At

the other end of the spectrum is extreme focus, which is characteristic of

autism.  Each of these extremes can be useful at times, but is often a

disability to “normal” processing.  The CPA provides the focus strength

parameter to allow extraneous input to be enhanced or suppressed as

required by the current task.

The percepts in the focus set are sorted by activation level so that

the cognitive component of the system can address the most important

percepts first without expending resources to determine which are the most
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important.  This example shows that by varying the focus strength

parameter, the system can alter the order of percepts in the focus set in

order to adjust the system’s sensitivity to unexpected input.

Let’s suppose a multi-sensor robot is moving down a hallway looking

for a certain doorway.  It’s cameras are looking for the doorway, its

rangefinder is detecting potential obstacles, its audio input system is

listening for commands and its GPS, sonar and compass systems are

producing readings at regular intervals.  Extraneous input for this task

would be anything not related to doorways or obstacles.  If the activation of

the extraneous input is too high, the robot might not have time to process

doorway input, and thus miss the doorway.  On the other hand, if it focuses

too much on obstacles as detected by the rangefinder, a close reading by the

sonar might be ignored, causing the robot to hit something.  This example

shows how varying the focus strength parameter affects the activation level

of extraneous input

  As in the last example, this example uses three input streams, in

this case called HIGH, LOW and EXTRA.  The system contains detectors

for the HIGH and LOW streams, but none for the EXTRA stream, which is

handled by the default detector and tracker.  When the contents of the

focus set are sorted, the EXTRA percepts in the focus set will be ordered

according to their activation.  The activation assigned to percepts by the

default detector is (1 – focusStrength), so the system can set the

importance of extraneous input by adjusting the focus strength parameter.
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In this example, the focus strength starts out at 0.5, which places the

activation of the EXTRA percepts between that of the HIGH and LOW

percepts.  The focus strength is then set to 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 for

five seconds each before returning to the 0.5 setting.  In this system, each

stream generates the same number of percepts.

The graph in Figure 34 shows the results of the test.  This graph,

unlike the previous ones, shows the mean activation of each type of percept

in the focus set.  For example, if at some time the focus set contains three

high-priority percepts, the data point for that time is the average of the

activations of each of those percepts.

After an initial phase with default settings, the system is first put

under a 2x load to place some load on the perceptual system.  The mean

activation varies little in this phase..  After five seconds, focus strength

changes to 0.0.  In this phase, the activation of the EXTRA percepts is

about 0.7, which is higher than the percepts from the other two streams.

During the remaining phases the focus strength increases in steps.  The

activation of the EXTRA percepts drops in corresponding steps while the

activation of the other percepts remains roughly the same.  By the end of

the run, the activation of the EXTRA percepts is much lower than the

other percepts.
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Example 4: Varying Strength of Focus
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Figure 40.   Activation of extraneous percepts varies with focus strength.

The attention policy for this example is in the table below.

Time bound 100ms (default)

Focus strength 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

Decay rate 0.554  (default)

Detection % 5%

Default detector Default detector/tracker

Sensor priorities HIGH: 0.6, LOW: 0.4, EXTRA:

1.0

Priority of detectors and trackers HIGH: 0.6, LOW: 0.64,

EXTRA: (1 – focusStrength)

Prioritization functions priority = Mean of the sensor

and detector/tracker priorities.

Table 7.   The attention policy for Example 4.
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6.6 TUNING AN ATTENTION POLICY

This section discusses how to use the available attention parameters

to improve an attention policy.  Section 6.1 describes the parameters that

affect the Q-measure, which are repeated in the table below.  Section 5.6

lists the attention parameters that can be adjusted.

The attention policy may be modified in order to pursue a task-

specific policy such as prioritizing input from one sensor, or in order to

react to a problem such as perceptual overload.  There are a variety of ways

to modify the attention policy or alter a system in some other way to

manage the problem.

Several common problems are: mis-prioritization of percepts in the

focus set, trackers not called often enough, too many or too few trackers

generated, and too many percepts in the focus set.  There are many

potential remedies within the CPA, including: adjust sensor priorities,

adjust detector/tracker priorities, adjust the detection %, adjust the focus

strength, change the prioritization functions and turn off sensors and

detectors.  Outside of the CPA, the system can also adjust by reducing its

dependency on high data rates (e.g. the robot can slow down) or by

adjusting sensor data rates.  Below is a discussion of each of the problems

and possible solutions.

1. High-level tasks are not receiving enough percepts.

A task may perform poorly due to starvation: not receiving enough

percepts.  The required percepts may be in the focus set, but their
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activation is so low relative to the other percepts that the task is not

always able to process them.  Percept priority can be affected by

sensor priority, detector/tracker priority, time allocated to tracking

and the prioritization functions.  If all percepts from one sensor are

mis-prioritized, the sensor’s priority can be adjusted.  Similarly, if all

percepts from one detector are mis-prioritized, the detector’s priority

should be adjusted.  If the tracker prioritization function takes into

account its uncertainty, the prioritization function can be changed or

the uncertainty calculation may be incorrect.  If it does not include

uncertainty calculations, perhaps it needs to.  Trackers that are

called with no data will usually increase their uncertainty, which

may negatively affect the resulting priority of their percepts.  If the

default detector/tracker is generating percepts, the CPA’s focus

strength may need to be adjusted or turned off.  Another cause

might be that the required percepts are completely missing from the

focus set.  In this case, the sensor may be malfunctioning, the

detector/tracker may be malfunctioning, or the priority of the

detector/tracker is so low that it is never called.

