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Abstract

This article describes a method for representing and simulating Ordinary Di�erential Equation (ODE)

systems which are imprecise { that is, where the ODE model contains both parametric and functional

uncertainty. Such models, while useful in engineering tasks such as design and hazard analysis, are not

used in practice because they require either special structures which limit the describable uncertainty

or produce predictions which are extremely weak. This article describes SQsim (for SemiQuantitative

SIMulator), a system which provides a general language for representing and reasoning about many com-

mon forms of engineering uncertainty. By de�ning the model both qualitatively and quantitatively and
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by using a simulation method that combines inferences across the qualitative-to-quantitative spectrum,

SQsim produces predictions that maintain a precision consistent with the model imprecision.

1 Introduction

Much work in engineering and science involves the construction of models. For continuous physical systems,

Ordinary Di�erential Equations (ODE) models are a common representation. Such models consist of a

system of di�erential equations that describe the trajectory of state variables over time. Making predictions

from such models is quite straightforward and e�cient given the availability of numerical ODE solvers such

as LSODE and Runge-Kutta. However, this approach to modeling and simulation requires that the modeler

determine the precise ODE for the physical system of interest. For many problems, a precise ODE may be

di�cult to �nd due to the inevitable uncertainties associated with any physical system.

Consider the task of designing a physical device (e.g., a chemical plant or electronic circuit). The designer

will typically construct a model of the device with precise values for its components (determined by detailed

analysis), but real components have manufacturing tolerances, so it is unlikely that the real device will

behave exactly the same as the model.

Consider the task of modeling an existing physical device, perhaps for the purpose of monitoring or

diagnosis. While the modeler may have a good understanding of the physical principles involved in the

device, he will not have precise knowledge of the values of every parameter and function that describes the

system. If he creates a precise model, its predictions may not agree with the behavior of the real system.

In each of these cases, there is an inherent imprecision in the modeling task. This imprecision de�nes

a model space that covers many di�erent precise models. By using a single precise model, we ignore this

imprecision, possibly making erroneous predictions. Ideally, we would like to use models that explicitly

represent model imprecision and can produce a useful behavioral prediction { i.e., a prediction that is precise

enough to distinguish desired from undesired behavior. Some of the questions that we might want to ask of

such predictions are:

� What are the locations of equilibrium points in the state space?

� What are the qualitative trajectories of the system?
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� What are the �nal values of the state variables and how do they compare to the initial values?

� Do the trajectories remain inside an acceptable region of the state space?

� Where and when do extrema occur in the trajectories of the state variables?

� How sensitive is the behavior to uncertainty in model parameters?

Not surprisingly, there has been much work in this area. Some approaches to imprecise modeling are:

� Simply ignore the problem. For some classes of systems (for example, systems with tight feedback),

small amounts of parametric uncertainty do not a�ect the results. For systems with larger amounts of

uncertainty or nonlinearities, however, the model{device mismatch may be large.

� Use Monte-Carlo analysis [Kahaner et al., 1989]. By running repeated simulations of the ODE system

using di�erent combinations of parameter values, it is possible to get some idea of the behavior of the

models in the model space. Unfortunately, in addition to being slow, this approach may miss certain

key combinations of parameters that produce a behavior not captured by the simulations that were

run. Furthermore, it is di�cult to represent functional uncertainty with this method.

� Represent uncertainty using probability distributions for imprecisely known parameters and use vari-

ance propagation methods to make predictions [Gelb, 1974, Reckhow, 1987]. This approach fails when

the uncertainty cannot be modeled as probabilities (for example, if we have functional uncertainty).

Furthermore, linearization is required to solve the variance equations which leads to a mismatch be-

tween the behavior of the true model and its linearization.

� Use a specialized model structure that separates the uncertainty from the ODE system [Lunze, 1989].

The ODE model and the uncertainty model can be solved separately and then combined to bound the

model space. This method yields very precise predictions, but requires very speci�c model structures

and is thus not generally applicable.

� Use intervals to bound parameters and use an interval ODE solver to compute predictions [Corliss, 1995a].

This method is fast and general, but produces very weak bounds.
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We seek to develop a modeling language and simulation method that can describe imprecise ODE systems

in a way that captures the types of uncertainty used by engineers, yet can provide useful predictions in that

the predictions are as tight as possible. In this paper, we describe SQsim (for SemiQuantitative SIMulator),

a system for modeling and simulation which meets these requirements. Section 2 describes our method

for modeling uncertainty, which is based on a combined qualitative-quantitative representation. Section 3

describes the simulation method, which makes use of several di�erent inference methods that operate at

di�erent points along the qualitative-to-quantitative spectrum. Since the nature of the inferences that can

be made are di�erent at each point, SQsim combines them to produce a more useful behavioral description

than any single method can. Section 4 contains an extended example of simulating an imprecisely-de�ned

adiabatic CSTR, and Section 5 discusses other approaches to simulating uncertain models. Finally, Section 6

describes possible application areas as well as future work in improving the quality of SQsim predictions.

2 Modeling Uncertainty

When simulating an uncertain system, it is helpful to separate the information that is precisely known from

that which is not, so that unambiguous inferences can be made from the precise information. Often, there

will be precise information about the structural and qualitative properties of the model, while the numerical

information will be imprecise. SQsim makes use of this distinction by using a multi-level representation

based on the QSIM [Kuipers, 1986] representation for ODE systems. The levels are:

� The structural level (SDE).

At this level, we describe the form of the ODE system in terms of the state variables and the constraints

that link them. Constraints are described as arithmetic operators and functional relationships. The

structural level provides the backbone of the modeling process. We call this representation the SDE

(for Structural Di�erential Equation).

� The qualitative level (QDE).

The qualitative level adds information about the domains of each model variable as well as the nature

of the functional constraints. Each model variable is partitioned into a set of \landmark" values which

represent important (to the modeler) values in the domain of the variable. For example, if A models the
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amount of 
uid in a tank, it may be modeled by the quantity space (0; FULL) which states that empty

(A = 0) and full (A = FULL) are two interesting values in the space of the variable. The landmarks in

a quantity space de�ne an ordinal relationship on the values in the domain of the variable. Furthermore,

sets of corresponding landmarks restrict the possible e�ects of constraints in the model. We call this

representation the QDE (for Qualitative Di�erential Equation).

The QDE also records information about the shape of functional forms in the model. Functional shapes

can be de�ned as being monotonic over a region, sigmoidal, parabolic, etc. As we shall see, by making

this information explicit, simulation methods that work at the qualitative level can infer facts about

the behavior of a model that are unavailable using purely numerical methods.

� The quantitative level (SQDE).

At this level, we record the uncertainty in the model. To be useful in engineering applications, a

modeling language must capture the types of uncertainty that are commonly encountered by engineers.

We de�ne two classes of uncertainty in models:

{ Parametric imprecision models the uncertainty in the value of a scalar parameter of the model.

This is the most common type of uncertainty and can be used to represent the tolerance on a

component or a bound on a reaction rate.

{ Functional imprecision models the uncertainty in the functional relationship between two or more

variables. This type of uncertainty can be used to represent a family of functions which may

not have a common parametric form yet share some qualitative property (such as monotonicity).

Functional imprecision is a very useful feature for a model representation since it reduces the

number of models needed to reason about a particular process.

We represent parametric imprecision with numerical intervals that bound the uncertainty. We represent

functional imprecision by de�ning static envelopes within which the functional constraint must lie. This

type of imprecise knowledge has several advantages:

{ It is a form of knowledge readily available in engineering domains.

Often, parametric and functional tolerances are described using intervals and bounding curves in

the engineering literature.
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{ There is an existing mathematics for computing with intervals and static envelopes.

{ We can represent precise models by allowing all interval widths and static envelope widths to go

to zero. Thus, the more we know about a model, the more precise we can make it.

We call this representation the SQDE (for Semiquantitative Di�erential Equation) because it contains

both the QDE and imprecise quantitative information.

Figure 1 shows the representation of a simple one-tank system with a constant in
ow. At each level, we

further restrict the model space so that it eventually contains only one ODE. By using simulation techniques

targeted for particular levels, we can thus utilize this information in a variety of ways.

[Figure 1 about here.]

