
Artificial Intelligence 119 (2000) 103–140

Semi-quantitative system identification

Herbert Kay1, Bernhard Rinnera,2, Benjamin Kuipersb,∗
a Institute for Technical Informatics, Technical University Graz, A-8010 Graz, Austria

b Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA

Received 9 March 1999

Abstract

System identification takes a space of possible models and a stream of observational data of
a physical system, and attempts to identify the element of the model space that best describes
the observed system. In traditional approaches, the model space is specified by a parameterized
differential equation, and identification selects numerical parameter values so that simulation of
the model best matches the observations. We present SQUID, a method for system identification
in which the space of potential models is defined by a semi-quantitative differential equation
(SQDE): qualitative and monotonic function constraints as well as numerical intervals and functional
envelopes bound the set of possible models. The simulator SQSIM predicts semi-quantitative
behavior descriptions from the SQDE. Identification takes place by describing the observation stream
in similar semi-quantitative terms and intersecting the two descriptions to derive narrower bounds on
the model space. Refinement is done by refuting impossible or implausible subsets of the model
space. SQUID therefore has strengths, particularly robustness and expressive power for incomplete
knowledge, that complement the properties of traditional system identification methods. We also
present detailed examples, evaluation, and analysis of SQUID. 2000 Elsevier Science B.V. All
rights reserved.

Keywords:Qualitative reasoning; System identification; Qualitative simulation; Monitoring; Diagnosis;
Imprecise models

1. Introduction

System identification, in its simplest textbook form, starts with a black box with
several measurable inputs and outputs. The goal is to build a model of the mechanism,

∗ Corresponding author. Email: kuipers@cs.utexas.edu.
1 See note at end of paper.
2 Email: b.rinner@computer.org.

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00012-6

104 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

typically an electrical circuit, inside the box. The first step, calledstructural identification,
involves experimenting with the inputs, observing the outputs, to determine the qualitative
properties of the mechanism. The result is one or more imprecisely specified models;
that is, descriptions of spaces of precise models. In the second step, calledparameter
identification, for each model input-output data is collected and analyzed to converge (in
the limit) to the precise model that best fits the data.

In traditional methods for system identification [27] and monitoring [17] the imprecise
model, or model space, is represented by a parameterized ordinary differential equation.
Model refinement is done by collecting and analyzing input-output data to estimate
numerical values for the parameters. As more data becomes available, the previous best
estimate may be adjusted.

We present an alternate approach (called SQUID, for Semi-QUantitative system
IDentification) to the refinement of imprecise models using observations, exploiting the
strengths of qualitative and semi-quantitative representations for incomplete knowledge
of dynamical systems. An imprecise model defines a space of precisely specified models,
and embodies the hypothesis that the desired model lies within that space. When new
information becomes available, rather than estimating the best-fitting precise model,
SQUID refines the model space by pruning off those portions that are inconsistent with the
new information, preserving the hypothesis that the desired model lies within the space. If
the model space becomes empty, this hypothesis is refuted, so the correct model must be a
refinement of some other imprecise model. Clearly, this approach to system identification
is highly relevant to tasks such as monitoring and diagnosis.

SQUID is based on the QSIM representation for qualitative models and algorithm
for qualitative simulation [24] and on its semi-quantitative extensions: Q2, Q3 [2] and
SQSIM [18]. The model space is represented by asemi-quantitative differential equation
(SQDE), which defines a set of ordinary differential equations consistent with qualitatively
describedlandmark valuesand monotonic function constraints. The semi-quantitative
description includes real-valued bounds associated with the landmark values, and real-
valued functional envelopes associated with the monotonic function constraints. The model
space for the SQDE is the product of the model spaces for the individual landmark values
and monotonic function constraints. Model refinement unifies the observation stream with
the predictions from the SQDE, shrinking the bounds and envelopes. If any bound shrinks
to the empty set, the product is empty, and the entire model space is refuted.

This paper focuses on the representation of imprecise models and their refinement
with information from the observation stream. Model creation is addressed by research
on building qualitative models [9,10,15,31,34] and on model-based diagnosis [11,28–30].
SQUID fits within the MIMIC approach to monitoring [12–14] and significantly extends
its model-refinement capabilities.

SQUID provides the following advantages over traditional methods for system identifi-
cation.
• SQUID is conservative, since model refinement is based on refutation, eliminating

only portions of the model space that are provably inconsistent. When several
qualitatively distinct alternatives remain consistent with the observations, SQUID
preserves them. Traditional methods, representing the refined hypothesis as a single

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 105

best-fitting set of numerical values for model-space parameters, can express only a
single possibility.

This difference is particularly important since many systems in continuous
operation only demonstrate a small portion of their dynamic behavior over a given
observation period, so it is easy to converge too quickly on too restrictive a model.
• SQUID clearly distinguishes between the cases where

(a) a new observation is consistent with the model but provides no new information;
(b) the new observation provides new information, further restricting the current

model space; and
(c) the new observation provides new information that reduces the current model

space to the empty set, refuting the hypothesis.
The traditional approach, with a single best-fitting precise hypothesis, does not
distinguish between these alternatives.
• SQUID is highly expressive of states of incomplete knowledge. In fault model

creation or black-box system identification, it may be easy to determine that two
parameters are related monotonically, but difficult to determine the functional form.
Qualitative models can express this state of knowledge and converge on a more precise
characterization as more data becomes available. Traditional methods must commit to
a functional form at the beginning.

By relying on weaker assumptions, by refining the model space conservatively through
refutation, and by being more expressive of states of partial knowledge, SQUID provides
an alternate approach to system identification that complements traditional methods and
helps make them more widely and robustly applicable.

The rest of the paper is organized as follows. Section 2 briefly describes the
QSIM framework for qualitative and semi-quantitative representation and simulation of
imprecise models. Section 3 describes SQUID in detail: how the data in an observation
stream is described by semi-quantitativetrends; how observed trends are mapped onto,
and intersected with, predicted semi-quantitativebehaviors; how the refined behavior
description is propagated back to refine the bounds and envelopes of the semi-quantitative
model; and how to address the problem of temporal uncertainty in the correspondence
between observation and prediction. Section 4 describes a set of experimental evaluations:
assessing the effect of amount and quality of observations; assessing the effect of single and
multiple sources of uncertainty; assessing the effect of observability of variables; assessing
the impact of temporal uncertainty; and demonstrating the application of SQUID to the
monitoring task. Section 5 discusses related work, and section 6 provides a summary and
discussion of future work.

2. Representing and simulating imprecise models

When describing an uncertain system, it is helpful to separate the information that is
precisely known from that which is not, so that unambiguous inferences can be made from
the precise information. Often, there will be precise information about the structural and
qualitative properties of the model, while the numerical information will be imprecise.
SQUID makes use of this distinction by using a multi-level representation based on the

106 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 1. Multi-level model of an imprecisely-known system based on the QSIM representation. At each level,
the representation entails a space of ODEs. At the top is the purely structural SDE. The QDE adds qualitative
information to the SDE, and the SQDE adds imprecise numerical information to the QDE. As we move downward
we specify more information, thus reducing the size of the model space.

QSIM [24] representation for ODE systems. In this section, we therefore briefly summarize
the QSIM framework for representing and simulating imprecise models.

Fig. 1 shows this multi-level representation demonstrated on a simple first-order tank
system.
• The structural level(structural differential equations—SDE).

At this level, we describe the form of the ODE system in terms of the state
variables and the constraints that link them. Constraints are described as arithmetic
operators and functional relationships. The structural level provides the backbone of
the modeling process.
• The qualitative level(qualitative differential equations—QDE).

The qualitative level adds information about each model variable by breaking its
domain into an ordered list oflandmarksthat represent important values of the
variable, i.e., itsquantity space(qspace). In Fig. 1, the qspace of variableA is given
by the symbols 0 and FULL and the qspace of variablec is given by the symbols 0
and IF, respectively. The QDE also adds information about the shape of the functional
constraints, e.g., monotonic (M+, M−) or U-shaped (U+, U−).
• The semi-quantitative level(semi-quantitative differential equations—SQDE).

At this level, we record the uncertainty in the model. We represent parametric
imprecision with numerical intervals that bound the landmark values. We represent
functional imprecision by definingstatic envelopeswithin which the functional
constraint must lie.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 107

Fig. 2. The SQ behavior description. SQSIM derives behavioral components at the qualitative, event and dynamic
envelope level.

At each level, we further restrict the model space so that it eventually contains only
a single ODE. By using simulation techniques targeted for particular levels, we can thus
utilize this information in a variety of ways.

The SQSIM simulator [18] generates semi-quantitative (SQ) behaviors from an SQDE
and an initial condition by using the QSIM [22,23], Q2 [25], and NSIM [19] simulators,
respectively. Thus, an SQ behavior consists of three components (see Fig. 2):
• The qualitative descriptionis generated by QSIM and represents magnitudes and

derivatives of the trajectory at time points and intervals between time points. The
magnitude is expressed by a landmark or the interval between two landmarks of the
variable’s qspace. The symbols↑, ↓ and	 express the derivative’s sign (qdir) of the
trajectory. QSIM requires the QDE as input and produces the qualitative description
by generating qspace subsets of all variables consistent with continuity conditions and
the constraints at each time point and interval.
• Thesemi-quantitative eventsare generated by Q2. They describe the uncertainty about

the value of instantaneous events such asx(t1)= x1 by providing interval bounds on
t1 andx1. Q2 requires the SQDE as input and generates the semi-quantitative event
description by propagating interval bounds among model parameters at time points
and by applying the Mean Value Theorem to propagate interval bounds over time
intervals.
• The dynamic envelopesdefine the overall bounds of the trajectory of the system

with a pair of functions that bound all trajectories of the system. Dynamic envelopes
are generated by the NSIM simulator. NSIM requires also the SQDE as input but
transforms these semi-quantitative differential equations into an extremal system of
ordinary differential equations (ODE). NSIM then numerically solves this extremal
system; the solutions correspond to the dynamic envelopes.