2. Trackers are not performing well.   

A good tracker requires a good perceptual model and a good motion

model of the object it is tracking.  If the model is not good enough,

the tracker’s uncertainty will rise, or it may lose track of the object

completely.  If the tracker is continually losing track of its object,

perhaps the model needs to be improved.  Even if its model is good,

if a tracker is not called often enough with real data, the tracker may
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not have a high enough priority, the detection % may be too high,

the sensor data rate may be too low or the timebound may be too

short.  The CPA does not provide a way to adjust sensor data rates,

but the other problems can be addressed within the CPA. The first

problem with inadequate tracking is that poor tracking leads to poor

task performance; the robot can collide with a wall or can miss its

goal.  The second problem is that when trackers are not called their

uncertainty rises to the point where they deactivate themselves, thus

losing track of the object and requiring it to be detected again.  In

the system described in Chapter 5, detection is more efficient, but

less accurate, than tracking.  So if the trackers are not allocated

enough perception time, the detectors will take over much of the

perception task.  They will detect many objects, most of which could

be ignored with more analysis.  The robot must slow or stop until

the overload situation eases.

3. Too many or too few trackers being generated.

Too many redundant trackers (tracking the same object) indicates

that the masking function on the tracker is not correct.  If a tracker

is tracking an object, it should set a mask on its detector so the

detector won’t generate a duplicate tracker.  Too many non-

redundant trackers indicates perceptual overload.  The system may

need to reduce the data rate of one or more sensors, or shut them

down completely.  In addition, the tracking function can be adjusted

to be more selective about what it tracks.
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4. The high-level program is unable to process all of the focus

set.  Percepts are generated from detectors and trackers out of

sensor data, so either there are too many detectors/trackers, too

much sensor data, or the task is too slow.  In any case, the system is

not performing up to specification and perhaps should be scaled back

by reducing the number of tracked objects, increasing the timebound

or reducing the sensor input.

Nd Number of objects to detect.

Nt Number of objects to track.

d Number of objects detected.

t Number of objects tracked.

A(i) Activation of an object

C(i) Certainty of a tracker or detector

Table 8.   Values used when computing the Q-measure.

The Q-measure components can also be used to adjust some CPA

parameters.  If the value d
N d

 is high, but t
Nt

 is low, the system may need to

allocate more time to tracking by decreasing the “Detection %” parameter.

If the reverse is true, the “Detection %” parameter can be increased.  If

both of those measures are low, the system is under severe time pressure.

The “time bound” parameter can be increased, or the system may need to

adopt less ambitious goals by decreasing the number of active detectors and

trackers.   The table below gives several other situations and how the CPA

can be adjusted to compensate.  This table does not discuss various object



111

recognition difficulties, such as viewing angle and occlusion, which can also

affect perception quality.

Indicators Action
d

N d
 is high, t

Nt
 is low Decrease Detection %.

d
N d

 is low, t
Nt

 is high Increase Detection %.

Both d
N d

 and t
Nt

 are low Increase time bound, if possible, or increase

the sensor rates.

One class of object is ignored Increase the priority of its detector or sensor.

An object’s activation level is

not correct

Have the tracker assign an activation that

varies according to the object’s

characteristics, and use it for its own priority.

Activation levels are decaying

too fast

Increase the decay rate constant or retrieve

the contents of the focus set more often.

Table 9.   Hints for tuning the attention parameter
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Chapter 7: Related Work

There are a variety of intelligent agents that have real-time

constraints and can or do utilize multimodal perception and perceptual

attention, including agents for autonomous navigation [Pomerleau, 1993],

medical diagnosis [Larsson et al., 1996], acoustic signal understanding

[Lesser et al., 1995] and socially-aware robots [Breazeal and Scassellati,

1999].

Such systems include perception, cognition and action components;

the overall architecture and the details of each component are discussed in

[Hayes-Roth, 1990].  This dissertation focuses on the interface between the

perception and cognition components, with the understanding that both

perceptual input and the perception-cognition interface are affected by past,

current and future actions.

A typical agent has the characteristics shown in the figure below.

Multimodal sensors send data into the perception subsystem, where they

are filtered and prioritized using filters supplied by a cognition module.  In

order to meet real-time constraints, a scheduler controls the execution of

filters.  The policies of the scheduler are dictated by the attention policy in

effect.  The cognition subsystem then receives the percepts and acts upon

them.  In a complex dynamic system, some of the actions will alter the

attention policy or the set of active filters.
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Figure 41.   A typical real-time intelligent agent.

Whether an agent is multimodal is ambiguous at times.  In human

perception, the term is used when input is aggregated across completely

different sensors, such as the eyes and ears.  However, a robot has a much

wider variety of sensors available.  When it uses two different types of

sensors, for example visual and acoustic, it is clearly multimodal.  However,

systems such as radar-based trackers sometimes use very similar radars

operating at different frequencies.  These are termed multimodal systems in

the literature because sensor fusion techniques are applied to the two

inputs, much as they would be to inputs from two completely different

sensors.  In general, if two sensors require substantially different filtering

and processing techniques or require complex fusion techniques, they can be

treated as separate modes.

Agents also have many different types of filtering.  For a few simple

problems, an agent may require no filtering at all.  Those agents that do
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require input filtering to prevent perceptual overload can use a static set of

filters or can dynamically create sets of filters in order to satisfy high-level

goals.  In addition, filters may be memory-less or memory-based, depending

on whether they require knowledge of past inputs.

If a set of filters is required, the agent will use an attention policy to

prioritize them in relation to high-level goals.  For simple problems the

attention policy can be static, but more complex problems need dynamic

attention policies.

The primary component of the real-time constraints is the response

interval, which determines how much time an agent can take to formulate a

response to an input.  Part of the response interval is allocated to

perception, and the rest to cognition.  An agent’s performance typically

deteriorates, sometimes disastrously, if the response interval constraint is

not met.

The CPA mechanism described in this dissertation does not

constrain the sources of input, so it is useful with any type of input,

including multimodal input, and has architectural features for efficient

distribution of input data to filters.  It has been demonstrated in

applications that use numeric, symbolic and text input.

