
The Composition of Heterogeneous Control Laws�Benjamin Kuipersyand Karl �Astr�omzAbstractTo design a control system to operate over a widerange of conditions, it may be necessary to com-bine control laws which are appropriate to thedi�erent operating regions of the system. Thefuzzy control literature, and industrial practice,provide certain non-linear methods for combin-ing heterogeneous control laws, but these meth-ods have been very di�cult to analyze theoreti-cally. We describe an alternate formulation andextension of this approach that has several prac-tical and theoretical bene�ts. First, the elementsto be combined are classical control laws, whichprovide high-resolution control and can be an-alyzed by classical methods. Second, operatingregions are characterized by fuzzy set member-ship functions. The global heterogeneous controllaw is de�ned as the weighted average of the lo-cal control laws, where the weights are the valuesreturned by the membership functions, therebyproviding smooth transitions between regions.Third, the heterogeneous control system may bedescribed by a qualitative di�erential equation,which allows it to be analyzed by qualitative sim-ulation, even in the face of incomplete knowledgeof the underlying system or the operating regionmembership functions. An example of heteroge-neous control is given for level control of a wa-ter tank, and two alternate analysis methods arepresented.1 IntroductionMuch control theory is based on linear models. This worksvery well for steady state regulation at a �xed operatingpoint. To make a control system that can operate over�This paper is reprinted, with slight modi�cations, from theProceedings of the 1991 American Control Conference (ACC-91), Boston, Massachusetts, 26-28 June 1991. This work hastaken place in the Qualitative Reasoning Group at the Arti�-cial Intelligence Laboratory, The University of Texas at Austin.Research of the Qualitative Reasoning Group is supported inpart by NSF grants IRI-8905494 and IRI-8904454, by NASAgrant NAG 2-507, and by the Texas Advanced Research Pro-gram under grant no. 003658-175.yDepartment of Computer Sciences, University of Texas atAustin, Austin, Texas USAzDepartment of Automatic Control, Lund Institute of Tech-nology, Lund, Sweden

wide regions it is however necessary to introduce nonlin-earities. There are several ways to do this. Linear feedbackcontrol can be combined with logic for switching betweenseveral linear feedback laws. Selectors that choose betweendi�erent control laws depending on signal levels can be in-troduced. Systems of these types are common in industry.Due to their complexity they are however poorly under-stood theoretically. Their design is based on engineeringexperience combined with extensive simulation.Fuzzy logic control [Zadeh, 1973; Mamdani, 1974] is an-other approach to obtain nonlinear control systems. In thisapproach the measured variables are represented as fuzzyvariables. A representation of the control signal as a fuzzyvariable is computed from the measurements using fuzzylogic. The fuzzy variable is converted to a real variableusing some type of \defuzzi�cation."In this paper we take an alternate view of the prob-lem of switching between di�erent control strategies. Aheterogeneous control problem is decomposed into multi-ple, possibly overlapping, operating regions. The domainof each operating region is characterized by a fuzzy setmembership function. This makes it possible to expresssmooth transitions between adjacent regions. Each oper-ating region is associated with a qualitative description ofthe system state, e.g. the low, normal, or high level of wa-ter in a tank. The fuzzy set membership functions may beregarded as a measure of the appropriateness of applyinga given qualitative description to the system state. It isassumed that, for any given system state, the operatingregion membership functions sum to 1.0.Each region is associated with a control law, and thecontrol signal applied to the plant is a weighted averageof the control signals for each region, where the weightsare provided by the membership functions of each region.This approach to fuzzy control was pioneered by Takagiand Sugeno [1985] and Sugeno and Kang [1986].This approach makes it possible to decompose the de-sign of a heterogenous controller into two relatively inde-pendent decisions: (1) the speci�cation of natural, quali-tatively distinct operating regions, and (2) the speci�ca-tion of a control law for each region. The weighted sumcombination method provides smooth transitions from oneregion to another, and facilitates local and global analysis.The idea of combining simple linear feedback units withoperations such as average, min, max, etc, is widely usedindustrially. The intent of this paper is to provide a math-ematical basis for the design of such systems, and for localand global analysis of their properties.Heterogeneous control is also related to gain scheduling.There are however some di�erences. In gain scheduling a



