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Summary

The Spatial Semantic Hierarchy and its predecessor the TOURmodel are theories of
robot and human commonsense knowledge of large-scale space: thecognitive map.
The focus of these theories is on how spatial knowledge is acquired from experience
in the environment, and how it can be used effectively in spite of being incomplete
and sometimes incorrect.

This essay is a personal reflection on the evolution of these ideas since their
beginning early in 1973 while I was a graduate student at the MIT AI Lab. I attempt
to describe how, and due to what influences, my understandingof commonsense
knowledge of space has changed over the years since then.

1 Prehistory

I entered MIT intending to study pure mathematics. I was generally steeped in the
ideology of pure mathematics, and I had every intention of staying completely away
from practical applications in favor of abstract beauty andelegance. However, on a
whim, in Spring of 1973 I took Minsky and Papert’s graduate introduction to Artifi-
cial Intelligence. I was immediately hooked. I had always been fascinated by the idea
of a science of the mind. But then in college I took a course in psychology, which
was a crashing disappointment. The interesting parts weren’t scientific, and the sci-
entific parts weren’t interesting. Now, in artificial intelligence, symbolic computation
promised mathematical methods capable of rigorously modeling interesting aspects
of the mind.

I spent that summer at the MIT AI Lab, reading papers and getting more and more
excited. Marvin Minsky was circulating drafts of his “frames paper” [39], which ad-
vocated that research focus on representation and inference about complex symbolic
descriptions of meaningful objects and situations, ratherthan on individual proposi-
tions and logical inference. Such a description was called aframe. It had a number of
slots, which could containvalues, and could be associated with symbol manipulation
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procedures for doing inference, including providingdefault valuesfor empty slots. I
recall telling Pat Winston once that I found the frames concept to be very compelling,
but I wondered where the slots come from.

Minsky’s classes introduced me to Piaget’s theories of the development of chil-
dren’s knowledge of foundational domains, including space, time, causality, and so
on. He, along with John McCarthy’s writings, also convincedme that the nature and
representation of commonsense knowledge was a bottleneck issue for artificial intel-
ligence. This was the problem I wanted to work on.

Following up on an idea of Minsky’s for model-based object recognition, and
using the edge-and-vertex representation from Blocks World vision, I wrote a paper
showing how a vision system could discriminate among a smallset of block models,
tracing a hypothesis from vertex to vertex along edges, and using contradictory evi-
dence to force a jump to an alternate hypothesis when necessary.1 This paper earned
me an invitation to spend Summer 1974 at Xerox PARC as a summerstudent work-
ing with Danny Bobrow and Terry Winograd. I implemented and demonstrated my
recognition system in Smalltalk on the Alto, alternately marveling at the wonderful
new technology and taking it totally for granted. The revised paper was named “A
frame for frames” [22] in conscious homage to Fillmore’s farmore influential “The
case for case” [11].

As the end of the summer approached, before returning to MIT,I met with Danny
Bobrow to ask his advice on research topics. I explained thatI had enjoyed working
on model-based object recognition, but I really wanted to work on the problem of
commonsense knowledge, and I didn’t know where to begin. Danny suggested that I
look at some work being done by Joe Becker and Bill Merriam at BBN on a simulated
robot learning the structure of a simulated city [3, 4].

I knew immediately that this was the right problem:How can a robot learn a
cognitive map from its own experience of the environment?It focuses on spatial
knowledge, which is not only important, but is arguably the foundation for most other
kinds of commonsense knowledge [33]. It also looked like it would factor well, in the
sense that I could define interesting sub-problems that weresmall enough to solve,
but which could be assembled into solutions to larger problems as I made progress.
It would make a great PhD thesis topic, and I went back to MIT happy.

2 Cognitive Background

Quite a bit was already known about how human knowledge of space is structured,
and how people use spatial knowledge to solve problems. I immersed myself in that
highly diverse literature, reading papers from cognitive and developmental psychol-
ogy, urban planning, geography, linguistics, and the visual arts. Two books that par-1 Only with the benefit of much hindsight do I recognize the similarity with the process of

building topological maps.
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ticularly influenced me wereThe Image of the City2 by Kevin Lynch [36] andImage
and Environment, a new collection of papers edited by Downs and Stea [9]. Also,
among the more cognitively oriented denizens of the MIT AI Lab, Piaget’s “genetic
epistemology” approach to developmental psychology (e.g., [43]) permeated the at-
mosphere.

What quickly emerged from all this reading was a view of spatial knowledge con-
sisting of several quite different types of knowledge. Somewas procedural, “how-to”
knowledge about getting from one place to another. Some consisted of topological
connections between places and travel paths. And some consisted of metrical lay-
outs approximately analogous to the environment itself or to a printed map. But it
was clear that accurate metrical layout descriptions came last, if at all, and depended
on the earlier types of knowledge. Furthermore, spatial reasoning methods varied
across individuals, with developmental stage, with experience in a particular envi-
ronment, or simply with individual cognitive style. A year or so later, Siegel and
White’s masterful survey of the development of spatial knowledge [56] confirmed
and deepened this view.