The CPA allows dynamic filter sets and includes both memory-less

filters (detectors) and memory-based filters (trackers).  External actions

alter the active set of filters.
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The CPA allows a wide variety of dynamic attention policies for

prioritizing filters.  Once the filters have been prioritized, it provides an

efficient mechanism for scheduling and executing the filters under soft real-

time constraints.

The real-time constraints allowed by the CPA include an overall

time bound on perception processing, as well as individual time bounds for

the sets of memory-less and memory-based filters.  The CPA scheduler is

non-preemptive, so it can not enforce hard real-time bounds, but it provides

each perceptual task with the maximum time it can execute before it must

return an answer.  This form of “cooperative” real time requires individual

tasks to be well-behaved.

7.1 EXEMPLAR PERCEPTIVE INTELLIGENT AGENTS

Section 3.2 discussed several perceptual attention mechanisms that

have been designed for specific applications.  This section discusses several

complex agents that use or could use a perceptual attention mechanism.

7.1.1 Guardian

Guardian is a real time agent that accepts data from numerous

monitors attached to a patient in an intensive-care unit (ICU) and

formulates recommendations for treating conditions that develop [Larsson et

al., 1996].  Guardian is one of the most sophisticated real time perceptive

agents in existence.  In terms of the agent description at the beginning of

this chapter, the perceptual components of Guardian are described in the

table below.
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Component Type

Sensors Numerous multimodal sensors producing numeric

data.  Interaction with the nurse/physician is

handled by a different mechanism.

Filters Memory-based to compute numeric trends (e.g.

rising, falling).

Attention Policies Dynamic, in response to diagnostic goals and

system load.  Size of input buffers can be varied in

order to limit processing of old data.

Real-time constraints The system must complete the diagnosis in time

to treat the patient before he/she dies (typically a

few minutes).  Perception during individual

diagnostic steps must be timely.

Table 10.   Perception characteristics of Guardian.

Guardian has time to process less than 10% of its input.

Consequently, it relies heavily on intelligent filtering of the numeric input

data.  Its Focus module uses a process called dynamic thresholding to filter

inputs unless they exceed a threshold value, which is adjusted in response to

input load and behavioral goals [Washington, 1990].  The filters calculate

short-term and long-term trends (e.g. rising, falling) which are attached to

the incoming percepts.  In Guardian, the output of the filters is integrated

into the system as a set of perceptual events that are processed with the

other, internally-occurring, blackboard events [Hewett and Hayes-Roth,

1989].  In clinical tests, Guardian performed extremely well when tested

against nurses and doctors in a real ICU.

Guardian’s Focus module contains nearly all of the functionality of a

complex perceptual attention mechanism like the CPA.  Perhaps its only
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real limitation is the separation of its numeric input from textual dialog

input.  The former is handled by the attention mechanism, while the latter

is not.  The CPA would offer an integrated mechanism for both types of

input as well as time constraints on individual perceptual tasks.

7.1.2 IPUS

IPUS (Integrated Processing and Understanding of Signals) is a

complex system for understanding acoustic signals of all kinds [Lesser, et

al., 1995].  It accepts a block of input representing an acoustic signal over a

period of time.  The length of a block is unspecified, but the waveform

examples in the cited paper are typically 1-4 seconds long.  The goal is to

recognize different sounds in the waveform, such as telephone ringers, alarm

buzzers, car horns and sounds of glass clinking.  The table below lists the

perceptual attention characteristics of IPUS.

Component Type

Sensors Anything that produces waveforms.  Typical input

is an acoustic signal over a period of time.

Filters Complex, memory-based, parameterized signal

processing modules that can be activated, tuned

and deactivated.

Attention Policies Dynamic, in response to goals.  Consists of the

parameters to the filters.

Real-time constraints No formal real-time constraints.

Table 11.   Perception characteristics of IPUS.
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IPUS is designed to detect and correct errors produced by mis-tuned

or inappropriate front-end signal processing modules.  Consequently, a great

deal of its time and effort is spent adjusting the set of filters and the

attention policy.

Like many other systems, IPUS contains precisely the attention

mechanism it needs, but no more.  Integrating the CPA into IPUS would

add extra functionality, especially multimodal input and real-time

constraints, that might be useful in future applications.  However, IPUS

does not appear to need the extra functionality at this time.

7.2 BLACKBOARD -BASED CONTROL METHODS

The literature on blackboard systems contains a fairly large body of

work that discusses “focus of attention”, which refers to methods of

selecting the most relevant action to perform [Hayes-Roth, 1993; Xu and

Van Brussel, 1997].  I categorize this as behavioral control, not perceptual

attention.  Some of these methods are applicable to real-time systems

[Garvey, 1993].  The question arises whether behavioral control methods

can be used for perceptual attention.

Garvey’s paper divides real-time behavioral control methods into two

groups: those that have multiple methods (fast and slow) available, and

those based on anytime algorithms, in which processing can be interrupted

at any time and ordered to produce the best result available.

Any filter in a perceptual attention mechanism could use multiple

methods based on available time.  In fact, this method is used in several of
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the example systems in this dissertation.  Standard anytime algorithms

might be useful in memory-based filters.  Typical blackboard-based control

algorithms provides the following perceptual features:

Component Type

Sensors Data are instances of a fixed set of actions.

Actions may differ, but have the same interface.

Filters Preconditions filter actions and control heuristics

prioritize them.  Mostly memory-less, although a

few are memory-based.

Attention Policies Dynamic, in response to goals.  Consists of the set

of control heuristics.

Real-time constraints Some systems support response interval

constraints on action selection.

Table 12.   Perception characteristics of blackboard control architectures.

When viewed in this light, the behavioral control mechanisms offer many of

the same features as perceptual attention mechanisms.  The main

differences are in the input, which has less variety and is usually not

considered to be multimodal; and in the real-time constraints, which

typically consist of a global response time that is not subdivided further.

