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Abstract

The problem of consciousness has captured the imagination
of philosophers, neuroscientists, and the general public, but
has received little attention within AI. However, concepts
from robotics and computer vision hold great promise to ac-
count for the major aspects of the phenomenon of conscious-
ness, including philosophically problematical aspects such as
the vividness of qualia, the first-person character of conscious
experience, and the property of intentionality. This paper
presents and evaluates such an account against eleven fea-
tures of consciousness “that any philosophical-scientific the-
ory should hope to explain”, according to the philosopher and
prominent AI critic John Searle.

The Problem of Consciousness
Artificial Intelligence is the use of computational concepts
to model the phenomena of mind. Consciousness is one of
the most central and conspicuous aspects of mind. In spite of
this, AI researchers have mostly avoided the problem of con-
sciousness in favor of modeling cognitive, linguistic, per-
ceptual, and motor control aspects of mind. However, in
response to a recent discussion of consciousness by the well-
known philosopher and AI critic John Searle (Searle 2004),
it seems to me that we are in a position to sketch out a plau-
sible computational account of consciousness.

Consciousness is a phenomenon with many aspects.
Searle argues that the difficult aspects of consciousness are
those that make up the subjective nature of first-person ex-
perience. There is clearly a qualitative difference between
thinking about the color red with my eyes closed in a dark
room, and my own immediate experiences of seeing a red
rose or an apple or a sunset. Philosophers use the term
qualia (singularquale) for these immediate sensory expe-
riences. Furthermore, when I see a rose or an apple, I see
it as an object in the world, not as a patch of color on my
retina. Philosophers refer to this asintentionality.
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The position I argue here is that the subjective, first-
person nature of consciousness can be explained in terms
of the ongoing stream of sensorimotor experience (the “fire-
hose of experience” of the title) and the symbolic pointers
into that stream (which we call “trackers”) that enable a
computational process to cope with its volume.

Consciousness also apparently constructs a plausible, co-
herent, sequential narrative for the activities of a large, un-
synchronized collection of unconscious parallel processes in
the mind. How this works, and how it is implemented in the
brain, is a fascinating and difficult technical problem, but it
does not seem to raise philosophical difficulties.

Other Approaches to Consciousness
There have been a number of recent books on the problem
of consciousness, many of them from a neurobiological per-
spective. The more clinically oriented books (Sacks 1985;
Damasio 1999) often appeal to pathological cases, where
consciousness is incomplete or distorted in various ways,
to illuminate the structure of the phenomenon of human
consciousness through its natural breaking points. Another
approach, taken by Crick and Koch (Crick & Koch 2003;
Koch 2003), examines in detail the brain pathways that
contribute to visual attention and visual consciousness in
humans and in macaque monkeys. Minsky (1985), Baars
(1988), and Dennett (1991) propose architectures whereby
consciousness emerges from the interactions among large
numbers of simple modules.

John Searle is a distinguished critic ofstrong AI: the claim
that a successful computational model of an intelligent mind
would actuallybe an intelligent mind. His famous “Chi-
nese room” example (Searle 1980) argues that even a behav-
iorally successful computational model would fail to have a
mind. In some sense, it would just be “faking it.”

In Searle’s recent book on the philosophy of mind (Searle
2004), he articulates a position he callsbiological natural-
ismthat describes the mind, and consciousness in particular,
as “entirely caused by lower level neurobiological processes
in the brain.” Although Searle rejects the idea that the mind’s
relation to the brain is similar to a program’s relation to a
computer, he explicitly endorses the notion that the body is
a biological machine, and therefore that machines (at least
biological ones) can have minds, and can even be conscious.
In spite of being nothing beyond physical processes, Searle
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holds that consciousness is notreducibleto those physical
processes because consciousness “has a first-person ontol-
ogy” while the description of physical processes occurring
in the brain “has a third-person ontology.” He lays out eleven
central features of consciousness “that any philosophical-
scientific theory should hope to explain.” In the follow-
ing three sections, I describe how a robotics researcher ap-
proaches sensorimotor interaction; propose a computational
model of consciousness; and evaluate the prospects for using
this model to explain Searle’s eleven features of conscious-
ness.

