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Abstract

Incomplete knowledge of the structure of mech-
anisms is an important fact of life in reason-
ing, commonsense or expert, about the physical
world. Qualitative simulation captures an impor-
tant kind of incomplete, ordinal, knowledge, and
predicts the set of qualitatively possible behav-
iors of a mechanism, given a qualitative descrip-
tion of its structure and initial state. However,
one frequently has gquantitative knowledge as well
as qualitative, though seldom enough to specify
a numerical simulation.

We present a method for incrementally exploit-
ing incomplete quantitative knowledge, by using
it to refine the predictions of a qualitative rea-
soner. Incomplete quantitative descriptions (cur-
rently ranges within which unknown values are
assumed to lie) are asserted about some land-
mark values in the quantity spaces of qualita-
tive parameters. Unknown monotonic function
constraints may be bounded by numerically com-
putable envelope functions. Implications are de-
rived by local propagation across the constraints
in the model.

When this refinement process produces a con-
tradiction, a qualitatively plausible behavior is
shown to conflict with the quantitative knowl-
edge. When all predicted behaviors of a given
model are contradicted, the model is refuted. If
a behavior is not refuted, propagation of quan-
titative information results in a mixed quantita-
tive/qualitative description of behavior that can
be compared with other surviving predictions for
differential diagnosis.

1 Introduction

A qualitative model of a device or system is an abstrac-
tion of a set of real systems. The behavior of these sys-
tems can vary greatly, yet purely qualitative descriptions
of these behaviors are identical. Quantitative knowledge
about these systems can, however, allow them and their
behaviors to be distinguished. Adding quantitative infor-
mation to qualitative modeling allows more precise charac-
terization of systems and their behaviors. This increased
precision can help in diagnosis and prediction of behavior,

*This research was supported in part by the National Science
Foundation through grant number IRI-8602665.

even if there is much too little for numerical simulation.
Consider the example of the pressure regulator.

A working pressure regulator of the type described in
[de Kleer and Brown, 1985] has a fluid input of varying
pressure. The regulator has an internal, continuously vari-
able valve which regulates the pressure at the output port
so that its variation is considerably smaller than the vari-
ation at the input port. It does this by sensing the output
pressure and closing the valve to restrict the flow as the
output pressure rises, or opening the valve when the out-
put pressure falls.

The pressure regulator may malfunction by having the
internal valve stuck in one position, so that it cannot con-
trol the output pressure. For both the working and stuck
pressure regulators, an increase in input pressure leads to
an increase in output pressure, but for the working reg-
ulator the increase is significantly less. Qualitative simu-
lation of both the working and stuck regulators indicates
correctly that an input pressure increase implies an out-
put pressure increase. However, the qualitative description
alone cannot distinguish between the working and stuck
regulators on the basis of output pressure variation (or
any other easily measured parameter). This problem may
arise with any proportionally controlled, negative feedback
system, an important class of real mechanisms.

Quantitative information is necessary to resolve this am-
biguity, but we wish to preserve our ability to reason reli-
ably with incomplete knowledge of the structure and nu-
merical values characterizing the physical system. Our
mixed qualitative-quantitative reasoner, Q2, makes it pos-
sible to assert incomplete quantitative knowledge in the
form of ranges!, about the landmark values in Kuipers’
[1986] QSIM behavioral description, and propagate their
consequences. Our method is applicable to other qualita-
tive reasoning systems with limitations discussed in section
4.

In the case of the pressure regulator, we assumed plausi-
ble ranges? of values for resistance and flow capacity, and

1Pully specified quantitative values are expressed as ranges
whose endpoints are identical.