3 Making Useful Predictions from Imprecise Models

By using a multi-level model, the modeler can represent both precise qualitative knowledge explicitly at the

QDE level and imprecise numerical information at the SQDE level. We can then use inference methods on

the QDE that are independent of the imprecise quantitative information. For example, if we are describing a

single tank system with a model that states that out
ow is a monotonic function of amount then regardless

of the precise functional relationship, we can absolutely conclude that an increase in amount will produce

an increase in out
ow.

As we shall see, inference at the qualitative level can improve the quality of predictions at the numerical

level and vice versa. Our goal is thus to use a set of inference techniques at various points along the

qualitative-to-quantitative spectrum and combine their results to yield tighter behavioral predictions. The

next sections describe these methods.

3.1 Qualitative Inference

Qualitative inference produces predictions based on the QDE portion of the model. Recall that the qualitative

description of a model is composed of the set of model variables whose domains are de�ned in terms of

quantity spaces, the structural constraints that describe the relationship between variables in terms of
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arithmetic operators and functions, and shape constraints on the functional relations. Using Kuipers' QSIM

algorithm [Kuipers, 1984, Kuipers, 1986], we can simulate the behavior of a QDE. QSIM simulates a QDE

by tracking the magnitude and direction of change of each variable (which are called the qmag and qdir of

the variable, respectively), where the magnitude is de�ned as being at or between two landmarks in the

variable's quantity space and the direction of change is either increasing, steady, or decreasing starting from

a user-speci�ed (possibly incomplete) initial state.

By applying the rules of qualitative arithmetic [Kuipers, 1994], QSIM generates a set of variable descrip-

tions consistent with the model constraints at the initial state. For instance, if x and y are related by a

monotonic increasing function, qdir(x) =" implies qdir(y) =".
QSIM models time as a sequence of alternating points and intervals in time. The special variable TIME

represents time by a quantity space where each time-point state is at a landmark and each time-interval

state is between two landmarks. The time landmark for the initial state is T0. Once a consistent assignment

of qmags and qdirs is de�ned for the initial state, qualitative transition rules determine what will happen in

the following time-interval. These transition rules enforce continuity constraints on the behavior trajectory.

There are two di�erent sets of transitions { those that hold when the simulation is at a time-point and

those that occur when the simulation is in a time-interval. For example, if at time-point T0, qmag(A) = 0

and qdir(A) =" then over the time-interval (T0 T1), qmag(A) = (0 FULL). Then at time-point T1,

qmag(A) = (0 FULL)1 or FULL since A may remain in the interval or increase to the next landmark.

By repeating this process, QSIM produces a set of alternating time-point and time-interval qualitative

descriptions of the system. Such a set of states is called a qualitative behavior. Normally, there will be

multiple qualitative behaviors for a given model because:

1. The qualitative model represents a family of ODE systems. Thus, if members of the family have

di�erent qualitative behaviors, each possible behavior will be represented.

2. Since qualitative mathematics is inherently ambiguous2, some behaviors generated by this method will

1If the qmag of a variable is an interval between two landmarks at a time-point state and the qdir is steady, QSIM will create
a new landmark in the qspace of the variable between the existing landmarks. Such landmarks are created because points where
the derivative reaches zero are often interesting points in the trajectory of a variable and thus should be considered landmarks.

2For example, if we know that the directions of change of x and y are positive and negative, respectively, the direction of
change for x+ y can be positive, negative, or zero.
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be spurious.

Figure 2 shows the result of simulating the QDE in Figure 1. It produces three behaviors corresponding

to the cases where A over
ows (�rst behavior), reaches a steady-state below the FULL landmark (second

behavior), or reaches a steady-state at FULL (third behavior). These behaviors can be organized into a

behavior tree which highlights where qualitative distinctions between behaviors occur.

[Figure 2 about here.]

One important property of QSIM is that all real behaviors of the QDE are predicted. This guaranteed

coverage property is of great importance to design (where we must be sure that all consequences of the design

are explored) as well as diagnosis (where we want to be sure that all possible outcomes of our diagnostic

hypotheses are considered) and will be preserved in all stages of the SQsim algorithm.

One weakness of QSIM is that some spurious behaviors may also be predicted. By utilizing a variety of

additional qualitative information (for instance, information about the higher-order derivatives of the system)

QSIM can often refute branches of the behavior tree, thus reducing the number of spurious behaviors. As we

shall see, numerical information can also be used to prune spurious qualitative behaviors thereby reducing

prediction ambiguity.

3.2 Q2 { Inference at the Semiquantitative Level

Since QSIM ignores information at the quantitative level, it generates the set of all possible qualitative

behaviors of ODEs entailed by the QDE, but it may also include behaviors of systems that are not part of

the family described by the SQDE. Semiquantitative inference, however, does use the quantitative knowledge

in the SQDE to attach range information to the qualitative behavior tree. In the process, some branches

of the tree may be refuted because their qualitative descriptions are inconsistent with the quantitative

information, while on other branches quantitative information re�nes the prediction.

The Q2 algorithm [Kuipers and Berleant, 1988] produces semiquantitative inferences from the SQDE.

At each qualitative time-point, QSIM de�nes events for each variable. An event is the qmag of a variable

together with the qmag of the TIME variable at the time-point. For example if at some time-point state

TIME = T1 and A = A0 then A(T1) is an event for the variable A (see Figure 3). Since an event represents
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the instantaneous snapshot of a particular variable at a particular time, the SDE portion of the SQDE can

be viewed as a set of equations relating the model variables, and the events must satisfy these equations. If

we annotate the events with the range information described in the SQDE, we end up with a set of interval

equations that must hold at each time-point.

[Figure 3 about here.]

Given an initial assignment of ranges to certain landmarks, we can solve the system of equations using

propagation of intervals through model constraints using interval mathematics [Moore, 1979]3. Whenever

we �nd an equation that computes the value of a model variable, we intersect its existing range with

the computed one. If their intersection reduces the range, we assert the updated range and follow the

consequences of this new, smaller range. If the intersection is null, we refute the behavior since the interval

equations are inconsistent with the qualitative behavior. We continue this process until either the state is

refuted or we reach a �xed-point with respect to the ranges of the variables4.

For example, in the �nal state of the �rst behavior in Figure 2, we have the event A(T1) = FULL. The

SDE gives us the equation A0 = c� f(A) which must hold for this event. Annotating FULL and c with the

ranges given in the SQDE and using f(A) = 8
p
A and f(A) = 10

p
A leads to the following inferences:

A0(T1) = [c; c]� [f(FULL); f(FULL)]

= [20; 30]� [f(80); f(100)]

= [20; 30]� [71:5; 100]

= [�80;�41:5]

Since the qualitative prediction determines that the qdir of A is ", we know that A0 must be greater than

zero at T1 or A0(T1) = [0;1]. Intersecting this with the value computed above leads to a null interval, and

so we may refute this behavior on the basis of the quantitative information.

The propagation algorithm can be extended across time-intervals by using the Mean Value Theorem to

3We propagate intervals through the unknown functional relationships by using the static envelopes de�ned in the SQDE.
4We ensure that a �xed-point will be found in �nite time by de�ning a minimum change � below which a change in a range

is considered insigni�cant.
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relate the derivative of each state variable to the bounds of the state variable and the bounds on the di�erence

in time between the two time-points. This type of inference reduces the width of the interval associated with

the qmag of the time value at each time-point. Q2 thus re�nes the behavior description produced by QSIM

by generating numeric bounds for both events and time-intervals such that:

� Each event determines a rectangle in the trajectory space that all behaviors must pass through.

� Between events, each time-interval description encloses all trajectories of the variable in a dynamic

envelope, i.e., a pair of functions of time A(t) and A(t) such that A(t) � A(t) � A(t) over the interval.

Figure 4 shows the results of running Q2 on the QDE version of the single-tank system. Given the numerical

information, Q2 is able to eliminate both behaviors where the amount of water reaches FULL.

[Figure 4 about here.]

While Q2 is a powerful inference method for reducing the ambiguity in the qualitative behavior descrip-

tion, it may still permit spurious behaviors and overly wide dynamic trajectory envelopes. There are two

reasons for this:

� Interval arithmetic is inherently ambiguous because correlations between variables are ignored. Con-

sider solving the equation z = x � x where x is in the interval [1; 2]. Applying the rules of interval

mathematics z = [1; 2] � [1; 2] = [�1; 1] whereas the true solution is clearly z = 0. The problem is

that the interval operator assumes that x can be 2 for one operand and 1 for the other, which is not

possible since they must be the same.

