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Summary

The Spatial Semantic Hierarchy and its predecessor the TQbiiR| are theories of
robot and human commonsense knowledge of large-scale:spacegnitive map
The focus of these theories is on how spatial knowledge igieed|from experience
in the environment, and how it can be used effectively inespftbeing incomplete
and sometimes incorrect.

This essay is a personal reflection on the evolution of thdsasi since their
beginning early in 1973 while | was a graduate student at tieM Lab. | attempt
to describe how, and due to what influences, my understarafilcgmmonsense
knowledge of space has changed over the years since then.

1 Prehistory

| entered MIT intending to study pure mathematics. | was gahesteeped in the
ideology of pure mathematics, and | had every intentionafiag completely away
from practical applications in favor of abstract beauty afejance. However, on a
whim, in Spring of 1973 | took Minsky and Papert's graduatedaduction to Artifi-
cial Intelligence. | was immediately hooked. | had alwaysibfascinated by the idea
of a science of the mind. But then in college | took a coursesiychology, which
was a crashing disappointment. The interesting parts Wesaentific, and the sci-
entific parts weren'tinteresting. Now, in artificial intigence, symbolic computation
promised mathematical methods capable of rigorously niogl@iteresting aspects
of the mind.

| spent that summer atthe MIT Al Lab, reading papers andrggttiore and more
excited. Marvin Minsky was circulating drafts of his “framipaper” [39], which ad-
vocated that research focus on representation and infeedraut complex symbolic
descriptions of meaningful objects and situations, ratiwan on individual proposi-
tions and logical inference. Such a description was calfegimae It had a number of
slots which could contaiwvalues and could be associated with symbol manipulation



2 Benjamin Kuipers

procedures for doing inference, including providitgfault valuegor empty slots. |
recall telling Pat Winston once that | found the frames cphtbe very compelling,
but | wondered where the slots come from.

Minsky’s classes introduced me to Piaget’s theories of thestbpment of chil-
dren’s knowledge of foundational domains, including spéioee, causality, and so
on. He, along with John McCarthy’s writings, also convinceelthat the nature and
representation of commonsense knowledge was a bottlessaok for artificial intel-
ligence. This was the problem | wanted to work on.

Following up on an idea of Minsky’s for model-based objeatagnition, and
using the edge-and-vertex representation from Blocks dVaslion, | wrote a paper
showing how a vision system could discriminate among a seealbf block models,
tracing a hypothesis from vertex to vertex along edges, aimdjicontradictory evi-
dence to force a jump to an alternate hypothesis when negésBais paper earned
me an invitation to spend Summer 1974 at Xerox PARC as a surstondent work-
ing with Danny Bobrow and Terry Winograd. | implemented aredndnstrated my
recognition system in Smalltalk on the Alto, alternatelyrweding at the wonderful
new technology and taking it totally for granted. The redigaper was named “A
frame for frames” [22] in conscious homage to Fillmore’sifaore influential “The
case for case” [11].

As the end of the summer approached, before returning to M€t with Danny
Bobrow to ask his advice on research topics. | explainedthatl enjoyed working
on model-based object recognition, but | really wanted tokwan the problem of
commonsense knowledge, and | didn’t know where to beginnpanggested that |
look at some work being done by Joe Becker and Bill MerriamBitIBn a simulated
robot learning the structure of a simulated city [3, 4].

| knew immediately that this was the right problehiow can a robot learn a
cognitive map from its own experience of the environméinfBcuses on spatial
knowledge, which is not only important, but is arguably therfdation for most other
kinds of commonsense knowledge [33]. It also looked likedtid factor well, in the
sense that | could define interesting sub-problems that sreedl enough to solve,
but which could be assembled into solutions to larger problas | made progress.
It would make a great PhD thesis topic, and | went back to Mipgya

2 Cognitive Background

Quite a bit was already known about how human knowledge afespastructured,
and how people use spatial knowledge to solve problems. kersed myself in that
highly diverse literature, reading papers from cognitisd developmental psychol-
ogy, urban planning, geography, linguistics, and the Viarta. Two books that par-

! Only with the benefit of much hindsight do | recognize the iy with the process of
building topological maps.
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ticularly influenced me wer&he Image of the Cifyby Kevin Lynch [36] andmage
and Environmenta new collection of papers edited by Downs and Stea [9]. Also
among the more cognitively oriented denizens of the MIT Abl Riaget's “genetic
epistemology” approach to developmental psychology (B18]) permeated the at-
mosphere.

What quickly emerged from all this reading was a view of sg&tnowledge con-
sisting of several quite different types of knowledge. Sevas procedural, “how-to”
knowledge about getting from one place to another. Someistedsof topological
connections between places and travel paths. And somestexhsif metrical lay-
outs approximately analogous to the environment itselbaa printed map. But it
was clear that accurate metrical layout descriptions casteif at all, and depended
on the earlier types of knowledge. Furthermore, spatigdaei;ng methods varied
across individuals, with developmental stage, with exgee in a particular envi-
ronment, or simply with individual cognitive style. A year so later, Siegel and
White's masterful survey of the development of spatial kiealge [56] confirmed
and deepened this view.

