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Abstract

We present a method whereby a robot can learn to recog-
nize places with high accuracy, in spite of perceptual alias-
ing (different places appear the same) and image variability
(the same place appears differently). The first step in learn-
ing place recognition restricts attention to distinctive states
identified by the map-learning algorithm, and eliminates im-
age variability by unsupervised learning of clusters of sim-
ilar sensory images. The clusters defineviews associated
with distinctive states, often increasing perceptual aliasing.
The second step eliminates perceptual aliasing by building a
causal/topological map and using history information gath-
ered during exploration to disambiguate distinctive states.
The third step uses the labeled images for supervised learn-
ing of direct associations from sensory images to distinctive
states. We evaluate the method using a physical mobile robot
in two environments, showing high recognition rates in spite
of large amounts of perceptual aliasing.

Introduction
It is valuable for a robot to know its position and orientation
with respect to a map of its environment. This allows it to
plan actions and predict their results, using its map.

We defineplace recognitionas identifying the current po-
sition and orientation, a task sometimes called “global lo-
calization” (Thrunet al. 2001). However, not every location
in the environment is a “place”, deserving of independent
recognition. Humans tend to remember places which are
distinctive, for example by serving as decision points, better
than intermediate points during travel (Lynch 1960). In fact,
Polynesian navigators use distinctive places as representa-
tional devices even when they cannot be physically detected,
such as on the open ocean (Hutchins 1995).

Real sensors are imperfect, so important but subtle image
features may be buried in sensor noise. Two complementary
problems stand in the way of reliable place recognition.
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� Perceptual aliasing: different places may have similar or
identical sensory images.

� Image variability: the same position and orientation may
have different sensory images on different occasions, for
example at different times of day.

These two problems trade off against each other. With rel-
atively impoverished sensors (e.g., a sonar ring) many places
have similar images, so the dominant problem is perceptual
aliasing. With richer sensors such as vision or laser range-
finders, discriminating features are more likely to be present
in the image, but so are noise and dynamic changes, so the
dominant problem for recognition becomes image variabil-
ity. We want to use real sensors in real environments, avoid-
ing assumptions that restrict us to certain types of sensors or
make it difficult to scale up to large, non-simply-connected
environments.

Unique place recognition is not always possible using the
current sensory image alone. If necessary, we will use ac-
tive exploration to obtain history information to determine
the correct place. However, when subtle features, adequate
for discriminating between different places, are buried in the
noise due to image variability, we want to recover those fea-
tures.

We build on theSpatial Semantic Hierarchy(SSH) which
provides an abstraction of the continuous environment to a
discrete set ofdistinctive states(dstates), linked by reliable
actions (Kuipers & Byun 1991; Kuipers 2000). We assume
that the agent has previously learned a set of features and
control laws adequate to provide reliable transitions among a
set of distinctive states in the environment (Pierce & Kuipers
1997).

A Hybrid Solution
The steps in our solution to the place recognition problem
apply several different learning and deductive methods (Fig-
ure 1).

1. Restrict attention to recognizingdistinctive states
(dstates). Distinctive states are well-separated in the
robot’s state space.

2. Apply an unsupervised clustering algorithm to the sensory
images obtained at the dstates in the environment. This
reduces image variability by mapping different images of
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Figure 1: Bootstrap learning of place recognition. Solid ar-
rows represent the major inference paths, while dotted ar-
rows represent feedback.

the same place into the same cluster, even at the cost of
increasing perceptual aliasing by mapping images of dif-
ferent states into the same cluster. We define each cluster
to be aview, in the sense of the SSH (Kuipers 2000).

3. Build the SSH causal and topological maps — sym-
bolic descriptions made up of dstates, views, places,
and paths — by exploration and abduction from the ob-
served sequence of views and actions (Kuipers 2000;
Remolina & Kuipers 2001). This provides an unambigu-
ous assignment of the correct dstate to each experienced
image, which is feedback path (a) in Figure 1.

4. The correct causal/topological map labels each image
with the correct dstate. Apply a supervised learning al-
gorithm to learn a direct association from sensory image
to dstate. The added information in supervised learning
makes it possible to identify subtle discriminating features
that were not distinguishable from noise by the unsuper-
vised clustering algorithm. This is feedback path (b) in
Figure 1.