The resulting SQ behaviors carry the guarantee that all real behaviors of the ODEs
covered by the SQDE are covered by the SQ behavior set generated by SQSIM. This
guaranteed coverage property is essential to SQUID’s refinement operator.

While SQUID was conceived and implemented within the QSIM framework, it could
in principle be implemented within another representational framework, as long as it
provides:

(a) a representation that is highly expressive of states of partial knowledge;
(b) a conservative inference method that maintains a (possibly probabilistic) guarantee

of covering all consistent precise models; and

108 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

(c) includes inference methods for excluding portions of the model space both by
refining the model description (e.g., shrinking bounds and envelopes) and by
refuting models entirely.

For example, a version of SQUID built around Bayesian probability models rather than
bounding intervals and envelopes would be a major contribution.

3. Refining imprecise models

3.1. Overview of SQUID

Refinement can be viewed as a process where measurements are matched to a model
space. The portion of the model space that does not match is refuted, resulting in a more
precise description of the underlying process. Because measurements and models are not
directly comparable, we must match model predictions to observations and then re-map
the results into the model space (see Fig. 3). We define thetrajectory spaceof a model
space to be the set of all trajectories produced from each individual model in the model
space. The mapping from model space to trajectory space is done via a simulator and the
reverse mapping, i.e., refuting portions of the model space that do not match the overlap,
is done by arefinementoperator. Note that the quality of the simulation processes has
a great deal of impact on refinement. In particular, we require that the simulation and
refinement methods be conservative so that portions of the model and trajectory spaces are
not eliminated through simulation artifacts.

In traditional identification, only one model at a time from the model space is matched
against the measurements. While this approach simplifies both the simulator (which can
use standard numerical methods) and the refinement (which is trivial since there is a
one-to-one mapping between a precise model and its behavior), it forces one to view the
model space as a collection of independent models, ignoring any natural similarity between
models.

In contrast, SQUID views the model space as a collection of sets of models that are
related by abstract properties of their associated trajectories (monotonicity, location of
critical points, etc.). Matching is then performed between these abstract properties of
the trajectory space and the corresponding properties of the observations, i.e., trends (see

Fig. 3. Refinement matches observations to the trajectory space of a corresponding model space. It then infers a
smaller model space that is consistent with the smaller trajectory space. In traditional identification, this process
is simplified because only one trajectory is compared at a time, so the simulation and refinement operators are
easy to implement.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 109

Fig. 4. Trend matching uses abstract properties of the observation (monotonicity, location of events, and dynamic
envelopes) to compare data to models (top). Traditional methods use specific function matches for comparison
(bottom).

Fig. 4). We call this processtrend matchingto distinguish it from theraw data matching
of traditional methods.

Trend matching has several advantages over raw data matching:
• Abstract properties describe sets of models, thus trend matching can rule out multiple

models at once.
• Since abstract properties are simpler than precise functional forms, trend matching

can be cheaper than data matching.
While trend matching has many desirable characteristics, it requires more general

methods for simulation and refinement since regions of the model and trajectory spaces
are considered rather than single elements. SQUID adopts the SQSIM framework for
describing model spaces and trajectory spaces. Model spaces are represented using the
SQDE, and by applying SQSIM, their corresponding trajectory spaces can be generated.

The adoption of the SQSIM framework was motivated by its expressive power of states
of incomplete knowledge and the conservative simulation methods. Thus, SQSIM provides
a representation and simulator suitable for model refinement. What remains is to define the
refinement method that maps the trajectory space back to the model space. As we will
show, this method can also be implemented using the Q2 portion of SQSIM. The resulting
refinement method is also conservative and provides a robustness guarantee with respect
to uninformative data that traditional identification cannot provide.

There are three steps to SQUID:
(1) Form an SQ trend for each measured variable.
(2) Map the SQ trend to the SQ behavior generated by SQSIM for the SQDE.
(3) If no match is found, then the SQDE is refuted. Otherwise, refine the SQDE to rule

out those portions of the model space that could not have generated the match.
These steps are discussed more fully in the following sections. As an aid to following

the discussion, we will apply SQUID to the modely ′′ = −9.8, y(0) = 0, y ′(0) = v0,

v0 ∈ [20,60] with data drawn from the same model withv0 = 50 and additive Gaussian

110 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

noise with varianceσ 2= 5. This model represents the effect of gravity on an object thrown
into the air with an initial velocityv0.

3.1.1. Requirements for using SQUID
SQUID makes the following assumptions about the identification problem:
• A semi-quantitative model of the process to be identified exists in the form of an

SQDE.
• Each measured variable has the following properties:
− The measurement signal can be viewed as a “pure” signal corrupted by additive

Gaussian noise of zero mean and fixed variance.
− The measurements are sampled at a frequency fast enough such that the dynamics

of the pure signal can be reconstructed.
− The variance of the noise is known (although this value may be conservative).

3.2. Forming the semi-quantitative trend

Since SQUID maps the SQSIM behavior prediction to the corresponding properties
of the observation, the SQ trend consists of qualitative, event and dynamic envelope
descriptions for each variable in the measurement set. The first two components are
generated through a process referred to as qualitative filtering (orbinning) which breaks
the measurement stream into monotonic segments (orbins). The dynamic envelope is
generated by fitting bounding envelopes to monotonic bins using a neural-network based
estimator for monotonic functions [20,21].

3.2.1. Qualitative filtering (binning)
Qualitative filtering breaks the measurement stream into monotonic regions and

intervening extrema. Each region (orbin) has asign(↑,	, or↓) which provides a segment
of the qualitative description of the trend.

The qualitative kernel function.The qualitative filter operates by applying aqualitative
kernel functionto a window of fixed size that is slid across the measurement stream.
We denote the window starting at indexi of the measurement stream bywi . The kernel
functionk(wi) returns one of three kernel values:
• ↑ if wi contains a monotonically increasing segment,
• ↓ if wi contains a monotonically decreasing segment, and
• ∗ if the monotonicity ofwi is unknown.
To determine monotonicity, the kernel function computes the slope of a linear least-

squares fit to the data within the window using the formula

slope=
∑
i (ti − t)(yi − y)∑

i (ti − t)2
, (1)

where(ti, yi) is theith data-point in the window and the bar indicates the average value
over the window. Because the measurement stream includes noise, it is not sufficient to use
the slope directly to determine the sign returned by the kernel function. We must determine

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 111

if the slope is significantly different from zero, i.e., if it falls outside a predefined confidence
range. The standard deviation of the slope of the data within the window is defined as

σ = σv√∑
i (ti − t)2

, (2)

whereσv is the given standard deviation of the measurement stream corrupted by Gaussian
noise. In our implementation, the sign returned by the kernel function is based on a 3.5σ
confidence range which gives a 99.9% certainty that a slope outside of this range is not
zero. If the slope does not fall outside this range, i.e.,|slope|6 3.5σ , the kernel value is∗.
The binning strategy. Binning assigns signs to data-points in the measurement stream.
Note that this is not straightforward sincek(wi) describes the slope over all ofwi and not
just at a single point. Instead, signs can be determined only by comparing the kernel values
of adjacent windows. Letsign(i) be the sign assigned to measurementi and consider two
adjacent windowswi andwi+1. There are four cases to consider (see Fig. 5):

(1) If k(wi) = k(wi+1) =↑ or ↓ then sign(i + 1) = k(wi+1) since any extremum in
wi+1 could only occur after measurementi + 1.

(2) If k(wi)=↑ andk(wi+1)=↓ (or k(wi)=↓ andk(wi+1)=↑) then there must be an
extremum insidewi+1 since there is a change in slope.

(3) If k(wi+1) = ∗ thenwi+1 may or may not contain an extremum and so no sign
assignment can be made.

(4) If k(wi)= ∗ andk(wi+1)=↑ or ↓ then a sign assignment can be made. Letj < i

be the last data-point that has a sign. There are two cases:

Fig. 5. Determining signs (of data-points) from kernel values (of windows). Numbers in parentheses refer to the
corresponding cases in the text.

112 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

1 new(ubin); new(cbin)
2 i← 1; sign(cbin)← ∗
3 while (i 6 n−N + 1) do
4 if (k(wi) 6= ∗) ∧ (sign(cbin) = ∗) then
5 sign(cbin)← k(wi)

6 endif
7 if k(wi) = ∗ then
8 ubin← ubin+ data(i)
9 elseifk(wi) = sign(cbin) then

10 cbin← cbin+ ubin+ data(i)
11 ubin← ∅
12 else
13 output(cbin)
14 new(cbin); sign(cbin)←	
15 cbin← ubin+ wi
16 ubin← ∅
17 output(cbin)
18 new(cbin); sign(cbin)← k(wi)

19 i← i + (N − 1)
20 endif
21 i← i + 1
22 end

Fig. 6. The qualitative filtering algorithm with a window of fixed sizeN breaksn data-points into bins and assigns
a sign (↑, ↓ or) to each bin corresponding to its monotonicity.

(a) If sign(j)= k(wi+1) then all points betweenj andi + 1, inclusive, must have
the same sign since there has been no explicit sign change.

(b) If sign(j) 6= k(wi+1) then there is an extremum somewhere betweenj and the
end ofwi+1.