2speci�c control law is selected for a given operating regionand the parameters of the controller are changed with theregion. In heterogeneous control the values of the controlsignal for di�erent regions are computed and averaged.Classical control theory [Franklin, et al, 1986] providesa rich set of methods for local analysis of the individualcontrol laws and for describing their behavior. A globalanalysis of the behavior of a heterogenous control systemis expressed as a transition graph, where the nodes corre-spond to operating regions and the directed edges corre-spond to possible transitions between regions. We providea methodology for deriving this global analysis from theindividual control laws and the membership functions ofthe operating regions, even on the basis of an incomplete,qualitative description of the structure of the system andits controller.The global analysis methodology makes it possible toderive the assumptions under which a discrete transition-graph abstraction captures the essential properties of acontinuous, heterogenous dynamic control system. It alsoidenti�es situations where a proposed abstraction may fail,and helps identify the additional constraints required toguarantee the desired global behavior.The basic concepts of heterogeneous control will be in-troduced with a simple level controller for a water tank.2 Qualitative Descriptions ofIncomplete KnowledgeThere are at least two fundamentally di�erent types ofqualitative descriptions of incomplete knowledge of scalarquantities.� \Fuzzy" Values are qualitative descriptions withoutprecise boundaries.� Landmark Values are precise \natural joints" thatbreak a continuum into qualitatively distinct regions.2.1 The Fuzzy-Set RepresentationFuzzy sets were originally developed by Zadeh [Zadeh,1965; Yager, et al, 1987] to formalize qualitative conceptswithout precise boundaries. For example, the level of wa-ter in a tank might be characterized by the qualitativedescriptive terms, low, normal, and high. There are nomeaningful landmark values representing the boundariesbetween low and normal, or normal and high.Zadeh [1965] formalizes linguistic terms such as these asreferring to fuzzy sets of numbers, in this case, levels ofwater in the tank. A fuzzy set, S, within a domain, D,is represented by a membership function, s : D ! [0; 1].For our purposes, we will interpret the value s(x), for anelement x 2 D, as a measure of the appropriateness of de-scribing x with the descriptor S. Figure 1 includes threemembership functions de�ning the appropriateness of ap-plying the qualitative descriptors flow;medium; highg toquantitatively-de�ned levels.11Appropriateness measure is technically synonymous withthe terms membership function and possibility measure as usedin the fuzzy research community. However, the English con-notation of appropriateness measure seems better to capturethe relationship between a linguistic term and a quantitativemeasure.
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xFigure 1: Appropriateness measures (i.e. fuzzy set mem-bership functions) for qualitative terms describing levels.A fuzzy logic controller consists of a collection of sim-ple control laws whose inputs and outputs are both fuzzyvalues [Zadeh, 1973; Mamdani, 1974]. For example,If water level is high; then set drain opening to wide;where high and wide are qualitative terms described byfuzzy sets over their quantitative domains.All controller rules are �red in parallel, and the rec-ommended actions are combined according to fuzzy valuecombination rules, weighted by the degree of satisfactionof the antecedent. Some process of \defuzzi�cation" is re-quired to convert the resulting fuzzy set description of anaction into a speci�c value for a control variable.2.2 Landmark-Based RepresentationFrequently, qualitative categories are de�ned by landmarkvalues: precise boundary points separating qualitativelydistinct regions of a continuum. For example, water tem-perature can be described qualitatively with respect to thelandmarks � � � � � �Freezing � � � � � �Boiling � � � � � �and angles in a triangle can be described in terms of thelandmarks Zero � � � � � �Right � � � � � �Straight:A value can be described qualitatively either as equal to alandmark value or in the open interval between two land-mark values, even when numerical information is unavail-able. It is often easier to obtain or justify the qualita-tive description of a quantity than its numerical value,particularly when knowledge is incomplete. Fortunately,landmark-based descriptions support qualitative simula-tion, to derive qualitative descriptions of the possible be-haviors of a system from a qualitative description of itsstructure [Kuipers, 1986].An ordinary di�erential equation describes a system interms of a set of variables which vary continuously overtime, along with constraints such as addition, multiplica-tion, and di�erentiation, on the relationships among thosevariables. A qualitative di�erential equation (QDE) de-scribes a system in much the same terms, except that (1)the values of variables are described qualitatively, and (2)certain functional relationships between variables may beincompletely known and qualitatively described. For ex-ample, air resistance on a moving body increases monoton-ically with velocity, and ow of water through an ori�ce