Sensorimotor Interaction in Robotics
When a robot interacts continually with its environment
through its sensors and effectors, it is often productive to
model that interaction as a continuous dynamical system,
moving through a continuous state space toward an attractor.
In the situations we will consider, such a dynamical system
can be approximated by a discrete but fine-grained compu-
tational model, so by taking this view of the robot we are not
moving outside the domain of computational modeling.

A Simple Robot in a Static World
Consider a simple robot agent in a static environment. In a
static world, the only possible changes are to the state of the
robot’s body within the environment, which is represented
by a time-varying state vectorx(t). The derivative ofx with
respect to time is writteṅx. For a simple mobile robot mov-
ing on a planar surface,x would have the form(x, y, θ), rep-
resenting thepose(position(x, y) plus orientationθ) of the
robot within its environment. A robot with a more complex
body would have a larger state vectorx.

We distinguish the environment and the robot’s body from
the computational process (which we will call the “agent”),
that receives the sense vectorz(t) from the environment and
determines a motor vectoru(t) to send out to its body in the
environment. Letm be the symbolic state of the agent’s in-
ternal computational process. Note that the agent has access
to its sense vectorz, and can set its own motor vectoru,
but it only has indirect access to its own state vectorx. The
coupled system consisting of the robot agent and its envi-
ronment can be described as a dynamical system. (Here we
superimpose two useful standard representations: the block
diagram and the differential equation.)

World:
ẋ = F (x,u) (1)
z = G(x) (2)

?
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Agent:
Hi := Select(m, z) (3)

u = Hi(z) (4)

Equation (1) describes how the robot’s state changes as a
function of its current state and the motor vector. The func-
tion F represents the physics of the world and the robot’s
body, including all the complexities of motor performance,

wheel friction, barriers to motion, and so on.F is not known
to the agent (or to the human researcher, who typically uses
simplified approximations). Equation (2) describes the de-
pendence of the robot’s sensor input on its current state.
The functionG is also extremely complex and not known
to the agent. From time to time, based on its internal sym-
bolic statem and its current observationsz, the agent selects
(equation 3) a reactive control lawHi which determines the
current valueu(t) of the motor vector as a function of the
current valuez(t) of the sensor input (equation 4).

For a particular choice of the control lawHi, equations
(1,2,4) together define the coupled robot-environment sys-
tem as a dynamical system, which specifies trajectories of
(x(t), ẋ(t)) that the robot must follow. The robot’s behav-
ior alternates between (a) following a trajectory determined
by a particular dynamical system until reaching a termina-
tion condition, and then (b) selecting a new control lawHj

that transforms the coupled robot-environment system into
a different dynamical system, with different trajectories to
follow (Kuipers 2000).

The Firehose of Experience
When engineering a robot controller, a human designer typ-
ically works hard to keep the model tractable by reducing
the dimensionality of the state, motor, and sensor vectors.
However, as robots become more complex, or as we desire
to apply this model to humans, these vectors become very
high-dimensional.

The sensor streamz(t) is what I call “the firehose of ex-
perience” — the extremely high bandwidth stream of sensor
data that the agent must cope with, continually. For a bio-
logical agent such as a human, the sense vectorz contains
millions of components representing the individual recep-
tors in the two retinas, the cochleal cells in the two ears, and
the many touch and pain receptors over the entire skin, not
to mention taste, smell, balance, proprioception, and other
senses. Robot senses are much simpler, but they still pro-
vide information at an overwhelming rate. (A stereo pair of
color cameras alone generates data at over 440 megabits per
second.) With such a high data rate, any processing applied
to the entire sensor stream must be simple, local, and par-
allel. In the human brain, arriving sensory information is
stored in some form of short-term memory, remains avail-
able for a short time, and then is replaced by newly arriving
information.