We call thisbootstrap learningbecause of the way a weak
learning method (clustering) provides the prerequisites for
a deductive method (map-building), which in turn provides
the labels required by a stronger supervised learning method
(nearest neighbor), which can finally achieve high perfor-
mance.

Markov Localization
Markov localization has been used effectively by Thrun and
his colleagues (Thrun, Fox, & Burgard 1998; Thrunet al.
2001) to build occupancy grid maps and to localize the robot
in the grid, given observations from range sensors. The cen-
tral equation for Markov localization is

p(x0ja; o;m) = � p(ojx0;m)

Z
p(x0jx; a;m) p(xjm) dx

(1)
which updates the prior probability distributionp(xjm) over
statesx in the mapm, to the posterior probability distri-
bution p(x0ja; o;m) after performing actiona and observ-
ing sensory imageo. p(ojx0;m) is the sensor model for the
agent,p(x0jx; a;m) is the action model, and� is a normal-
izing constant.

The Markov equation (1) applies whetherm is an occu-
pancy grid or a topological graph (Basye, Dean, & Kaelbling
1995), and its structure will help us compare the two repre-
sentations.

Occupancy Grids
The occupancy grid representation has been popular and
successful (Moravec 1988; Thrun, Fox, & Burgard 1998;
Yamauchi, Schultz, & Adams 1998). Although the size of
the occupancy grid grows quadratically with the size of the
environment and the desired spatial resolution of the grid,
this memory cost is feasible for moderate-sized environ-
ments, and modern Monte Carlo algorithms (Thrunet al.
2001) make the update computation tractable. Nonetheless,
fundamental drawbacks remain.

� The occupancy grid assumes a single global frame of
reference for representing locations in the environment.
When exploring an extended environment, metrical errors
accumulate. Reconciling position estimates after travel-
ing around a circuit requires reasoning with a topological
skeleton of special locations (Thrunet al. 1998).

� The occupancy grid representation is designed for range-
sensors.1 For a laser range-finder, an observationo con-
sists of 180 range measurementsri at1Æ intervals around
a semicircle:o = ^ri. The scalar value stored in a cell of
the grid represents the probability that a range-sensor will
perceive that cell as occupied, making it relatively simple
to definep(rijx;m). Deriving a usable value ofp(ojx;m)
is problematic, however.

The topological map representation (i) uses a set of dstates
vastly smaller than an occupancy grid, (ii) does not assume
a single global frame of reference, (iii) does not embed as-
sumptions about the nature of the sensors in the represen-
tation, and (iv) clusters imageso into viewsv giving a nat-
ural meaning top(vjx;m). We are particularly interested

1Minerva (Thrunet al. 2001, sect. 2.7) used Markov local-
ization with particle filters using visual images from a vertically-
mounted camera to localize in a “ceiling map.” The ceiling map
can be represented in an occupancy-grid-like structure because of
the way nearby images share content. This trick does not appear to
generalize to forward-facing images.



in a uniform framework for place recognition that will gen-
eralize from range-sensors to visual images (cf. (Ulrich &
Nourbakhsh 2000)).

Abstraction to Distinctive States
The Spatial Semantic Hierarchy (Kuipers 2000) builds a
topological map by abstracting the behavior of continuous
control laws in local segments of the environment to a di-
rected graph ofdistinctive statesand actions linking them.

A distinctive state is the isolated fixed-point of a hill-
climbing control law. A sequence of control laws taking the
robot from one dstate to the next is abstracted to anaction.

Starting at a given distinctive state, there may be a choice
of applicabletrajectory-followingcontrol laws that can take
the agent to the neighborhood of another distinctive state.
While following the selected trajectory-following control
law, the agent detects a qualitative change indicating the
neighborhood of another distinctive state. It then selects
a hill-climbing control law that brings the agent to an iso-
lated local maximum, which is the destination distinctive
state. The error-correcting properties of the control laws,
especially the hill-climbing step, mean that travel from one
distinctive state to another is reliable, i.e., can be described
as deterministic.

The directed linkhx; a; x0i represents the assertion that
action a is the sequence of trajectory-following and hill-
climbing control laws that leads deterministically fromx to
x0, both distinctive states. The directed graph made up of
these links is called thecausal map. The topological map
extends the causal map with places, paths, and regions.