Given this interpretation for changes in kernel values, we can construct a qualitative
filtering method (Fig. 6). The filter outputs a sequence of bins where each bin is a
contiguous sequence of data-points with the same sign. The implementation uses two
bins to construct these monotonic regions—a current bin (orcbin) which holds points
in the current monotonic region and an unknown bin (orubin) which holds points whose
monotonicity is unknown.

The procedure in Fig. 6 uses a window of fixed sizeN to compute kernel values.
Unfortunately, a single window size is insensitive to slopes below the 3.5σ threshold. By
selecting a larger window size, we can reduce the standard deviation of the slopeσ and
hence the threshold at which a kernel function returns↑ or ↓ (sinceσ depends on the
window size via the summation in the denominator), but this larger window size might
miss dynamics in the signal. For our needs it suffices to guarantee that we can detectany
extremum which is not due to signal noise. Thus, we start with a small window size and
only consider larger filter windows when the data suggests that they may be needed.

In our implementation, we increase window sizes whenever the filter runs into a large
region of windows with kernel value of∗. Starting with a window size ofN that is selected
to filter out noise, if more than 3N points collect inubin we create a new window of size

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 113

2N and re-process the measurement stream starting at the first measurement inubin. If the
kernel value for this larger window is not∗, then this window is used to bin the data. If
the kernel value for this larger window is∗ then the measurement stream continues to be
processed by both window sizes and if the smaller one finds a kernel value other that∗,
that window is used to bin the data and the larger window is discarded. Ifubin increases
to size 6N , then an even larger window of size 4N is created and the data is filtered with
it as well as the smaller windows. Whenever a non-∗ kernel value is detected, this value is
used to bin the data and all larger windows are discarded. In this way, the filter selects the
appropriate window size as dictated by the measurement stream.

Binning breaks a sequence of measurements for each variable into monotonic regions
and intervening extrema by a qualitative filtering algorithm. This process has several
properties:
• It is conservative in that bins of sign	 will be larger than necessary. This implies that

the monotonic regions will also be conservative since some of their end-points will be
contained in the adjacent	 bins.
• Signals that include regions with differing time-scales are properly binned.
• Since binning is based purely on the measurement stream, it is in no way affected by

the model space to be examined.
Fig. 7 shows the results of binning data from the simulated data stream of the gravity

model.

3.2.2. Fitting the bins
Binning determines the qualitative description of the measurement stream. The next

step is to determine the quantitative aspects of the data, i.e., the event and dynamic
envelope descriptions. Events in the measurement stream correspond to	 bins since they
represent the precise instants at which a variable reaches an extremum. Dynamic envelopes
correspond to the monotonic bins since they represent the time-intervals between the
extrema. Given this correspondence, we can find events and dynamic envelopes in the
trend as follows:
• For each	 bin, the width of the event associated with the bin is determined by the

beginning and ending times of the bin. The height is determined by the maximum and
minimum values over the bin.
• For each monotonic bin, the dynamic envelopes are determined by two functions

bounding the measurements over the time interval of the bin. These bounding
functions are generated by the monotonic function estimator MSQUID [20] which
takes the measurements from a monotonic region and generates bounding envelopes
out to any specified confidence band.

The fitting process has the following properties:
• The event descriptions are conservative since they over-bound both the width (time)

and height (value) of the event.
• The fitting process is independent of the model space. Thus, the cost of fitting can be

amortized over multiple model spaces.
Fig. 8 shows the result of fitting the binned data points in Fig. 7. The dynamic envelopes
generated by MSQUID bound the measurements within the monotonic regions with a

114 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 7. Binning a simulated measurement stream (y′′ = −9.8, y(0) = 0, y′(0) = 50 with added Gaussian
noise with varianceσ2 = 5). Binning finds three regions for this data—one maximum (×’s) surrounded by two
monotonic regions.

confidence band of 3.5σ . Note that the dynamic envelopes are wider at the end of the
regions because there are fewer nearby data points to constrain the envelopes.

3.3. Mapping SQ trends to SQ behaviors

Once the SQ trend of the measurement stream has been computed, it can be mapped to
the SQ behavior generated from the SQDE by SQSIM. Since both descriptions presumably
describe the same physical system, we expect that they should overlap. This overlap
represents the section of the trajectory space that is consistent with both descriptions and
will normally be smaller than the trajectory space defined by the SQ behavior alone.

We compare the SQ trend and SQ behavior by mapping each of their components
separately. For each component, we seek to reduce the size of the SQ behavior so as to
yield a smaller trajectory space for the model.

3.3.1. Qualitative mapping
For the descriptions to be consistent, their qualitative descriptions must match.

Intuitively, this match should provide a one-to-one correspondence between the bins of
the trend and the qdirs of the behavior. However, there are two reasons why the match

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 115

Fig. 8. Fitting bins. Each	 bin is bounded by the smallest box that includes all points in the bin. Each monotonic
bin is enclosed by bounding envelopes generated by the neural network-based function estimator MSQUID.

may be weaker: First, the observed trend may be a prefix of the predicted behavior. The
SQ behavior is normally simulated over the time interval[0,∞]. Since the measurement
stream contains data over a finite time interval[0, T], it is possible that it may end before
some of the qualitative changes in the SQ behavior take place. Matching a prefix of the SQ
behavior with the SQ trend eliminates this problem. Second, the SQ behavior may contain
undetectable extrema. Because the behavioral trajectory may include qdir changes of very
small magnitude, they may be undetectable in a noisy measurement stream. Thus, we relax
the matching process by requiring that the trend regions appear in the proper order within
the SQ behavior.

These conditions weaken qualitative mapping considerably. In particular, they permit
multiple mappings between a trend and a behavior. However, because qualitative matching
compares the relatively simple representations of ordered lists of the three symbols↑,
↓, and	, it can be performed with low computational cost. It is thus relatively easy to
eliminate SQ behaviors that do not match the SQ trend at this level of description.

3.3.2. Event mapping
Event mapping ensures consistency of corresponding behavior events in the SQ trend

and the SQ behavior, in the sense that their time and magnitude bounds overlap.

116 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Consistency of events is checked by asserting the event boundaries of the SQ trend to
the corresponding events of the SQ behavior and propagating these boundaries to the other
variables in the SQDE using Q2’s interval propagation. Note that if the trend event is larger
than the behavior event, it will not reduce the existing bounds on the event. If, however, it
is more precise, Q2 will propagate this precision to other variables, which may refute an
inconsistent mapping.

Because event mapping operates on the fixed set of symbols defined by the events in the
SQ behavior, its cost is independent of the complexity of the SQ trend.

3.3.3. Dynamic envelope mapping
Dynamic envelope mapping ensures consistency between the dynamic envelopes for

each monotonic region of the SQ trend and the dynamic envelope of the SQ behavior. The
dynamic envelope for each trend region holds over the time-range of the measurements
that compose the region. Consistency between the trend monotonic regions and the SQ
behavior is maintained by intersecting the dynamic envelopes of each description over
the time-range of the monotonic region. If the intersection is empty then the behavior is
refuted.

Mapping SQ trends to SQ behaviors provides the following benefits:
• By mapping each component of the trend and behavior separately, it eliminates

mismatches more efficiently. For example, a decreasing behavior can be ruled out
by an increasing trend without resorting to detailed numerical analysis.
• The mapped trajectory space is conservatively reduced since qualitative mapping

is conservative and the event and dynamic envelope descriptions produced by
binning and fitting are conservative. Producing a conservative trajectory space aids
in providing a robust refinement method.

3.4. Refining the model

Model refinement is the process of mapping a trajectory space back to the model space
that generated it. In the case of SQUID, this mapping takes an SQ behavior and determines
the SQDE that covers the smallest set of ODEs that could have produced it while preserving
the guarantee that no ODE is excluded unless it is genuinely impossible. Note that there
are two sources of imprecision in the SQDE—variable uncertainty and static envelope
uncertainty. The refinement method must therefore reduce both sources of uncertainty to
refine the model.

This section begins by describing a method for refining variable uncertainty by using Q2
to derive bounds on independent variables from dependent ones. This process hinges on
deriving bounds for the derivatives of state variables so that Q2 can be run on abehavioral
snapshot: the values of state variables and their derivatives at a particular timet .

Next, a method for refining static envelopes is described. This method excludes portions
of the envelope that are inconsistent with the ranges determined by the behavioral snapshot
used to refine variable uncertainty.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 117

3.4.1. Refining variable uncertainty
We use the Q2 interval propagator to refine variable bounds. At a time-instant, an

ODE system becomes a system of algebraic equations whose left-hand sides are the
instantaneous derivatives of the state variables. Q2 solves this algebraic equation system for
each model variable by manipulating the SDE portion of the SQDE to form equations such
that for each equation ofn variables,n equations are generated with a different variable on
the left-hand side. For example, for the equation

x ′ = f (c, x)
Q2 produces equations whose left-hand sides arex ′, c, andx. In particular, one of these
equations is

c= g(x ′, x).
With this equation, Q2 can thus run the SDE “in reverse” and derive constraints
on independent variables (c) from dependents (x and x ′). 3 If, as we assume, our
measurements reduce the bounds on the dependent variables, Q2 will be able to reduce
the bounds on the independents. If, however, the measurements do not contain enough
information (for example, because we do not have adequate observability, too much noise,
or uninformative data) then the measured bounds will be greater than the original bounds
and Q2 will be unable to reduce the model space, but no information will be lost. This is in
sharp contrast to standard system identification which can be led astray by uninformative
data.