The other possible limitation is that few, if any, blackboard control

mechanisms have been used in situations that require response intervals of

100 ms, as is required for robot navigation.  They are more typically applied

to large-scale control problems where their performance and behavior are a

more appropriate fit.  I do not know of any blackboard control

implementations that operate at very short time scales.
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7.3 D ISTRIBUTED PERCEPTION IN EXPERT SYSTEMS

Of interest is the ABE/RT toolkit for building real-time expert

systems, which takes a different approach to perception [Lark, et al., 1990].

This toolkit assists in constructing and testing hard real-time systems such

as pilot assistants.  It does not contain a centralized mechanism for

perception and attention, except for a component that facilitates sharing

input among different processes.  Instead, it schedules high-level processes

and counts on each of them to know its own perceptual time constraints

and to adhere to them.

This approach, while less complicated for the system architecture,

might lead to an unwieldy distribution of knowledge about the importance

of various percepts.  It is unclear how well this design turned out since the

cited paper contains no evaluation and the software is no longer sold.

7.4 MULTITARGET MULTISENSOR TRACKING

Applications such as air traffic control, battlefield surveillance and

air defense all require identification and tracking of multiple targets [Mazor

et al., 1998].  Many of the applications combine data from multiple, usually

identical, sensors that are scanning contiguous or slightly overlapping

spatial areas.  A few use non-identical sensors, such as radars that scan at

different frequencies [Zhang et al., 1997].  Sensor data arrive very slowly,

often have a low signal-to-noise ratio, and are sometimes incomplete [Stone

et al., 1999].  Because the noise level is high, the data can be interpreted in

many ways, and it is hard to tell which interpretation is correct.
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Consequently, Multiple Hypothesis Tracking (MHT) [Reid, 1979] is the

most common approach to the problem of tracking multiple targets, while

Kalman filters are used to handle noisy or missing data [Ramachandra,

1990].  In MHT, multiple possible tracks for each target are maintained

concurrently, with each track having an associated probability.  MHT is

computationally complex and one of the primary goals of an efficient

algorithm is to prune unnecessary tracks [Kurien, 1990].

 Due to the complexity of the problem, one might suppose that

multitarget tracking (MTT) methods would use perceptual attention

techniques.  However, the commonly-used algorithms assume that all of the

data from each sensor sweep is of equal value and that all of it must be

processed.  Consequently, the focus of research in this area has been on

faster, non-optimal algorithms, e.g. [Blair and Bar-Shalom, 1996; Bethel and

Paras, 1998; Saha and Chang, 1998].   The perceptual characteristics are

summarized below.

Component Type

Sensors Various types of radar and sonar producing very

noisy data.

Filters Spatial filters only.  All spatially relevant data are

analyzed.

Attention Policies Typically static for each problem.

Real-time constraints Typically 2-10 seconds, the interval between radar

scans.

Table 13.   Perception characteristics of multitarget tracking.
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Track pruning techniques do contain some methods that fall into the

category of perceptual attention.  Kurien describes four general methods for

eliminating unlikely hypotheses, some of which are related to perceptual

attention:

1. Gating .  This corresponds to spatial attention.  The path of the

target is projected forward in time.  Tracks that do not fall within

the projected path are pruned.

2. Clustering .  Readings are clustered into small groups and the most

likely track is selected from the small cluster rather than from all of

the tracks.  This is solely for computational efficiency.  If the

clustering is spatial, this has some resemblance to spatial attention.

3. Classification .  Pruning tracks with a low probability. Since tracks

are the result of processing during target tracking, as opposed to

being directly perceived, this is difficult to classify as perceptual

attention, although it is somewhat analogous to sorting detectors by

their priority.

4. N-scan approximation .  Basing a track on the last n sensor inputs

rather than on all the scans, for computational efficiency.  This is not

related to attention.

These are the only methods in multitarget tracking that contain a

hint of perceptual attention.  One reason is that standard radars scan an

area only once every 10 seconds.  At that data rate, it is important to use

as much data as possible to track objects.  Even at that speed, MHT

methods are barely fast enough to cope with the data.  However, if faster
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radars are developed, the processing methods might need to use perceptual

attention techniques to help cope with the higher data rates.

7.5 PROCESS SCHEDULING

One component of the CPA is the perceptual task scheduler.  It is

useful to compare this scheduler to other existing schedulers.

7.5.1 The CPA task scheduler

The CPA’s scheduler was selected based on three primary criteria:

only one task will be active at any time (since the CPA is designed for a

single-processor system, this efficiently utilizes the processor); it is more

important to execute high-priority tasks than to execute all the tasks; and

task priorities should be dynamically adjustable.  These criteria led to the

development of a scheduler based on dual priority queues [Sedgewick, 1999],

one for the set of detectors and one for the set of trackers.   Operating

systems typically use several queues for keeping track of active jobs

[Buttazzo, 1997].  One component of the attention policy tells the scheduler

how to divide perception time between the two queues.  The scheduler

executes tasks from the tracker queue first, stopping when time expires or

when it reaches the end of the queue.  It then uses the remaining time to

execute tasks from the detector queue, again stopping when time expires or

it runs out of tasks.  At the beginning of each cycle, the scheduler adjusts

the priority of active tasks according to the active attention policy.

As shown in Chapter 6, the dynamic attention policy allows a wide

variety of scheduling behaviors.  However, it is not apparent from the
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experiments presented whether the scheduler itself is an optimal design.

The sections below compare the CPA’s scheduler to alternative schedulers

and to other types of systems that perform various types of dynamic-

priority scheduling with real-time constraints, including real-time operating

systems [Liu, 2000].