2The term range is used rather than interval, because the
rules of interval arithmetic are not always valid in this appli-
cation. In interval arithmetic, if XY=K for intervals X, Y and
K, the width of Y decreases for increased width of X given K
(cf. Alefeld & Herzberger [1983]). But if X and Y are ranges
representing reals whose values are uncertain, then increased
width for X represents greater uncertainty in X, hence greater
uncertainty (i.e. tncreased width) in Y. Our ranges are to be
interpreted as representing probability distribution functions.
Range [A, B] thus represents any pdf whose value is positive
from A to B, and zero otherwise.



simulated the response of the regulator to a doubling of
the input pressure from [5,5.1] to [10,10.2]. Each of the
two models (working and stuck) predicted a single quali-
tative behavior: Output pressure increased. Augmenting
the qualitative descriptions with quantitative ranges, the
working model predicted the final value of the output pres-
sure to be in [1.91,2.98], while the stuck model predicted
an output pressure in [3.8,6.2]. This is precisely what is
required for differential diagnosis between the two models.

2 Propagation of Incomplete
Quantitative Information

We will explain our quantitative propagation method in
the context of a simple one-tank “bathtub” system; in this
case one with a partially blocked drain, so that outflow
increases only slowly with pressure.

There are three distinct qualitative behaviors for a bath-
tub which is being filled from empty with the drain left
open: (1) equilibrium between inflow and outflow before
amount reaches FULL, (2) overflow while inflow is greater
than outflow, and (3) equilibrium between inflow and out-
flow exactly when amount reaches FULL.

In Q2, two types of quantitative information are pro-
vided as part of the initial description of the system:

e Quantitative ranges describing what is known about
the values of certain landmark values, in this case the
landmark IF* of the parameter inflow(t), and the
landmark TOP of the parameter level(t).

e Numerically computable envelopes that bound the
(unknown and possibly nonlinear) monotonic function
constraints, such as out flow = M*(pressure).

Figure 1 shows the only quantitatively consistent be-
havior out of the three qualitative possibilities, given ini-
tial quantitative assertions about TOP, IF*, and envelopes
constraining the relations between amount and level, level
and pressure, and pressure and outflow. The two equi-
librium behaviors were found to be inconsistent with the
quantitative information given.

2.1 Types of Quantitative Propagation

Quantitative propagation occurs in different ways for the
various qualitative constraints being propagated over. As
a notational convention, if the qualitative behavior has
parameter(t) = L for a landmark L at a particular time-
point ¢, we may use either parameter(t) = [lo, hi] or
L = [lo, ki), to indicate that the quantitative range [lo, hi]
must contain the (unknown) numerical value of L.

In Q2, each type of qualitative constraint is associated
with a procedure for propagating partial quantitative in-
formation among its arguments. These procedures define
a quantitative semantics for the constraint that must of
course be consistent with the semantics already defined by
the qualitative simulator. The four types of methods for
propagating incomplete quantitative information are:

1. Propagation across arithmetic constraints:
ADD, MULT, MINUS.

This is exemplified by an ADD constraint in a model
of a bathtub, as shown in table 1. Note that divide

and (binary) subtract constraints are trivially imple-
mented with ADD and MULT.

(a) An ADD constraint:
netflow = inflow - outflow
(b) Landmark values at time ty (see Fig. 1):
netflow(ty) = inflow(ty) - outflow(t;)
ie., NF-1 = IF* - OF-1
(c) in terms of known ranges:
[0.051, 0.146] = [1, 1.01] - [0, 9999]
(d) The ADD can narrow the range for outflow(ty):
[0.051, 0.146] = [1, 1.01] — [0.864, 0.948]

Table 1: Propagation reduces range
bounds for each landmark.

2. Propagation across monotonic function con-
straints: M*, M~.
This is typified in the bathtub model by an “M+”
monotonic constraint between amount of water and
level in the tub, indicating that a change in either
parameter implies a change in the other in the same
direction. A qualitative monotonic function is a gener-
alization of a large space of possible quantitative func-
tions - indeed, all monotonic quantitative functions
for which the monotonicity has the same sign as that
of the corresponding qualitative function. There is a
middle ground between purely qualitative and fully
specified quantitative monotonic functions. We im-
plement this middle ground by using upper and lower
ENVELOPES (figure 2).
ENVELOPES are quantitative functions which bound
the space of quantitative functions that could apply to
a monotonic constraint to a greater extent than the
sign of the monotonicity. For the bathtub example, a
particular tub may be consistent with a bathtub model
that is partly quantified by envelopes constraining the
relation between amount and level if its function re-
lating amount and level falls within those envelopes.
Otherwise it is definitely not consistent (maybe it is
very funny-shaped tub, or perhaps not a tub at all
but a sink or swimming pool). Propagation through a
partially quantified M+ constraint occurs as described
in figure 2.