As part of SQSIM, Q2 runs only at qualitative time-point states which are by definition
time-instants. As part of the SQUID event-mapping process, Q2 is also run to unify the
trend and behavior event descriptions. Thus, event mapping is a refinement operation.
Unfortunately, since Q2 requires a time-point state, it cannot be used over time-intervals
since variables over a time-interval do not represent instantaneous values. The trend
dynamic envelopes, however, provide instantaneous interval bounds on values for variables
and we would like to exploit this information for refinement. Thus, to extend Q2
propagation into time-intervals, we have to introduce instantaneous snapshots of the SQ
behavior at any time and provide bounds for the dependent variables at those snapshots.
Since bounds on state variables can be directly derived from the SQ prediction or—if
available—measurements, we focus on computing bounds on derivatives at snapshots. We
improve the dynamic envelope prediction for each derivative by the following method:

If we know the sign of the first and second derivatives of a state variablex over
an intervalI = [t0, t2], we can infer a bound on the derivativex ′ by computing slopes
over subranges ofI . Consider the case wherex is monotonically increasing overI with
a decreasing second derivative (i.e., concave down). Assume we are interested in the
derivative ofx at t1 ∈ I . Note that the following facts hold:

(1) If the slope att1 ism, then for allt < t1, x ′(t)>m.
(2) x(t) 6 x(t) 6 x(t), wherex(t) andx(t) are the upper and lower envelopes forx

overI .

3 Note that this property is provided since the mathematical operations that can occur in each equation are
compositions of the arithmetic operators (which have clearly defined inverses) and monotonic functions (which
have user-specified inverses).

118 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 9. Computing bounds on the derivative of a state variable from its dynamic envelopes. The signs of the first
and second derivatives ofx provide information to determine bounds onx′ from the dynamic envelope ofx.

(3) At anyt < t1 the maximal slope ofx over[t, t1] is

m(t, t1)= x(t1)− x(t)
t1− t .

Therefore, the maximum slope att1 is bounded by the maximum value ofm(t, t1) for t06
t 6 t1 (see Fig. 9). Similarly, the minimum slope att1 is bounded by the minimum value
of (x(t)− x(t2))/(t2− t) or zero. Additional equations can be derived for monotonically
increasing but concave down and monotonically decreasing concave up or down functions.
Note that this calculation is essentially what time-point insertion of Q3 [2] computes,
except without the overhead of generating additional qualitative time-point states.

Note that we can determine bounds on the intervalI from the width of the SQ behavior
events since they are guaranteed not to overlap in time. This is because binning naturally
breaks the trajectory into non-overlapping regions of monotonic behavior and mapping
assigns these regions to the SQ behavior.

For the gravity model, variable refinement improves only the lower bound ofy ′ at t = 0
over its initial value. This leads to the reduction of the initial state uncertainty from[20,60]
to [36.3,60]. The final prediction fory is shown in Fig. 10.

Note that we can use the SQ trend of state variables to compute bounds on the derivatives
as well. MSQUID computes an envelope on a nonlinear function over monotonic segments.
We can estimate the envelope around the slope of the nonlinear functionŷ by applying
exactly the same method outlined in [1,20], but with dŷ/dt in place ofŷ. Thus, a slightly
modified version of MSQUID can be used to determine derivative bounds from the
measurements.

3.4.2. Refining static envelopes
Refining a static envelope means reducing the width between the bounding functions.

Assume that at some time-instantt , the ranges ofx and y are [a, b] and [c, d]. These
ranges produce a box in the(x, y) plane of the static envelope (see Fig. 11). This box is
analogous to an SQ event description in that the box defines a region in which the truex

andy values of the system must lie att . If the upper-left corner of this box falls inside the

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 119

Fig. 10. The predicted trajectory of the gravity model after refinement. The bound on initial velocity has been
reduced from[20,60] to [36.3,60]. Note that the bound fory neart = 0 is better than that of the trend dynamic
envelope (Fig. 8) since the model prediction provides greater constraining power than do the measurements at
that time.

static envelope forf then refinement is possible. This is because any point in the region
above and to the left of this corner is unreachable for a monotonically increasing function.
We may thus eliminate this region from the envelope. A similar argument rules out the
region below and to the right of the lower-right corner of the envelope.

If we also have curvature information aboutf , we can further refine the static envelope
by eliminating regions that violate the curvature assumption. For example, assume that
f is concave downwards and that the upper-left corner of the range box is at(a, d). If
we determine the maximal slope at this point to bem (by using the method for inferring
derivatives from envelopes, for instance) then we may eliminate all portions of the envelope
above the liney =m(x − a)+ d for all x > a since any point above this line could only
be reached by a path that has a slope greater thanm (see Fig. 11). Consideration of the
minimal slope and lower-right corner of the bounding box eliminate further portions of the
static envelope.

The gravity model does not include static envelopes. We will therefore demonstrate static
envelope refinement on the first-order model

A′ = 10− f (A), A(0)= 0,

120 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 11. Refining a static envelope. Monotonicity requires that an increase inx leads to an increase iny. Thus,
if the region in the box contains a point onf (x), the dark-shaded regions cannot contain parts of the function.
Curvature information aboutf (x) allows a further refinement, i.e., the elimination of the light-shaded regions for
a concave down function.

wheref ∈ M+ with static envelope 2A 6 f (A) 6 5A and the maximum value forA
is represented by the landmarkFULL ∈ [50,60]. We use a data source forA computed
from A′ = 10− 3A corrupted with additive noise of variance 0.25 and sampled at 10
measurements per time unit. SQUID is then applied to the SQ behavior and data source.
Fig. 12 shows the resulting uncertainty inf (top) and their effect on the behavior prediction
(bottom) with and without using curvature information. In Fig. 12(a), no knowledge of
curvature or the range of theFULL landmark is given. Note that the static envelope is
reduced, although the effect is very localized about theA values at the snapshot time
points. If we add the further information thatf is concave downward (f ′′(A) < 0) and
FULL ∈ [50,60] and rerun SQUID on the same data, we obtain the results in Fig. 12(b).
Notice that the static envelope is much improved. Figs. 12(c) and 12(d) show the effect of
the improved static envelope in the prediction. Using the additional curvature information
greatly improves the predicted dynamic envelope as seen by the reduction of the upper
bound from 5 to 3.6 (Fig. 12(d)).

In the previous sections, we have described the three steps of SQUID , i.e., trend forming,
trend mapping and model refinement, necessary to refine an imprecise model given a
behavior prediction and uncertain observations. In the following section, we discuss the
effect of an additional source of uncertainty on SQUID ’s refinement capability: the time
uncertainty between prediction and observation.

3.5. Time uncertainty between SQ trend and SQ behavior

An inherent problem of monitoring and diagnosis applications is that the initial
knowledge of a hypothesis like a fault may be very weak. More specifically, the exact
starting time of the hypothesis with respect to the data observed may not be known. Only
bounds on this instantaneous time may be specified. We call this interval on the starting
time of a hypothesisHi the time uncertaintytu = [tu, tu] of Hi where lower and upper
bars indicate lower and upper bounds, respectively.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 121

Fig. 12. Static envelope refinement (top) and the effect on behavior prediction (bottom). Adding additional
information about the curvature of the static envelope greatly reduces the uncertainty in both the refined static
envelope and the predicted dynamic envelope (right). The dashed lines in the upper graphs represent the true
function (f (A)= 3A).

Time uncertainty affects the entire correspondence between the prediction and the
observation. The time scales of the observed SQ trendto and the predicted SQ behavior
tp no longer have a precisely known relationship. The SQ trend can be shifted relative to
the SQ behavior by any offset within the range of the time uncertainty (tp = to − tu). This
variable time offset must taken into account when the overlap between the SQ trend and
SQ behavior is determined.4 Thus, trend/behavior mapping is affected by time uncertainty
in the following way:

Event mapping. The time uncertaintytu enlarges the overlap’s time bound of an eventei .
To map the observed time boundtobs(ei) of ei to the trajectory space of the SQ behavior,
the time uncertainty (interval) must be subtracted fromtobs(ei). This enlarged time bound
(tobs(ei)− tu) is then intersected with the predicted time range ofei (Fig. 13(a)).

4 The overlap may be represented in the time scale of either the SQ trend or the SQ behavior. Since model
refinement uses the SQ behavior as time reference, we represent the overlap in time scale of the SQ behavior.

122 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 13. The effect of time uncertaintytu in trend/behavior mapping. In the presence of time uncertainty the SQ
trend can be shifted from the SQ behavior by any time offset within the time uncertainty (tp = to − tu). Time
uncertainty increases the time overlap between the SQ trend and the SQ behavior of events (a) and the magnitude
overlap of dynamic envelopes (b). These broader bounds weaken the refinement process.

Dynamic envelope mapping.Time uncertainty affects dynamic envelope mapping in two
ways. First, the time range of a monotonic region in the trajectory space decreases because
the time intervals of the adjacent events increase. Second, the magnitude overlap between
the SQ trend and the SQ behavior enlarges. Magnitude bounds of the SQ behaviorXp(ts)

are intersected with magnitude bounds of the SQ trend at any time-pointts within the
monotonic region. In the presence of time uncertainty, the time instantts in the SQ behavior
corresponds to the time intervalts + tu in the SQ trend. Thus, the trend’s magnitude bound
used for the overlap is given by the minimal and maximal values of the envelopesXo(t)

over the time range[ts + tu, ts + tu] (Fig. 13(b)).

Note that for a valid mapping the intersection between SQ trend and SQ behavior must
be non-empty at any time offset within the time uncertainty. This precondition can be
exploited to narrow the time uncertainty before the actual trend/behavior mapping takes
place [33].