Since the differences between the representations foilabgabwledge are so
central, | started collecting route directions and sketepsifrom anyone available.
These were informal probes, designed to elicit a wide rarfgeebavior | could
examine for qualitative features, not formal experimergsighed to test or refute
hypotheses. What | needed was to complement the literaguiew with an intimate
sense of the phenomenon itself, as a basis for building a atatipnal model.

One immediate conclusion was that there is a lot of individaaiation in the
amount, nature, and accuracy of spatial knowledge thatreéifit people have, and in
how they express it. Another is that neither verbal direwioor sketch maps tend
to be particularly accurate about absolute distances ectitims. On the other hand,
topological relations such as the order of places on a pathe@onnections between
paths at a place, tend to be represented accurately and wioen@o creep in, they
are usually detected.

A common style for drawing a map was to follow a mental routaydng those
places and paths needed for the route, and perhaps neartyists. When the sub-
ject made an error in translating the route into the graphize representation, the
error was usually metrical, and could go unnoticed for gadme time as the map
was elaborated in an incorrect direction. The error woulddtected when it finally
came time to close a loop, and two occurrences of the same plaald be drawn
far apart, sometimes separated by other structures. regehe problem was easy,
but identifying the specific error or correcting it could hdtg difficult.

Some subjects used a different séylgketching the overall structure of a region,
such as the rectangular grid structure in Boston’s Back Basgtunately for my re-

2| later learned that both Lynchhe Image of the City36] and Miller, Galanter, and
Pribram’s influentialPlans and the Structure of Behavif88] were inspired by Kenneth
Boulding’s seminal bookThe Imag€6].

% These two styles were also identified by Linde and Labov [BSjubjects’ descriptions of
their apartment layouts.
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search, the geography of the Boston-Cambridge area abauitidisiteresting local
structures that fail to generalize over larger regionglilegato easily detectable geo-
graphical fallacies and paradoxes in people’s cognitivpsna

The overwhelming impression from both my own investigagi@amd the pub-
lished experimental studies is that human spatial knovdedmsists of a number
of distinct representations for different aspects of sp8oene people have many of
these cognitive modules, and they work together well, whileers may have fewer
of them, or they don’t work together so well. As a working htipesis, | took the
position that there is a single “complete” structure foradithese modules, working
well together, and that all the variants — with individuallet developmental stage,
or amount of experience in a particular environment — are ifigator restricted
versions of the ideal. This is similar to both Piaget’s “gimepistemology” and to
current notions of “ideal observer” models [12].

Since the target of my efforts was a structure of interaatimaglules, it was nat-
ural to do the research by identifying an interesting aspétihe phenomenon of
the cognitive map, constructing and testing individual oied to explain that as-
pect, and then looking for further parts of the natural pmeaoon not adequately
explained by existing modules.

3 The TOUR Model

My doctoral thesis described the representation of knogdexd large-scale space —
the cognitive mafd23, 24]. Space is considerdarge-scaleif its relevant structure
is at a scale larger than the sensory horizon, so knowledgeedftructure must be
acquired from exploration within it. The focus on largelscgpace allowed me to
avoid the difficult problems of computer vision and sceneasathnding. | focused
my attention on spatial representation and inference, p@cifically, on the problem
of how global spatial structure can be inferred from localssey experience. The
TOUR models a computational model of this kind of knowledge, incluglin most
cases how that knowledge is learned from experience.

The TOUR model describes an agtttiat receives a sequence of experiences as
it travels through the environment, and builds its own ctigaimap of that environ-
ment. The cognitive map is a symbolic representation, stingi of a set of frames
for describing different types of objects such as placethg@and regions; each type
with its own collection of attributes; each instance withues for some or all of
those attribute8 A place includes an attribute for the set of paths it is on,apdth
includes an attribute for the partially-ordered set of ptaon it. An agent on a path
faces in one of two directions: up or down the place-ordeoimghat path.

* The TOUR model and the Spatial Semantic Hierarchy are il describe both human
and robotic agents.

® The equivalence between frames and first-order predicgie is now well understood
[15]. Jimi Crawford and | later formalized the intuitionshied this version of frames as
“Access-Limited Logic” and its implementation, Algernon, B].
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As the agent receives experiences, it draws only those gsinds that can be
inferred efficiently with information available at the timEhis kind of “opportunis-
tic” inference puts a premium on representations capabéxpffessing incomplete
knowledge, so the results of small inference steps can hegepted and stored,
rather than being lost if attention moves elsewhere. Becatithis strategy, infer-
ence is very efficient, but several travels along a partiawate may be necessary
for the TOUR model to infer all of the conclusions that folldmgically from the
experience.

The TOUR model divides spatial representation into threel¢e procedural,
topological, and metricdl.At the procedural level, experience is modeled as a se-
quence of GO-TO and TURN actions, with associated distan@ngular magni-
tudes, respectively. The action description can be auggdemith descriptions of the
states before and after the action, each modeled as plabe apa direction along
the path. When not provided explicitly, these may be infiéfrem context.