3. Propagation across quantity spaces.

Consider the net flow of water into the tub. At time
T1, the value of netflow is whatever quantitative
value is associated with the landmark named “NF-1”
(fig. 1). This value must be less than the value of
NF-0, which may be as high as 1.01, but is greater
than 0. Thus from the ordinal position of NF-1 and
the quantitative information associated with its neigh-
bors, we infer that net flow = [0,1.01]. With the help
of other sources of constraint, propagation eventually
narrows it all the way to [0.051,0.146].

4. Propagation across time-points: D/DT.

Finally, there is information flow from one state in
the behavior of a model to another. This occurs via
D/DT constraints, e.g., D/DT(amount)=netflow. By
looking at quantitative information about the values



Structure: Standard bathtub with open drain.,

Initialization: Filling at constant rate, starting from empty (S-0)

Behavior 2 of 3. Final state: (TRANSITION), (TRANSITION-IDENTITY NIL), T<INF.

Time point ranges: T0=[{0.0 0.0] T1=[0.873 18.216]
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at adjacent time points of the integral, the derivative
and the time, propagation can potentially constrain
the ranges associated with each of these. For the bath-
tub, the mean value theorem of calculus tells us that
3T € (T0,T1) such that

amount(T'1) — amount(T0)
(T1-1T0)

From figure 1 we see that net flow(T™*) = [0.051,1.01].
We also see that amount started out at 0 and climbed
to anywhere from 0.882 to 0.929. T0 is known to have
the value 0. Thus,

. [0.882,0.929]
T1 =0+ 551,10

net flow(T*) =

= [.873,18.216]

These four kinds of constraint apply the quantitative
information provided by the user to narrow the ranges as-
sociated with each landmark of each parameter until ei-
ther no further narrowing is possible, or an inconsistency
is flagged. Inconsistency, of course, is relative to a behav-
ior and means that the behavior is not compatible with
the available quantitative information. If all behaviors of
a model are inconsistent then an additional inference is
possible: The model itself is incompatible with the quan-
titative information, whether that information is known a
priori or from observations.

2.2 The propagation algorithm

The range propagator (cf. [Davis, 1987]) is straightfor-
ward, making no distinction between the various kinds of
constraint for control purposes. It starts by setting each
landmark of each model parameter to an initial range of
[0+, 00], [~00, 0], or [0,0], depending on whether the land-
mark is above zero, is the “0” landmark, or is below zero.
Then any quantitative information provided by the user is
used to narrow the appropriate landmarks. For the bath-
tub, (inflow . IF*), the “IF*” landmark of the inflow of
water from the faucet, is initialized to [1.0,1.01]. In addi-
tion, (level . TOP) is initialized to [0.9,0.91], meaning that
we are dealing with bathtubs whose height falls between
0.9 and 0.91.

Narrowed landmarks can potentially enable narrowing
of other landmarks. A constraint is attached to a land-
mark L if it and range r(L) can be used to try to narrow
other landmarks. All constraints attached to the narrowed
landmarks are added to an agenda. The propagation al-
gorithm now takes the first constraint off the agenda and
uses it to try to narrow the landmarks associated with it.
If it fails it goes back to the agenda for the next constraint.
If it succeeds it adds to the agenda all constraints attached
to any landmarks it succeeded in narrowing, and returns
to the agenda for a new constraint to process. The cur-
rent implementation is depth first, and termination occurs
when the agenda is empty. Our models run in on the order
of 1 minute.

2.3 Reasoning with Models, Behaviors,
and Values.

The Q2 reasoner can make distinctions at three levels of
granularity. The coarsest level deals with different systems

and their MODELS. For the bathtub system, different
models might include bathtubs with completely blocked
drains, ones with rusted out bottoms, ones with partially
blocked drains, and upside-down bathtubs.