Time uncertainty results in broader numerical bounds in the trajectory space and,
therefore, in less effective refinements. However, the mapping process between SQ trend
and SQ behavior remains conservative and no modifications are needed for the model
refinement step.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 123

4. Analysis and evaluation

4.1. The models used for the experimental evaluations

This section explores the capabilities and limitations of SQUID as demonstrated through
several illustrative models. Four models are used for the experimental evaluation of
SQUID:
• A single tank with constant inflow

A′ = c− f (A),
wherec is a constant andf is a monotonically increasing function that is concave
down. The state variableA has a landmarkFULL = [50,60] which represents the
maximum amount that the tank can hold. The system is simulated fromA(0)= 0.
• A two tank cascade

A′ = c− f (A),
B ′ = f (A)− g(B),

wherec is a constant andf andg are monotonically increasing functions that are
concave down. The amount in the upper tankA and the amount in the lower tankB
are state variables of this model. The variableA has a landmarkFULL= [92,98] and
B has the landmarkFULL = [50,60]. The system is simulated fromA(0) = FULL
andB(0)= 0.
• The gravity model

y ′′ = −9.8

simulated fromy(0)= 0,y ′(0) ∈ [20,60]. Heighty and velocityy ′ are state variables
of this model.
• A Continuously-Stirred Tank Reactor (CSTR) [18]

dCA
dt
= CAi −CA

τ
− k0 e−E/T CA,

dT

dt
= Ti − T

τ
− hrk0 e−E/T CA,

with CAi = 0.9,Ti = 340,τ = 10,k0= 10000,E = 5000,hr =−200. Concentration
CA and temperatureT are the state variables of this model.

Each model was simulated using SQSIM to produce an SQ behavior tree5 which was
used as input to SQUID along with noisy datasets.

4.2. The effect of quality and length of observation

A particular observation stream provides information about only a portion of the
dynamics of a process. In this section, we consider the effect of decreasing noise, and
of increasing length of observation, on the refinement of the model space.

5 The single tank and gravity models produced only a single behavior.

124 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 14. The effect of noise on refinement for the single-tank model. As the noise variance decreases, so does the
static envelope forf (upper graph). The corresponding ranges onc are[5.9,10] for variance 0.25,[7.4,10] for
variance 0.01, and[7.9,10] for variance 0.003. In all cases, a sample of 100 points over the ranget ∈ [0,2] was
used. Although the model improves with decreasing noise, the prediction from the model (lower graph) does not
improve ast →∞. Note that further improvement of the dynamic envelope is possible given that it is known
that the curvature of the envelope is concave downward, however this information does not lead to improving the
model itself, nor does it improve the bound ast→∞.

We begin by examining the single-tank system with inflowc ∈ [5,10] and 2A6 f (A)6
5A. Fig. 14 shows the result of using measurement streams of 100 points derived from
the modelA′ = 10− 3A with noise variances of 0.25, 0.01, and 0.003 in terms of both
trajectory and model uncertainty. Note that the static envelope and range onc improve with
decreasing noise, thus reducing the model space. Unfortunately, the predicted dynamic
envelope shows no improvement ast→∞. This is due to the effect of multiple uncertainty
sources in the model, a situation that we will discuss more fully in Section 4.3.

The length of the measurement stream is another factor in informativeness since short
streams may not capture all the dynamics of the underlying process. We next examine
this effect on the gravity model. Fig. 15 shows the resulting prediction from identifying
increasingly longer measurement streams ofy using the gravity model. The first prediction
is generated without any data. The second prediction is generated from data that stops

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 125

pts y′(0) y andt at maximum

0 [20.0, 60.0] [0, 183], [2.0, 6.1]

30 [35.2, 60.0] [89, 168], [3.6, 6.1]

80 [35.7, 59.8] [112, 134], [3.6, 6.1]

Fig. 15. The effect of varying the length of the measurement stream forY from 30 to 80 points (the sampling rate
is 10 samples per unit time). The three envelopes correspond to bounds at 0 (outer), 30 (middle) and 80 (inner)
measurement points. The bounds on the value fory′(0) and the eventy(t) =maxwheny′ = 0 are given in the
table below the graph.

before the local maximum while the third makes it slightly past the maximum. Note that
the prediction narrows greatly as a function of increasing data length.

4.3. The effect of model uncertainty and measurement uncertainty on refinement

As can be seen from the tank example in the previous section, the effect of multiple
sources of uncertainty can greatly reduce the effectiveness of refinement. This is the flip-
side of robustness—because interval arithmetic is conservative, its ability to reduce the
model space is also conservative. In this section, we examine the reasons for why this is
true.

Refinement in SQUID is affected by both measurement uncertainty and model
uncertainty. Measurement uncertainty can be described by the width of the trend dynamic
envelope of a measured variable. Model uncertainty can be described by the amount of
uncertainty per source (i.e., the widths of the ranges of model parameters and the widths of
static envelopes) and the number of uncertainty sources. In order to study the relationship
between uncertainty and refinement, we make use of the single tank model

A′ = C −Q, Q= f (A),

126 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

where we measure the value ofA′. 6 We wish to examine the conditions under which the
measurement ofA′ permits refinement off (A). Assume that at some timet we have a
bound onA′ of [a′, a′]. Intuitively, we would expect that if a model with small uncertainty
can be refined byA′ then a model with greater uncertainty could also be refined by the
same bound.

Single-source uncertainty.Consider the single-source uncertainty SQDE derived from
the above SDE wheref (A)6 f (A)6 f (A) andC = c, a precise constant. To refine the
model att , we create a snapshot-state (or use an existing one) that contains the bounds of
all model variables att . This state represents the uncertainty inf by Q(t). Q2 generates
the following equations whose left-hand side contains this term:

Q= f (A),
Q= c−A′.

Let us assume that the bound onA(t) = [a, a] is such that the first of these equations
improves the bound onQ so thatQ= f (a). Then in order to improveQ further it must
be the case thatc− a′ > f (a). Thus,

a′ < c− f (a) (3)

defines the maximum value that an observation[a′, a′] of A
′
(t) can attain while still

permitting refinement off .

Multiple-source uncertainty. Now consider the multiple-source uncertainty SQDE where
f (A) 6 f (A) 6 f (A) and C ∈ [c, c]. Q2 generates the following equations for
definingQ:

Q= f (A),
Q= c−A′.

As before, assume that the bound onA(t)= [a, a] is such that the first of these equations
improves the bound onQ so thatQ= f (a). Then in order to improveQ further it must
be the case thatc− a′ > f (a). Thus,

a′ < c− f (a) (4)

defines the maximum value that an observation[a′, a′] of A
′
(t) can attain while still

permitting refinement off .
Let us now assume that both the single- and multiple-source uncertainty models have

the same static envelope forf and the same bounds forA at timet . Then the second terms
on the right-hand sides of both Eqs. (3) and (4) are identical. Sincec 6 c we see that the
value ofa′ that produces an improvement inf is lower for the multiple-source model than
it is for the single source. This means that values ofa′ that satisfyc− q < a′ < c− q will

6 In this analysis, upper-case names correspond to model variables while lower-case names correspond to scalar
values.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 127

refine the single-source model but not the multiple source model. This is contrary to the
intuition that models with larger uncertainty should be refined by measurements that can
refine models with smaller uncertainty and suggests that our refinement operation is overly
conservative.

Collapsing multiple-source uncertainty.The problem with multiple uncertainty sources
is that they are not complementary—uncertainty in one source leads to further conser-
vatism in another. One approach to eliminating this problem is to collapse the uncertainty
into a single source. For our example, consider rewriting the SDE as

A′ = −R, R = h(A),
whereh(A)= f (A)−C, h ∈M+ andf (A)− c6 h(A)6 f (A)− c. This model replaces
uncertainty inC andf with a single functionh which contains all the uncertainty. For this
model, the relevant Q2 equations forR are:

R =−A′, (5)

R = h(A). (6)

For an observation[a′, a′] of A′(t) to improveh, we must have

r <−a′.
Substituting forr using Eq. (6) gives

h(a) <−a′
and using the definition ofh gives

f (a)− c <−a′.
Finally, rearranging terms lead to

a′ < c− f (a). (7)

Let us assume that the single-, multiple-, and collapsed-uncertainty models have the
same static envelope forf and the same bounds onA(t). Then, sincec6 c6 c we see by
comparing Eqs. (3), (4), and (7) that the collapsed uncertainty model requires the weakest
bound on the upper envelope ofA′. This is consistent with the expectation that greater
model uncertainty requires less precision in measurement to improve the model. Fig. 16
shows that this strategy leads to a greatly improved model and prediction.

The advantages of multiple-source uncertainty.Collapsing uncertainty sources is a useful
method for improving model refinement, however, there is a cost. In the original multiple-
source uncertainty model, note that the refinements ofc andf are independent in that
the conjunction of the statementsC ∈ [c, c] andf (A(t)) ∈ [f (A(t)), f (A(t))] are true.
As a result, we can extract the static envelope forf and use it in a different model with
the assurance that the refined static envelope will be correct. This property is not true for
traditional identification methods sinceanyfunction that produces a satisfactory fit can be
chosen. For instance, if we assume that the “true” model forC − f (A) is c1− f1(A), the
search may find the functionc2−f2(A) wherec2= c1+d andf2(A)= f1(A)+d . In this
case,f2 is not a model for the truef .

128 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 16. The effect of collapsing uncertainty sources. Using the single uncertainty sourceh(A) rather than
f (A) − C leads to improvements in both the bound onh(A) (upper graph) as well as the predicted trajectory
whose upper equilibrium bound shrinks from∼5.0 to ∼3.9 (lower graph). Dashed lines in the upper graph
correspond to multiple-source uncertaintyf (A)− C, the solid lines correspond to the refined static envelope of
the collapsed multiple-source uncertaintyh(A).