The inferential heart of the TOUR model is the “TOUR machireefinite-state,
rule-driven automaton. It has a set of registers called ¥mu“Are-Here pointer”
describing the current place, path, direction, etc. Irdstdan infinite tape, its mem-
ory is a potentially infinite set of frames reachable throttighattributes of existing
frames. Knowledge of the current state fills in the initiedts description in the cur-
rent action. If the current place or path description camistehe final-state of the
current action, it does; if not, new descriptions are ciedteeither case, the results
update the You-Are-Here pointer, and they are stored asopdhe action, place,
and path descriptions, extending or confirming what wasipusly stored. Since the
world itself is assumed to have a single consistent stracturd since the representa-
tion is supposed to be sufficiently expressive of incomtatavledge for the results
of opportunistic inference, contradictions between st@ed newly-inferred infor-
mation should be rare. The problem of more extensive rei@gtnon and correction
of the map when such an error is detected was beyond the sttye esearch.

The sequence of GO-TO and TURN actions representing the’sgaperience
is provided by a simple natural language interface. Thefexte is based on Vaughan
Pratt's elegant LINGOL parser [49], which allows contesdef grammar rules to
be annotated with semantic interpretation routines. Tlaengrar makes it easy to
describe the agent’s experiences in natural-sounding instructions, such as:

Start on Broadway, at the intersection of Broadway and Rrcisptreet, fac-
ing Kendall Square.

Turn right onto Prospect Street.

Take Prospect Street to Central Square.

Turn right onto Mass Ave.

Take Mass Ave to Putnam Circle.

The topological level of the TOUR model is based on the cotivigcof places
and paths, the circular order of directed paths at each pdackthe partial ordering

% This division into levels is updated to reflect the later pergive of the Spatial Semantic
Hierarchy [32, 18].
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of places on each path. It also includes boundary relatiwhereby places can be
described as “to the right” or “to the left” of a path. Boungaglations can be used
to define regions in terms of bounding paths. All of these eagrled by the TOUR
model through opportunistic inference from experiencehm form of GO-TO and

TURN actions. Another form of topological knowledge is aiogghierarchy, which

allows the environment to be described, and route-planmiolglems to be solved, at
many different levels of abstraction. For the region hiengr the TOUR model de-
scribes the representation and use of the knowledge, bvidgono learning theory.

The metrical level of the TOUR model consists of attributed eelations with
continuous values, like distance and direction. Analogiapeepresentations such
as 2D occupancy grids [42] were still far in the future. EV&®-TO action includes
a description of the magnitude of travel from one place totlagoalong a given
path. This provides a constraint on the relative locatiotheftwo places in the 1D
frame of reference of that path. Enough observations ofx¢sis between pairs of
places on the same path determines the layout of placeswtithipath. Similarly,
observations of TURN magnitudes at a given place providesiglrlayout of the
directed paths at that place. These radial layouts can bepietted as defining the
heading of an agent at that place, path, and direction, byima frame of reference
local to the place, so headings cannot be compared from pbapkace. However,
if the GO-TO action magnitude is extended to include a “nefudar displacement”
attributeAd, then a single frame of reference can propagate along GOefi@na to
include multiple places. For places within a single frameeférence, GO-TO and
TURN actions provide relative distance and direction measents, from which a
2D layout of places can be inferred.

The TOUR model [23, 24] was the first computational model ef tognitive
map that explicitly addressed the multiple types of sp&tnwledge that must be
represented. It specifically focused on the topologicateggntations whose im-
portance was well-understood by researchers deeply famiith human cognitive
mapping, but which was widely overlooked by many others iycpslogy, geogra-
phy, and robotics. The major limitations of the TOUR modetevine oversimplified
interface to the agent’s actual sensorimotor experientiedrworld, and the inade-
quate treatment of analog metrical representations.

4 Explicit Representation of Sensory Views

One problem with the original TOUR model is that the procedilevel too thor-
oughly abstracts away the agent’s sensory input from the@é@mwent. The route-
direction-like input representation was unable to expedth®r gaps in the sequence
of experience or perceptual aliasing (different places kbek the same). Part of
solving this was to provide an explicit representation fmsory experience [25]. A
viewis an abstracted description of the sensory image expetengthe agent at a
particular state (i.e., place, path, and direction). Thé&JROnodel avoids the prob-
lem of interpreting input from any particular sensor (ewgsjon, sonar, laser) by
treating views as atomic symbols that can only be used d@svatkeys or matched
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for identity. The specific representation or implementatd views is outside the
scope of the theory (until later; see Sect. 7).

Given the concept of view we can define a more natural interfeepresenting
the agent’s experience as an alternating sequence of viehadions:

V0, A0,V1,01,V2,"**Un—-1,0n—-1,Un.

An actiona; can have type Turn or Travel, with an associated magnitude.

We can now replace the procedural description of travel eepee with a col-
lection of causal schemds, a,v'), where the view describes the context when
actiona is initiated, and’ describes the result aftethas completed [25]. A schema
(v, a,v") has the declarative interpretation that in contexfter performing action
a, one can expect resulting view, and the imperative interpretation that if the agent
experiences the context view it should do actior.