7.5.2 The UNIX operating system scheduler

The UNIX operating system provides for multiple simultaneous

processes and contains an efficient scheduler.  Priorities of processes are

dynamically adjustable and each process receives time quanta in proportion

to its relative priority [Srinivasan, 1998].  Indeed, it has been suggested that

the CPA should simply use the UNIX scheduler instead of its own.

However, I have found that the UNIX scheduler does not meet the design

criteria specified in Section 7.5.1 above and performs much worse on the

perception examples than the CPA scheduler.  I found that the user can not

directly control actual process priorities, and that the UNIX scheduler does

not allow us to guarantee that high-priority tasks will receive as much CPU

time as possible.

While a UNIX user (or an attention policy) can alter a process’s

‘nice’ parameter in order to adjust the amount of CPU time it receives,

UNIX maintains an internal priority for each process that is inaccessible to

the user.  The ‘nice’ setting is just one parameter of the internal priority

calculation; the other parameters include the amount of CPU time the

process has used recently (a higher amount decreases the priority) and the
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number of times the process has been passed over for scheduling (a higher

amount increases the priority).  Experiments with a pair of processes, one

high-priority and one low-priority show that the internal priority differs

significantly from the ‘nice’ setting and in fact will occasionally invert, with

the low-priority task receiving an internal priority that is higher than that

of the high-priority task.  The conclusion is that the user (or attention

policy, in this case) can not directly set process priorities in UNIX.

However, the other problem is worse: the user can not turn off round

robin scheduling in UNIX, and the CPU usage of high-priority tasks is not

preserved when additional low-priority tasks are activated.  The

consequence of this is that high-priority tasks receive less and less CPU

time as load increases.  A simulation of a simplified version of the robot

experiments from Section 6 showed that under normal load the highest-

priority task received only 33% of the CPU time, even when all the other

tasks were set at the lowest possible priority.  As a consequence, the

highest-priority tasks takes three times as long to complete as it should.

Under higher than normal load, CPU time would decrease farther and it is

possible that the task would never complete within the time bound.

This violates the second design criteria, which says that it is more

important to execute high-priority tasks than to execute all of the tasks.

Under load, the UNIX scheduler will allocate time to tasks that will never

finish, thus wasting perception time.  Round robin scheduling can not be

turned off in standard UNIX systems.
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7.5.3 UNIX-compatible and non-UNIX real-time OSes

The problems noted above, as well as several other serious problems,

have also been noticed by others [Yodaiken, 2001].  There are now packages

available that replace the UNIX scheduler, memory manager and other

system modules in order to support hard real-time scheduling.  A prime

example is RTLinux [Yodaiken, 2001].  There are also non-UNIX real-time

operating systems available, notably OS-9 [Microware, 2000], Lynx

[LynuxWorks, 2000] and OSE [Paul, 2001].  There are far too many of both

types of systems to catalog here, but useful overview lists are available at

[Chandana, 2001] and [Yodaiken, 2001].

An attention mechanism running on a real-time operating system

could use the operating system scheduler to control the tasks.  This would

provide hard real-time guarantees with the added overhead of dealing with

unschedulable sets of tasks.

However, real-time operating systems use a different kind of

scheduler.  The scheduler first determines whether a set of tasks is

schedulable: that is, whether the set of tasks can be completed while

meeting real-time deadlines.  Most production real-time systems deal with a

fixed set of static priority tasks that must be run at regular intervals.  The

set of tasks and constraints can be analyzed and scheduled before the tasks

begin.  As long as there are no problems in the system, the schedule will be

followed.  There are numerous algorithms that produce schedules under
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various combinations of task constraints and processor configurations [Liu,

1991; Ecker, 1991].

Dynamic-priority tasks and dynamic task-set scheduling is more

difficult because schedules have to be recomputed when the set of tasks

changes or when any task’s priority changes.  Many algorithms specifically

tie a task’s priority to its execution time, with the shortest length task

having the highest priority [Liu, 2000, Ch. 6].  The scheduler can not

determine a priori  whether a set of tasks is schedulable unless it knows

enough about the task set to enumerate every possible combination of task

and priority. The scheduling problem is somewhat easier when tasks are

preemptable, meaning that they can be temporarily interrupted in order to

let another task meet a deadline.

Some dynamic-priority systems use a method called tick scheduling,

where the scheduler runs every n time units, rather than whenever the task

list or task priorities change [Liu, 2000, Ch. 5].  At each scheduling interval,

the scheduler produces a new schedule; optionally, it may first perform a

schedulability analysis on the active tasks.  Tick scheduling of dynamic-

priority tasks of dynamic-priority jobs is considered to be one of the very

hardest scheduling problems [Liu, 2000]5.

In real-time scheduling terms, the CPA is performing tick scheduling

of dynamic-priority, non-preemptable tasks on a single processor.  However,

                                       
5 A search at Google.com turns up only six documents containing the phrase “tick

scheduling”.  Two are in German, but appear to be about fixed-priority systems.  The

others are references to the Linux kernel).
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its scheduling problem is greatly simplified from the general problem in that

it does not have to run all of the tasks.  That is, the fairness criterion is

waived.  After applying the current scheduling rules, the CPA executes the

tasks in prioritized order, keeping track of available time.  If there are still

tasks to execute when time expires, it notifies the rest of the tasks that they

did not have time to run, and it then proceeds to the next scheduling cycle.

In such a situation the set of tasks is unschedulable and a typical real-time

scheduler would signal a fault.  But the CPA is designed to perform as best

it can under heavy perceptual load.  Under such conditions, perfect

performance is simply not possible, but abandoning the scheduling problem

is not a good response.