By collapsing multiple-source uncertainty, we also remove the individual constraints
on each individual source. This means that it is no longer possible to determine better
bounds on these terms. As long as we are not interested in anything but the combination
this is fine. However, if we do still care about the bounds on the individual sources, we
could still include the constraints on the individual uncertainty sources. This would result
in redundant constraintsin the model which would ensure the best possible overall bound
while still providing bounds on the individual sources.

4.4. The effect of observability

Observability is a measure of the degree to which the internals of the model can be
seen. For precise models, observability determines whether the state of the system can

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 129

be reconstructed from the measured variables. For imprecise models, observability also
impacts the degree of refinement that can be achieved.

For our observability study, we examined the two-tank cascade with fixed inflow and ran
SQUID on four cases where we measureB, A andB, B andg(B), andA, B, f (A), and
g(B). In each case, 150 measurements were generated from the model

A′ = 25− 9
√
A,

B ′ = 9
√
A− 8

√
B,

A(0)= 95, B(0)= 0,

with additive noise of variance 2 added to each measured variable. The SQDE is:

A′ = c− f (A),
B ′ = f (A)− g(B),

with c ∈ [25,25] and static envelopes for bothf and g of [1.5x,15
√
x] for x < 16

and [0.4(x − 16) + 24,15
√
x] for x > 16. Table 1 shows the results of this test and

Fig. 17 (top) shows the static envelopes forf andg when all four variables are measured.
As more variables become observable, both static and dynamic envelopes improve. Note
that while f (A) improves in the presence of measurements forA, the same is not
true of the relationship betweenB and g(B). This is because the differential equation
B ′ = f (A)− g(B) includes two uncertainty sources whereasA′ = c−f (A) includes only
one. Fig. 17 (bottom) presents the predicted dynamic envelopes using the refined static
envelopes forf andg.

These results demonstrate that the best refinement is obtained when all uncertainty
sources are measured. For parameters, this means directly measuring the parameter. For
static envelopes, this means measuring both the domain and range of the function.

Table 1
The effect of observability in the two-tank cascade. Each entry represents
the ratio of the area of the envelope when selected measurements are made
to the area with no measurements. The envelope area is defined to be the
integral of the difference between the upper and lower bounds over the
domain of interest. The absolute envelope areas for no measurements are
6357, 3764, 782, and 2772 when measured overA ∈ [0,100] for f (A),
B ∈ [0,70] for g(B), andt ∈ [0,40] for A andB

Measured variables Envelope area ratio

f (A) g(B) A(t) B(t)

None 1.00 1.00 1.00 1.00

B 1.00 0.97 1.00 0.13

A andB 0.51 0.97 0.28 0.13

B andg(B) 1.00 0.50 1.00 0.13

A, B, f (A), andg(B) 0.28 0.50 0.16 0.12

130 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 17. Refinement of the static envelopesf andg (top) and the predicted dynamic envelopesA andB (bottom)
in the two-tank cascade whenA, B, f (A), andg(B) are measured. The outer envelopes in the upper graphs are
the initial ones provided by the SQDE. The measurements forA andB are plotted in the lower graphs.

4.5. The effect of time uncertainty

Time uncertainty is the time offset by which the SQ trend can be shifted from SQ
behavior. It represents the uncertainty of the starting time of the simulation with respect to
the observation. This section examines the effect of time uncertainty on the refinement of
both static and dynamic envelopes.

Our evaluation was based on the two-tank cascade with fixed inflow. The same SQDE
and data source as in Section 4.4 were used. 150 measurements at a frequency of 20 per
unit time were taken for each measured variableA,B,f (A) andg(B). We ran SQUID
on five different cases where we increased the time uncertainty between prediction and
observation from[0,0] to [0,2.0]. Table 2 shows the results of this test. The refinement of
both static and dynamic envelopes decreases considerably with increasing time uncertainty.
Due to the wide dynamic envelopes of the prediction the improvements forA(t) andB(t)
remain high (small envelope area ratios) even if the time uncertainty increases to[0,2.0].
4.6. SQUID as applied to monitoring

SQUID has been described as a method for improving monitoring applications. In this
section, we examine the behavior of SQUID on such problems. We focus on two tasks
of importance in monitoring—detection of model-data mismatch and detection of model
drift.

We begin by examining the behavior of SQUID on the model-data mismatch problem.
Recall that we can break monitoring into two phases—selecting an appropriate structural
model and tracking the selected model. Considerable reduction of computation is possible

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 131

Table 2
The effect of time uncertainty in the two-tank cascade with mea-
surements ofA,B,f (A) andg(B). Each entry represents the ratio
of the area of the envelope when selected measurements are made
to the area with no measurements

Time uncertainty Envelope area ratio

f (A) g(B) A(t) B(t)

[0,0] 0.28 0.50 0.16 0.13

[0,0.25] 0.42 0.59 0.19 0.14

[0,0.50] 0.52 0.60 0.24 0.15

[0,1.00] 0.90 0.61 0.35 0.17

[0,2.00] 0.91 0.65 0.42 0.20

Fig. 18. Structural mismatch between data and model. At up to 60 points (dots), SQUID finds a portion of the
initial model space that is consistent with the measurements. After 80 points (crosses), SQUID is able to refute
the model because no extrema was detected in the data before the end of the simulated maximum, i.e., event
mapping resulted in an empty overlap.

if we can refute an incorrect structural model quickly since this reduces the numerical
computation required. As an example, consider the case where we have selected a second-
order model to monitor a data-stream, but in reality, our data comes from a first-order
model. Fig. 18 shows the result of refining the gravity model using a data-stream from
the single-tank modelA′ = 50− 50

110A with variance inA of 25. At up to 60 points,
SQUID determines that the gravity model could correspond to the given data. Implicit
is the assumption that the maximum value has not been reached. With the addition of
20 more points, however, the qualitative filter determines that the trend has no maximum
beforet = 6 and so the model is refuted.

132 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

A more subtle case of model mismatch occurs when the model is structurally correct,
but the true system does not lie within the model space because the parameters and/or
monotonic functions of the true system lie outside the bounds and static envelopes of the
SQDE. Consider a two-tank cascade withc ∈ [22.5,27.5] which represents±10% error
on the nominal valuec = 25 and bounds onf andg in the range[8√x,10

√
x]. We wish

to examine two separate possibilities:
(1) At what point does an error inc cause refutation?
(2) At what point does an error ing cause refutation?

We use a data-stream consisting of measurements forA andB with a variance of 4 from
the nominal system wherec= 25,f (A)= 9

√
A, andg(B)= 8

√
B.

In the first case, we find that the model is refuted with a 100 point data set when the true
inflow is outside the range 156 c 6 35. For values ofc between 15 and 18, refinement
greatly reduces the initial bounds onc while for other values, the initial ranges hold. For
the second case, we vary the trueg(B)= k√B by varyingk. SQUID refutes the model for
k 6 6.

These examples demonstrate that SQUID can detect both structural and non-structural
mismatches between a model and a measurement stream. Structural mismatches are easier
to detect, however, since they normally exhibit a qualitative trend description that differs
from the qualitative behavior description of the model. Since only the qualitative filter is
required to detect this difference, structural mismatches are normally caught before the
more expensive refinement operation is performed.

As a final example, we examine the effect of drifting faults7 in a CSTR model. We
begin with the CSTR model

dCA
dt
= CAi −CA

τ
− k0 e−E/T CA,

dT

dt
= Ti − T

τ
− hrk0 e−E/T CA,

with ±5% in uncertainty in the nominal valuehr =−200 and starting at the steady-state
CA = 0.933 andT = 353.36. Kay in [18] gives a detailed discussion of this model and its
behaviors when simulated from this state. We begin monitoringCA using measurements
with variance 0.0001 from a model starting at this state. Att = 25, we introduce a
gradual fault in the inlet temperatureTi such thatTi(t) = 340+ 20

75(t − 25). As the inlet
temperature shifts, SQUID refines the model as shown in Fig. 19. Eventually, the data no
longer matches the behavior space of the model and the model is refuted. Note that in
this case refinement is not necessary since the original lower bound is sufficient to detect
a discrepancy. Thus, SQUID could have simply run its mapping component, skipping
refinement without any loss of diagnostic capability. Note however, a more complex
analysis shows that the improvement in the lower bound has now caused more points in
the regiont ∈ [20,40] to fall outside dynamic envelope. This could be used as a signal
that the model is shifting (since normally one would expect old measurements to remain in
envelope). Thus, refinement could be used to detect the discrepancy earlier.

7 A drifting fault is caused by a gradual change of one or more system parameters.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 133

Fig. 19. Refuting a drifting fault in a CSTR. The inner dynamic envelope is generated from data up tot = 70. The
outer envelope is generated from the original SQDE. Note that the model is clearly in error fromt = 70 onward.

5. Related work

In addition to traditional system identification, SQUID can also be compared to other
systems developed in the AI community for trend detection, monitoring and identification.

5.1. Trend detection in noisy data

Detecting a trend in the presence of noisy data is the topic of filter theory. One limita-
tion of traditional methods is that it is often necessary to have extra information about the
underlying trend such as its power spectrum to define a filter that reconstructs the orig-
inal signal. Scale-space filtering [35] eliminates this need by filtering the signal through
a family of Gaussian filters whose filter coefficient is continuously varied across a range
of values. As the coefficient increases, the signal is smoothed further until it eventually
becomes flat. If we plot the inflection points of these filtered data-streams and graph them
with time as the abscissa and filter coefficient (orscale) as the ordinate, we obtain the
scale spaceof the original signal. Curves in scale-space represent the occurrence and dis-
appearance of critical points in the signal as the scale increases. The height of the critical
point on each of these curves is the scale at which the underlying inflection point is com-
pletely smoothed out. By analyzing the differences in heights of these critical points, the
time-scale of the signal over different time intervals can be determined and an appropriate
fitting function can be selected to reconstruct the signal at that scale.