� Q2 uses the Mean Value Theorem to describe changes between time-points in a behavior. Since the

distance between time-points can be arbitrarily large, this means that Q2's prediction over intervals

can be very coarse for the same reason that a numerical simulator with too large a time-step produces

poor results.

3.3 Nsim { Inference at the Quantitative Level

Q2 bridges the gap between the qualitative and quantitative representations in the SQDE by using the

qualitative model as a framework for generating quantitative interval equations at each qualitative time-point.
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While interval mathematics can infer numerical bounds on the behavior, there are other purely numerical

inference methods that can tighten these bounds even further. We have developed such a method that

uses a step-size that �ts the numerical properties of the SQDE rather than relying on the distance between

qualitative time-points. Our method, called Nsim [Kay and Kuipers, 1993], does this by constructing an

ODE system that is guaranteed to bound the behaviors of the SQDE. This system is then simulated to

generate a dynamic envelope for all behaviors of the SQDE.

Nsim constructs an extremal ODE system from a QDE by minimizing and maximizing each derivative

equation in the SQDE. To compute an extremal equation, Nsim rewrites the SQDE using the translations

in Table 1 to substitute terms. For example, the ODE system

A0 = c� f(A)

B0 = f(A)� f(B)

becomes

A0 = c� f(A)

B0 = f(A)� f(B)

A
0

= c� f(A)

B
0

= f(A)� f(B)

[Table 1 about here.]

By applying both a lower and an upper translation for each equation, Nsim generates a new ODE system

whose state variables are the upper and lower bounds for the state variables of the SQDE. Thus, we replace

the original imprecisely-de�ned system with a precise ODE system of twice the order that is guaranteed to
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bound the original SQDE5. Since this new system is an ODE system, we can simulate it using conventional

simulation methods to obtain a bound on the system6. Figure 5 shows the result of applying Nsim to the

SQDE of the single-tank system. Since the simulation time-step is controlled by the numerical properties of

the extremal system, Nsim's bounds are much tighter than those of Q2.

[Figure 5 about here.]

While Nsim produces tighter bounds than Q2 in many cases, it can also generate spurious behaviors in

the form of overly-wide dynamic envelopes. These spurious behaviors stem from:

� Representing uncertainty with intervals.

One can precisely describe the state-space uncertainty of a system at a given time by a set of points.

Unfortunately, this type of description is intractable with respect to representation and inference since

the set of points is normally in�nite. A useful description must represent such sets �nitely. Nsim uses

hypercubes as an uncertainty representation. Such a simpli�cation makes description and inference

tractable, however it also admits spurious behaviors. Given that the hypercube X(t) describes the

state of uncertainty at t, the set S which contains all states reachable from X(t) at time t + h is not

in general a hypercube. Thus, we must enclose the reachable states at t + h in a hypercube so that

they are representable. We thus include extra states in X(t+ h) that are not reachable from X(t). As

simulation proceeds, this set may include more and more states that are not reachable from the initial

state, thus leading to bounds that diverge with time. This is known as the \wrapping problem" in the

interval simulation literature [Moore, 1979] (see Figure 6). Note that wrapping is the property of any

�nite representation of a set of states. Depending on the system, is sometimes possible to reduce the

e�ect of wrapping by using other representations such as ellipsoids [Moore, 1979] or by using coordinate

transformations that orient the hypercube with respect to the trajectory of the system (see Section 5).

[Figure 6 about here.]

� Ignoring correlations in the SQDE.

A model may contain multiple references to a function, however, the extremization process may make

5See Appendix A for a proof.
6In our work we use the LSODA subroutine from ODEPACK.
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these references refer to di�erent functions. For example, if we have a model

x0 = c� f(x) y0 = f(x)� g(y)

our intention is that the two occurrences of f(x) refer to the same function. The extremal system for

the lower bounds of x and y, however, will look like

x0 = c� f(x) y0 = f(x)� g(y):

Unlike the original system, the second term in the �rst equation is no longer identical to the �rst term

in the second one. Nsim is thus making predictions about models that are not part of the original model

space and so these predictions admit spurious states. In some cases, model correlation can be eliminated

by rewriting the SQDE so that only one reference to a function is made (see [H�ullermeier, 1995]). In

the above example, we can introduce a new variable z = x+ y thus transforming the system into

x0 = c� f(x) z0 = x0 + y0 = c� g(z � x)

which makes only one reference to f . The lower bound is now

x0 = c� f(x) z0 = c� g(z � x)

� Ignoring correlations between variable bounds.

The extremization process, coupled with the use of the interval representation for uncertainty, causes

Nsim to produce an ODE system that can, in some cases, ignore the correlation between upper and

lower bounds of a variable in the original system. While the SQDE exists in an order-n state-space,

the extremal system generated by Nsim is of order-2n. If the trajectories generated by each ODE and

initial condition entailed by the SQDE and state hypercube at t0 are mapped into 2n-space, they will

occupy an order-n subspace since, they are subject to the added constraint 8i;t xi(t) = xi(t). The

extremal system, however, is not restricted to considering points in this subspace. Thus the extremal
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system may compute solutions based on points in 2n-space where xi(t) 6= xi(t) which cannot happen

in any of the ODEs. For example, consider the harmonic oscillator

x0 = v v0 = �x

which has an extremal system de�ned as

x0 = v v0 = �x x0 = v v0 = �x: (1)

For this system, the derivative of the extremal system state vector [x; x; v; v]T depends simultaneously

on both upper and lower bounds of x and v. Thus, the correlations x = x and v = v are explicitly

ignored (assuming that the bounds on x and v are of non-zero width). In contrast, consider the system

x0 = c� x y0 = x� y

which has the extremal system

x0 = c� x y0 = x� y x0 = c� x y0 = c� y

In this case, the extremal system separates into two second-order ODEs. The derivative of [x; y]

depends only on the lower bounds of x and y and the derivative of [x; y] depends only on their upper

bounds. Because neither system requires the upper and lower bounds of a system simultaneously, the

correlations x = x and y = y are not ignored. The practical result is that the extremal system for this

system produces tighter bounds than extremal system (1).

SQDEs that lead to separable extremal systems have the property that their bounds are determined by

simulating \corners" of the hypercube. This class is identical to the class of quasi-monotonic systems

[Walter, 1970] for which it can be shown that simulating the corners of the hypercube leads to an

optimal bound [Corliss, 1995a].
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These sources of spurious behavior suggest that we can improve the Nsim prediction by using di�erent

uncertainty representations or simulation methods. In Section 5 we will examine some of these possibilities.

While such methods can reduce the width of dynamic envelopes in some cases, they require specialized

simulation engines. It is worth noting that by casting the bounding problem as the solution to an ODE

system, Nsim can take advantage of the speed and e�ciency of existing numerical ODE simulators as well

as exploit future advances in ODE simulation technology.

3.4 SQsim { Combining Inference at the Di�erent Levels

The predictions produced by QSIM, Q2, and Nsim use information in the SQDE in di�erent ways. QSIM

provides the qualitative shape of the trajectories. Q2 augments the qualitative events with interval ranges.

Nsim produces dynamic envelopes directly from the imprecise numerical information. While each method

guarantees that all real behaviors entailed by the original SQDE are predicted, they each admit spurious

behaviors as well. QSIM generates them due to uncertainty in qualitative arithmetic. Q2 fails to refute them

due to uncertainty in interval mathematics and the uncertainty in the distance between qualitative time-

points. Nsim generates them because the process which generates the extremal system can ignore correlations

between variables. By combining these inference methods, SQsim is able to reduce the imprecision in

predictions by ensuring consistency across the predictions.

Figure 7 shows the 
ow of information through SQsim. SQsim uses QSIM as the basis for simulation.

At every qualitative time-point Q2 and Nsim are run to produce events and dynamic envelopes that describe

the qualitative behavior up to the time-point. Then, each of the combination methods described below are

run until a �xed-point with respect to Q2 events is found. If no contradiction is detected, SQsim generates

the successor states of the current state and repeats the process.

[Figure 7 about here.]