Since the differences between the representations for spatial knowledge are so
central, I started collecting route directions and sketch maps from anyone available.
These were informal probes, designed to elicit a wide range of behavior I could
examine for qualitative features, not formal experiments designed to test or refute
hypotheses. What I needed was to complement the literature review with an intimate
sense of the phenomenon itself, as a basis for building a computational model.

One immediate conclusion was that there is a lot of individual variation in the
amount, nature, and accuracy of spatial knowledge that different people have, and in
how they express it. Another is that neither verbal directions nor sketch maps tend
to be particularly accurate about absolute distances or directions. On the other hand,
topological relations such as the order of places on a path, or the connections between
paths at a place, tend to be represented accurately and when errors do creep in, they
are usually detected.

A common style for drawing a map was to follow a mental route, drawing those
places and paths needed for the route, and perhaps nearby structures. When the sub-
ject made an error in translating the route into the graphical map representation, the
error was usually metrical, and could go unnoticed for quitesome time as the map
was elaborated in an incorrect direction. The error would bedetected when it finally
came time to close a loop, and two occurrences of the same place would be drawn
far apart, sometimes separated by other structures. Detecting the problem was easy,
but identifying the specific error or correcting it could be quite difficult.

Some subjects used a different style3, sketching the overall structure of a region,
such as the rectangular grid structure in Boston’s Back Bay.Fortunately for my re-2 I later learned that both Lynch’sThe Image of the City[36] and Miller, Galanter, and

Pribram’s influentialPlans and the Structure of Behavior[38] were inspired by Kenneth
Boulding’s seminal book,The Image[6].3 These two styles were also identified by Linde and Labov [35] in subjects’ descriptions of
their apartment layouts.
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search, the geography of the Boston-Cambridge area aboundswith interesting local
structures that fail to generalize over larger regions, leading to easily detectable geo-
graphical fallacies and paradoxes in people’s cognitive maps.

The overwhelming impression from both my own investigations and the pub-
lished experimental studies is that human spatial knowledge consists of a number
of distinct representations for different aspects of space. Some people have many of
these cognitive modules, and they work together well, whileothers may have fewer
of them, or they don’t work together so well. As a working hypothesis, I took the
position that there is a single “complete” structure for allof these modules, working
well together, and that all the variants — with individual style, developmental stage,
or amount of experience in a particular environment — are modified or restricted
versions of the ideal. This is similar to both Piaget’s “genetic epistemology” and to
current notions of “ideal observer” models [12].

Since the target of my efforts was a structure of interactingmodules, it was nat-
ural to do the research by identifying an interesting aspectof the phenomenon of
the cognitive map, constructing and testing individual modules to explain that as-
pect, and then looking for further parts of the natural phenomenon not adequately
explained by existing modules.

3 The TOUR Model

My doctoral thesis described the representation of knowledge of large-scale space —
the cognitive map[23, 24]. Space is consideredlarge-scaleif its relevant structure
is at a scale larger than the sensory horizon, so knowledge ofthe structure must be
acquired from exploration within it. The focus on large-scale space allowed me to
avoid the difficult problems of computer vision and scene understanding. I focused
my attention on spatial representation and inference, and specifically, on the problem
of how global spatial structure can be inferred from local sensory experience. The
TOUR modelis a computational model of this kind of knowledge, including in most
cases how that knowledge is learned from experience.

The TOUR model describes an agent4 that receives a sequence of experiences as
it travels through the environment, and builds its own cognitive map of that environ-
ment. The cognitive map is a symbolic representation, consisting of a set of frames
for describing different types of objects such as places, paths, and regions; each type
with its own collection of attributes; each instance with values for some or all of
those attributes.5 A place includes an attribute for the set of paths it is on, anda path
includes an attribute for the partially-ordered set of places on it. An agent on a path
faces in one of two directions: up or down the place-orderingon that path.4 The TOUR model and the Spatial Semantic Hierarchy are intended to describe both human

and robotic agents.5 The equivalence between frames and first-order predicate logic is now well understood
[15]. Jimi Crawford and I later formalized the intuitions behind this version of frames as
“Access-Limited Logic” and its implementation, Algernon [7, 8].
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As the agent receives experiences, it draws only those conclusions that can be
inferred efficiently with information available at the time. This kind of “opportunis-
tic” inference puts a premium on representations capable ofexpressing incomplete
knowledge, so the results of small inference steps can be represented and stored,
rather than being lost if attention moves elsewhere. Because of this strategy, infer-
ence is very efficient, but several travels along a particular route may be necessary
for the TOUR model to infer all of the conclusions that followlogically from the
experience.

The TOUR model divides spatial representation into three levels: procedural,
topological, and metrical.6 At the procedural level, experience is modeled as a se-
quence of GO-TO and TURN actions, with associated distance or angular magni-
tudes, respectively. The action description can be augmented with descriptions of the
states before and after the action, each modeled as place, path, and direction along
the path. When not provided explicitly, these may be inferred from context.