3increases monotonically with pressure. Both of these rela-tions are non-linear, but useful qualitative conclusions canbe drawn purely from monotonicity. It is useful to de�nethe class M+ of monotonic functions, and the class S+ ofmonotonic functions with saturation.� M+ is the set of continuously di�erentiable functionsf : < ! < such that f 0(x) > 0 for all x 2 <.In a QDE, we may write M+(pressure; outflow) oroutflow = M+(pressure) to mean that there is somef 2M+ such that outflow = f(pressure). M+0 is thesubset of M+ such that f(0) = 0, and M� is the setof f such that �f 2M+.� S+ is the set of continuously di�erentiable functionsf : < ! < such that, for speci�ed pairs of landmarkvalues (x1; y1) and (x2; y2),{ f(x) = y1 for all x � x1,{ f(x) = y2 for all x � x2,{ f 0(x) > 0 for all x1 < x < x2.The turning points (x1; y1) and (x2; y2) must be spec-i�ed as landmark values whenever the S+ constraintis used. Notice, in �gure 1, that the fuzzy set mem-bership functions h(x) 2 S+ and l(x) 2 S�. Wecan also treat n(x) as belonging to a composite setS+ � S�. This qualitative description expresses astate of incomplete knowledge where we know onlythat the membership functions behave monotonicallywhen they are between the landmarks 0 and 1.Qualitative simulation using the QSIM algorithm[Kuipers, 1986, 1989] takes a QDE and a qualitative de-scription of an initial state, and derives a tree of quali-tative state descriptions, where the paths from the rootto the leaves of the tree represent the possible behaviorsof the system. This set of behaviors is guaranteed to in-clude every solution of every ordinary di�erential equationconsistent with the given QDE and initial state. Thus,a result which follows from a qualitative description of asystem, must apply to every fully-speci�ed instance of thatdescription.The tree of possible behaviors of a qualitatively de-scribed system can be a powerful analytical tool. In partic-ular, if a qualitative property (e.g. stability or zero-o�set)holds on every branch of the tree, it must hold for everybehavior of the system. The importance of the qualitativelevel of description is that the tree of behaviors for a givenQDE may be �nite, whereas the corresponding set of ordi-nary di�erential equations and their solutions is typicallyuncountably in�nite.In particular, we will use fuzzy set membership func-tions to de�ne a non-linear, heterogeneous controller withsmooth transitions between operating regions. The sys-tem, the control laws, and the operating region de�nitionscan all be represented as a qualitative di�erential equa-tion, supporting analysis both by classical means and byqualitative simulation.

q ux u � p(x)PP����BB
_x = f(x; u) = q � u � p(x):Figure 2: The Water Tank3 A Heterogeneous Controller forthe Water Tank3.1 The Water TankConsider control of the amount x of water in a tank, wherethe inow rate q may vary, and the area u of the drainopening is the control variable. The function p(x) is amonotonically increasing function of x; for a cylindricaltank, p(x) is proportional to the square root of the pres-sure. The dynamic behavior of the system is describedby: _x = f(x; u) = q � u � p(x):3.2 Overlapping Operating RegionsThe system has separate control laws in three operatingregions, Low, Normal, and High, with overlapping mem-bership functions, as shown below.Note that there is a \pure" region over the intervals[0; a], [b; c], and [d;1), and overlapping regions on (a; b)and (c; d). We assume that the setpoint xs is in (b; c).The membership functions l(x), n(x), and h(x), for thethree operating regions are not known completely. All thatis known is that they rise or fall smoothly and monotoni-cally between their plateaus, where the boundaries of theplateaus are characterized by the landmark values, a, b, c,and d. They are normalized, so that l(x)+n(x)+h(x) = 1.This state of knowledge can be expressed in terms of theQSIM S+ constraint by introducing the two functions,s1(x) 2 S+(a;0);(b;1) s2(x) 2 S+(c;0);(d;1)such that l(x) = 1� s1(x)n(x) = s1(x)(1� s2(x))h(x) = s2(x)Because we specify the membership functions qualita-tively, and depend only on properties of the qualitativeclass, the properties we derive apply to every member ofthe class.