SQsim uses four methods for combining QSIM, Q2, and Nsim inferences:

Dynamic envelope intersection We can intersect the Q2 dynamic envelopes between two events with

the Nsim prediction to yield a tighter bound. Figure 8(a) demonstrates this process. In this �gure, the

Nsim prediction starts out tight and diverges as time increases. In contrast, the Q2 dynamic envelope is a
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constant band over the interval. By intersecting both predictions, we obtain a behavior that is better than

Q2 alone at the beginning of the interval and better than Nsim for later values of time.

[Figure 8 about here.]

If there is a time at which the Nsim and Q2 dynamic envelopes do not intersect, the entire behavior can be

refuted since their predictions must be consistent over the entire behavior.

Event intersection Nsim's dynamic envelopes can also be intersected with Q2 event descriptions. In this

case, a behavior can be refuted if the Nsim envelope does not pass through any point in the event rectangle.

If the event and dynamic envelope do overlap, it is possible to re�ne the event based on the intersection. In

Figure 8(b), for example, the Nsim envelope restricts the starting time for the event as well as the maximum

value for the event variable. By running Q2 on this reduced event description, SQsim may further re�ne

other events in the behavior.

Extremum detection For some models, the Nsim dynamic envelope will exhibit clear qualitative prop-

erties. For example, the envelope may contain an extremum where all trajectories reach a local minimum

or maximum (see Figure 9). In such cases, the QSIM description should also contain an extremum in the

corresponding region of the behavior. The extremum detector locates extrema within the dynamic envelope

of a variable and ensures that there is a corresponding critical point in the QSIM description. Note that this

test can only be used when the Nsim envelopes contain a recognizable extremum. This is because a dynamic

envelope of non-zero width does not normally provide information about the shape of the underlying trajec-

tories. Therefore, every behavior that passes through the envelope may pass through a local extremum. It

is only when there is an extremum in the envelope that we are guaranteed that every behavior must pass

through an extremum.

[Figure 9 about here.]

Order reduction The Q2 dynamic envelope is a coarse trajectory envelope of the behavior. Nsim can

produce a more precise bound, however its envelope can also diverge with time. By using the Q2 dynamic

envelope, we can control Nsim so that it does not simulate an upper (or lower) bound when that bound is
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already at the maximum (or minimum) determined by Q2. Instead, we can set this bound's derivative to

zero, thus reducing the order of the extremal system. Such an operation can greatly reduce the width of the

dynamic envelope. This method can also be applied to the sign of the derivative { i.e., if the derivative of an

upper (or lower) bound takes on a sign inconsistent with the Q2 prediction, the corresponding bound in the

extremal system can be set to zero. Figures 18 and 19 in Section 4 demonstrate the use of order reduction

to improve a dynamic envelope where bounds on the derivative of a state variable are known.

Re-simulation SQsim operates on a state-by-state basis, using all events from the current and previous

states to re�ne the behavior. Sometimes, however, the bounds on events may be shrunk as a result of

events generated at later time-points. This is especially true for equilibrium states (which occur at the end

of behaviors) since in these states Q2 can produce tighter event bounds because the derivatives of all the

state variables are known to be precisely 0. Furthermore, it is sometimes possible to bound the time over

which derivatives of state variables have constant qdir and use this information to guide order-reduction.

Re-simulation is the process of analyzing a completed behavior for these types of non-local properties and

then running all combination methods described above. Figures 18 and 19 in Section 4 illustrate the use of

re-simulation.

4 An Example

In this section, we present an example of using SQsim to determine the behavior of a chemical system. The

intent is to demonstrate the behavior, as well as the strengths and limitations of SQsim.

The system that we simulate is an adiabatic Continuously-Stirred Tank Reactor (CSTR) with an irre-

versible exothermic �rst-order reaction A! B. The equations of the system are :

dCA

dt
=

CAi � CA

�
� k0e

�E=TCA (2)

dT

dt
=

Ti � T

�
� hrk0e

�E=TCA

where CA is the concentration of reactant A in the tank, CAi is the inlet concentration of A, T is the tank

temperature, Ti is the temperature of the inlet stream, � is the residence time, hr is the heat of reaction, k0
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is the rate constant, and E is the activation energy. This system is highly nonlinear due to the exponential

containing T .

In the process of designing or monitoring such a system, we may be interested in answering the following

questions:

� What are the locations of equilibrium points in the state space?

� What are the qualitative trajectories of the system?

� What are the �nal values of the state variables and how do they compare to the initial values?

� Do the trajectories remain inside an acceptable region of the state space?

� Where and when do extrema occur in the trajectories of the state variables?

� How sensitive is the behavior to uncertainty in model parameters?

Our example follows the work of Dalle Molle [Dalle Molle, 1989] who made a detailed study of the

adiabatic CSTR for the case where the system is in equilibrium and then CAi is negatively perturbed.

He analyzed the numerical and qualitative properties of this system and determined that there are three

equilibrium states for an ODE instance with the values described in Table 2. He then examined the e�ect of

di�erent perturbations from these equilibrium states. In all cases T decreases over time, however there are

four possible qualitative behaviors of CA. For our analysis, we focus on a decrease on CAi from 1:0 to 0:9. In

this case, there are two di�erent behaviors depending on which steady-state we start from (see Figure 10).

[Table 2 about here.]

[Figure 10 about here.]

In the next section, we analyze the behavior of the precise model using SQsim. The only uncertainty

that we allow is in the initial state description. Then, in the following section, we will analyze the behaviors

produced when we allow parametric uncertainty in the model.

4.1 The Precise CSTR under SQsim

In this section, we consider the precise model of the CSTR simulated from an imprecise initial state.
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4.1.1 Qualitative Inference

Figure 11 gives an overview of the results in this section and is intended as a road map for following the

analysis of the example.

[Figure 11 about here.]

We begin with the SDE described by Equation 2 which de�nes the model variables and the relations

between them. From this, we form a QDE by de�ning the quantity spaces for the model variables and then

use QSIM to generate the qualitative equilibrium states. The quantity space for CA contains the landmarks

0, CAI (which represents the input stream concentration), and INF (which represents the landmark at 1,

a value larger than any �nite real number) while T contains the landmarks 0, TI (which represents the input

stream temperature) and INF . These quantity spaces restrict CA and T to positive values. By asserting

that the qdirs of CA and T are steady and that all constants are at �xed landmark values, QSIM is able

to determine the equilibrium values of the qmags and qdirs for all model variables. QSIM determines that

there is a single qualitative state consistent with the three equilibrium states in Table 2 (see Figure 12). This

is because all three quantitative equilibria are located such that CA is between 0 and CAi(= 1:0) and T is

between Ti(= 340) and 1.

[Figure 12 about here.]

Next, we perturb CAi by asserting that its qmag is less than its qmag in the equilibrium state. QSIM

generates 8 behaviors from three possible initial states (which are due to uncertainty in the value of CAi�CA

in the �rst equation which may be positive, zero, or negative). In all behaviors T decreases monotonically

over time and CA has one of four qualitative shapes (see Figure 13) which include the two numerically

produced behaviors in Figure 10. The other two behaviors occur when CAi is perturbed to values other than

0:9.

[Figure 13 about here.]

4.1.2 Semiquantitative Inference

Next, we add quantitative information to produce the SQDE. Since we are modeling the precise ODE, the

semiquantitative information consists of zero-width intervals for each model parameter. Our �rst goal is
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to identify the equilibria of the system. We de�ne the bounds on CA and T to be [0;+1] which encodes

the knowledge that the equilibria lie in the positive portion of the state space of the system. SQsim is

then able to isolate the equilibria of the system by using a technique called Localization on the initial state.

Localization addresses the \gap" problem with interval representations. For example, the narrowest interval

representing
p
4 is [�2; 2] even though it is really only the endpoints of the interval that are true solutions.

There is thus a gap in the interval. Localization attempts to �nd gaps in the domain of a variable. Given

a variable to localize and an initial range, the Localizer selects a point within the range of the variable and

uses Q2 to derive a contradiction, indicating that the initial range contains a gap. When a gap is found, it

splits the state description in two { one part where the range of the variable falls below the gap and one

part where the range falls above the gap. It then applies Q2 to each of these more precise states which may

result in further convergence of ranges. If not, it attempts to localize each subrange (see Figure 14). The

process terminates when either the �nal subranges are points or after three attempts to �nd a gap fails7.

[Figure 14 about here.]