In a biological agent, the motor vectoru includes con-
trol signals for hundreds or thousands of individual muscles.
An artificial robot could have dozens to hundreds of motors
(though a simple mobile robot will have just two).

Modifying Searle’s Chinese Room metaphor (Searle
1980), in addition to comparatively infrequent slips of pa-
per providing symbolic input and output, the room receives
a huge torrent of sensory information that rushes in through
one wall, flows rapidly through the room, and out the other
wall, never to be recovered. Inside the room, John can exam-
ine the stream as it flows past, and can perhaps record frag-
ments of the stream or make new symbolic notations based
on his examination, in accordance with the rules specified in
the room.



The “firehose of experience” provides information at a
rate much greater than the available symbolic inference and
storage mechanisms can handle. The best we can hope for is
to provide pointers into the ongoing stream, so that relevant
portions can be retrieved when needed.

Trackers in the Sensor Stream
The key concept for making sense of the “firehose of ex-
perience” is thetracker, a set of symbolic pointers into the
sensor stream that maintains the correspondence between a
higher-level, symbolically represented concept and its ever-
changing image in the sensor stream. (Think of tracking a
person walking across a scene while you are attending to
something else in the scene.)

We will describe trackers in the framework of equations
(1-4) by equations of the form

mk(t) = τk(z(t)) (5)

meaning that an individual trackerτk takes as input the sen-
sor streamz(t) and produces as output the symbolic de-
scriptionmk(t), which is part of the symbolic computational
statem(t) of the agent. The subscriptk indicates that mul-
tiple trackersτk may be active at any given time.

An individual trackerτk may be created “top-down” by
a symbolic inference process, or “bottom-up” triggered by
detection of a feature in the sensory streamz(t). The hu-
man visual system includes parallel feature-detection mech-
anisms that trigger on certain “pop-out” colors and textures.

This is not a new idea. Versions of the sensorimotor
tracker concept include Minsky’s “vision frames” (1975),
Marr and Nishihara’s “spatial models” (1978), Ullman’s “vi-
sual routines” (1984), Agre and Chapman’s “indexical ref-
erences” (1987), Pylyshyn’s “FINSTs” (1989), Kahneman
and Triesman’s “object files” (1992), Ballard, et al, “deic-
tic codes” (1997), and Coradeschi and Saffiotti’s “perceptual
anchoring” (2003).

A tracker has its own control laws, updating its parame-
ters from information within the sensor stream. These con-
trol laws embody its expections about the dynamics of the
tracked concept, and how its perceptual image will appear
(Blake & Yuille 1992; Hutchinson, Hager, & Corke 1996).
The high volume and high temporal granularity of the sen-
sor stream helps the trackers track more successfully. The
feedback-based technology for tracking objects from chang-
ing sensor input has its roots in radar signal interpretation
from the 1940s (Wiener 1948; Gelb 1974).

Quine (1961) describes human knowledge as a symbolic
“web of belief” anchored at the periphery in sensorimotor
experience. Trackers are the anchoring devices for symbols.
We say that a tracker isbound toa spatio-temporal segment
of the sensor stream when that portion of ongoing experi-
ence satisfies the criteria of the tracker’s defining concept,
and when tracking is successful in real time. The tracker
mediates between signal processing and symbol manipula-
tion. At the signal processing end, the tracker implements
a dynamical system keeping its pointers corresponding as
closely as possible with the relevant portion of the sensor
stream. At the symbol manipulation end, the tracker serves

as a logical constant, with time-dependent predicates repre-
senting the attributes of the tracked object.

The location of the tracker within the sensor stream is reg-
ulated and updated by control laws, responding to the image
properties expected for the tracked concept and their contrast
with the background. Image processing strategies such as
dynamical “snakes” (Blake & Yuille 1992) represent chang-
ing boundaries between figure and ground. With adequate
contrast, the high temporal granularity of the sensor stream
means that updating the state of the tracker is not difficult.
With increasing knowledge about the sensor image of the
tracked concept, the tracker can maintain a good expecta-
tion about the relevant portion of the sensor stream even in
the presence of occlusion, poor contrast, and other percep-
tual problems.