4The water tank:x : the level in the tank (sensed)u : the drain opening (controlled)The operating regions:
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x s xThe local control laws:Low ) ul(x) = 0Normal ) un(x) = k(x� xs) + usHigh ) uh(x) = MAXThe global control law:�u(x) = l(x)ul(x) + n(x)un(x) + h(x)uh(x):The discrete abstraction:Low �! Normal  � High :Figure 3: A heterogenous controller for the water tank.3.3 Heterogeneous Control LawsThe control laws2 for the three regions are:u(x) = ( 0 if x 2 Lowk(x� xs) + us if x 2 NormalMAX if x 2 Highwhere the bias term us is adjusted to give the desired setpoint xs for a nominal inow qs.The global heterogenous control law is the average ofthe individual control laws, weighted by the membershipfunctions of their regions; henceu(x) = l(x) � 0 + n(x) � [k(x� xs) + us] + h(x) �MAX:Figure 3 summarizes the heterogeneous controller for thewater tank.4 GuaranteesWe want to prove that the heterogeneous controller bringsthe system back to the Normal operating region undersome range of disturbances, and that an equilibrium inthe region is obtained for constant disturbances. Moreimportantly, we want to determine any quantitative con-straints on the design of the controller (e.g. the value for2We are assuming here that the state variable x is di-rectly observable, rather than separating out measurements,y = g(x; u). In that case, a measurable variable such as level islinearly, or at least monotonically, related to x, so omitting itsimpli�es the presentation without reducing generality.

u uu u--? ?1(b)2(a)1(a) 2(b)Local GlobalBehaviorControl LawFigure 4: Two approaches to analyzing a heterogeneouscontroller.MAX), and the range of possible disturbances on q, thatthe controller can handle.There are two methods for doing this (�g. 4), which areelaborated on below.1. (a) Determine the qualitative behavior of the systemwithin each operating region.(b) Combine the qualitative descriptions.2. (a) Combine the local laws into a single global lawusing the weighted average combination rule.(b) Determine the qualitative behavior of the globalsystem.4.1 Qualitative Combination of LocalPropertiesThe direction of motion of the system as speci�ed by eachcontrol law individually is determined �rst. The propertiesof the membership functions are not required for this anal-ysis. Then, in the regions of overlap, if the directions ofchange agree, the global law for the heterogenous controllermust give motion in the same direction. If the di�erentcontrol laws give motion in opposite directions, qualitativesimulation provides the possible behaviors. Alternatively,order-of-magnitude or semi-quantitative analysis may beable to clarify the system's behavior in the overlap regions.In order to guarantee that the system always ends upwithin the \pure" operating region, (b; c) of the Normalcontroller, we need to impose constraints on (1) the rangeof inow perturbations to be handled, and (2) the magni-tude of the High response.1. From the Normal model:qb � q � qcwhere qb (resp. qc) is the value of q that results insteady state at x = b (resp. x = c).2. From the High model:q=MAX � p(c):These conditions simply require that the drain area canbe made su�ciently large so that the outow at the de-sired level can be made to match the disturbance inow.This guarantee does not depend on other constraints, inparticular on the shapes of the membership functions.33The individual steps of this analysis can be established au-tomatically by QSIM simulation of the individual controllers.



5� Overlapping operating regions for the local laws.�����ZZZZZ �����ZZZZZl(x) n(x) h(x)Low Normal High� Require qualitative agreement where local laws over-lap. - -- - q � �� �Low )Normal )High)� Abstract the control law to a �nite transition dia-gram. dl(x)dt < 0dn(x)dt > 0 dh(x)dt < 0dn(x)dt > 0Low Normal High- �Figure 5: Qualitative combination of properties of locallaws.Once we have established these qualitative properties ofthe system and its heterogeneous controller, they can beexpressed as a �nite transition graph in which the nodescorrespond to the operating regions.Low �! Normal  � Highwhere the double box signi�es that the Normal region in-cludes a steady state, and so can persist inde�nitely, whilethe other regions can persist only for a �nite time.The abstraction relation is de�ned as follows:� The state of the system corresponds to a node of thetransition graph if it is in the interior of the corre-sponding \pure" operating region, where its member-ship function is equal to 1.� The links between nodes correspond to the overlapbetween operating regions. The system must movefrom one pure region to another in �nite time.Figure 5 summarizes this analysis.4.2 Qualitative Analysis of the GlobalControl LawA global analysis of the heterogeneous system is possiblewhen we can establish suitable relations among the indi-