The inferential heart of the TOUR model is the “TOUR machine”, a finite-state,
rule-driven automaton. It has a set of registers called the “You-Are-Here pointer”
describing the current place, path, direction, etc. Instead of an infinite tape, its mem-
ory is a potentially infinite set of frames reachable throughthe attributes of existing
frames. Knowledge of the current state fills in the initial-state description in the cur-
rent action. If the current place or path description can predict the final-state of the
current action, it does; if not, new descriptions are created. In either case, the results
update the You-Are-Here pointer, and they are stored as partof the action, place,
and path descriptions, extending or confirming what was previously stored. Since the
world itself is assumed to have a single consistent structure, and since the representa-
tion is supposed to be sufficiently expressive of incompleteknowledge for the results
of opportunistic inference, contradictions between stored and newly-inferred infor-
mation should be rare. The problem of more extensive reorganization and correction
of the map when such an error is detected was beyond the scope of this research.

The sequence of GO-TO and TURN actions representing the agent’s experience
is provided by a simple natural language interface. The interface is based on Vaughan
Pratt’s elegant LINGOL parser [49], which allows context-free grammar rules to
be annotated with semantic interpretation routines. The grammar makes it easy to
describe the agent’s experiences in natural-sounding route instructions, such as:

Start on Broadway, at the intersection of Broadway and Prospect Street, fac-
ing Kendall Square.

Turn right onto Prospect Street.
Take Prospect Street to Central Square.
Turn right onto Mass Ave.
Take Mass Ave to Putnam Circle.

The topological level of the TOUR model is based on the connectivity of places
and paths, the circular order of directed paths at each place, and the partial ordering6 This division into levels is updated to reflect the later perspective of the Spatial Semantic

Hierarchy [32, 18].
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of places on each path. It also includes boundary relations,whereby places can be
described as “to the right” or “to the left” of a path. Boundary relations can be used
to define regions in terms of bounding paths. All of these are learned by the TOUR
model through opportunistic inference from experience in the form of GO-TO and
TURN actions. Another form of topological knowledge is a region hierarchy, which
allows the environment to be described, and route-planningproblems to be solved, at
many different levels of abstraction. For the region hierarchy, the TOUR model de-
scribes the representation and use of the knowledge, but provides no learning theory.

The metrical level of the TOUR model consists of attributes and relations with
continuous values, like distance and direction. Analog spatial representations such
as 2D occupancy grids [42] were still far in the future. EveryGO-TO action includes
a description of the magnitude of travel from one place to another along a given
path. This provides a constraint on the relative location ofthe two places in the 1D
frame of reference of that path. Enough observations of distances between pairs of
places on the same path determines the layout of places within the path. Similarly,
observations of TURN magnitudes at a given place provides a radial layout of the
directed paths at that place. These radial layouts can be interpreted as defining the
heading of an agent at that place, path, and direction, but only in a frame of reference
local to the place, so headings cannot be compared from placeto place. However,
if the GO-TO action magnitude is extended to include a “net angular displacement”
attribute��, then a single frame of reference can propagate along GO-TO actions to
include multiple places. For places within a single frame ofreference, GO-TO and
TURN actions provide relative distance and direction measurements, from which a
2D layout of places can be inferred.

The TOUR model [23, 24] was the first computational model of the cognitive
map that explicitly addressed the multiple types of spatialknowledge that must be
represented. It specifically focused on the topological representations whose im-
portance was well-understood by researchers deeply familiar with human cognitive
mapping, but which was widely overlooked by many others in psychology, geogra-
phy, and robotics. The major limitations of the TOUR model were the oversimplified
interface to the agent’s actual sensorimotor experience inthe world, and the inade-
quate treatment of analog metrical representations.

4 Explicit Representation of Sensory Views

One problem with the original TOUR model is that the procedural level too thor-
oughly abstracts away the agent’s sensory input from the environment. The route-
direction-like input representation was unable to expresseither gaps in the sequence
of experience or perceptual aliasing (different places that look the same). Part of
solving this was to provide an explicit representation for sensory experience [25]. A
view is an abstracted description of the sensory image experienced by the agent at a
particular state (i.e., place, path, and direction). The TOUR model avoids the prob-
lem of interpreting input from any particular sensor (e.g.,vision, sonar, laser) by
treating views as atomic symbols that can only be used as retrieval keys or matched



An Intellectual History of the Spatial Semantic Hierarchy 7

for identity. The specific representation or implementation of views is outside the
scope of the theory (until later; see Sect. 7).

Given the concept of view we can define a more natural interface, representing
the agent’s experience as an alternating sequence of views and actions:v0; a0; v1; a1; v2; � � � vn�1; an�1; vn:
An actionai can have type Turn or Travel, with an associated magnitude.

We can now replace the procedural description of travel experience with a col-
lection of causal schemashv; a; v0i, where the viewv describes the context when
actiona is initiated, andv0 describes the result aftera has completed [25]. A schemahv; a; v0i has the declarative interpretation that in contextv, after performing actiona, one can expect resulting viewv0, and the imperative interpretation that if the agent
experiences the context viewv, it should do actiona.