Trackers implement the principle that “the world is its
own best model.” When a tracker is bound to a portion of
ongoing experience, current sensor data is easily available
to whatever symbolic cognitive processes might be active,
because the tracker provides efficient access into the correct
portion of the sensor stream.

Properties of an actively tracked object can be retrieved
more accurately and efficiently directly from the sensor
stream, rather than by attempting to retrieve facts previously
stored in memory. Human confidence in the completeness
and quality of perception come from this ability to retrieve
high-quality data from the sensor stream on demand, not
from complete processing of the image (Ballard, Hayhoe,
& Pelz 1995; O’Regan & Nöe 2001).

The phenomenon of “change blindness” (O’Regan & Noë
2001) illustrates some of the properties of trackers. People
can fail to notice startlingly large changes in a visual scene
due to intense focus of attention, or due to momentary breaks
in the sensor stream that require the trackers to be rebound.

Trackers can be hierarchically structured. For example,
a person tracker would have subordinate trackers for torso,
head, arms, legs, and so on (Marr & Nishihara 1978). If an
object moves to the periphery of the visual field, a hierarchi-
cal tracker may lose its more detailed components, becom-
ing little more than a “blob” tracker representing only loca-
tion and extent. But if more detailed information is needed,
a quick saccade can bring the target back to the fovea, the
hierarchical structure of the tracker is recreated, and ques-
tions are answered from vivid visual input as if it had been
continually available (Ballardet al. 1997).

A Computational Account of Consciousness
We extend our previous simple model of the robot agent to
incorporate trackers. We also extend it to non-static worlds
by distinguishing between the statex of the robot’s body and
the statew of the external world.

The trackers (8) provide active, time-varying assertions
directly grounded in the sensor stream. Equation (9) refers
to the update of the agent’s knowledge representation, based
on its prior state and sensor input. TheUpdate function
(9) encapsulates several important issues, including how the
coherent sequential narrative of subjective consciousness is
constructed (cf.Unity, below).



World:
[ẋ, ẇ] = F (x,w,u) (6)

z = G(x,w) (7)
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Agent:
mk(t) = τk(z(t)) (8)

m := Update(m, z) (9)

Hi := Select(m, z) (10)

u = Hi(z,m) (11)

Defining Consciousness

According to the model proposed here, what it means to be
conscious, what it means for an agent to have a subjective,
first-person view of the world, is for the agent to have:

1. a high-volume sensor streamz(t) and a motor streamu(t)
that are coupled, through the world and the robot’s body,
as described by equations (6-7);

2. a non-trivial collection of trackersmk(t) = τk(z(t))
grounded in the sensor stream (equation 8) capable of pro-
viding symbols for the agent’s knowledge representation
system, with top-down and bottom-up activation methods;

3. a non-trivial collection of control lawsu(t) =
Hi(z(t),m(t)) (equations 10-11) that can be used to im-
plement reasonably reliable actions in the world;

4. a sufficiently good correspondence between the agent’s
symbolic theory of the world (m(t) (equation 9), with
symbols grounded via trackers (8) and actions imple-
mented by control laws (10-11)) and the properties of
action and perception in the physical world (6-7), so the
agent can interact effectively with its world.

This is an unabashedly “Strong AI” claim. It does not
appeal to the Turing Test (Turing 1950), to claim that such
a robot behavesas if it were conscious. If a robot satisfies
the structural criteria above, we assert that it genuinelyis
conscious.

How can we justify this? In the next section, we will con-
sider a catalog of properties of human consciousness. We
argue that this computational model explains some of these
properties, and is compatible with a number of different ex-
planations of the rest (though it may not select among them).
Therefore, we propose that a computational model of this
form (once it is filled out technically) explains conscious-
ness in humans.

If all of the known properties of consciousness in humans
can be explained by a computational model, where the ex-
planations depend on a certain set of structural conditions,
then there seems to be no basis for denying that other sys-
tems that satisfy the same structural conditions are also con-
scious.