Since actions are deterministic, if the linkhx; a; x0i
is in the causal map, thenp(x0jx; a;m) = 1, while
p(x00jx; a;m) = 0 for x00 6= x0. This lets us simplify equa-
tion (1) to get

p(x0ja; o;m) = � p(ojx0;m)
X

fp(xjm) : hx; a; x0ig (2)

A topological map represents vastly fewer values ofx
than an occupancy grid, so evaluating the sum in equation
(2) will be very efficient.

Distinctive states are well-separated in the environment.
Intuition suggests, and our empirical results below demon-
strate, that sensory images collected at distinctive states are
well-separated in image space, with the possibility of multi-
ple states sharing the same cluster.

Unfortunately, one can construct counterexamples to
show that this is not guaranteed in general. In particular,
if sensory images are collected at states evenly distributed
through the environment (Yamauchi & Langley 1997; Duck-
ett & Nehmzow 2000), then image variability will dominate
the differences due to separation between states, and well-
separated clusters will not be found in image space. Restrict-
ing attention to a one-dimensional manifold or “roadmap”
within the environment (Romero, Morales, & Sucar 2001)
reduces image variability significantly, but not as much as
our focus on distinctive states.

Cluster Images Into Views
A realistic robot will have a rich sensory interface, so the
sensory imageo is an element of a high-dimensional space,

andp(ojx;m) is so small as to be meaningless. Therefore,
we cluster sensory imageso into a small set of clusters,
calledviewsv. The views impose a finite structure on the
sensory space, sop(vjx;m) is meaningful, and in fact can
be estimated with increasing accuracy with increasing expe-
rience observing imageso at positionx. This lets us trans-
form equation (2) into the more useful:

p(x0ja; v;m) = � p(vjx0;m)
X

fp(xjm) : hx; a; x0ig

(3)
In addition, our place recognition method clusters images

aggressively, to eliminate image variability entirely even at
the cost of increasing perceptual aliasing. That is, for a given
distinctive statex, there is a single viewv such that, for
every sensory imageo observed atx, o 2 v. We describe
this situation by the relationview(x; v). This means that
p(vjx;m) = 1 andp(v0jx;m) = 0 for v0 6= v, allowing us
to simplify equation (3) further:

p(x0ja; v;m) = �
X

fp(xjm) : hx; a; x0i ^ view(x0; v)g

(4)
Intuitively, this means that prior uncertainty inp(xjm) is

carried forward top(x0ja; o;m), except that alternatives are
eliminated if the expected viewv is not observed. The prob-
ability mass associated with that alternative is distributed
across the other cases when the normalization constant�
is recomputed.

Where does prior uncertainty come from, since this pro-
cess can only decrease it?If the initial problem is global
localization, then initial ignorance of position is reflected in
the distributionp(xjm). Alternatively, if the robot is explor-
ing and building a map of an unknown environment, then
sometimes it will be at a dstatex performing an actiona
such thathx; a; x0i is unknown. A viewv is observed, but the
resulting probability mass must be distributed across dstates
x0 such thatview(x0; v).

How Many Clusters?
We cluster images usingk-means (Duda, Hart, & Stork
2001), searching for the best value ofk. We use two dif-
ferent metrics to assess the quality of clustering: one for the
agent to use to select a value ofk, and one for omniscient
researchers to use to evaluate the agent’s selection.

The decision metricM uses only information available
to the agent, so the agent can select the value ofk > 1
that maximizesM . After exploring several alternatives, we
adopted the following formulation of this metric which re-
wards both tight clusters (the denominator in equation (5))
and clear separation between clusters (the numerator).

M =
mini6=j [minfdist(x; y) : x 2 ci; y 2 cjg]

maxi[maxfdist(x; y) : x; y 2 cig]
(5)

Theevaluation metricU uses knowledge of the true dstate
x associated with each imageo to allow the researchers
to assess the quality of each clusterv. The agent, how-
ever, does not have access toU . Theuncertainty coefficient
U(vjx) measures the extent to which knowledge of dstatex
predicts the viewv (Presset al. 1992, pp. 632–635). (Here,



Figure 2: Simple environment for testing image variability,
perceptual aliasing, and dstate disambiguation.

pi;j is the probability that the current view isvi and the cur-
rent dstate isxj .)