Knowledge of an experienced route is represented as a collection of schemas, in-
dexed by their context views. This representation can express several very plausible
states of incomplete knowledge. A gap in the route, perhaps due to inattention dur-
ing exploration, corresponds to omitted schemas in the route description. If all the
schemashv; a; v0i in a route description are complete, they form a linked list,as the
resultv0 of each schema allows retrieval based on the contextv of the next schema
along the route. However, incomplete schemashv; a; i can be constructed if working
memory is disrupted during the possibly-extended time while a is taking place, be-
fore the resultv0 becomes available. Incomplete schemas still have their imperative
meanings, and can still be used to traverse the route physically in the environment,
since the environment will provide the result of each action. What is lost is the ability
to review the route in the absence of the environment.

In these ways and others, the schema representation is very expressive of states
of incomplete knowledge of a route. Variations may depend ondevelopmental stage,
amount of experience with this route, amount of computational resources available,
and frequency of disruptions. We extended this concept to describe one aspect of
individual variation in cognitive style, corresponding tothe set of rules available for
constructing partial schemas [26].7

As it happens, it took a while to recognize that a good formal structure for rep-
resenting route experience is the familiar finite-state automaton, or more generally,
the partially-observable Markov decision process (POMDP)[10, 1, 2]. We require a
set of underlying statesx, that are themselves unobservable, but which map to ob-
servable viewsv. The set of schemashx; a; x0i represents the transition function for
the automaton, and the relationview(x; v) represents the mapping from unobserv-
able state to observable view. In full generality, POMDP learning of automata with
stochastic transition and observation functions is intractable. However, this direction
of investigation takes us farther away from an understanding of human commonsense
spatial knowledge.7 Starting around 1978-79, I decided to change research direction for a variety of reasons

[19]. This led to a productive line of work on medical reasoning and qualitative simulation
[31, 16, 17, 28]. Spatial knowledge became a secondary concern until the mid-1990s.
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In the Spatial Semantic Hierarchy [18, 50], we assume that transitionshx; a; x0i
among states are deterministic (reflecting the error-correcting capabilities of feed-
back control laws), and that the relationview(x; v) is a function, though not nec-
essarily one-to-one. With these assumptions, and when exploring physical space,
learning a minimal underlying automaton from observational experience is generally
feasible in practice. r r rr

Fig. 1. A T-shaped space, and its topological model.

5 Abstracting Continuous Experience to Discrete States

A second problem with the original TOUR model is that it presupposes that the
continuous experience of the agent has already been abstracted to a discrete sequence
of states and transitions. This was justified by Kevin Lynch’s observation that humans
tend to represent knowledge about decision points, with much less about the spaces
between them [36]. Nonetheless, this unexplained abstraction remained a gaping hole
in the theory, and it was a barrier to robot implementation.

My cognitive mapping research had been on hiatus for severalyears, with QSIM
receiving all of my attention, when a new grad student named Yung-Tai Byun ap-
proached me in 1986, wanting to do research on robot exploration and mapping. In
the course of our discussions, we ran directly into the problem of relating the robot’s
continuous behavior to the kind of discrete topological mapthat the TOUR model
creates. When we contemplated the simplest non-trivial environment I could think
of — two corridors joined to form a T (Fig. 1) — the concept ofdistinctive place
became clear. If we overlay the obvious T-shaped topological map onto the continu-
ous polygonal environment, the natural locations for the four topological places are
at the dead-ends and the intersection, at locations equidistant from the nearest obsta-
cles. The segments connecting places are clearly corridor midlines. These loci corre-
sponding to topological places and topological paths naturally suggest the attractors
of hill-climbing and trajectory-following control laws, respectively. This basic idea,
of letting the attractors of continuous control laws define the topological features of
large-scale space, led to several influential papers, including [29, 30]. Fig. 2 demon-
strates this approach to the exploration of a simulated environment.
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Fig. 2. A simulated robot applies the SSH exploration and mapping strategy. It identifies a
topological graph of distinctive places and connecting path segments according to the behavior
of control laws in the environment.

The selection of a control law couples the robot and its environment into a con-
tinuous dynamical system, which moves through its state space toward an attractor.
The selection, execution, and termination of these controllaws can be defined based
entirely on sensory features available “from the inside” ofthe agent, without any ap-
peal to the external semantics of the sensors or of the features. (It wasn’t until later
that we actually tried tolearn the sensors, features, and control laws without appeal
to external semantics [47]. See Sect. 8.) This method for defining symbolic entities
referring to topological places and path segments in terms of the behaviors of control
laws is a concrete example of a solution to the Symbol Grounding Problem [14].