Admittedly, the structural model doesn’t help us know
what it “feels like” to be such a robot, any more than we
can know what it feels like to be a bat, or a dolphin, or John
Searle. For its consciousness to be “human-like”, a robot

would have to be sufficiently similar to humans in sensori-
motor system, symbolic processing capabilities, knowledge
base, and cultural background. What “sufficiently” means
here remains to be seen. Consider the difficulty in compar-
ing human and dolphin consciousness, due to differences in
sensorimotor system, environment, knowledge, and culture.

Evaluating a Theory of Consciousness
It is not yet possible to build a robot with sufficiently rich
sensorimotor interaction with the physical environment, and
a sufficiently rich capability for tracking and reasoning about
its sensor and motor streams, to be comparable with human
consciousness. The remaining barriers, however, appear to
be technical rather than philosophical.

We begin evaluating this theory of consciousness by dis-
cussing how well such a computational model might ac-
count for eleven central features of consciousness “that
any philosophical-scientific theory should hope to explain”
(Searle 2004, pp. 134–145). Each of the following subsec-
tions is titled with Searle’s name for a feature, followed by a
quote from his description of it.

For some of these features — Qualitativeness, Subjec-
tivity, Intentionality, Distinction between Center and Pe-
riphery, and Active and Passive — the dynamical tracker
model of consciousness provides a specificexplanation. For
other features — Sense of Self, Unity, Situatedness, Gestalt
Structure, Mood, and Pleasure/Unpleasure — there may be
several possible explanations, all of which areexpressible
within the dynamical tracker model.

Qualitativeness
Every conscious state has a qualitative feel to it.
. . . [This includes]conscious states such as feeling a
pain or tasting ice cream. . . [and also]thinking two
plus two equals four(Searle 2004, p. 134).

The vividness, intensity, and immediacy of subjective ex-
perience are due to the enormous information content of the
sensor streamz(t). There’s a difference between thinking
about the color red with my eyes closed in a dark room,
and the immediate experiences (qualia) of seeing a red rose
or apple or sunset. The intensity of subjective experience
increases with the information content of the input: from
text or verbal descriptions, to viewing a color photograph,
to memories or dreams of experiences, to live multisensory
experience.

Trackers do not capture the experience itself, but they
provide structure to William James’ “one great blooming,
buzzing confusion”. By providing rapid access to specified
parts of the sensory stream, trackers (in vision at least) main-
tain the illusion that the entire visual field is perceived with
the same high fidelity as the point of foveal attention (Bal-
lardet al. 1997; O’Regan & Nöe 2001).

If an attribute value such as the color red is stored as a
symbol “red” in memory, its information content is deter-
mined by the number of other possible color symbols that
could have been stored as a value of that attribute: at most
a dozen bits or so. On the other hand, if a tracker is bound
to a region in the sensor stream, the number of bits of color



information streaming past, even in a small region, is orders
of magnitude larger.

The higher information content of the sensor stream
means that attribute values drawn from sensory experience
necessarily include more distinctions than are available in,
for example, common vocabulary. The reds of roses, ap-
ples, and sunsets are different, though their distributions
may overlap. The agent who has experienced these qualia
possesses more distinctions than one who hasn’t, and can
recognize the rarity of a sunset-colored rose.

Although it is implausible for the entire sensory stream to
be stored in long-term memory, at least some qualia (e.g.,
the pain of a kidney stone or the smell of a freshly-baked
madeleine) can be stored in memory and can serve as asso-
ciative links to memories of previous experiences. The high
information content of a quale makes it possible to select
out a single distinctive association from the huge contents of
long-term memory.

The practical value of qualia is that they help keep the
hallucinations down. Symbolic (logical) theories are subject
to multiple interpretations. Larger theories have fewer in-
terpretations. Sensory grounding through trackers provides
a huge number of additional axioms to such a theory, and
thereby constrains its possible interpretations. Active track-
ers provide strong evidence, solidly grounded in the sensor
stream, to eliminate incorrect perceptual hypotheses.