However, this may lead to situations where perception quality is

insufficient under heavy load.  For example, the robot may judge an input

to be low-priority, when in fact it indicates an obstacle.  If the input is not

processed the robot may hit the obstacle, and one might say that perception

has failed.  Failure-proof perceptual systems (or any system, for that

matter) are difficult if not impossible to build and require techniques not in

everyday use [Leveson, 1995].  AI systems must be able to detect and

recover from perceptual failure.  The cognitive system must take that into

account that perceptual limitations will arise when the system is under

perceptual load.
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Chapter 8: Summary and Future Work

Intelligent robots need high-speed, multimodal perception with limits

on maximum perceptual latencies.  This dissertation introduces CPA, a

general-purpose, multimodal perception management system.  CPA contains

domain-independent methods for focusing attention on high-priority input

while satisfying soft real-time requirements.

Characteristics of human perception and attention were incorporated

into the CPA design, including: sustained attention, especially for detecting

and tracking objects; selective attention, for filtering and prioritizing input;

divided attention, in order to pursue more than one perceptual goal at a

time; and control, so the cognitive component of the system can set and

modify perceptual goals.  However, the CPA implementation is very

different because the human brain and today’s computers process

information in fundamentally different ways.

Fundamental questions addressed in the CPA design include

generality vs. speed, parallel design vs. sequential implementation and the

need for different types of sensor input, including input processed from the

raw input.  The resulting system manages sensors, detectors and trackers in

order to produce a focus set containing prioritized percepts.

8.1 FUTURE WORK

The CPA, which is already very useful, can be extended in several

ways.  First, when multiprocessor systems become more common, the CPA
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can be modified to utilize multiple processors.  The main loop allocates time

to detectors and trackers in several places.  The allocation sections can be

modified to manage a pool of processors or, if the operating system provides

sufficient support, to simply start as many detectors or trackers as there are

available processors.

A more declarative version of the CPA could probably be developed.

The code for most of the sensor streams is identical.  A great deal of the

detector code is the same for each detector.  Only the trackers differ

considerably, although they have some similarities, too.

I have not implemented many trackers that use multiple sensor

streams.  The CPA does not necessarily deliver a full set of sensor percepts

to a tracker at the same time.  It should not be hard to set up a generic

framework that stores sensor data for a tracker until all of it has arrived.  It

is unclear what to do if only part of the necessary set of data arrives on one

attention cycle.

There are opportunities to implement more sophisticated attention

policies.  The ones I have implemented utilize some of the available

parameters, but more complex strategies could be developed.

The dissertation outlines a method for creating perceptual tasks at

runtime from perceptual goals such as Go to room-37.  The high-level

concepts have associated perceptual information which can be used to

derive a perceptual task.  One question is whether perceptual tasks are

generated specifically for a perceptual goal or whether they are generic tasks
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that can be reused with other goals.  I suspect they are generic but

parameterized, and some knowledge will be required to correctly

parameterize them for a specific goal.

The theory of real-time operating system schedulers provides several

mechanisms for describing and analyzing real-time scheduling processes.  It

would be useful to use these formal methods to describe and analyze

scheduling as performed in the CPA.  The analysis techniques might

provide ways to develop alternate schedulers for different problems, or for

multiprocessor machines.  In addition, an implementation based on a true

real-time operating system might be more generally useful.
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Appendix 1: CPA Implementation Details

This section lists all of the classes in the CPA system along with

their fields and methods.  The next section provides a small example that

uses some of the classes.  The more complex example in the next chapter

utilizes more of the features of the system.

In each of the classes below, the fields have accessor methods that

are not listed below.  The existing implementation of the CPA is written in

Common LISP using the CLOS object system.

A1.1 CPA

As described above, the CPA class manages the attention process by

keeping track of active sensors, detectors and trackers; by allocating time to

perceptual processes; and by updating the focus set.

Decay-rate Constant used in the decay equation.

Default-detector The default detector (if any).

Default-matcher The matcher used by the default detector.

Detection-time Portion of perception time allocated to

detection.  Default is 0.2.

Detectors List of active detectors.

Detector-order-fn The function used to sort detectors.

Focus Contains the focus set.

Focus-strength Resistance to being distracted by

unanticipated inputs.  Used when setting

activation level of percepts matched by the

default detector.

init-time The (wall clock) time this run started.
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Lock A thread lock variable for the CPA.  This

prevents multiple processes from accessing the

focus set at the same time.

Matchers List of active matchers.

Name The name of this CPA.

Sensors List of active sensors.

Sensor-buffers List of active sensor buffers.

Sensor-order-fn The function used to sort sensors.  Part of the

attention policy.

State :initialized, :running, :paused or :killed

Thread Contains a pointer to the thread in which the

CPA is running.

Timebound The focus set update interval  (default 100ms).

Trackers List of active trackers.

Tracker-order-fn The function used to sort trackers.

Update-counter Counts the number of times through the main

loop, in order to provide statistics on timing.

Update-time Used when computing timing statistics.

Table 14.   Fields of the CPA class.

add-to-focus Adds a percept to the focus set.

add-detector Adds an active detector.

add-matcher Adds an active matcher.

add-sensor Adds an active sensor.

add-tracker Adds an active tracker.

c-avg Computes the average certainty the active

trackers have in the characteristics of the

objects they are tracking.

cpa-load Returns the average “load” of the CPA, which

is the time it takes to perform one attention

cycle.

cpa-main-loop The loop that performs the attention cycle.
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Current-time Returns the current wall clock time relative to

the start of the run.

Decayed-activation Using the decay equation, it computes the

current activation of a percept in the focus.

focus Returns the current focus set, prioritized.

initialize-instance After creating an instance of the CPA, this

method adds a default detector and matcher.

kill Kills all the active matchers, sensors, detectors

and trackers, then terminates the CPA’s

thread.

pause Pauses all the active matchers, sensors,

detectors and trackers, then terminates the

CPA’s thread.

q-measure-real Calculates the current quality of perception.