For the CSTR model starting with ranges of [0;1] for CA and T , Localization identi�es the three

numerically-determined equilibria from Table 2 (see Table 3). Note that the equilibrium state descriptions

have non-zero width. This is because the Q2 portion of SQsim uses a parameter � to determine when the

ranges associated with landmarks reach a �xed-point so as to prevent excessive interval propagation. By

decreasing �, we can increase the precision with which SQsim localizes the equilibria. Because Localization

maintains the Guaranteed Coverage Property (see Section 3.1), for any non-zero � the equilibrium description

will contain some uncertainty. In contrast, the numerically-determined equilibria in Table 2, while precise,

are not guaranteed to be correct8. This is because the representation (precise 
oating-point numbers) cannot

represent the imprecision inherent in the numerical simulator. For some systems, this error could lead to

incorrect results (for example, if the system is chaotic and thus sensitive to initial conditions). By simulating

from an imprecise initial condition, we maintain the Guaranteed Coverage Property of SQsim and do not

\miss" potentially relevant behaviors9.

7Localization is akin to Target Interval Splitting [Berleant and Kuipers, 1992] which attempts to refute the ends of intervals.
8In fact, the values in the table are incorrect since they do not fall inside the guaranteed Q2 envelope. In this case, this is

because of round-o� in the table.
9If we did choose a precise initial condition, we would get a single precise behavior since the Nsim prediction of a precise

SQDE and initial condition is a zero-width trajectory.
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[Table 3 about here.]

Decreasing CAi starting near steady-state 1 Starting from the Localization-determined equilibrium

interval T = [353:358; 353:360] and CA = [0:933; 0:934], the dynamic simulation leads to the two behaviors

in Figure 15. Q2 refutes the other 6 branches because they are not consistent with phase space location

of steady-state 1. Dalle Molle determined that only the �rst behavior is real for the precise model. Q2 is

unable to determine this because its prediction for the upper bound of the local minimum of CA is the same

as that for its �nal value and so the two behaviors look equivalent.

[Figure 15 about here.]

Applying Nsim to the SQDE results in the envelopes in Figure 16. Note that they fall completely inside

the Q2 envelope and that there is a trajectory extremum near t = 50. By using the SQsim extremum

detector, we can eliminate the spurious behavior. Thus SQsim predicts a single qualitative behavior and a

tight dynamic envelope which su�ces to closely bound any dynamic properties of interest.

[Figure 16 about here.]

Decreasing CAi starting near steady-state 3 Starting from the Localization-determined equilibrium

interval T = [508:667; 508:673] and CA = [0:156; 0:157], Q2 produces the single behavior shown in Figure 17.

While it has refuted the other 7 behaviors, the �nal range of CA ([0:157; 0:893]) is rather large and is bounded

below by the initial concentration, so we cannot predict that the �nal concentration increases. By manually

applying Target Interval Splitting to the �nal state, we �nd that the �nal value of CA is [0:845; 0:846] so the

concentration has de�nitely increased. We still have very weak information about the time of the inverse

response.

Applying Nsim only, we obtain the envelopes in Figure 18. For CAi = 0:9, the extremal system is quite

stable up until t � 20 where it exhibits a high degree of divergence. This is due to ignoring correlations in the

extremal system which turns the negative feedback in the original system into positive feedback. For other

values of CAi, this divergence is not so sharp and Nsim alone produces tighter envelopes10. Once we reach

10Experimentation reveals that CAi � 0:7 leads to tight predictions.
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the �nal state, however, it is clear from the qualitative behavior that C 0
A is always positive after reaching

the minimum at T1. Therefore, SQsim can re-simulate using order-reduction to prevent C 0
A from becoming

negative. This signi�cantly shrinks the �nal envelopes as shown in Figure 19.

[Figure 17 about here.]

[Figure 18 about here.]

[Figure 19 about here.]

Referring back to the questions that we are interested in for this model, if we start with a SQDE of the

CSTR model, SQsim can determine the following:

� It automatically identi�es the location of the equilibria.

� It produces single qualitative trajectories from the stable equilibria.

� When input concentration is perturbed from 1:0 to 0:9, SQsim determines that the �nal concentration

of CA decreases from steady-state 1 and increases from steady-state 3.

� From steady-state 1 it �nds a tight envelope over the entire trajectory. From steady-state 3, the

trajectory widens as time increases, but remains bounded.

� The location and deviation of the inverse responses are tightly bounded.

SQsim is thus able to automatically infer the relevant qualitative and quantitative properties of this

system, together with behavioral bounds over time, even in the presence of uncertainty in the initial condition.

4.2 The Imprecise CSTR

So far, we have considered only initial state uncertainty. In this section, we examine the more interesting

case when there is uncertainty in the model by varying the values of the model parameters k0, hr, and Ea

by �1% and �5%. Varying these quantities examines cases where there is uncertainty about the reaction

rate, heat of reaction, and activation energy. While SQsim can handle the more general case of functional

imprecision, for this model, parametric imprecision is su�cient to examine the properties of our method.
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Decreasing CAi near steady-state 1 For 1% error in k0 we obtain the results in Figure 20. Table 4

summarizes the results from varying all three variables independently by �1 and �5 percent. Even with

model uncertainty, the behavior of the system is still tightly bounded by the dynamic envelopes and that

prediction uncertainty increases with model imprecision. Target Interval Splitting yields tight initial state and

�nal state equilibria. The increase in uncertainty prevents us from eliminating the \non-bump" behavior11,

so we have two possible qualitative behaviors. However, because the bounds are tight, the possible deviation

of the inverse response is still tightly bounded. For similar amounts of uncertainty, k0 and hr have a similar

e�ect on prediction uncertainty. Varying Ea has a greater e�ect due to its position in the exponential of the

di�erential equations.

[Figure 20 about here.]

[Table 4 about here.]

Decreasing CAi near steady-state 3 The results for a 1% error in k0 are shown in Figure 21. As was

demonstrated in the precise case, this system exhibits divergence about this equilibrium when CAi = 0:9.

The increase in uncertainty prevents SQsim from precisely determining the location and time of the minimum

in CA, however, the envelopes still restrict the trajectory so we can determine the minimum possible value

of this event. Table 5 summarizes the results from varying all three parameters by 1 and 5%. Manual

application of Target Interval Splitting to the �nal state bounds gives narrower bounds than those derived

by NSIM alone and shown in Figures 19 and 21. As was the case near steady-state 1, prediction uncertainty

increases with increasing model imprecision.

[Figure 21 about here.]

[Table 5 about here.]

We conclude this section by summarizing the strengths and limitations of our method. By combining

qualitative and quantitative inference, SQsim produces predictions in terms of both qualitative trajectories

and envelopes. The qualitative prediction serves two purposes:

11We have not done an analysis to determine if the behavior without inverse response is spurious for the uncertain model.
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� It provides a basis for distinguishing trajectories that fall within the envelopes. The predictions are

thus more detailed than are predictions based on envelopes alone.

� It provides information that the Nsim numerical simulator can use to further re�ne the dynamic

envelopes.

This synergy between representations can often produce very tight bounds on the behavior of an imprecisely-

de�ned ODE system. The degree of uncertainty in prediction is directly related to the degree of imprecision

in the ODE model and reduces to zero (and gives a single, zero-width trajectory) in the case of a precise

ODE model.

Under some circumstances, however, the properties of the imprecisely-de�ned system are such that our

inference methods produce dynamic envelopes that are overly wide given the amount of model imprecision.

In Section 5, we examine related methods for clues on how to further improve bounds.

4.3 Other Examples

In addition to its application in predicting the behavior of the CSTR, Nsim has also been applied to a variety

of other systems, including a model of a semiconductor vacuum system during pump-down that was used

in a monitoring system [Kay, 1991, Kay and Kuipers, 1993]. Because of the highly nonlinear nature of the

model, a small error in modeling can have a large e�ect on the predicted behavior, and so it is very di�cult

to accurately predict the dynamic behavior of the system with a precise model. Thus, the typical method

for diagnosing faults in these systems requires waiting until the system reaches equilibrium (which can take

considerable time). By explicitly representing the modeling error in an SQDE and using SQsim, it was

possible to generate a robust dynamic prediction and monitor for faults while the pressure of the vacuum

system was still changing, thus reducing fault detection time.