There is a compelling argument that perception requires
abduction (Shanahan 2005). There must be a process that
proposes hypotheses to account for ongoing sensor data. If
this process were purely bottom-up (i.e., driven by the sen-
sor data), then in the absence of the sensor stream, no hy-
potheses would be generated and no perception would take
place. However, experience suggests that there are signifi-
cant top-down and perhaps random processes for generating
hypotheses. Under conditions of sensory deprivation, people
tend to hallucinate, that is, to generate perceptual hypothe-
ses poorly grounded in sensor input. The high information
content of the sensor stream helps to keep the generation and
refutation of perceptual hypotheses in balance.

Subjectivity
Because of the qualitative character of consciousness,
conscious states exist only when they are experienced
by a human or animal subject. . . . Another way to make
this same point is to say that consciousness has a first-
person ontology(Searle 2004, p. 135).

Consciousness is experienced exclusively from a first-
person point of view. (I reject Searle’s explicit restriction
of conscious experience to “a human or animal subject”.)

What it means for an agent to have a first-person point of
view is for it to have access to the sensor and motor streams
from its own body. That is, its body is physically embedded
in the world, and equations (6-7) describe the causal path
from its actionsu to its perceptionsz. By selecting a con-
trol law Hi, the agent creates a causal path from its sensory
input z to its motor outputu, closing the loop and giving
it some degree of control over its body. Only the agent it-
self has access to the sensor streamz(t) from its own body,

or to the motor output streamu(t), and only the agent is
in a position to select and impose a control lawHi relating
them. (This individuation reflects biology. Robots may not
have the same constraints. Also see the movie “Being John
Malkovich.”)

The agent can learn from experience which aspects of its
perceptions are under its direct control, and which are not,
therefore learning to separate its concept of itself (x) from
its concept of its environment (w) (Philipona, O’Regan, &
Nadal 2003). This distinction comes not from anatomy,
but from the existence of tight control loops. Virtual re-
ality and telepresence are subjectively compelling exactly
because humans are quickly able to learn novel models of
senses, actions, body, and world from interactive experience.

Exceptions to the agent’s privileged access to its own sen-
sorimotor system confirm this description of the first-person
point of view. Searle (Searle 2004, p.142) cites an experi-
ment by the neurosurgeon Wilder Penfield, who was able to
stimulate a patient’s motor neurons directly, to raise the pa-
tient’s arm, prompting a response from the patient who said,
“I didn’t do that, you did.” This corresponds to the surgeon
being able to setu(t) directly, without the patient selecting
a control law.

Unity
At present, I do not just experience the feelings in my
fingertips, the pressure of the shirt against my neck, and
the sight of the falling autumn leaves outside, but I ex-
perience all of these as part of a single, unified, con-
scious field(Searle 2004, p. 136).

We experience the audio-visual surround as a single uni-
fied field, continuous in space and time, in spite of a vari-
ety of disturbing facts about our actual sensory input (Koch
2003). The fovea has vastly higher resolution than the pe-
riphery of the retina, and the blind spot has no resolution
at all. The density of color-receptive cones is even more
strongly biased toward the foveal area and away from the pe-
riphery. Auditory and visual evidence from the same event
reaches the brain at different times. For example, it is well-
known that reaction time to an auditory stimulus is about 50
ms faster than to a visual stimulus. Furthermore, the audi-
tory stimulus from an event can be delayed up to about 80
ms from the visual stimulus without interfering with the per-
ception of simultaneity.