U(vjx) =
H(v)�H(vjx)

H(v)

H(v) = �
X
i

pi� ln pi� wherepi� =
X
j

pi;j

H(vjx) = �
X
i;j

pi;j ln
pi;j
p�j

wherep�j =
X
i

pi;j

U = 1 means that image variability has been completely
eliminated. Ask increases, perceptual aliasing decreases,
so the ideal outcome is for the value ofk selected by the
decision metricM to be the largestk for whichU = 1.

A Simple Experiment
We begin testing our method in the simplest environment
(Figure 2) with a distinguishing feature (the notch) small
enough to be obscured by image variability.

Lassie is a RWI Magellan robot. It perceives its envi-
ronment using a laser range-finder: each sensory imageo is
a point inR180, representing the ranges to obstacles in the
180Æ arc in front of the robot. So that the Euclidean distance
metric we use for clustering will emphasize short distances
over long ones, we apply a “reciprocal transform”, replacing
eachri in o with 1=ri.

Lassie explores a rectangular room (Figure 2) whose only
distinguishing feature is a small notch out of one corner. Im-
age variability arises from position and orientation variation
when Lassie reaches a distinctive state, and from the intrin-
sic noise in the laser range-finder. Perceptual aliasing arises
from the symmetry of the environment, and the lack of a
compass. The notch is designed to be a distinguishing fea-
ture that is small enough to be obscured by image variability.

As Lassie performs clockwise circuits of its environment,
it encounters eight distinctive states, one immediately be-
fore and one immediately after the turn at each corner. In
50 circuits of the notched rectangle environment (Figure 2),
Lassie experiences 400 images. Applying the decision met-
ric (5) of cluster quality, Lassie determines thatk = 4 is the
clear winner (Figure 3(top)). Figure 3(bottom) shows us that
k = 4 is also optimal to the evaluation metric.
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Figure 3: After Lassie explores the notched rectangle,k = 4
is selected as the best number of clusters by the decision
metricM (top), and is confirmed as optimal by the evalua-
tion metricU (bottom).

The notch in the rectangle is clearly being treated as noise
by the clustering algorithm, so diagonally opposite dstates
have the same views. In this environment, the four views
correspond to the following eight dstates.

view v0 v1 v2 v3
dstate x0; x4 x1; x5 x2; x6 x3; x7

Build the Causal and Topological Maps
As the robot travels among distinctive states, its continuous
experience is abstracted, first to an alternating sequence of
imagesok and actionsak, then images are clustered into
viewsvk, and finally views are associated with dstatesxk.

t0 t1 � � � tn
o0 a0 o1 a1 � � � an�1 on
v0 v1 � � � vn
x0 x1 � � � xn

Clustering images into views eliminates image variability,
but retains or increases perceptual aliasing:

view(x; v1) ^ view(x; v2) ! v1 = v2

view(x1; v) ^ view(x2; v) 6! x1 = x2

The problem is to determine the minimal set of distinctive
statesxi consistent with the observed sequence of views and
actions. (Remolina & Kuipers 2001; Remolina 2001) pro-
vide a non-monotonic formalization of this problem and the
axioms for the SSH causal and topological maps.

The approach is to assert that a pair of dstates is equal un-
less the causal or topological map implies that they are un-
equal. Of course, dstates with different views are unequal.
But how do we conclude thatx0 6= x4 even though they
share the same viewv0? When the topological map is con-
structed, dstatex0 is at a place that lies on a path defined by



dstatesx1 andx2. x4 is at a place that lies to the right of
that same path, sox4 6= x0. Similarly for the other pairs of
diagonally opposite states in Figure 2. Lassie thereby deter-
mines that the four views are part of a topological map with
eight dstates, four places, and four paths.

We were fortunate in this case that the prescribed explo-
ration route provided the necessary observations to resolve
the potential ambiguity. In general, it may be necessary
to search actively for the relevant experience, using “hom-
ing sequences” from deterministic finite automaton learn-
ing (Rivest & Schapire 1989) or the “rehearsal procedure”
(Kuipers & Byun 1991).2

Supervised Learning to Recognize Dstates
With unique identifiers for distinctive states (dstates), the su-
pervised learning step learns to identify the correct dstate
directly from the sensory image with high accuracy. The su-
pervised learning method is the nearest neighbor algorithm
(Duda, Hart, & Stork 2001). During training, images are
represented as points in the sensory space, labeled with their
true dstates. When a test image is queried, the dstate label
on the nearest stored image in the sensory space is proposed,
and the accuracy of this guess is recorded. Figure 6 shows
the rate of correct answers as a function of number of im-
ages experienced. In two test environments, accuracy rises
rapidly with experience to 100%.