Scale-space filtering permits the recovery of a trend with no prior knowledge.
Unfortunately, it does so at the cost of filtering the signal through a theoretically infinite
number of Gaussian filters. Work has been done on reducing this need [26], but it still
involves multiple filtering of the data as well as pattern recognition to infer the scale-space
portrait from a finite set of points.

In part as a solution to the computational expense of scale-space filtering, Cheung and
Stephanopoulos developed the “triangle representation” for trend description together with
an algorithm for extracting a trend from noisy data [6]. By defining a trend in terms of a
primitive triangle component that captures the qualitative first and second derivatives of the
trend and by describing a method for combining triangles into higher-level constructs (such

134 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

as trapezoids) [7], they are able to construct a fast algorithm for constructing a scale-space
and filtering a signal with it.

The SQUID binning algorithm can be seen as a variant on these trend detection
techniques. Since SQUID requires only qualitative filtering (i.e., the location of regions
of monotonicity in the signal), the actual filtering technique can be reduced to computing
regions of constant slope in the signal. By using multiple-sized windows, it can detect slope
changes at different time-scales.8

5.2. Semi-quantitative monitoring and identification

The use of semi-quantitative models for monitoring was the basis for the MIMIC
system [12,14]. MIMIC implements both the tracking and hypothesis generation phases of
monitoring. It uses the SQDE as a model space representation from which an SQ behavior
set is generated by (an earlier version of) SQSIM. Each behavior in the set is then matched
to the measurement stream. If a model is refuted, MIMIC enters the hypothesis phase where
it suggests new models to track based on the reason for the mismatch and knowledge of
the structure of the device being monitored. MIMIC’s strengths lie in the use of a robust
prediction method (which guarantees that all possible behaviors of a an imprecise model
are considered) and a hypothesis generator based on a structural model (which eliminates
the need for pre-enumerating the set of possible fault models).

SQUID can be seen as an improvement to the tracking component of MIMIC. It adds a
more realistic data model (MIMIC assumed that each measurement had a 100% confidence
bound and that the derivative was given) together with a theory of semi-quantitative trends
which make SQUID more suitable for operating on real data-streams. Also, by shifting
the focus from monitoring to identification, SQUID can produce better predictions by
including model refinement in the tracking process. These improvements make SQUID
more efficient and robust than the tracking method of MIMIC. Of course, SQUID does not
address the hypothesis generation component of MIMIC and so these methods are very
much complementary.

Another semi-quantitative monitoring system is TrenDx [16]. This system also uses a
semi-quantitative representation of behavior and attempts to fit data to the behavior. Un-
like both SQUID and MIMIC, however, TrenDx does not use a model space representation.
This has two consequences: First, since there is no model space, TrenDx cannot do refine-
ment. Second, the user must generate the SQ behavior by hand. By sacrificing a model
space representation, TrenDx simplifies the tracking component of its monitoring method.
This permits more efficient methods for matching (since the user can provide customized
behavior segmentation and fitting methods) at the expense of greater sophistication on the
part of the user. SQUID chooses to include a model space representation together with sim-
ulation to produce an SQ behavior set. While computationally more expensive, focusing
on a model allows the user to describe the structure of the process rather than exhaustively
describing its behavior. Furthermore, a structural model (with a simulator) is more flexible
than a behavioral model in that one can change the structural model and then predict the

8 Conceivably, one could also use the SQUID binner to construct aqualitative scale-space portrait, although
this is not necessary for SQUID.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 135

consequences. This is particularly important in monitoring where faults are manifested as
structural changes.

PRET [3] uses qualitative, symbolic, algebraic and geometric reasoning to automate the
process of system identification. Given a set of hypotheses, observations and specifications
PRET constructs an ODE model of the physical system. PRET is based on a library of
traditional system identification methods and applies the reasoning techniques to select the
appropriate system identification method. PRET performs a structural identification (model
selection) by combining hypotheses into candidate models and a validation of those models
against the observations modulo the precision inherent in the specifications. By applying
standard system identification methods PRET has the same properties as traditional system
identification (performed by ahumanexpert). PRET focuses on helping engineers tomodel
a physical system and not tomonitor it.

Finally, another use of qualitative methods for identification is embodied in the system
of Capelo, Ironi and Tentoni [5]. This system addresses the problem in traditional
identification of how to select the best parametric model from a set of potential models.
By using the qualitative properties of different parametric models and comparing them to
the properties of the measurements, this system can eliminate from consideration those
parameterizations that are inconsistent. The method does a form of qualitative trend
extraction from the data which is then matched against the qualitative behavior of candidate
models based on a larger set of primitives (concave, increasing, linear, etc.) but does not
appear to address the problems of noise in the measurements.

6. Discussion and conclusion

This paper has described SQUID, a new method for refining imprecise models using a
stream of observations from a physical system. SQUID is based on the SQSIM framework
which uses a multi-level representation for expressing and reasoning with incomplete
knowledge. SQUID refines an imprecise model by a process called trend matching
which compares the semi-quantitative trajectory descriptions derived by SQSIM with the
corresponding properties of the observation, i.e., the semi-quantitative trend.

6.1. Comparison to traditional system identification

Since we are evaluating SQUID in comparison with traditional system identification, it
is important to understand the situations in which one method is better than another. We
can define several types of identification problems and see how each method performs on
them. We look at the following:
• No functional uncertainty, small number of parameters. In this case, we have a

precise functional form and the search space is small. This is exactly the situation
that traditional identification excels at and it produces a better refined model space
(see Fig. 20). SQUID can refine its initial model, however the ultimate refinement
represents a much larger segment of the model space.
• No functional uncertainty, large number of parameters. In this case, while the

functional form of the model is precise, the parameter space is large. Searching the
parameter space with gradient-based methods is difficult and traditional identification

136 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

Fig. 20. Comparison of the dynamic envelopes from traditional identification (top) and SQUID (bottom) for the
gravity model given 50 data-points. Traditional identification excels in the case of functionally precise models
with small parameter spaces (in this case, onlyy′(0)). Least square fitting results in identifying a single value
for the initial velocity (y′(0)= 50.28 with standard deviationσ = 0.12), whereas SQUID identifies the range of
possible values ([35.5,60]) for which the predicted envelopes enclose the data out to a specified confidence band.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 137

may even fail to converge. Since SQUID does not search the model space, it is
unaffected by the size of the parameter space and can still produce a refinement.
• Functional uncertainty. Since traditional identification cannot express imprecise

functional models, it must approximate them using a highly parameterized model.9

This leads to the previous case. SQUID represents imprecise functional models using
bounding envelopes, which require only monotonicity within the envelopes, and no
further assumption of functional form.
• Uninformative data. In this case, traditional identification may be led astray by

reducing the model space too far because the data does not reveal the full range
of the underlying dynamics. In contrast, since SQUID eliminates only inconsistent
portions of a model space, uninformative data does not cause a refinement to an overly
restrictive model space.

6.2. Factors affecting refinement

As has been discussed in Section 4, there are a number of factors that affect SQUID’s
ability to refine models. We summarize these factors here.
• Model uncertainty versus measurement noise. The uncertainty present in the SQDE

determines the maximum amount of noise tolerable in the measurements to achieve
refinement. SQUID is able to make more use of a noisy dataset in case of single-source
uncertainty. When multiple uncertainty sources exist, measurement bounds must be
tighter than in the single-source case for refinement to take place. The solution to
this problem is to collapse uncertainty sources. By taking the collapsing method to its
limit, we can reduce each equation in the SDE to

x ′i = fi(x),
thereby creating a single uncertainty-source for each equation. The disadvantage
in this approach is that individual uncertainty sources are no longer distinct but
redundant constraints can be used to get the benefits of both approaches.
• The set of observable variables. The degree to which the trajectory space can be

measured is determined by the observability of the model. In particular, SQUID does
best when all imprecisely known constants and state variables as well as both sides of
all monotonic functions are measured.
• Prediction imprecision. There are some models for which SQSIM produces numerous

spurious behaviors [18]. Since SQUID relies on SQSIM to determine the trajectory
space associated with an SQDE, if this trajectory space is large then SQUID must
work harder to reduce the trajectory space. This can reduce both the effectiveness
and efficiency of refinement. Abstraction methods [8] can collapse unnecessary
distinctions between qualitative behaviors.
• Time uncertainty. Time uncertainty affects the mapping between the SQ trend and

the SQ behavior, resulting in a larger overlap in the trajectory space. Thus, time

9 One can use a high-parameter neural-net estimator to replace monotonic functions. For example, translate
the modelA′ = c − f (A) to A′ = c − f̂ (A; ŵ) whereŵ is a vector of weights for the function estimatorf̂ .
This model is then used to identify the behavior of the system. Unfortunately, this approach is highly inefficient
because the model space is very difficult to search.

138 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

uncertainty is an additional source of uncertainty which reduces the refinement
capability of SQUID . In the future, “time alignment” methods should be developed
and applied to regions of high slope to refine time uncertainty.