Qualitative-quantitative reasoning can also discriminate
among different qualitative BEHAVIORS of a model. Be-
haviors of a model are consistent or not with the incom-
plete quantitative knowledge a user has provided. We have
previously shown how Q2 can infer, for a bathtub with
partially blocked drain that satisfies the specifications of
certain quantitative ranges, that the equilibrium behav-
iors are inconsistent and only the overflow behavior could
occur.

Figure 3 illustrates the reasoning about models and be-
haviors that is one of the capabilities of Q2.

The finest level of granularity deals with VALUES of pa-
rameters. For the bathtub, quantitative data in the form
of envelopes, and ranges that constrain uncertainty about
the tub height and the faucet flow, imply quantitative pre-
dictions (figure 1) about other qualitative aspects of the
bathtub and its behavior.
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Figure 3:
Quantitative reasoning eliminates
behaviors, and sometimes an entire model.
X designates an inconsistent behavior.

3 A More Complex Example

Consider the more complex example of a one-tank equilib-
rium system with a proportional controller attempting to
keep armnount near a desired point by modifying inflow.
One example of such a system is a heating system where
the rate of heat inflow from the heater is proportional to



the difference between the actual and desired temperature
of the heated vessel. (The usual household thermostat does
on-off control, not proportional control.) Linear propor-
tionality is only a special case of such a controller: In
general, restoring force may be a monotonic function of
the measured error. Proportionally controlled systems are
very common in the world, including physiological mecha-
nisms, chemical systems, automobile cruise control, etc.

We created four distinct models for a hypothetical pro-
portionally controlled heating system:

1. The properly working system;

2. Continuous maximum heating, regardless of tempera-
ture;

3. No heat at all, regardless of temperature;

4. Thermostat with faulty calibration, which acts as
though the temperature is higher or lower than it re-
ally is and therefore causes an equilibrium tempera-
ture different from the thermostat setting.

Most models have more than one possible qualitative
behavior. For example, a properly working temperature
controlling system may respond successfully to a demand
for increased heating, or it may “max out” by delivering
heat steadily at its maximum capacity despite increasing
demand. When given a particular set of a priori and
observed quantitative knowledge, Q2 generated eighteen
qualitatively possible behaviors from the four models, and
used the quantitative knowledge to eliminate all but two of
them. The remaining two make identical predictions, since
the fault model accounting for the uncalibrated thermostat
includes the behaviors of the properly working thermostat
as special cases.

4 Related Work

There has been considerable other work relevant to the
integration of quantitative with qualitative knowledge.
The measurement interpretation methods developed by
Forbus [1983, 1986] are closest to our work in terms of the
problem solved, though quite different in approach. We,
like Forbus, are attempting to interpret quantitative mea-
surements by matching the observed measurements against
the predictions of a model. Where there are several candi-
date models, or several behaviors of a given model, failure
to match refines the set of remaining viable candidates.
Our method differs from Forbus’ approach in the han-
dling of quantitative information. In the more complete
formulation [Forbus, 1986], a continuous stream of quanti-
tative data is mapped into a stream of qualitative descrip-
tions; in his example, directions of change, or Ds values
{+1,0,~1}. In an example involving heating a container of
mixed alcohol and water, the stream of temperature mea-
surements is described qualitatively as [+1,0,+1,0,+1].
The total envisionment of a given situation can be re-
garded as a finite-state transition graph, which is used to
“parse” the stream of Ds values from an acceptable initial
state to an acceptable final state. The path successfully
taken through the envisionment describes the sequence of
process structures the system goes through. Failure to
parse presumably refutes the model. Notice that a signifi-
cant amount of quantitative information is lost when fine-
grained quantitative measurements are mapped to coarser-

grained qualitative representations (in this case the Ds val-
ues), and the comparison with the model takes place with
the measurements expressed in the same coarse qualitative
terms as those used in the model.