Knowledge of an experienced route is represented as a tiotiexf schemas, in-
dexed by their context views. This representation can egmeveral very plausible
states of incomplete knowledge. A gap in the route, perhapda inattention dur-
ing exploration, corresponds to omitted schemas in theerdascription. If all the
schemasguw, a,v') in a route description are complete, they form a linked &stthe
resultv’ of each schema allows retrieval based on the contextthe next schema
along the route. However, incomplete schefas, _) can be constructed if working
memory is disrupted during the possibly-extended time evhil taking place, be-
fore the result’ becomes available. Incomplete schemas still have theieiatjye
meanings, and can still be used to traverse the route pliysicahe environment,
since the environment will provide the result of each activhat is lost is the ability
to review the route in the absence of the environment.

In these ways and others, the schema representation is xenyssive of states
of incomplete knowledge of a route. Variations may dependevelopmental stage,
amount of experience with this route, amount of computatioesources available,
and frequency of disruptions. We extended this concept soridee one aspect of
individual variation in cognitive style, correspondingtte set of rules available for
constructing partial schemas [26].

As it happens, it took a while to recognize that a good forraicsure for rep-
resenting route experience is the familiar finite-stat®auaton, or more generally,
the partially-observable Markov decision process (POM[MB) 1, 2]. We require a
set of underlying states, that are themselves unobservable, but which map to ob-
servable views. The set of schemds;, a, z') represents the transition function for
the automaton, and the relatiotew(z, v) represents the mapping from unobserv-
able state to observable view. In full generality, POMDRn@zy of automata with
stochastic transition and observation functions is iriédale. However, this direction
of investigation takes us farther away from an understapafihnuman commonsense
spatial knowledge.

7 Starting around 1978-79, | decided to change researchtidinefor a variety of reasons
[19]. This led to a productive line of work on medical reasmnand qualitative simulation
[31, 16, 17, 28]. Spatial knowledge became a secondary comnecdil the mid-1990s.
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In the Spatial Semantic Hierarchy [18, 50], we assume thasttions(z, a, z')
among states are deterministic (reflecting the error-cting capabilities of feed-
back control laws), and that the relatiofew(z,v) is a function, though not nec-
essarily one-to-one. With these assumptions, and wheroenglphysical space,
learning a minimal underlying automaton from observatiexperience is generally
feasible in practice.

Fig. 1. A T-shaped space, and its topological model.

5 Abstracting Continuous Experience to Discrete States

A second problem with the original TOUR model is that it pygsoses that the
continuous experience of the agent has already been alkestta@ discrete sequence
of states and transitions. This was justified by Kevin Lysaiiservation that humans
tend to represent knowledge about decision points, withmhegs about the spaces
between them [36]. Nonetheless, this unexplained ab&ira@mained a gaping hole
in the theory, and it was a barrier to robot implementation.

My cognitive mapping research had been on hiatus for seyegak, with QSIM
receiving all of my attention, when a new grad student nameagYTai Byun ap-
proached me in 1986, wanting to do research on robot explarahd mapping. In
the course of our discussions, we ran directly into the mnobdf relating the robot’s
continuous behavior to the kind of discrete topological rttegd the TOUR model
creates. When we contemplated the simplest non-triviakemment | could think
of — two corridors joined to form a T (Fig. 1) — the conceptdi$tinctive place
became clear. If we overlay the obvious T-shaped topolbgiep onto the continu-
ous polygonal environment, the natural locations for the topological places are
at the dead-ends and the intersection, at locations etpntliisom the nearest obsta-
cles. The segments connecting places are clearly corrigtines. These loci corre-
sponding to topological places and topological paths adjusuggest the attractors
of hill-climbing and trajectory-following control lawsespectively. This basic idea,
of letting the attractors of continuous control laws define topological features of
large-scale space, led to several influential papers,dima{29, 30]. Fig. 2 demon-
strates this approach to the exploration of a simulatedrenmient.
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Fig. 2. A simulated robot applies the SSH exploration and mappirgtesty. It identifies a
topological graph of distinctive places and connectindgpgagments according to the behavior
of control laws in the environment

The selection of a control law couples the robot and its emvirent into a con-
tinuous dynamical system, which moves through its stateespaward an attractor.
The selection, execution, and termination of these cotdaved can be defined based
entirely on sensory features available “from the insidethaf agent, without any ap-
peal to the external semantics of the sensors or of the &=at(lt wasn't until later
that we actually tried téearnthe sensors, features, and control laws without appeal
to external semantics [47]. See Sect. 8.) This method fonidefisymbolic entities
referring to topological places and path segments in tefrtieedehaviors of control
laws is a concrete example of a solution to the Symbol GrounBroblem [14].