5 Related Work

There are very few general methods for producing bounded predictions from imprecise ODE models. In this

section we examine one technique { interval ODE simulation { and describe how it compares with SQsim.
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Interval ODE simulation has been an active area of research for over thirty years. Interval ODE simulators

focus on the problems of arithmetic and round-o� error caused by using computer arithmetic to solve precise

ODE systems. Interval ODE methods consider initial state and parameter uncertainty, but they normally

assume that they are due primarily to machine precision and thus are small. An interval ODE simulation

problem can thus be described as

Given a precise, parameterized order-n ODE system of the form x0 = f(x; c) with state vector x

and constant vector c and an initial bound on each component of x and c, determine a hypercube

X(t) such that 8i=1;n xi(t) 2 Xi(t) for all t.

Most interval simulation methods rely on the concept of inclusion monotonicity to determine enclosures

on the trajectories of state variables over time. Inclusion monotonicity is the property that if X is an

interval vector and F (X) is an interval function12 then if Y � X then F (Y ) � F (X). Typical algorithms

[Moore, 1979, Corliss, 1995b] work in two stages:

1. Compute a coarse bound on x(t) over some time interval I = [tj ; tj + h].

Assume that at tj , X(tj) bounds the trajectory. If we can �nd an A such that X(t) � A for t 2 I , then

A will be a coarse bound for the trajectory over I . The trick is to �nd A (and a suitable h) so that

the bound is tight and h is large. One method for �nding such a bound is to use a �rst order Taylor

expansion:

A = X(tj) + [0; h]F (tj ; X(tj)) + �

where h and � are selected based on the problem.

Because A is selected using only information at tj , we must verify that it does indeed bound the

trajectory over all of I . Inclusion monotonicity ensures that we have such a bound if, for example

X(tj) + [0; h]F ([tj ; tj + h]; A)) � A

If the inclusion is not met, we may either shrink h or widen A so as to maintain the inclusion.

12We say that F is an interval extension of f if F (X1; : : : ;Xn) = f(x1; : : : xn) as long as the interval Xi = [xi; xi] (i.e., it is
of zero width).
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2. Compute a tighter bound based on A.

We can compute a tighter bound over I by expanding the Taylor Series for X and bounding the

remainder with A. One such method is to use13

X(t) = X(tj) +

pX

i=1

X(i)(tj)

i!
(t� tj)

i +
A(p+1)

(p+ 1)!
(t� tj)

p+1

for t 2 I where the Taylor coe�cients are computed recursively starting with X(tj) and A (see

[Moore, 1979] for details).

Interval ODE simulators are also susceptible to the e�ects of ignoring correlations between variables,

particularly the wrapping e�ect. Modern simulators such as AWA [Lohner, 1988] minimize this e�ect by

using a coordinate system that that follows the trajectory of the system. AWA does this by producing an

approximate solution to the ODE system and using the angle between this solution and the coordinate axes

to rotate the frame of reference for computing intervals. This can greatly reduce the wrapping e�ect in some

cases.

5.1 Comparing SQsim and Interval Simulation

In this section, we compare interval ODE methods to both the Nsim subsystem as well as the entire SQsim

system. Both Nsim and interval ODE methods produce dynamic envelopes for an SQDE model. The

key di�erence is in the focus of each method. Interval simulation methods focus on accounting for error

in machine arithmetic and approximation error caused by using 
oating point numbers to represent real

numbers in the prediction. The models and initial conditions are assumed to be precise (or very nearly

so). Nsim concentrates on representing and reasoning with models that have signi�cant imprecision and is

less concerned with arithmetic error, relying on the underlying ODE solver to intelligently deal with this

problem14.

One important advantage that Nsim has is that it can simulate models that have functional uncertainty

in the form of monotonic static envelopes. Functional uncertainty cannot be allowed in a method that uses

13The symbol Y (i) represents the ith time derivative of Y (i.e., d
i
Y

dti
).

14Of course, since the extremal system is a precise ODE system, there is no reason that Nsim could not use an interval ODE
solver to ensure that this source of error is accounted for.
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Taylor expansions since computing Taylor coe�cients requires a precise mathematical form.

Another Nsim advantage is that since the extremization process produces an ODE system, conventional

ODE methods can be used to produce bounds. This permits the use of state-of-the-art numerical ODE

solvers that may behave better with sti� systems as well as Di�erential Algebraic simulators that can include

algebraic constraints in addition to the di�erential equations.

One weakness of Nsim is that extremization removes the original structure of the SQDE and replaces

it with a new ODE structure. This new structure will often have very di�erent dynamics from the original

system so it is di�cult to determine what correlations are being ignored in the extremal system. In particular,

using coordinate transformations to combat wrapping becomes more di�cult.

The main advantage of SQsim over interval ODE simulation is the integration of qualitative and quanti-

tative inference to improve predictions. By using qualitative cues, SQsim is able to better guide Nsim into

producing tighter bounds. The precise CSTR model is a good example of this since interval ODE simula-

tors produce divergent predictions for this model (as does Nsim alone). By using qualitative information,

however, SQsim is able to eliminate the divergence in the predictions. This suggests that existing interval

ODE simulators could bene�t from using an SQsim-like approach to simulation.

5.2 Other Methods

Interval simulation methods were examined in detail in the previous section because many of the problems

with reasoning about SQDEs also a�ect interval ODE simulation and solutions have been investigated and

implemented by researchers in this �eld. There are, however, several other methods that provide useful

perspectives on the problems of SQDE simulation. In the interest of completeness, we list some of these

below.

� The NIS system [Vescovi et al., 1995] is similar to Nsim in that it produces dynamic envelopes for

systems describable by SQDEs. The method calculates the derivative of the SQDE system at each

time point using interval arithmetic and then uses this interval bound in a custom-designed simulator

to compute envelopes on the solution (current methods include Euler and Runge-Kutta). While it

admits a slightly wider class of functions than Nsim, NIS is also subject to the same limitations caused

by using an interval uncertainty representation, wrapping, and ignoring model correlation. Since it

27



is a purely numerical method, it cannot exploit qualitative information about the model to prevent

envelope divergence as SQsim does.

� The system of Dan�es [Dan�es et al., 1993] simulates precise models whose inputs are imprecisely-de�ned

and satisfy certain controllability and observability requirements (which means that it can simulate only

a subset of the SQDEs that SQsim can). It is noteworthy because it casts the bounding problem as a set

of optimization problems in the state space of the system. This allows it to avoid manipulating state-

space uncertainty representations, thus sidestepping the correlation problems of most other methods.

� The paper by Corliss [Corliss, 1995a] describes a variety of other bounding methods for ODE systems

and analyzes conditions under which they are applicable.

� [Gazi et al., 1997] extends Monte Carlo methods to handle functional as well as parametric uncertainty.

While this extension permits Monte Carlo methods to simulate the complete class of SQDEs, it does

not remove the general problems of Monte Carlo methods (e.g., slow simulation time and the possibility

of missing important behaviors).

There is also a large body of theoretical work that provides a formal basis for many bounding methods:

� The �eld of di�erential inequalities [Walter, 1970] has relevance to bounding behaviors of imprecisely-

de�ned ODE systems. This �eld analyzes conditions under which bounds exist for an ODE system.

Several algorithms (e.g., [Markov and Angelov, 1986]) follow directly from this work.

� The �eld of di�erential inclusions [Aubin and Cellina, 1984] views the SQDE prediction problem from

a framework where state and model uncertainty are directly represented by sets of state-space points

and ODE models, respectively, and analyzes conditions under which bounds for the system exists. In

[H�ullermeier, 1995], H�ullermeier examines SQDE simulation as done by Nsim in this framework and

suggests methods for using alternate representations that can sometimes produce better bounds at

greater computational expense.

There has also been applied work in behavior bounding in the area of VLSI simulation by Zukowski

[Zukowski, 1986]. When treated as a resistive and capacitive switching network, digital VLSI circuit ODE
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systems are quasi-monotonic (or nearly so) and so simpli�ed bounding methods can be used to predict circuit

behavior by bounding the true circuit equations by linear ones and simulating these.

All of these methods treat the bounding problem in the quantitative domain and thus are similar in spirit

to Nsim. This suggests that these methods could be improved by integrating them into a qualitative-to-

quantitative framework with SQsim. Since each method has its strengths and weaknesses, it would then be

possible to select the appropriate method given the nature of the SQDE itself.