vidual control laws.Suppose we can establish that the global control lawu(x) is a monotonic function of x. Then the closed-loopsystem can be described as_x = q � u(x) p(x) = q � f(x); for some f 2M+:Since this is a �rst-order system, the analysis is straight-forward. An equilibrium exists if q is in the range of f .The solution is unique since f is monotone. The solutionis stable because f 0 > 0, since f 2M+.It is necessary to introduce some compatibility condi-tions in order to avoid pathological behavior of the system.To see this, consider the case where only two controllersare combined (e.g., the Normal and High controllers overthe range (b;1) in the water-tank example). The controlsignal is thenu(x) = n(x) un(x) + h(x) uh(x):It is natural to have controllers such thatdundx � 0 and duhdx � 0:Unfortunately, these conditions do not guarantee that u ismonotone. To obtain this, some auxiliary conditions arerequired.Consider u0 = n u0n + n0 un + h u0h + h0 uhn+ h = 1n0 + h0 = 0The problem is that n0 is negative. However, we can con-clude: u0 = n u0n + h u0h + h0(uh � un)This assures us that u0 > 0, and hence that f(x) =u(x) p(x) is in M+, if we impose the natural conditionun(x) � uh(x):This condition needs to hold only for x where the tworegions overlap. The argument obviously extends to morecomplex heterogeneous controllers, such as the water tank,where no more than two regions overlap at any point.Consider the case where three regions overlap.l + n+ h = 1l0 + n0 + h0 = 0The analysis produces a similar result:u0 = l u0l + l0 ul + n u0n + n0 un + h u0h + h0 uh= l u0l + n u0n + h u0h + n0(un � ul) + h0(uh � ul)Thus the constraint,ul(x) � un(x) � uh(x);guarantees that u0 � 0 even when all regions overlap.Notice that this constraint does not require that the lo-cal control laws be linear. Furthermore, a local control lawneeds to satisfy this constraint only where its membershipfunction is non-zero.



65 Simulation ResultsWe can illustrate the performance of a heterogeneous con-troller on a water tank, in comparison with a proportionalcontroller.The capacity of the tank is 1000 liters of water. Thenominal inow rate is 100 liters/minute. The setpoint, xs,is 700 liters. The o�set us in the Normal control law unis set so that the steady state is at the setpoint when theinow is nominal. The gain k is set so that un(0) = 0.The proportional controller simply uses un as the globalcontrol law.4The operating regions for the HC controller are speci�edas in �gure 3, with a = 600, b = 650, c = 750, d = 800,and MAX = 50.Figure 6 shows the two control laws, and contrasts thebehavior of the two controllers at constant nominal inow,starting from initial states with the tank full and empty.Figure 7 shows the response of the two controllers to ran-dom variation in inow.6 Integral ActionThe bias term in the proportional controller was intro-duced to make it possible for the controller to keep thelevel at the set point. Integral action may be viewed as anautomatic adjustment of the bias term [See Figure 2.2 in�Astr�om and H�agglund, 1988]. For a simple PI controllerthe bias is generated asT dusdt + us = ke + usor T dusdt = up = ke (1)where up is the output of the PI controller, e the errorx � xs, k the proportional gain and T is the integrationtime. For a composite controller like the one used in het-erogeneous control up should be replaced by the output ofthe heterogeneous controller.Analysis of a controller with integral action is more com-plicated because the closed loop system is described by asecond order di�erential equation and a simple monotonic-ity argument like the one used previously does not applydirectly.Just as there were two alternative approaches to thequalitative analysis of the heterogeneous \proportional"controller, there appear to be three basic approaches to an-alyzing the \integral" component of a heterogeneous con-troller.1. The bias term us is adjusted, at a slower time-scale,by a heterogeneous P-controller as a function of thesteady-state error, xs � x(1) as discussed below.2. Local control laws, even with integral action, can beanalyzed qualitatively, and associated with overlap-ping operating regions in the phase plane. If the di-rections of ow in the overlap regions are compatible,4This comparison is for illustration only, since the propor-tional controller has an unrealistically low gain. With a highergain, however, the physical limits on the valve make the pro-portional controller behave like a heterogeneous controller, butwithout smooth transitions or explicit design and validation.