\ I P
A / Trajectory-following A
~ - N -
Hill-
climbing —
_ 0O _ _
dsl ds2 ~
~ \ -
/ ~
\ /
/ | / ‘ \
A
O O
A% V2

Fig. 3. Motion from one distinctive state to another via trajectéifowing and hill-climbing
control laws eliminates cumulative error. Reliable bebawian be abstracted to the causal
schema Vi, A, Va).
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By physically hill-climbing to the local optimum of a “distctiveness measure”
defined over the local neighborhood, the robot localizesfitgithin that neighbor-
hood with minimal assumptions about the nature of its sendeig. 3). Because the
dynamical system defines motion over the robot’s state sfacation plus orienta-
tion), rather than over the work space (location alone), araeto realize that what
is distinctive is the state, rather than the place, so werbégaefer todistinctive
stategrather thardistinctive placesFor example, the single topological place at a T-
intersection corresponds to four distinctive states, trithsame location and differ-
ent orientations. The Turn actions that link them corresjortrajectory-following
control laws that change only orientation, followed bygilimbing control laws to
align with the walls of the corridors. (Later, in sect. 7, will @ee a new conception
of places and place neighborhoods.)

Motion among distinctive states avoids the problem of cuating error that typ-
ically plagues robot mapping. There is no attempt to maindai accurate location
in a single global frame of reference. Rather, the purposenadction is to move
reliably from one distinctive state to another one. Any ethat accumulates during
trajectory-following is eliminated by the hill-climbindep, as long as the error is not
so large as to miss entirely the basin of attraction of théimizson distinctive state.

6 The Spatial Semantic Hierarchy

We started with the idea that the cognitive map consistsfédréint representations
for knowledge of space. As we come to understand spatial katge more deeply,
the actual representations have evolved. We can best asgtr@se different repre-
sentations by grouping them accordingotatology the types of objects that can be
described and the relations that can hold among them.

TheSpatial Semantic Hierarch§8SH) describes the cognitive map as consisting
of four different levels, each with its own ontology, and ledevel grounded in the
ones below [32, 30, 18, 50].

e At the control leve| the agent and its environment are described as parts of a
continuous dynamical system. The agent acts by selectijectory-following
and hill-climbingcontrol laws subject to their applicability and termination con-
ditions, so the agent-environment system moves towardteactdr. The stable
attractor of a hill-climbing control law is calleddistinctive state

e At the causal level the agent and its environment are described as a partially
known finite-state automaton, whostatescorrespond to the distinctive states
identified at the control level, and whoaetionscorrespond to sequences of con-
trol laws.Viewsare the observable properties of states. A discrete statsition
at the causal level corresponds to the extended evolutidyrafmical systems at
the control level.

e Atthetopological levelthe environment is described in termspddices paths
andregions with relations such as connectivity, order, and contaimmé state
of the agent, described at the causal level, correspondsing lat a place, on a
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Continuous Analog
Attributes Model
Sensory names Sensor values
Control laws _, ~ Local 2-D
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termination
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Causal Actions Travel distance
Causal schemas

Places | qcal headings

Topological
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Connectivity
Order
\J
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geometry

Fig. 4. The Spatial Semantic Hierarchy. Closed-headed arrowssept dependencies; open-
headed arrows represent potential information flow withimgendency.

path, and facing along the path in one of two directions. Dpelogical map is
created by a process abduction to explain the sequence of views and actions
that represent the agent’s experience at the interfaceeeetthe control and
causal levels [50].

¢ Themetrical levelhas several different aspects. The causal and topological |
els may include attributes with quantitative values, siuetha magnitudes of ac-
tions, distances between places along paths, and anglesésepaths at places.
A local place neighborhood can be described by a two-dinoeasspatial ana-
log such as an occupancy grid, with a single frame of referefispatial analog
model of the large-scale environment can be created, basttskeleton pro-
vided by the topological map.

There are logical dependencies (Fig. 4) among the levelgshndonstrain the
combinations of representations that can occur. Diffepants of the cognitive map
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may represent knowledge at different SSH levels, but eachgbdhe map must
respect the dependency structure. The agent’s cognitipennagy have a global met-
rical map of one portion of the environment, a topologicapnef another, simply
causal knowledge of the sequence of actions to take in a, third then use the
control level to explore unknown territory. Or, when prabséam time or preoccupied
with other concerns, the agent may access only causal kdge/te follow a familiar
route even though topological and metrical knowledge maaMadable.

Emilio Remolina’s doctoral work [50] provided a major stepfard in the clar-
ity of the SSH. He provided a formal axiomatization for the-S&usal and topo-
logical levels, plus the quantitative attribute portiortioé metrical level. Since the
topological map is the result of an abduction process, fopttie best consistent ex-
planation of the available observations, the formalizatequired a non-monotonic
logic, in this case circumscription as embodied in Vladihifschitz’ nested abnor-
mality theories [34]. The axioms express the consistengyirements for topologi-
cal maps, and the nesting structure and the prioritizedigiscription policy express
the preference ordering on consistent maps. If a new ohs@mnshould refute the
current most preferred consistent map, then the preferemsing can be used to
help select a preferred map from those still consideredistamg.

This non-monotonic logical inference is implemented as lgorighm that cre-
ates a tree of all possible topological maps and imposesfarpreee order on the
leaves® At any point in time, the leaves of the tree represent theltapcal maps
consistent with experience so far. After a travel actiorches and describes a new
place neighborhood, some maps at the leaves of the treefated-@s inconsistent,
some are confirmed as consistent, and others branch on alistamt extensions.
Branches only take place when there is perceptual aliatliag;is, when different
places can have the same appearance. Then if a travel aetiohas a place that
appears the same as a previously-known place, two hypathasst be created: one
that the new place really is the same as the old one, and adg#tairthe new place
is genuinely new, but has the same appearance as the old one.