6 Summary and Future Work

This paper has described a new method for making predictions from imprecise models. The SQsim system

produces predictions from a mixed qualitative/quantitative representation of an imprecise ODE system. By

separating exactly known qualitative properties from imprecisely known quantitative ones, SQsim is able to

make precise inferences from the qualitative information and use them to guide the production of quantitative

predictions.

In particular, SQsim models and predictions have the following properties:

� Behaviors are represented by a tree of qualitative behaviors, events, and dynamic trajectory envelopes.

Thus, predictions are more detailed than is possible with a simple set of envelopes.

� All real behaviors of the SQDE are predicted by SQsim.

� SQDEs can capture functional as well as parametric uncertainty. Thus a given model can cover a larger

model space than can a model with parametric uncertainty alone.

� Model uncertainty is represented by ranges on parameters and static envelopes on unknown function

relationships. These representations are commonly used to describe uncertainty in engineering domains.

These properties of SQsim make it well-suited for use in design applications [Gazi et al., 1993] (where

guaranteed bounds are very useful) as well as for monitoring and diagnosis applications (where covering a

large model space helps to reduce the number of candidate models) [Dvorak and Kuipers, 1989] .

Monitoring applications typically start with a given set of models which are matched against the data.

A related area of research involves the derivation of models from a set of measurements of a physical system.
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Our future plans include improving SQsim numerical predictions in cases where ignored correlations are

a problem. One possibility is to integrate AWA's coordinate transformation technique to reduce the e�ect

of wrapping. Another possibility is to use an advanced form of Target Interval Splitting together with Nsim

to rule out sections of the state space of a model.

The ultimate goal of our research is to construct a system that can identify a process directly from a stream

of measurements. Such a system would �rst determine QDEs that are consistent with the measurements and

then form SQDEs by bounding the monotonic functions with static envelopes and the constants with inter-

vals. Initial work on the former step has been developed in [Richards et al., 1992] and [Kay and Ungar, 1993]

describes work on the latter step. A key requirement for integrating these tasks is the ability to produce

useful predictions from an imprecise model. SQsim helps address this need by providing a new form of

inference especially suited to semiquantitative models.

Note

Tragically, Dr. Herbert Kay was killed in a random act of violence on June 12, 1997. He left his wife Meg,

two-year-old twin daughters Sonia and Nina, and a large group of family and friends. He left a signi�cant

body of scienti�c work (please see www.cs.utexas.edu/users/bert/) and the unful�lled promise of further

contributions to the world, both personal and professional.

A Proof that Nsim bounds all behaviors of an SQDE

Theorem 1 Let S be an order-n SQDE with state vector x = [x1; : : : ; xn] and let the bounds on x be

given by the vector X = [x1; x1; : : : ; xn; xn]. Let A:x0 = f(x) be any ODE model in the space of S and

� : X0 = F (X) be the extremal system for S with initial condition 8i=1;n xi(t0) � xi(t0) � xi(t0). Then

8i=1;n xi(t) � xi(t) � xi(t) for all t � t0.

Proof There are two parts to the proof. The �rst part shows that the extremal system produced by Nsim

guarantees that

f
i
(X) � fi(x) � f i(X) (3)
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when

8j 6=i xj � xj � xj and xi = xi = xi (4)

The second part shows that if this relation is true, then the bound follows.

Part One Let x0i = fi(x) be the ith ODE in A. Referring to Table 1, we can see that for each of the

\ground" expressions e = c; xi, or xj we have that L(e) � e � U(e) whenever Condition 4 holds. By

induction on e, we can show that the other expressions in the table also obey L(e) � e � U(e). Thus, letting

e = fi we have f i(X) � fi(x) � f i(X) for each i.

Part Two Given that (3) and (4) hold, we now show that xi(t) � xi(t) for all t � t0. The proof for the

lower inequality is derived similarly. For the purposes of intuition, we prove a slightly weaker version of

the theorem in which we assume fi(x) < f i(X) when Condition 4 holds. A complete proof which assumes

fi(x) � f i(X) is given in [Bothe, 1992] and [H�ullermeier, 1995].

The bound holds at t0 by assumption. For any other time t, we have either

� xi(t) > xi(t) in which case the result holds trivially, or

� xi(t) < xi(t) in which case there must be some time t1 < t such that xi(t1) = xi(t1), or

� xi(t) = xi(t).

Assume therefore that at time t we have xi(t) = xi(t) and that 8j;� xj(�) � xj(�) � xj(�), i.e., time t is

the �rst time that any state variable might cross its bounds (if there is some state variable xh for which the

inequality does not hold, we may then take t to be the time when xh is equal to one of its bounds and let

i = h). We seek to determine if xi and xi can cross at t.

De�ne the di�erence term di(t) and compute its Taylor Series expansion:

di(t+ h) = xi(t+ h)� xi(t+ h) (5)

= (xi(t)� xi(t)) + h(f i(t)� fi(t)) +
h2

2
(f

0

i(�) � f 0i(�)) (6)

where �; � 2 [t; t+ h].
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By assumption, the �rst term of this expression is zero. De�ning �i(t) = f i(t) � fi(t) and rearranging

terms gives

di(t+ h) = h(�i(t) +
h

2
(f

0

i(�)� f 0i(�))) (7)

Since this is the �rst time at which a state variable and bounds might cross, Condition 4 must hold and so

f i(t) > fi(t). Thus �i(t) = f i(t)�fi(t) > 0. Since �i(t) > 0, di(t+h) will be positive if �i(t) >
h
2 jf

0

i(�)�f 0i (�)j
which will be true for all h such that15

h < hmin =
2�i(t)

jf 0i(�)� f 0i(�)j

Thus, there is some �nite interval h 2 [0; hmin] over which x(t + h) is non-decreasing, hence xi cannot

cross below xi at t. Since this is the �rst point at which any bound could cross, we have shown that there is

no time at which an upper bound trajectory could cross that of a member of S and so the bound must hold

over all time.
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Figure 1: Multi-level model of an imprecisely-known system. At each level, the representation entails a
space of ODEs. At the top is the purely structural SDE. The QDE adds qualitative information to the SDE,
and the SQDE adds imprecise numerical information to the QDE. As we move downward we specify more
information, thus reducing the size of the model space.
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Figure 2: Simulation of the single-tank QDE. Three behaviors are produced from one initial state. Only
the �nal state di�ers in each behavior (see graph at right). Each plot shows one possible behavior of the
system. The qmag is graphically represented by the height on the vertical axis and the qdir is represented
by the plotted symbols (" for increasing, # for decreasing, and � for steady). Each symbol is plotted either
at a landmark, or midway between two landmarks. The connecting dots are purely visual aids and do not
represent a speci�c trajectory taken by the prediction. In the �rst behavior, the tank over
ows (A reaches
FULL and is increasing). In the second behavior, the amount of water reaches some equilibrium value
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amount of water reaches equilibrium just as the tank becomes full. All three behaviors are possible given
the information in the QDE.
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Figure 3: An event corresponds to the value of a variable at a time-point. As such, it represents a point in
the state space (left graph). Due to uncertainty about the exact coordinates of the point, however, the event
appears as a rectangle when viewed quantitatively.
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Figure 4: Q2 simulation of the single-tank SQDE with static envelope f(A) = 8
p
A, f(A) = 10

p
A. On the

left, we display the same result as in Figure 2 but annotated with ranges. On the right, we display the same
behavior as a dynamic envelope on a quantitative plot of A versus time.
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Figure 5: Simulation of the single-tank SQDE with Nsim. The solid curve is the Nsim dynamic envelope.
The dotted box is the Q2 dynamic envelope de�ned by the initial state and equilibrium state events. The
Nsim envelope is much tighter than in Figure 4 because the ODE solver determines the simulation step-size
based on the numerical properties of the extremal system.
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Figure 6: The wrapping e�ect. As we travel through the phase space from t0 to t1, the state hypercube
orients itself with respect to the trajectory. Since intervals are described with respect to the coordinate
axes, we must \wrap" the new bound with a new hypercube oriented with respect to the original coordinate
system.
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Figure 7: Information 
ow through SQsim. QSIM generates a time-point state which Q2 and Nsim an-
notate with events and dynamic envelopes. This information is then passed through the semiquantitative
combination methods. If the state is consistent, the cycle repeats with QSIM generating all successors to
the state.
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Dynamic Envelope Intersection Event Intersection
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Figure 8: Q2 and Nsim intersection methods. We can intersect both Q2 events and dynamic envelopes with
Nsim dynamic envelopes. For dynamic envelope intersection, the Q2 dynamic envelope (dashed box) and
Nsim envelope (solid line) produce the shaded envelope. For event intersection a Q2 event (light rectangle)
and the Nsim envelope (solid line) produce a reduced event description (darker rectangle).
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Contradiction