Trajectory-following

Hill-
climbing

ds1 ds2

V1

A

V2

Fig. 3. Motion from one distinctive state to another via trajectory-following and hill-climbing
control laws eliminates cumulative error. Reliable behavior can be abstracted to the causal
schemahV1; A; V2i.
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By physically hill-climbing to the local optimum of a “distinctiveness measure”
defined over the local neighborhood, the robot localizes itself within that neighbor-
hood with minimal assumptions about the nature of its sensors (Fig. 3). Because the
dynamical system defines motion over the robot’s state space(location plus orienta-
tion), rather than over the work space (location alone), we came to realize that what
is distinctive is the state, rather than the place, so we began to refer todistinctive
statesrather thandistinctive places. For example, the single topological place at a T-
intersection corresponds to four distinctive states, withthe same location and differ-
ent orientations. The Turn actions that link them correspond to trajectory-following
control laws that change only orientation, followed by hill-climbing control laws to
align with the walls of the corridors. (Later, in sect. 7, we will see a new conception
of places and place neighborhoods.)

Motion among distinctive states avoids the problem of cumulative error that typ-
ically plagues robot mapping. There is no attempt to maintain an accurate location
in a single global frame of reference. Rather, the purpose ofan action is to move
reliably from one distinctive state to another one. Any error that accumulates during
trajectory-following is eliminated by the hill-climbing step, as long as the error is not
so large as to miss entirely the basin of attraction of the destination distinctive state.

6 The Spatial Semantic Hierarchy

We started with the idea that the cognitive map consists of different representations
for knowledge of space. As we come to understand spatial knowledge more deeply,
the actual representations have evolved. We can best organize these different repre-
sentations by grouping them according toontology: the types of objects that can be
described and the relations that can hold among them.

TheSpatial Semantic Hierarchy(SSH) describes the cognitive map as consisting
of four different levels, each with its own ontology, and each level grounded in the
ones below [32, 30, 18, 50].� At the control level, the agent and its environment are described as parts of a

continuous dynamical system. The agent acts by selecting trajectory-following
and hill-climbingcontrol laws, subject to their applicability and termination con-
ditions, so the agent-environment system moves toward an attractor. The stable
attractor of a hill-climbing control law is called adistinctive state.� At the causal level, the agent and its environment are described as a partially
known finite-state automaton, whosestatescorrespond to the distinctive states
identified at the control level, and whoseactionscorrespond to sequences of con-
trol laws.Viewsare the observable properties of states. A discrete state transition
at the causal level corresponds to the extended evolution ofdynamical systems at
the control level.� At the topological level, the environment is described in terms ofplaces, paths,
andregions, with relations such as connectivity, order, and containment. A state
of the agent, described at the causal level, corresponds to being at a place, on a
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Model

Local 2-D
geometry

Turn angle
Travel distance

Local headings
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Actions

Places
Paths
Connectivity
Order

Sensor values

Attributes
Continuous

Qualitative

termination
appropriateness

Control laws
Control

geometry
Global 2-D

names

Metrical

Sensory

Topological

Causal
Views

Causal schemas

Fig. 4. The Spatial Semantic Hierarchy. Closed-headed arrows represent dependencies; open-
headed arrows represent potential information flow withoutdependency.

path, and facing along the path in one of two directions. The topological map is
created by a process ofabduction, to explain the sequence of views and actions
that represent the agent’s experience at the interface between the control and
causal levels [50].� Themetrical levelhas several different aspects. The causal and topological lev-
els may include attributes with quantitative values, such as the magnitudes of ac-
tions, distances between places along paths, and angles between paths at places.
A local place neighborhood can be described by a two-dimensional spatial ana-
log such as an occupancy grid, with a single frame of reference. A spatial analog
model of the large-scale environment can be created, based on the skeleton pro-
vided by the topological map.

There are logical dependencies (Fig. 4) among the levels, which constrain the
combinations of representations that can occur. Differentparts of the cognitive map
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may represent knowledge at different SSH levels, but each part of the map must
respect the dependency structure. The agent’s cognitive map may have a global met-
rical map of one portion of the environment, a topological map of another, simply
causal knowledge of the sequence of actions to take in a third, and then use the
control level to explore unknown territory. Or, when pressed for time or preoccupied
with other concerns, the agent may access only causal knowledge to follow a familiar
route even though topological and metrical knowledge may beavailable.

Emilio Remolina’s doctoral work [50] provided a major step forward in the clar-
ity of the SSH. He provided a formal axiomatization for the SSH causal and topo-
logical levels, plus the quantitative attribute portion ofthe metrical level. Since the
topological map is the result of an abduction process, finding the best consistent ex-
planation of the available observations, the formalization required a non-monotonic
logic, in this case circumscription as embodied in VladimirLifschitz’ nested abnor-
mality theories [34]. The axioms express the consistency requirements for topologi-
cal maps, and the nesting structure and the prioritized circumscription policy express
the preference ordering on consistent maps. If a new observation should refute the
current most preferred consistent map, then the preferenceordering can be used to
help select a preferred map from those still considered consistent.

This non-monotonic logical inference is implemented as an algorithm that cre-
ates a tree of all possible topological maps and imposes a preference order on the
leaves.8 At any point in time, the leaves of the tree represent the topological maps
consistent with experience so far. After a travel action reaches and describes a new
place neighborhood, some maps at the leaves of the tree are refuted as inconsistent,
some are confirmed as consistent, and others branch on all consistent extensions.
Branches only take place when there is perceptual aliasing;that is, when different
places can have the same appearance. Then if a travel action reaches a place that
appears the same as a previously-known place, two hypotheses must be created: one
that the new place really is the same as the old one, and a second that the new place
is genuinely new, but has the same appearance as the old one.