By initially creating all possible consistent successarg] refuting only the in-
consistent ones, we maintain the guarantee that the ceopadbgical map is present
in the tree [50, 21]. In subsequent work, Francesco Savedjirented the existing
topological axioms with a test for the planarity of the taggital map, which could
be applied either as a consistency requirement or as a enefecriterion [55]. It will
also be important to use probability as well as prioritizedumscription policies to
order the consistent maps [13].

The SSH treats observations gathered during exploratioheagundamental
source of experience for building a cognitive map of largals space. However,
there are other ways to obtain information about the straobd the environment.
Verbal route directions translate naturally into sequsrmfeactions (and minimal
descriptions of views) at the SSH causal level [37]. Infdrelk@tch maps translate

8 Strictly speaking, the abduction searches for the bestfssjuality and inequality axioms
over the symbols representing distinctive states. Theridgo creates models of those sets
of axioms, and tests them for consistency.
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naturally into subgraphs at the SSH topological level. Angcjse graphical maps
provide information at the SSH metrical level. These an@iothrms of spatial com-
munication are a topic for active research in psychologgudistics, and cognitive
science. One role for the SSH is to provide a useful desoripif the target repre-
sentation for such communication.

7 TheHybrid Spatial Semantic Hierarchy

The four levels of the basic SSH framework start to look predttisfactory. This lets
us turn our attention to certain assumptions and issuesenesslution will help us
broaden and improve the Spatial Semantic Hierarchy.

First, the basic SSH treats perception as a black-box psdhasreturns “view”
symbols, abstractions of the full sensory image, capable afrbeing matched for
equality or used as retrieval keys. We are ready to break dbw/hard separation
between large-scale space and small-scale perceptual. gpawore realistic theory
of perception of the local environment, with both laser rdfigders and computer
vision, needs to be integrated with the cognitive mappirgess.

Second, the basic SSH assumes that distinctive stateseantfied through the
agent’s physical motion, hill-climbing to the location imet environment that maxi-
mizes the current distinctiveness measure. This physioibmseems awkward and
unnecessary.

Third, there has been an explosion of successful work on teVS(simul-
taneous localization and mapping) problem, building neatrimaps of increasing
size directly from sensory input within a single global fraof reference [57]. This
approach differs significantly from the human cognitive nzeqa from the multi-
representation approach of the SSH. Do the two approachapeate? Are they
complementary? Is one suitable for modeling humans whdeother is for building
robots? We need to understand the relationship betweea tvesapproaches.

Fortunately, there is a synergy between these three comtieahleads to their
resolution [21]. Having defineldirge-scale spacas space whose structure is larger
than the sensory horizon, it is natural to defgmall-scale spacas space whose
structure is within the sensory horizon. Small-scale spaaescribed by docal
perceptual maghat is metrically accurate and is constructed directlyrfrgensory
input. Recently developed SLAM methods are well suited feating such a local
perceptual map. We avoid the problem of closing large logpinfining the map to
the agent’s local perceptual surround, where we can applgtiiengths of existing
SLAM methods. When reasoning about small-scale space, veancerned only
with the frame of reference of the local perceptual map, astdwith its inevitable
drift with respect to the world frame of reference. We ca# tiesulting combined
model of large-scale and small-scale spacehtfiwid SSH

Local SLAM methods continually maintain the agent'’s lozation in the frame
of reference of the local map. Accurate incremental loadilim supports accurate in-
corporation of observations into the local map, and acedoaal motion planning. In
the basic SSH, hill-climbing provides the same benefit ofisaie localization under
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weaker assumptions about sensors and effectors, but aighefghysical motion to
the distinctive state. In the hybrid SSH, when the agent haagh knowledge about
its sensors and effectors to maintain its localization imithe local perceptual map,
it no longer requires physical hill-climbing.

Where the basic SSH treats views as atomic symbols, matetigéoo equality,
the hybrid SSH treats the local perceptual map as the olddermeanifestation of a
topological place [21]. The local perceptual map of a plagigimborhood is parsed to
define a local topology that describes how directed path eatgnoin at that place.
Distinctive states in the basic SSH causal level correspomgghtewayswithin the
local perceptual map of the place. Two local perceptual naapsnatched by first
matching their local topology descriptions, and then miatgtheir perceptual maps
to give a probability that they correspond to the same stdite local perceptual map
with its local topology description bind together the snsalhle-space and large-
scale-space descriptions of the same place neighborhoddhas bind together the
continuous sensorimotor ontology and the discrete topcdbgntology.