time timeINF INF

Figure 9: Extremum detection ensures that an Nsim-detected extremum has a corresponding qualitative
extremum. The dynamic envelope in the left graph shows that all behaviors must pass through a maximum
before reaching quiescence. The qualitative plot on the right has no such maximum and therefore there is a
contradiction.
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Figure 10: The two behaviors of CA when simulated numerically from (a) steady-state 1 and (b) steady-state
3. Both behaviors exhibit a small inverse response (note the local minimum in (a) at t � 50 and in (b) at
t � 6).
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Figure 11: An overview of the analysis of the precise CSTR model using SQsim. The user provides the
SQDE (which contains the QDE) together with a (possibly-imprecise) initial condition. The prediction of
equilibria and dynamic behavior is produced automatically by SQsim.
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Figure 12: The qualitative equilibrium of the CSTR. Because the three equilibria in Table 2 are qualitatively
identical, QSIM generates a single equilibrium state.
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Figure 13: The four qualitative behaviors of CA that are possible for the CSTR when decreasing CAi. Only
behaviors 1 and 2 are possible when CAi decreases to 0:9.
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New subintervals

Final intervals

Figure 14: Localization splits an interval with a gap in it into smaller intervals by locating a small gap
and then forming two intervals on either side of it. These new intervals can then be re�ned using Q2 to
further reduce their range (gray squares). Since �nding a small gap is less subject to correlation error than
is examining the entire interval, Localization can quickly shrink overly-wide bounds.
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Figure 15: Q2 prediction of CA from steady-state 1 when CAi = 0:9. Two behaviors are produced. The
ranges of all time-points after T0 are [0;1]. Q2 is unable to distinguish these two cases because, in the
�rst behavior, the ranges associated with the events CA(T2) and CA(T3) are such that the depth of the
extremum could possibly be zero, thus making the �rst and second behaviors identical.
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Figure 16: Nsim simulation of the example in Figure 15 together with the Q2 prediction (dashed boxes).
The spurious behavior is eliminated by SQsim due to the detection of the extremum in the envelope (see
blowup at right). The dynamic envelopes remain tight over the entire prediction.
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Figure 17: Q2 prediction of CA from steady-state 3 when CAi = 0:9. The ranges of all time-points after T0
are [0;1]. One behavior is produced. Although concentration clearly increases, the �nal value is still rather
large. By using Target Interval Splitting we can reduce this range, although dynamic properties, like the
time when the minimum concentration is reached are still poorly predicted.
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Figure 18: Nsim envelopes for the example in Figure 17. These bounds diverge after t � 20 due to the
extremal system ignoring correlations between upper and lower bounds of the state variables.
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Figure 19: SQsim envelopes for the example in Figure 17. By using order-reduction and re-simulation based
on the inference at qualitative time-point T3 that C 0

A is never negative after CA reaches its minimum value,
SQsim can produce a tighter dynamic envelope.
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Figure 20: SQsim simulation of the CSTR from steady-state 1 and CAi = 0:9 with 1% error in k0. There
are two qualitative behaviors (one with a local minimum in CA and one without), however the dynamic
envelopes are the same in each case.
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Figure 21: SQsim envelopes for the CSTR from steady-state 3 and CAi� = 0:9 with 1% error in k0. There
is one qualitative behavior. The dynamic envelopes over time are very wide, however.
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e L(e) U(e)
c c c

xj xj xj
xi �(xi) �(xi)
A+B L(A) + L(B) U(A) + U(B)
A�B L(A)� U(B) U(A)� L(B)
A�B min(CMult(A;B)) max(CMult(A;B))
A�B min(CDiv(A;B)) max(CDiv(A;B))
�A �U(A) �L(A)
M+(A) M+(L(A)) M

+
(U(A))

M�(A) M�(U(A)) M
�
(L(A))

where CMult(A;B) = fL(A) � L(B); U(A) � L(B); L(A) � U(B); U(A) � U(B)g
and CDiv(A;B) = fL(A)=L(B); U(A)=L(B); L(A)=U(B); U(A)=U(B)g.

Table 1: Translation table for extremal expressions of the equation x0i = fi(xi). Let �(fi) be the desired
bound on x0i (� = L or � = U). The table is applied recursively to the subexpressions of fi. The symbol xj
is any state variable other that xi, c is a constant, M

+ and M� are monotonic functions, c and c return the
lower or upper range values of c, M� and M

�
return the lower or upper functional envelope of the monotonic

function. For the state variable xi, the bound is the same as that for fi.
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State number CA T Comments
1 0.9332 353.4 Low conversion
2 0.6090 418.2 Unstable
3 0.1566 508.7 High conversion

Table 2: The three possible equilibrium states of the CSTR given the parameters CAi = 1:0, Ti = 340,
� = 10, k0 = 10000, E = 5000, hr = �200.
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State number CA T

1 [0:933; 0:934] [353:358; 353:360]
2 [0:609; 0:610] [418:194; 418:196]
3 [0:156; 0:157] [508:667; 508:673]

Table 3: The equilibria of the CSTR computed using SQsim Localization with a Q2 � of 10�6. By decreasing
�, Q2 will produce tighter bounds. The true equilibria are guaranteed to lie within the bounds.
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Case Initial State Final State Max Envelope Width
var error CA T CA T CA T

{ 0% [0:933; 0:934] [353:358; 353:360] [0:845; 0:846] [350:998; 350:999] 0:001 0:284
ko �1% [0:931; 0:935] [353:025; 353:706] [0:843; 0:847] [350:795; 351:225] 0:004 0:446
ko �5% [0:923; 0:942] [351:797; 353:253] [0:839; 0:851] [349:934; 352:201] 0:011 2:265
hr �1% [0:932; 0:935] [353:048; 353:681] [0:844; 0:846] [350:794; 351:557] 0:002 0:434
hr �5% [0:928; 0:938] [351:904; 355:105] [0:842; 0:848] [350:000; 352:117] 0:006 2:126
Ea �1% [0:909; 0:948] [350:449; 358:008] [0:823; 0:859] [348:326; 355:254] 0:044 9:626
Ea �5% [0:899; 0:979] [344:294; 360:001] [0:823; 0:879] [344:166; 355:251] 0:078 15:835

Table 4: Decreasing CAi to 0.9 from steady-state 1 for the imprecise CSTR for 1 and 5% error in k0, hr and
Ea. In all cases, two qualitative behaviors are generated, however the dynamic envelopes for each behavior
are identical. For each parameter, increasing the uncertainty increases the width of the initial state, �nal
state, and envelope width.
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Case Initial State Final State Max Envelope Width
var error CA T CA T CA T

{ 0% [0:156; 0:157] [508:667; 508:673] [0:845; 0:846] [350:998; 350:999] 0:690 148:386
k0 �1% [0:149; 0:165] [507:087; 510:116] [0:843; 0:847] [350:775; 351:227] 0:697 154:847
k0 �5% [0:143; 0:176] [505:000; 511:207] [0:299; 0:856] [348:883; 460:074] 0:713 161:186
hr �1% [0:139; 0:172] [505:000; 513:859] [0:844; 0:846] [350:789; 351:212] 0:707 158:612
hr �5% [0:120; 0:235] [488:750; 524:542] [0:201; 0:854] [348:856; 486:789] 0:734 169:298
Ea �1% [0:133; 0:189] [502:239; 513:269] [0:224; 0:861] [347:938; 513:269] 0:728 165:331
Ea �5% [0:074; 0:900] [360:100; 525:000] [0:108; 0:868] [346:571; 498:245] 0:794 178:430

Table 5: Decreasing CAi to 0.9 from steady-state 3 for the imprecise CSTR for 1 and 5% error in k0, hr
and Ea. Manual application of Target Interval Splitting to the �nal state bounds gives narrower bounds
than those derived by NSIM alone and shown in Figures 19 and 21. For each parameter, increasing the
uncertainty increases the width of the initial state, �nal state, and envelope width.
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