By initially creating all possible consistent successors,and refuting only the in-
consistent ones, we maintain the guarantee that the correcttopological map is present
in the tree [50, 21]. In subsequent work, Francesco Savelli augmented the existing
topological axioms with a test for the planarity of the topological map, which could
be applied either as a consistency requirement or as a preference criterion [55]. It will
also be important to use probability as well as prioritized circumscription policies to
order the consistent maps [13].

The SSH treats observations gathered during exploration asthe fundamental
source of experience for building a cognitive map of large-scale space. However,
there are other ways to obtain information about the structure of the environment.
Verbal route directions translate naturally into sequences of actions (and minimal
descriptions of views) at the SSH causal level [37]. Informal sketch maps translate8 Strictly speaking, the abduction searches for the best set of equality and inequality axioms

over the symbols representing distinctive states. The algorithm creates models of those sets
of axioms, and tests them for consistency.
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naturally into subgraphs at the SSH topological level. And precise graphical maps
provide information at the SSH metrical level. These and other forms of spatial com-
munication are a topic for active research in psychology, linguistics, and cognitive
science. One role for the SSH is to provide a useful description of the target repre-
sentation for such communication.

7 The Hybrid Spatial Semantic Hierarchy

The four levels of the basic SSH framework start to look pretty satisfactory. This lets
us turn our attention to certain assumptions and issues whose resolution will help us
broaden and improve the Spatial Semantic Hierarchy.

First, the basic SSH treats perception as a black-box process that returns “view”
symbols, abstractions of the full sensory image, capable only of being matched for
equality or used as retrieval keys. We are ready to break downthe hard separation
between large-scale space and small-scale perceptual space. A more realistic theory
of perception of the local environment, with both laser range-finders and computer
vision, needs to be integrated with the cognitive mapping process.

Second, the basic SSH assumes that distinctive states are identified through the
agent’s physical motion, hill-climbing to the location in the environment that maxi-
mizes the current distinctiveness measure. This physical motion seems awkward and
unnecessary.

Third, there has been an explosion of successful work on the SLAM (simul-
taneous localization and mapping) problem, building metrical maps of increasing
size directly from sensory input within a single global frame of reference [57]. This
approach differs significantly from the human cognitive mapand from the multi-
representation approach of the SSH. Do the two approaches compete? Are they
complementary? Is one suitable for modeling humans while the other is for building
robots? We need to understand the relationship between these two approaches.

Fortunately, there is a synergy between these three concerns that leads to their
resolution [21]. Having definedlarge-scale spaceas space whose structure is larger
than the sensory horizon, it is natural to definesmall-scale spaceas space whose
structure is within the sensory horizon. Small-scale spaceis described by alocal
perceptual mapthat is metrically accurate and is constructed directly from sensory
input. Recently developed SLAM methods are well suited for creating such a local
perceptual map. We avoid the problem of closing large loops by confining the map to
the agent’s local perceptual surround, where we can apply the strengths of existing
SLAM methods. When reasoning about small-scale space, we are concerned only
with the frame of reference of the local perceptual map, and not with its inevitable
drift with respect to the world frame of reference. We call the resulting combined
model of large-scale and small-scale space, thehybrid SSH.

Local SLAM methods continually maintain the agent’s localization in the frame
of reference of the local map. Accurate incremental localization supports accurate in-
corporation of observations into the local map, and accurate local motion planning. In
the basic SSH, hill-climbing provides the same benefit of accurate localization under
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weaker assumptions about sensors and effectors, but at the cost of physical motion to
the distinctive state. In the hybrid SSH, when the agent has enough knowledge about
its sensors and effectors to maintain its localization within the local perceptual map,
it no longer requires physical hill-climbing.

Where the basic SSH treats views as atomic symbols, matched only for equality,
the hybrid SSH treats the local perceptual map as the observable manifestation of a
topological place [21]. The local perceptual map of a place neighborhood is parsed to
define a local topology that describes how directed path segments join at that place.
Distinctive states in the basic SSH causal level correspondto gatewayswithin the
local perceptual map of the place. Two local perceptual mapsare matched by first
matching their local topology descriptions, and then matching their perceptual maps
to give a probability that they correspond to the same state.The local perceptual map
with its local topology description bind together the small-scale-space and large-
scale-space descriptions of the same place neighborhood, and thus bind together the
continuous sensorimotor ontology and the discrete topological ontology.

The agent’s experience in the environment is an alternatingsequence of views
and actions. However, in the hybrid SSH, a view corresponds to a pose within the
local perceptual map, a turn action corresponds to motion within the local percep-
tual map of the current place neighborhood, while a travel action moves from one
place neighborhood with its local perceptual map, to another place neighborhood. In
addition to fixed local perceptual maps of place neighborhoods, a scrolling local per-
ceptual map is used by trajectory-following control laws asan “observer” process to
model obstacles in the agent’s immediate surround. A topological place is detected
at a change in the qualitative properties of the local topology of the scrolling local
perceptual map during execution of a trajectory-followingcontrol law [5]. The topo-
logical map is built by abduction to explain this sequence ofexperiences. Where it
is possible to haveperceptual aliasing(two different places look the same), we build
a tree of topological maps consistent with the same sequenceof experiences. After
sufficient exploration, inconsistent maps are refuted, anda single simplest or most
probable map can be identified.