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Figure 6: Comparison between P and HC controllers.(a) The heterogeneous control law �u(x), and the proportionalcontroller un(x) are identical in the Normal region.(b) The behaviors, x(t), of the P- and HC-controllers, start-ing with the tank empty or full, with constant q at thenominal rate, so that steady state is at the setpoint.Proportional Heterogeneous
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7the qualitative descriptions can be combined into adiscrete transition-graph representing behavior in thephase plane [Sacks, 1990].3. The local laws may be combined into a global con-trol law using the weighted average combination rule,which may then be analyzed qualitatively.One possibility is to exploit the fact integral action is aslow process. The idea of time scale separation introducedin [Kuipers, 1987] can then be applied. The full details willbe given elsewhere. Let us just outline the ideas of the rea-soning. Provided that the integration time T is su�cientlysmall the closed loop system can be decomposed into a fastsystem, where the bias term is considered constant, and aslow system, where the fast system is considered as a staticsystem. The previous analysis then applies to the fast sys-tem. It follows from this analysis that the level goes to anequilibrium which may be di�erent from the set point. Atequilibrium the fast system can be described byup = �f(us) (2)where the function f belongs to M+. The slow system isdescribed by (2) and (1), i.e.T dusdt = up = �f(us)Since f is monotone this equation has a unique stable equi-librium up = ke = 0which implies that the error e must be zero when the slowsystem reaches equilibrium.7 Relationship to Fuzzy LogicControlOur approach to heterogeneous control shares many goalswith, and draws much inspiration from fuzzy logic control[Zadeh, 1973; Mamdani, 1974]. First, both approachesprovide the ability to express and use incomplete knowl-edge of the system being controlled and the control lawitself. Second, both approaches allow one to specify a com-plex control law as the composition of simple components.Third, both use fuzzy set membership functions to providesmooth transitions from region to region.However, there are important di�erences between ourapproach and fuzzy logic control. Within the frameworkof fuzzy logic control, it is di�cult to exploit, or even re-late to, the methods or results of traditional control the-ory. Our approach uses landmark-based qualitative rea-soning to combine the bene�ts of fuzzy logic control withthe analysis methods of traditional control theory.Granularity. A fuzzy logic controller is typically speci-�ed as a relatively �ne-grained set of (fuzzy) regions,with a constant (fuzzy) action associated with eachregion. Within our framework, the design for a con-troller speci�es a smaller set of qualitatively distinctoperating regions, but with a classical control law as-sociated with each region.The net result of these two di�erences is that an HCcontroller requires a simpler speci�cation, while pro-viding the higher-precision control characteristic ofclassical control laws.

Ontology. We do not treat \linguistic values" or \linguis-tic variables" as objects in either the domain or rangeof our functions. Rather, the fundamental objectsin heterogeneous control are real-valued, continuouslydi�erentiable functions, and sets of such functions de-�ned by qualitative constraints.Linguistic terms are treated simply as names for theoperating regions of the mechanism. The speci�ca-tions for the operating regions are tested for sound-ness by the qualitative analysis methods.\Defuzzi�cation." The output of a fuzzy logic controllaw is typically a constant action with a fuzzy magni-tude. The fuzzy magnitudemust then be mapped to areal value for output. Since control laws in our frame-work are classical control laws, they provide real, notfuzzy, outputs, and \defuzzi�cation" is not necessary.Compatability. The concepts underlying fuzzy logic con-trol are relatively di�cult to map into the classi-cal framework, making it di�cult to exploit existingmethods for providing guarantees for the propertiesof fuzzy logic controllers.In HC control, the individual regions can be analyzedusing classical methods, and we have demonstratedqualitative methods for combining analyses of the in-dividual regions into a global analysis.Speci�city. Although both approaches have the goal ofrepresenting incomplete knowledge, fuzzy set mem-bership functions must be represented as speci�c real-valued functions.While an appropriateness measure in an HC con-troller must also be fully speci�ed, the analysis ofthe controller relies only on a qualitative description(e.g. S+, S�, or S+ �S�) of the measure. This makesexplicit the fact that a single guarantee applies toa whole class of appropriateness measures, allowingadditional degrees of freedom for implementation de-cisions. The goal of qualitative analysis is to de�nethe least restrictive description of the controller whichprovides a given performance guarantee.8 References1. K. T. �Astr�om and T. H�agglund. 1988. AutomaticTuning of PID Controllers. Research Triangle Park,NC: Instrument Society of America.2. G.F. Franklin, J.D. Powell and A. Emami-Naeini.1986. Feedback Control of Dynamics Systems. Read-ing, MA: Addison-Wesley.3. B. J. Kuipers. 1986. Qualitative simulation. Arti�-cial Intelligence 29: 289 - 338.4. B. Kuipers. 1987. Abstraction by time-scale in qual-itative simulation. Proceedings of the National Con-ference on Arti�cial Intelligence (AAAI-87). Los Al-tos, CA: Morgan Kaufman.5. B. Kuipers. 1989. Qualitative reasoning: modelingand simulationwith incomplete knowledge. Automat-ica 25: 571-585.6. E. H. Mamdani. 1974. Applications of fuzzy algo-rithms for control of a simple dynamic plant. Proc.IEEE 121: 1585-1588.
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