6.3. Summary and future research

To summarize, SQUID offers the following properties:
• By using the SQSIM framework, SQUID can express functional as well as parametric

uncertainties. This is different from traditional identification where functional uncer-
tainty is approximated by a highly parameterized model. Highly parameterized mod-
els complicate the search in the parameter space and are prone to converge to the
wrong model. Furthermore, traditional identification may even fail to converge in this
case.
• SQUID uses refutation rather than search to identify a model of a physical system. By

ruling out implausible portions of the model space, SQUID is more robust in the face
of uninformative data and functional model uncertainty than traditional identification
methods.
• SQUID’s refinement is conservative. Since all refinement steps (trend forming, trend

mapping and model refinement) are conservative, SQUID guarantees that no ODE
is excluded from the model space unless it is genuinely impossible for the ODE to
produce a trajectory within the refined trajectory space.
• In its current implementation, SQUID is limited to measurements that can be viewed

as a superposition of Gaussian noise with fixed variance to the “pure” signal. Since
SQUID uses abstract properties of the measurements it can be easily extended to other
noise models of the measurements by revising the trend forming step.

Directions for future research on semi-quantitative system identification include:
• There are several areas for improving SQUID itself. First, SQUID currently operates

as a batch computation over the measurement stream. We would like to make SQUID
incremental, in the sense that new measurements do not require a re-computation
over the entire new data set. Second, processes whose inputs vary with time are an
important class of systems studied by system identification. This class of systems
was excluded from our original design due to limitations in the QSIM modeling
and simulation method. Recently, techniques for adding such properties to the QSIM
framework have been developed [4] and should be included in SQUID . Third, adding
the ability to control inputs as well as to measure outputs is necessary for SQUID to
be able to solve “black box” problems. Such an extension would permit SQUID to
encompass the experiment design component of system identification.
• SQUID is able to infer guaranteed bounds given uncertain hypotheses and noisy

measurements. For monitoring and diagnosis, these “hard” bounds are important to
distinguish whether the observation is consistent with the hypothesis. On the other
hand, traditional methods using a single model with probabilistic error result in
smaller but “soft” bounds. The probabilistic information of these bounds is useful
in discriminating between competing hypotheses. Ideally, we would like to combine
SQUID with traditional methods and benefit from both approaches.

H. Kay et al. / Artificial Intelligence 119 (2000) 103–140 139

• SQUID can be viewed as a method for tracking hypotheses and detecting discrepan-
cies in the context of monitoring and diagnosis. To develop a complete fault diagnosis
system for dynamic systems, SQUID could be combined with existing methods for
automated model building [10,32] and proposing hypotheses given weak information
such as the signs of discrepancies between observations and predictions [11,29].

Acknowledgements

This work has taken place in the Qualitative Reasoning Group at the Artificial
Intelligence Laboratory, The University of Texas at Austin. Research of the Qualitative
Reasoning Group is supported in part by NSF grants IRI-9504138 and CDA 9617327, by
NASA grant NAG 9-898, and by the Texas Advanced Research Program under grants no.
003658-242 and 003658-347. Bernhard Rinner is supported by the Austrian Science Fund
under grant number J1429-MAT. The authors are grateful to Lyle Ungar for his helpful
comments.

Note

Tragically, Dr. Herbert Kay was killed in a random act of violence on June 12,
1997. He left his wife Meg, two-year-old twin daughters Sonia and Nina, and a large
group of family and friends. He left a significant body of scientific work (please see
http://www.cs.utexas.edu/users/qr/bert/) and the unfulfilled promise of further contribu-
tions to the world, both personal and professional.

References

[1] D.M. Bates, D.G. Watts, Nonlinear Regression and Its Applications, Wiley, New York, 1988.
[2] D. Berleant, B.J. Kuipers, Qualitative and quantitative simulation: Bridging the gab, Artificial Intelligence 95

(1997) 215–255.
[3] E. Bradley, R. Stolle, Automatic construction of accurate models of physical systems, Ann. Math. Artificial

Intelligence 17 (1996) 1–28.
[4] G. Brajnik, D. Clancy, Temporal constraints on trajectories in qualitative simulation, in: Proc. 10th

International Workshop on Qualitative Reasoning about Physical Systems, Fallen Leaf Lake, CA, 1996.
[5] A.C. Capelo, L. Ironi, S. Tentoni, The need for qualitative reasoning in automated modeling: A case study, in:

Y. Iwasaki, A. Farquhar (Eds.), Qualitative Reasoning, The Tenth International Workshop, AAAI Technical
Report WS-96-01, 1996, pp. 32–39.

[6] J.T.-Y. Cheung, G. Stephanopoulos, Representation of process trends—Part I. A formal representation
framework, Computers and Chemical Engineering 14 (4/5) (1990) 495–510.

[7] J.T.-Y. Cheung, G. Stephanopoulos, Representation of process trends—Part II. The problem of scale and
qualitative scaling, Computers and Chemical Engineering 14 (4/5) (1990) 511–539.

[8] D.J. Clancy, B.J. Kuipers, Qualitative simulation as temporally extended constraint satisfaction, in: Proc.
AAAI-98, Madison, WI, 1998.

[9] E. Coiera, Generating qualitative models from example behaviors, Technical Report 8901, Department of
Computer Science, University of New South Wales, 1989.

[10] J. Crawford, A. Farquhar, B. Kuipers, QPC: A compiler from physical models into qualitative differential
equations, in: Proc. AAAI-90, Boston, MA, 1990, pp. 365–372; Also in: B. Faltings, P. Struss, Recent
Advances in Qualitative Physics, MIT Press, Cambridge, MA 1992.

140 H. Kay et al. / Artificial Intelligence 119 (2000) 103–140

[11] J. de Kleer, B.C. Williams, Diagnosing multiple faults, Artificial Intelligence 32 (1987) 97–130.
[12] D. Dvorak, B. Kuipers, Model-based monitoring of dynamic systems, in: Proc. IJCAI-89, Detroit, MI,

Morgan Kaufmann, San Mateo, CA, 1989, pp. 1238–1243.
[13] D. Dvorak, B. Kuipers, Process monitoring and diagnosis: A model-based approach, IEEE Expert 5 (3)

(1991) 67–74.
[14] D.L. Dvorak, Monitoring and diagnosis of continuous dynamic systems using semiquantitative simulation,

Ph.D. Thesis, University of Texas at Austin, Austin, TX, 1992.
[15] A. Farquhar, Automated modeling of physical systems in the presence of incomplete knowledge, Ph.D.

Thesis, University of Texas at Austin, Austin, TX, 1993.
[16] I.J. Haimowitz, Knowledge-based trend detection and diagnosis, Ph.D. Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1994.
[17] R. Isermann, Fault diagnosis of machines via parameter estimation and knowledge processing—Tutorial

paper, Automatica 29 (4) (1993) 815–835.
[18] H. Kay, SQSIM: A simulator for imprecise ODE models, Computers and Chemical Engineering 23 (1)

(1998) 27–46.
[19] H. Kay, B. Kuipers, Numerical behavior envelopes for qualitative models, in: Proc. AAAI-93, Washington,

DC, 1993, pp. 606–613.
[20] H. Kay, L. Ungar, Estimating monotonic functions and their bounds using MSQUID, Technical Report TR

AI99-280, University of Texas at Austin, Austin, TX, 1999.
[21] H. Kay, L.H. Ungar, Deriving monotonic function envelopes from observations, in: Working Papers from the

Seventh International Workshop on Qualitative Reasoning about Physical Systems (QR-93), Orcas Island,
WA, 1993, pp. 117–123.

[22] B. Kuipers, Commonsense reasoning about causality: Deriving behavior from structure, in: D.G. Bobrow
(Ed.), Qualitative Reasoning about Physical Systems, Elsevier Science, Amsterdam, 1984, pp. 169–203.

[23] B. Kuipers, Qualitative simulation, Artificial Intelligence 29 (1986) 289–338.
[24] B. Kuipers, Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge, Artificial

Intelligence, MIT Press, Cambridge, MA, 1994.
[25] B.J. Kuipers, D. Berleant, Using incomplete knowledge with qualitative reasoning, in: Proc. AAAI-88, St.

Paul, MN, Morgan Kaufmann, Los Altos, CA, 1988, pp. 324–329.
[26] D. Kulkarni, K. Kutulakos, P. Robinson, Data analysis using scale-space filtering and Bayesian probabilistic

reasoning, Technical Report FIA-91-05, NASA Ames Research Center, 1991.
[27] L. Ljung, System Identification: Theory for the User, Prentice Hall, Englewood Cliffs, NJ, 1987.
[28] P.J. Mosterman, G. Biswas, E.J. Manders, A comprehensive framework for model based diagnosis, in: Proc.

9th International Workshop on Principles of Diagnosis (DX98), Cape Cod, MA, 1998, pp. 86–93.
[29] H.T. Ng, Model-based, multiple-fault diagnosis of dynamic, continuous physical devices, IEEE Expert 6 (6)

(1991) 38–43.
[30] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57–95.
[31] B.L. Richards, I. Kraan, B. Kuipers, Automatic abduction of qualitative models, in: Proc. AAAI-92, San

Jose, CA, 1992, pp. 723–728.
[32] J. Rickel, B. Porter, Automated modeling for answering prediction questions: Selecting the time scale and

system boundary, in: Proc. AAAI-94, Seattle, WA, 1994, pp. 1191–1198.
[33] B. Rinner, B. Kuipers, Monitoring piecewise continuous behaviors by refining semi-quantitative trackers,

in: Proc. IJCAI-99, Stockholm, Sweden, Morgan Kaufmann, San Mateo, CA, 1999, pp. 1080–1086.
[34] A.C.C. Say, S. Kuru, Qualitative system identification: Deriving structure from behavior, Artificial

Intelligence 83 (1996) 75–141.
[35] A.P. Witkin, Scale-space filtering, in: Proc. IJCAI-83, Karsruhe, Germany, 1983, pp. 1019–1022.