The quality can also be estimated, hence the “-

real” suffix on this method.

remove-detector Removes a detector from the CPA.

remove-matcher Removes a matcher from the CPA.

remove-sensor Removes a sensor from the CPA.

remove-sensor-buffer Removes a sensor buffer from the CPA.

remove-tracker Removes a tracker from the CPA.

remove-all-detectors Removes all detectors from the CPA.

remove-all-trackers Removes all trackers from the CPA.

resume Resumes the CPA after a pause.

set-sensor-priority Sets the priority of a sensor.

start Starts the CPA after it is created.

Table 15.   Methods of the CPA class.

A1.2 SENSOR

Sensors store percepts in sensor buffers.  A sensor inherits most of its

methods from a Generator class.
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Cpa A pointer to the CPA object which manages it.

Generator-args Arguments passed to the generator function.

Generator-fn The function which reads or generates data and

produces percepts.

Input-stream A place to store an input stream, if needed.

Name The name of this sensor.

Output-stream A place to store an output stream, if needed.

Priority The priority (importance) of this sensor.

Thread The thread in which this sensor is running.

Table 16.   Fields of the Sensor class.

close-input-stream Closes the input stream.

close-output-stream Closes the output stream.

initialize-instance After a generator object is created, this method

creates a thread to run the generator-fn.

kill Closes the input and output streams and kills

the thread in which this Sensor runs.

pause Pauses this sensor’s thread.

resume Resumes the thread after it has been paused.

Table 17.   Methods of the Sensor class.

A1.3 BUFFER

Buffers are a general-purpose class associated with the Generator

class.  They are used unchanged as sensor buffers.  Buffer inherits from an

io-stream class in order to use some of its methods.  The low-level data

buffer that it manages is a FIFO buffer, typically about three elements
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long.  It keeps track of number of items read from the buffer, written to the

buffer, or dropped from the buffer due to buffer overruns.

bound The maximum number of elements in the buffer.

buffer The actual vector that stores elements.

cpa A pointer to the CPA object which manages it.

drop-count Tallies the number of percepts dropped due to

buffer overruns.

lock The synchronization lock which controls access to

the buffer.

name The name of this buffer.

read-count Tallies the number of items read from the buffer.

read-pointer A pointer into the low-level data buffer.

sensor The sensor to which this buffer belongs.

size The current size of (number of items in) the buffer.

state :OPEN, :CLOSED, :PAUSED

write-count The priority (importance) of this sensor.

write-pointer A pointer into the low-level data buffer.

Table 18.   Fields of the Buffer class.

close Closes this buffer.  When closed it will not accept

input.

flush Clears the buffer.

initialize-instance After a buffer object is created, this method

initializes the data buffer and creates a semaphore

used to synchronize buffer access.

increment-pointer Increments or decrements the read and write

pointers of the circular buffer.

pause Sets the state to :PAUSED.

resume Sets the state to :OPEN.
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retrieve Returns the next item in the data buffer.

store Stores an item in the data buffer.

Table 19.   Methods of the Buffer class.

A1.4 MATCHER

A matcher contains a function used by detectors or trackers.

cpa A pointer to the CPA object which manages it.

match-fn The function used in percept matching.

name The name of this matcher.

Table 20.   Fields of the Matcher class.

match-data Receives a percept, a detector and the maximum

amount of time it is allowed to run.  It returns one

or more percepts.

Table 21.   Methods of the Matcher class.

A1.5 DETECTOR

A detector uses a match function to match raw percepts.  If it finds a

match, it either forwards the percept to the focus set or creates a processed

percept to encapsulate the raw percept and forwards it to the focus set.
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cpa A pointer to the CPA object which manages it.

masks A list of masks that trackers have placed on this

detector.  The contents are task-dependent.

mask-fn A function which will create a mask.

matcher The matcher used with this detector.

name The name of this detector

priority The priority (importance) of this detector.

sensor The sensor(s) which this detector monitors.

sensor-fn If a tracker is generated, this function is called to

get the sensor list for the tracker.  The tracker’s

sensor(s) need not be the same as the detector’s.

tracker-type The class to instantiate to create a tracker from

this detector.

tracking-fn The equivalent of the match-fn for a tracker

generated from this detector.

user-info The user can store anything here.

Table 22.   Fields of the Detector class.

add-mask A tracker calls this method to add a mask to the

detector.

clear-masks Removes all the masks from the detector.

create-tracker Creates a tracker from the detector.

match Calls the match-data method of this detector’s

matcher.

remove-mask Removes all masks associated with a given tracker.

Table 23.   Methods of the Detector class.
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A1.6 TRACKER

A tracker is a subclass of Detector.  It works much like a detector

except that it can add masks to the Detector that spawned it.  The

Detector fields and methods are not listed here, although they do apply to

trackers.  See the previous section for a list of those elements.  The tracker

has no methods of its own.

certainty The tracker’s certainty in the object it is tracking.

For example, it may be a measure of certainty of

the object’s position.

detector The detector that spawned this tracker.

update-id A tag supplied by the CPA that is unique for every

attention cycle.  The CPA uses this to determine

whether the tracker was called during the current

attention cycle.

Table 24.   Fields of the Tracker class.

A1.7 PERCEPT

A percept represents either a raw sensor data value or else something

processed from the raw data.  For example, the raw percept might be an

array of numbers representing a frame of camera input, but the processed

percept might be a description of an animal detected in the video frame.

claimed Signals whether a detector or tracker accepted

the percept during this attention cycle.

counter Counts the instantiated.  The number is used to

generate a unique identifier for each percept.

cpa A pointer to the CPA object which manages it.
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current-activation The current activation of this percept.

initial-activation The initial activation of this percept.