At this point, we can combine the global topological map withlocal perceptual
maps of place neighborhoods to build a global metrical map ofthe large-scale envi-
ronment in a single frame of reference [40]. Each local perceptual map defines a local
frame of reference for accurate metrical knowledge at a place neighborhood, but the
frame of reference will drift enough during travel to make itunusable globally. A
consistent topological map hypothesis embodies a decisionabout which experiences
of perceptually similar places were actually visits to the same place. Travel along
each path segment between places can be used to estimate the displacement of each
place in the local frame of reference of its predecessor. These local displacements
between adjacent places can then be merged into a layout of the local place frames
within a single global frame of reference, typically by applying a relaxation algo-
rithm to the displacements. (The resulting probability of the global layout given the
topological map and the displacements can be used as part of the preference order-
ing of topological maps in the tree of consistent maps.) The entire trajectory of robot
poses can now be described in the global frame of reference, anchored by the poses
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(a) (b) (c)

Fig. 5. The Hybrid SSH builds a global metrical map: (a) The robot explores an office envi-
ronment with multiple nested large loops, identifying places in the sequence shown. (b) After
inferring the correct topological map, the layout of local place maps in the global frame of
reference. (c) The global map is created by localizing the trajectory poses in the global frame
of reference, anchored by the poses in the local place maps, then creating the global map from
the laser range-finder observations.

at both ends of each path segment, which already have accurate localization within
the local frames of reference. Finally, an accurate global metrical map can be con-
structed, given the accurately localized trajectory of poses. This factors the problem
of global metrical mapping into three tractable steps.

Part of the original motivation for the TOUR model of the cognitive map was the
observation that humans donot typically create an accurate global metrical map from
observations during travel. However, with increasing experience in the environment,
they can learn a cognitive map that is increasingly faithfulto the correct Euclidean
model of the world [43]. Furthermore, accurate global metrical maps are valuable
engineering and scientific tools, so it is useful for a robot to be able to build them. We
demonstrate the value of combining different representations of space by showing
how to build a correct global metrical map on the skeleton provided by an accurate
global topological map, using observations from experience in the local perceptual
map.

8 Foundational Learning

We have jumped over a research thread that has important implications for the fu-
ture. The Spatial Semantic Hierarchy, both basic and hybrid, presumes that the agent
has a collection of control laws for coupling its sensors, effectors, and environment
together. This, in turn, presumes that the agent possesses (or embodies) knowledge
of which sensory features are useful, and how its effectors change those features. In
an artificially constructed robot, much of this knowledge isbuilt in by the designer.
In a biological creature, some of this knowledge is innate. We ask, how can this
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knowledge be learned? Biologically, some of the learning isdone by the species over
evolutionary time, while the rest is done by the individual.

This question was inspired by a challenge problem proposed by Ron Rivest at
MIT in 1984 [27]. Suppose an agent wakes up in an unknown world, with a sense
vector and a motor vector, but with no knowledge of how they are related to its
world. How can such an agent learn to predict the results of future actions? This
challenge led Rivest, Sloan, and Schapire to a series of results about learning finite
automata from observations [51, 54, 52, 53]. My own approachwas to try to learn
the sensorimotor foundation for the TOUR model from exploration experience [27].

(a) (b) (c)

Fig. 6. Exploring a simple world at three levels of competence. (a) The robot wanders ran-
domly while learning a model of its sensorimotor apparatus.(b) The robot explores by ran-
domly choosing applicable homing and open-loop path-following behaviors based on the static
action model while learning the dynamic action model. (c) The robot explores by randomly
choosing applicable homing and closed-loop path-following behaviors based on the dynamic
action model.

Around 1988, David Pierce and I began to investigate this question for an agent
with continuous experiences in a continuous world. After developing some prelimi-
nary pieces of the puzzle [45, 48, 46], we demonstrated a learning agent that started
with an uninterpreted sensorimotor system in an unknown world, and learned: (a)
to separate the sense vector into distinct sensory modalities; (b) to learn a low-
dimensional spatial structure for the sense elements (“pixels”) in a particular modal-
ity; (c) to identify primitive actions from the sensory flow fields induced on this
spatial structure; (d) to identify a set of stable sensory features that can be extracted
and tracked in the sensory image; (e) to learn which actions cause reliable changes to
which perceptual features in which contexts; (f) to construct useful homing (i.e., hill-
climbing) and trajectory-following control laws from those actions; and (g) to define
distinctive states and actions linking them [44, 47]. Thus,by bootstrapping through a
number of intermediate representations, the agent learneda sufficient foundation to
reach the “bottom rung” of the SSH ladder. While there were a number of assump-
tions and limitations in this work, it genuinely demonstrated that a computational
agent could learn its own sensorimotor grounding from its own interaction with the
environment (Fig. 6).
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This research thread returned to the back burner for severalyears, until Patrick
Beeson and I started looking at the problem of place recognition [20]. A realistic
robot receives a high-dimensional sensory image at any given moment. For the basic
SSH causal level, that image must be abstracted to one of a discrete set of views. Our
goal was to learn a view representation such that each view correctly determines a
unique distinctive state. We build on the fact that perceptual aliasing of distinctive
states can be overcome by continued exploration, proposingcandidate topological
maps and refuting the incorrect ones when predictions are violated.