The purpose of the supervised learning step is to resolve
cases of perceptual aliasing,

view(x1; v) ^ view(x2; v) ^ x1 6= x2;

by identifying a subtle distinctionv = v1 [ v2 such that
view(x1; v1) ^ view(x2; v2). The effect of this in the
Markov localization framework is that the probability distri-
butions in equation (3) will be sharper and the sets in equa-
tions (4) will be smaller.

In general, of course, it is impossible to eliminate ev-
ery case of perceptual aliasing, since there can be different
dstates whose distinguishing features, if present at all, can-
not be discerned by the robot’s sensors. In this case, the
robot must use historical context, via equation (4), to keep
track of its location.

A Natural Office Environment
A natural environment, even an office environment, contains
much more detail than the simplified notched-rectangle en-
vironment. To a robot with rich sensors, images at distinc-
tive states are much more distinguishable. Image variability
is the problem, not perceptual aliasing.

Lassie explored the main hallway on the second floor of
Taylor Hall (Figure 4). It collected 240 images from 20 dis-
tinctive states. The topological map linking them contained
seven places and four paths. When clustering the images, the

2We take comfort from the following qualified endorsement:
“Given a procedure that is guaranteed to uniquely identify a lo-
cation if it succeeds, and succeeds with high probability,. . . a
Kuipers-style map can be reliably probably almost always usefully
learned . . . ” (Basye, Dean, & Vitter 1997, p. 86).

Figure 4: Taylor Hall, second floor hallway (top). The ac-
tual environment is 80 meters long and includes trash cans,
lockers, benches, desks and a portable blackboard. The
causal/topological map (bottom) has 20 dstates, 7 places,
and 4 paths.

decision metricM had its maximum atk = 10. The evalua-
tion metricU shows that higher values ofk could still have
eliminated all image variability (Figure 5). By building the
causal and topological map the robot is able to disambiguate
all twenty distinctive states, even though there are only ten
different views. Given the correct labeling of images with
dstates, the supervised learner reaches high accuracy (Fig-
ure 6(b)). In these environments, with rich sensors, perfect
accuracy is achievable because sensory features are present
with the information necessary to determine the dstate cor-
rectly, but supervised learning is required to extract that in-
formation from natural variation.

Conclusion and Future Work
We have established that bootstrap learning for place recog-
nition can achieve high accuracy with real sensory images
from a physical robot exploring among distinctive states in
real environments. The method starts by eliminating im-
age variability by focusing on distinctive states and doing
unsupervised clustering of images. Then, by building the
causal and topological maps, distinctive states are disam-
biguated and perceptual aliasing is eliminated. Finally, su-
pervised learning of labeled images achieves high accuracy
direct recognition of distinctive states from sensory images.

In future work, we plan to explore methods for robust
error-recovery during exploration, by falling back from log-
ical inference in the topological map to Markov localization
when low-probability events violate the abstraction under-
lying the cognitive map. Once further exploration moves
p(vjx;m) andp(x0jx; a;m) back to extreme values, the ab-
straction to a logical representation can be restored.

We are also exploring the use of local metrical maps, re-
stricted to the neighborhoods of distinctive states, to elimi-
nate the need for physical motion of the robot to the actual
location of the locally distinctive state.

The current unsupervised and supervised learning algo-
rithms we use arek-means and nearest neighbor.k-means
will not scale up to the demands of clustering visual im-
ages. We plan to experiment with other algorithms to fill
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Figure 5: After Lassie’s exploration of the Taylor hallway,
k = 10 is selected as the best number of clusters by the
decision metricM (top). The evaluation metricU (bot-
tom) shows that larger numbers of views could have been
selected, butk = 10 was still enough for supervised learn-
ing to converge to correct identification.

these roles in the learning method. Other representation and
clustering techniques may be more sensitive to the kinds of
similarities and distinctions present in sensor images. Super-
vised learning methods like backprop may make it possible
to analyze hidden units to determine which features are crit-
ical to the discrimination and which are noise. Using meth-
ods like these, it may be possible to discover explanations
for certain aspects of image variability, for example the ef-
fect of time of day on visual image illumination.
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