ID A unique tag generated by the attention cycle.

match-info Stores the detector and its priority.

sensor The sensor this percept came from.

sensor-priority The priority of that sensor when the percept was

created.

tag A user-defined tag that usually identifies the type

of a raw or processed percept.

timestamp The time the percept was generated.

tracked Whether this percept is involved with a tracker.

value The raw data item from the sensor.

Table 25.   Fields of the Percept class.

Activation Returns the current activation of the percept,

after applying the decay equation.

Instantiate Sets the timestamp, ID and tracked fields of the

percept to indicate that a detector has accepted

it.

instantiated-p Returns T if the ID field is not null.

Track In addition to what (instantiate) does, this

method also creates a new tracker (by calling

create-tracker on the detector) and adds the new

tracker to the CPA.

Table 26.   Methods of the Percept class
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Appendix 2:  Object tracking

In order to track stationary or moving objects while the robot is

moving, it is helpful to predict the future position of an object with respect

to the robot.  The robot can improve its perceptual efficiency by limiting

search to areas around the predicted position.  This appendix derives

equations that can be used to predict the position of stationary or moving

objects in the environment in which the robot is traveling.

Difficulties with object tracking are not addressed here, but some of

the common ones are: inability to recognize an object due to missing sensor

data or limitations in the object recognition algorithm; occlusion; confusion

with similar nearby objects; and incorrect knowledge of the robot’s motion

vector or the object’s motion vector.

A2.1 COORDINATE SYSTEM AND UNITS

The robot’s egocentric coordinate system, shown in Figure A1, is the

only coordinate system used here.  It is a standard Cartesian coordinate

system that is rotated 90 degrees from the usual perspective, so that the x-

axis points directly ahead of the robot.  The origin of the coordinate system

is at the center of the robot.

In this coordinate system, angles increase in the standard counter-

clockwise direction.  Coordinates with x > 0 are ahead of the robot’s

position and coordinates with y > 0 are to the left of the robot.
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Any units may be used for distance measurements in the equations

below, but angular measurements must be in radians.

y

x

Figure A1.   Robot egocentric coordinate system.

A2.2 PROBLEM DESCRIPTION

Figure A2 below illustrates the problem.  At time t1 the robot is at

position R1, which is the origin of its coordinate system.  The robot is

moving with linear velocity v and angular velocity  so that at time t2 it is

at position R2.  Meanwhile, in the same time interval, an object moves from

position O1 to position O2.  Given the starting positions of the robot and

the object, the linear and angular velocities of the robot, and the linear

velocity of the object6, what is the position of the object relative to the

robot at time t2?

                                       
6 The equations would be more accurate if they included the angular velocity of the object,

but the angular velocity is difficult to determine and the linear velocity is sufficiently

accurate for short time intervals.
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R1y

xR2

O1O2

Figure A2.   Illustration of the object prediction problem.

A2.3 PREDICTING THE ROBOT ’S POSITION

If  = 0, the robot’s new position after ∆t = t2 – t1 is:

R2 = v∗ ∆t

If  0 , the robot’s path for constant v and  is along the perimeter

of a circle.  The x-axis of the robot’s coordinate system always lies tangent

to the circle.  The distance along the arc of the robot’s path from R1 to R2

must be v* t.  The angle of the robot at R2, in the R1 coordinate system is

* t.  Figure A3 below shows the positions and angles in the system.

R2

y

θ
R1

x

Figure A3.   Geometry of the robot’s motion.
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−R1R2

Since the x-axis of the robot’s coordinate system at R2 is tangent to

the circle, we know that the angle θ is equal to * t.  Since the length of

the arc along the perimeter of the circle is r , we conclude that

r = v ∗ ∆t,   so  r =
v ∗ ∆t

∗ ∆t
=

v
.

Now we can calculate the new position of the robot using

trigonometry based on the robot’s circular path:

R2 .x = r sin = v
sin( ∗ ∆t)

R2 .y = r − rcos =
v

(1− cos( ∗ ∆t))

A2.4 PREDICTING THE OBJECT ’S POSITION

The object is assumed to have linear motion, so computing its

position O2,R1 at time t2 in the robot’s original coordinate system is easy:

O2, R1 = O1 + vo ∗ ∆t

This position needs to be translated and rotated into the robot’s new

coordinate system.  The translation is and the rotation is – * t.

Performing the translation first and then rotating, we arrive at the final

equation:
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O2 = (O2,R1 − R1R2) •
cos( ∗ ∆t) −sin( ∗ ∆t)

sin( ∗ ∆t) cos( ∗ ∆t)
 
  

 
  

A2.5 Example: a pedestrian approaching the robot

The situation is illustrated in Figure A4 and described by the

following parameters: O1 = (6.7, -1.2),  vo = [- 0.4 0.15 ], v = 1.6,  = 0.2.

Relative to the robot’s new position, where is the tracked object after 1

second ( t = 1.0)?

0.2

1.6

(6.7, -1.2)

(-0.4, 0.15)

Figure A4.   A pedestrian approaching the robot.
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∗ ∆t = 0.2

v

w
=

1.6

0.2
= 8.0

R2 = 8.0sin(0.2),  8.0(1− cos(0.2)))(
= 1.589, 0.159( )

O2, R1 = 6.7, −1.2( ) + −0.4, 0.15( )
= 6.3, − 1.05( )

O2 = (O2, R1 − R1R2) •
cos( ∗ ∆t) −sin( ∗ ∆t)

sin( ∗ ∆t) cos( ∗ ∆t)

 
  

 
  

= 6.3 − 1.589 −1.05 − 0.159[ ] •
cos(0.2) −sin(0.2)

sin(0.2) cos(0.2)

 
  

 
  

= 4.711 −1.209[ ] •
cos(0.2) −sin(0.2)

sin(0.2) cos(0.2)

 
  

 
  

= 4.377 −2.121[ ]

After 1 second, the pedestrian will be 4.377 meters ahead of the

robot and 2.121 meters to the right of the robot.
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