We gave the namebootstrap learningto the learning method we developed.9 Start
by creating an over-abstract but usable view representation: cluster sensory images
aggressively enough that each distinctive state corresponds to only one view, even at
the cost of multiple states having the same view (perceptualaliasing). Then the stan-
dard SSH exploration and mapping methods can converge to thecorrect topological
map after enough exploration. The correct topological map provides a correct asso-
ciation between distinctive states and the high-dimensional sensory images, even if
the views are aliased. So now we can use supervised learning (more powerful than
unsupervised clustering), to learn correct associations between sensory images and
distinctive states. In two experiments with rich sensors and real environments, the
learning agents rapidly reached 100% accurate place recognition.

The generic structure of this bootstrap learning scenario is: (1) approximately
abstract the problem using an unsupervised method; (2) use amuch more expen-
sive inference method to find the correct answer; (3) use supervised learning to find
the correct level of abstraction. We believe that this pattern can be applied to other
abstraction-learning problems.

More recently, Joseph Modayil and I have been considering the problem of how
a higher-level ontology of objects and actions can be learned from experience with a
lower-level ontology of individual sense elements (“pixels”) and motor signals [41].
This, too, requires a multi-stage learning process. It was developed and demonstrated
using the range-sensor-based local perceptual map (implemented as an occupancy
grid) used by our exploring robots. First, we identify thosesensor returns in the
current sensor image that are explained by static features of the environment, repre-
sented by cells in the occupancy grid that have high confidence of being occupied,
and have never had high confidence of being free space. The remaining sensor returns
are explained by cells whose occupancy has changed at some time in the past. Sec-
ond, we cluster these “dynamic” sensor returns in the current sensory image frame;
and third, we attempt to track these clusters from frame to frame over time. These
trackable clusters are hypothesized to be explainable as images of objects. The fourth
step is to collect a sequence of images of an object from different perspectives to de-
scribe its shape; and the fifth is to create a classification hierarchy of object types
based on this described shape. Ongoing work considers the abstraction of actions
applied to these learned objects.9 We have since extended the term “bootstrap learning” to apply to this general approach to

foundational learning.



18 Benjamin Kuipers

9 Conclusions

I began studying the cognitive map as a manageable subset of commonsense knowl-
edge. I hoped that this problem wouldnot be “AI Complete” — that is, it could
be sufficiently separated from other major issues in AI and cognitive science that
it would be possible to make useful progress without simultaneously solving every
other major problem in AI. At the same time, knowledge of space is clearly a funda-
mental part of commonsense knowledge [43, 33], so progress in understanding the
cognitive map contributes to the overall enterprise of understanding commonsense
knowledge, and hence the nature of mind.

It seems to me that these hopes were well justified, and the research efforts have
paid off. Boundaries separating one scientific problem fromanother are always arti-
ficial scaffolding, used to make a problem tractable for human minds. Once enough
progress has been made on one formulation of a problem, it becomes time to move
the scaffolding so progress can be made on a larger formulation. The progress from
the TOUR model to the Basic SSH and then to the Hybrid SSH seemsto me to
have exactly this character. Each problem definition servedits purpose, led to an im-
proved understand of the nature of spatial knowledge, and was replaced by a new,
larger, problem definition. The focus of the TOUR model was primarily on the role
of topological knowledge of space. The focus of the Basic SSHwas on the role of
control laws and dynamical systems. The focus of the Hybrid SSH is on the role of
metrical knowledge and perception.

When I first learned about Minsky’s frames for knowledge representation, I won-
dered where the slots come from. The multiple representations of the TOUR model
and the Spatial Semantic Hierarchy are clearly distinct theories with distinct ontolo-
gies. The flexibility and robustness of commonsense knowledge depends on having
multiple ontologies for the same domain of knowledge. The question of where the
slots come from has been transformed into the question,How can an agent learn,
not just new knowledge within an existing ontology, but a newontology it does not
already possess?

The foundational learning problem is not simply an enlargedversion of the cogni-
tive mapping problem. Rather, now that we have a reasonably solid theory of spatial
knowledge in the cognitive map, we can ask questions about its foundation with a
degree of specificity that was not possible before. We can also evaluate foundational
learning methods according to their ability to support higher-level theories that we
already understand. In my own case, the theory of the cognitive map serves this role.
However, the learning methods we seek will serve as foundations for a much larger
body of commonsense knowledge.
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