The apparent unity of perception is a plausible coherent
narrative, constructed 50-500 ms after the fact from evidence
from parallel and irregular sources (Ballardet al. 1997;
O’Regan & Nöe 2001). Several mechanisms and cognitive
architectures have been proposed to explain how this nar-
rative is constructed. For example, Minsky’s “Society of
Mind” (1985), Baars’ “Global Workspace Theory” (1988),
Dennett’s “Multiple Drafts Model” (1991), and others, pro-
pose that consciousness arises from the interaction of many
simple cognitive modules that observe and control each
other. The generally-linear stream of conscious thought is
constructed, typically in fragments, by these modules from
each others’ outputs. Within this kind of architecture, track-
ers are the modules that interface between the sensor stream



and the symbolic cognitive modules.
A number of technical and scientific questions remain

to be answered about how the coherent conscious nar-
rative is actually constructed from parallel and irregular
sources of input. Global Workspace Theory (Baars 1988;
2002) appears to be the current best detailed computational
model of this process.

In robotics, the Kalman Filter (Gelb 1974) is often used
to predict the most likely trajectory of a continuous dynami-
cal system (along with its uncertainty), given a model and
an irregular collection of sensor observations (along with
their uncertainties). The technical methods are different, but
philosophically, the slightly retrospective construction of a
coherent sequential narrative from irregular observations is
no more problematical than a Kalman Filter.

Intentionality
My present visual perception, for example, could not
be the visual experience it is if it did not seem to me
that I was seeing chairs and tables in my immediate
vicinity. This feature, whereby many of my experiences
seem to refer to things beyond themselves, is the feature
that philosophers have come to label “intentionality”
(Searle 2004, p. 138).

The core of Searle’s “Chinese room” argument (Searle
1980) is that strong AI commits a category error with re-
gard to intentionality. The mind necessarilyhasintentional-
ity (the ability to refer to objects in the world), while com-
putation (the manipulation of formal symbols according to
syntactic rules) necessarilylacks intentionality. Therefore,
the mind cannot be a computation.

However, intentionality is exactly what the tracker for a
high-level concept delivers: it binds a portion of the cur-
rent sensor stream to the symbolic description of an object
(believed to be) in the external world. The relationship of
intentionality follows from the causal connection from the
external, physical world to the contents of the sensor stream,
and thence to the internal symbols created by the trackers.

Searle’s response to the “Robot Reply” (Searle 1980) ac-
knowledges the importance of the causal connection be-
tween a robot’s sensorimotor system and the world, but he
claims that uninterpreted sensor and motor signals are just
as free of intentionality as any formal symbols.

Presumably, Searle would argue that the intentionality
provided by a tracker is merely “derived intentionality,”
coming from the mind of the human who programmed the
algorithms and control laws that make the tracker work.
This argument is vulnerable to a demonstration that effective
trackers can be learned automatically from experience with
uninterpreted sensors and effectors. In a preliminary form,
Pierce and Kuipers (1997) have made just such a demonstra-
tion.

We have taken significant steps toward learning intention-
ality. The Spatial Semantic Hierarchy (Kuipers 2000) maps
an unknown environment by identifyinglocally distinctive
statesand linking them into a topological map. The ability
of a symbol to refer to a distinctive state in the physical envi-
ronment depends on the behaviors of the dynamical systems

defined by the control laws, not on intentionality in the pre-
existing set of symbols. Pierce and Kuipers (1997) showed
that these control laws could be learned from the dynami-
cal regularities in the robot’s own experience with its unin-
terpreted sensors and effectors, constrained by their causal
connections with the environment.1 Modayil and Kuipers
(2004) have used related methods to learn to individuate and
describe coherent objects from the “blooming, buzzing con-
fusion” of sensory input.

We believe that learning methods like these can be ex-
tended to learn trackers for many kinds of distinctive con-
figurations in the sensory stream. New symbols are defined,
and their properties are learned, to refer to the objects of
the trackers in the external world. The agent thus acquires
intentionalityof its own.

The Distinction between the Center and the
Periphery

Some things are at the center of my conscious field, oth-
ers are at the periphery. A good mark of this is that
one can shift one’s attention at will. I can focus my
attention on the glass of water in front of me, or on
the trees outside the window, without even altering my
position, and indeed without even moving my eyes. In
some sense, the conscious field remains the same, but I
focus on different features of it(Searle 2004, p. 140).