In Q2, by contrast, quantitative information is used
to augment the qualitative descriptions. One advantage
of this approach is that quantitative information may
be propagated across constraints, providing information
about landmarks of parameters whose values have not even
been measured. Another advantage is that uncertain quan-
titative knowledge can be expressed precisely (in the form
of ranges), and used effectively. Third, multiple behav-
iors that satisfy the known quantitative constraints now
carry quantitative predictions, easing the problem of dif-
ferential diagnosis. Q2 is not currently designed to reason
with a continuous stream of quantitative measurements.
Instead, it takes descriptions of values at the endpoints
of time-periods of monotonic change. However, utilizing
measurements (as well as making partial quantitative pre-
dictions) for arbitrary times is a direction for future work,
both due to its promise for practical application and be-
cause it appears to be a natural extension of the current
system.

Karp and Friedland [1987] also share the goal of integrat-
ing qualitative and quantitative constraints in reasoning
about mechanisms. They create a frame for each parame-
ter at each instant, capable of representing a rich variety of
algebraic equations and inequalities involving that value,
plus frames for interactions between constraints. While
the expressive and inferential power of their approach is
potentially very large, so is the potential for combinatorial
explosion, since there is no clear structure on the types
of constraints and the circumstances under which differ-
ent types of constraints are applied. In Q2, ordinal rela-
tions between values and landmarks are used by QSIM to
propose qualitatively possible behaviors, and quantitative
ranges are then used to refine or refute each behavior. The
use of distinet types of knowledge for distinct purposes sup-
ports conceptual clarity and implementational efficiency.

Simmons’ [1986] quantity lattice, and Sacks’ [1987] hi-
erarchical inequality reasoner are more powerful methods
of arithmetic reasoning than the package currently in Q2.
We plan extensions along these lines.

As discussed above, our method depends on starting
with a qualitative description of behavior in terms of land-
mark values which function as “names” for real numbers,
and about which we can accumulate and refine quanti-
tative descriptions. Thus, our approach does not apply
in any natural way to qualitative category representations
such as {high, medium, low}, since these symbols refer to
sets rather than values, and the boundaries between the
sets are not distinctive values. Furthermore, qualitative
category representations do not support a rigorous form of
qualitative simulation, since limit analysis is not meaning-
ful in that context. It is also relatively difficult to apply
our approach to the de Kleer and Brown [1985] {+,0, -}
representation, since the quantity space contains no non-
zero landmarks, and zero already has a precise value.



5 Conclusions and Directions for
Future Work

For conceptual clarity during development, the current im-
plementation of Q2 applies quantitative knowledge to indi-
vidual, complete qualitative behaviors from the output of
QSIM. We plan to interleave quantitative and qualitative
processing, so that quantitative inferences can be applied
to partially complete qualitative behaviors. Where a quan-
titative inconsistency can be identified at an early stage, an
entire subtree of qualitative behaviors may be eliminated,
greatly increasing the efficiency of the overall simulation.

Qur current implementation represents incomplete
quantitative knowledge as numerically bounded ranges.
We believe that our approach will also be applicable to
propagation of quantities described by probability distri-
butions (i.e. mean and variance) [J. Pearl and P. Cheese-
man, personal communication]. In this case, the result will
not be to filter out certain behaviors as inconsistent, but
to define a probability distribution across the set of possi-
ble behaviors. Reasoning with mean-variance descriptions
of quantities is of obvious practical importance, given the
probabilistic nature of most real-world measurements.

As we have discussed, after assimilating a set of quanti-
tative observations, the refined quantitative descriptions of
surviving behaviors are precisely what is needed for differ-
ential diagnosis, for example by selecting a quantity whose
ranges in two different behaviors are non-overlapping, and
testing for its value. The work on “diagnosis from first
principles” by Davis [1984], Genesereth [1984] and Reiter
[1987] provides methods for optimizing the selection of new
tests.

It should also be possible to perform a sensitivity anal-
ysis [Raiffa, 1970] on the results of the propagation, to
assess the sensitivity of Q2’s conclusions to variations in
the quantitative observations. This will provide a first step
towards capturing second-order uncertainty in the descrip-
tions of incomplete quantitative knowledge.
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