The agent’s experience in the environment is an alternatingience of views
and actions. However, in the hybrid SSH, a view correspoadspiose within the
local perceptual map, a turn action corresponds to motidghimnvthe local percep-
tual map of the current place neighborhood, while a travébaanoves from one
place neighborhood with its local perceptual map, to arrgitaee neighborhood. In
addition to fixed local perceptual maps of place neighbodsoa scrolling local per-
ceptual map is used by trajectory-following control lawgasobserver” process to
model obstacles in the agent’'s immediate surround. A tapodd place is detected
at a change in the qualitative properties of the local togylof the scrolling local
perceptual map during execution of a trajectory-followdogtrol law [5]. The topo-
logical map is built by abduction to explain this sequencexgferiences. Where it
is possible to havperceptual aliasingtwo different places look the same), we build
a tree of topological maps consistent with the same sequEregeriences. After
sufficient exploration, inconsistent maps are refuted, asthgle simplest or most
probable map can be identified.

At this point, we can combine the global topological map vidtal perceptual
maps of place neighborhoods to build a global metrical map@farge-scale envi-
ronmentin a single frame of reference [40]. Each local pexed map defines a local
frame of reference for accurate metrical knowledge at agpteéghborhood, but the
frame of reference will drift enough during travel to makesitusable globally. A
consistent topological map hypothesis embodies a decdiont which experiences
of perceptually similar places were actually visits to tlaens place. Travel along
each path segment between places can be used to estimateptheament of each
place in the local frame of reference of its predecessorséth@cal displacements
between adjacent places can then be merged into a layous ¢ddhl place frames
within a single global frame of reference, typically by appy a relaxation algo-
rithm to the displacements. (The resulting probabilityref global layout given the
topological map and the displacements can be used as pae: pfeference order-
ing of topological maps in the tree of consistent maps.) Thieetrajectory of robot
poses can now be described in the global frame of referenchpaed by the poses
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Fig. 5. The Hybrid SSH builds a global metrical map: (a) The robotl@sgs an office envi-
ronment with multiple nested large loops, identifying gladn the sequence shown. (b) After
inferring the correct topological map, the layout of locége maps in the global frame of
reference. (c) The global map is created by localizing theétory poses in the global frame
of reference, anchored by the poses in the local place nfagscteating the global map from
the laser range-finder observations.

at both ends of each path segment, which already have aedacatization within
the local frames of reference. Finally, an accurate globetfical map can be con-
structed, given the accurately localized trajectory ofgsod his factors the problem
of global metrical mapping into three tractable steps.

Part of the original motivation for the TOUR model of the cdiye map was the
observation that humans dottypically create an accurate global metrical map from
observations during travel. However, with increasing egree in the environment,
they can learn a cognitive map that is increasingly faithduthe correct Euclidean
model of the world [43]. Furthermore, accurate global noalrmaps are valuable
engineering and scientific tools, so it is useful for a robdie able to build them. We
demonstrate the value of combining different represesmatof space by showing
how to build a correct global metrical map on the skeletorvigled by an accurate
global topological map, using observations from expemeincthe local perceptual
map.

8 Foundational Learning

We have jumped over a research thread that has importantatiphs for the fu-
ture. The Spatial Semantic Hierarchy, both basic and hyprasumes that the agent
has a collection of control laws for coupling its sensorfeabrs, and environment
together. This, in turn, presumes that the agent possessempodies) knowledge
of which sensory features are useful, and how its effectoamnge those features. In
an artificially constructed robot, much of this knowledgéusit in by the designer.
In a biological creature, some of this knowledge is innate. &8k, how can this
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knowledge be learned? Biologically, some of the learnirdpise by the species over
evolutionary time, while the rest is done by the individual.

This question was inspired by a challenge problem propogeRdn Rivest at
MIT in 1984 [27]. Suppose an agent wakes up in an unknown waerith a sense
vector and a motor vector, but with no knowledge of how they @lated to its
world. How can such an agent learn to predict the results wiréuactions? This
challenge led Rivest, Sloan, and Schapire to a series oftseghout learning finite
automata from observations [51, 54, 52, 53]. My own approega$ to try to learn
the sensorimotor foundation for the TOUR model from expioraexperience [27].

Fig. 6. Exploring a simple world at three levels of competence. (@ fobot wanders ran-
domly while learning a model of its sensorimotor apparathy.The robot explores by ran-
domly choosing applicable homing and open-loop path-falg behaviors based on the static
action model while learning the dynamic action model. (cg Tobot explores by randomly
choosing applicable homing and closed-loop path-follgadehaviors based on the dynamic
action model

Around 1988, David Pierce and | began to investigate thistipe for an agent
with continuous experiences in a continuous world. Afteralieping some prelimi-
nary pieces of the puzzle [45, 48, 46], we demonstrated ailegaagent that started
with an uninterpreted sensorimotor system in an unknowrdyand learned: (a)
to separate the sense vector into distinct sensory madalitb) to learn a low-
dimensional spatial structure for the sense elementselgixin a particular modal-
ity; (c) to identify primitive actions from the sensory flonefis induced on this
spatial structure; (d) to identify a set of stable sensoaguiees that can be extracted
and tracked in the sensory image; (e) to learn which actiansereliable changes to
which perceptual features in which contexts; (f) to constuseful homing (i.e., hill-
climbing) and trajectory-following control laws from theactions; and (g) to define
distinctive states and actions linking them [44, 47]. THaysbootstrapping through a
number of intermediate representations, the agent learsedficient foundation to
reach the “bottom rung” of the SSH ladder. While there wereaimlper of assump-
tions and limitations in this work, it genuinely demonstihthat a computational
agent could learn its own sensorimotor grounding from ite @wteraction with the
environment (Fig. 6).
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This research thread returned to the back burner for seyeaas, until Patrick
Beeson and | started looking at the problem of place recimgnj20]. A realistic
robot receives a high-dimensional sensory image at anygih@nent. For the basic
SSH causal level, that image must be abstracted to one ofietéiset of views. Our
goal was to learn a view representation such that each viexeaity determines a
unique distinctive state. We build on the fact that percajpaliasing of distinctive
states can be overcome by continued exploration, propasindidate topological
maps and refuting the incorrect ones when predictions afated.

We gave the namigootstrap learningo the learning method we develop8tart
by creating an over-abstract but usable view representatlaster sensory images
aggressively enough that each distinctive state correfstmnonly one view, even at
the cost of multiple states having the same view (percepliasing). Then the stan-
dard SSH exploration and mapping methods can converge tothect topological
map after enough exploration. The correct topological nrapiges a correct asso-
ciation between distinctive states and the high-dimerdisensory images, even if
the views are aliased. So now we can use supervised leamioig (powerful than
unsupervised clustering), to learn correct associatietséden sensory images and
distinctive states. In two experiments with rich sensord aal environments, the
learning agents rapidly reached 100% accurate place rémgn

The generic structure of this bootstrap learning scenarigl) approximately
abstract the problem using an unsupervised method; (2) msech more expen-
sive inference method to find the correct answer; (3) usersigeel learning to find
the correct level of abstraction. We believe that this patean be applied to other
abstraction-learning problems.

More recently, Joseph Modayil and | have been consideriagthblem of how
a higher-level ontology of objects and actions can be lehfirten experience with a
lower-level ontology of individual sense elements (“p&gland motor signals [41].
This, too, requires a multi-stage learning process. It veaglbped and demonstrated
using the range-sensor-based local perceptual map (ineplkeh as an occupancy
grid) used by our exploring robots. First, we identify thamnsor returns in the
current sensor image that are explained by static featdithe @nvironment, repre-
sented by cells in the occupancy grid that have high confielef®eing occupied,
and have never had high confidence of being free space. Tlani@gsensor returns
are explained by cells whose occupancy has changed at soméntithe past. Sec-
ond, we cluster these “dynamic” sensor returns in the ctigemsory image frame;
and third, we attempt to track these clusters from framedmé over time. These
trackable clusters are hypothesized to be explainableagamof objects. The fourth
step is to collect a sequence of images of an object fromrdiftgperspectives to de-
scribe its shape; and the fifth is to create a classificatierahnthy of object types
based on this described shape. Ongoing work considers #imation of actions
applied to these learned objects.

® We have since extended the term “bootstrap learning” toyatppthis general approach to
foundational learning.
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9 Conclusions

| began studying the cognitive map as a manageable subsetwfiionsense knowl-
edge. | hoped that this problem woutat be “Al Complete” — that is, it could
be sufficiently separated from other major issues in Al anghiive science that
it would be possible to make useful progress without sinmgltausly solving every
other major problem in Al. At the same time, knowledge of spiaclearly a funda-
mental part of commonsense knowledge [43, 33], so prognesaderstanding the
cognitive map contributes to the overall enterprise of usi@@ding commonsense
knowledge, and hence the nature of mind.

It seems to me that these hopes were well justified, and teares efforts have
paid off. Boundaries separating one scientific problem fearother are always arti-
ficial scaffolding, used to make a problem tractable for haménds. Once enough
progress has been made on one formulation of a problem, dnbees time to move
the scaffolding so progress can be made on a larger forranlathe progress from
the TOUR model to the Basic SSH and then to the Hybrid SSH s¢em= to
have exactly this character. Each problem definition seitegzlirpose, led to an im-
proved understand of the nature of spatial knowledge, ardre@laced by a new,
larger, problem definition. The focus of the TOUR model wamarily on the role
of topological knowledge of space. The focus of the Basic 8&ld on the role of
control laws and dynamical systems. The focus of the Hyb8# & on the role of
metrical knowledge and perception.

When [ first learned about Minsky’s frames for knowledge espntation, | won-
dered where the slots come from. The multiple represemstié the TOUR model
and the Spatial Semantic Hierarchy are clearly distinatriles with distinct ontolo-
gies. The flexibility and robustness of commonsense knaydettpends on having
multiple ontologies for the same domain of knowledge. Thestjon of where the
slots come from has been transformed into the questiomy can an agent learn,
not just new knowledge within an existing ontology, but a natlogy it does not
already possess?

The foundational learning problem is not simply an enlargedion of the cogni-
tive mapping problem. Rather, now that we have a reasonabtytheory of spatial
knowledge in the cognitive map, we can ask questions abedivindation with a
degree of specificity that was not possible before. We canealgluate foundational
learning methods according to their ability to support leiglevel theories that we
already understand. In my own case, the theory of the cogmitap serves this role.
However, the learning methods we seek will serve as fouodsifior a much larger
body of commonsense knowledge.
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