An individual tracker maintains a set of pointers into the
sensor input stream that defines the features it attends to.
The rest of the sensor stream is examined only enough to
continue to track successfully, and to allow “pop-out” detec-
tion.

Some trackers are within the agent’s focus of attention,
in which case they constitute the “figure” part of the “figure-
ground” distinction in the visual field. Other “ground” track-
ers outside the current focus of attention may track objects
that could be attended to later, or they may contribute to
maintainingSituatedness(below).

Thermostats and robot vacuum cleaners are coupled with
the world to form simple dynamical systems. However, they
fail to be conscious because they have a single fixed “figure”,
no “ground” at all, and no ability to shift focus of attention.

Situatedness
All of our conscious experiences come to us with a
sense of what one might call the background situation
in which one experiences the conscious field. The sense
of one’s situation need not be, and generally is not, a
part of the conscious field. But, normally I am in some
sense cognizant of where I am on the surface of the
earth, what time of day it is, what time of year it is,
whether or not I have had lunch, what country I am a
citizen of, and so on with a range of features that I take
for granted as the situation in which my conscious field
finds itself(Searle 2004, p. 141).

While the concept of the tracker is particularly clear when
applied to images of objects that move within the visual

1See a newly-added appendix for more detail.



field, it applies equally well to tracking the location of the
robot within a given frame of reference, for example, the
current enclosing room. This concept of tracker can, in turn,
be generalized to track motion through an abstract space
such as time or a goal hierarchy. Such background situa-
tion trackers could potentially continue tracking with little
or no attention.

Active and Passive Consciousness

The basic distinction is this: in the case of perception
(seeing the glass in front of me, feeling the shirt against
my neck) one has the feeling, I am perceiving this, and
in that sense, this is happening to me. In the case of
action (raising my arm, walking across the room) one
has the feeling, I am doing this, and in that sense, I am
making this happen(Searle 2004, p. 142).

The agent’s sensorimotor interface (equations 7 and 11)
clearly divides into the sensor streamz(t), which is happen-
ing to the agent, and the motor streamu(t), by which the
agent makes things happen.

Active control of perception by moving the eyes to bring
a target into the fovea is accomodated by the current model,
since the state of the eyes would be part of the robot’s state
vector x(t), and would be controlled by the motor vec-
tor u(t). Attentional processes such as giving a particular
tracker more resources and allowing it to fill out its hierar-
chical structure more fully, could also be modeled as control
laws whose effect is on the internal statem(t) of the agent.

The Gestalt Structure

We do not, for example, in normal vision see undif-
ferentiated blurs and fragments; rather, we see tables,
chairs, people, cars, etc., even though only fragments
of those objects are reflecting photons at the retina,
and the retinal image is in various ways distorted. The
Gestalt psychologists investigated these structures and
found certain interesting facts. One is, the brain has a
capacity to take degenerate stimuli and organize them
into coherent wholes. Furthermore, it is able to take a
constant stimulus and treat it now as one perception,
now as another(Searle 2004, p. 143).

Each tracker looks for a certain structure in the sensor
stream. When it finds it, that structure is foreground for that
tracker, and the rest of the sensor stream is background. The
findings of the Gestalt psychologists provide clues about the
properties of individual trackers, of the process by which
potential trackers are instantiated and become active, of the
ensemble of active trackers, and perhaps even of the learn-
ing process by which trackers for new types of objects are
learned.

For example, interpretation-flipping figures such as the
Necker cube or the duck/rabbit figure suggest properties of
the ensemble of active trackers, such as mutual exclusion
and continued competition among the higher level of hier-
archical trackers, while lower levels preserve their bindings
and can be used by either competing interpretation.

Mood

All of my conscious states come to me in some sort of
mood or other. . . . there is what one might call a certain
flavor to consciousness, a certain tone to one’s con-
scious experiences(Searle 2004, p. 139).

The relation between a human agent’s psychochemical
state (a component ofx(t)), mood (a component ofz(t)),
and the rest of the agent’s perception, is presumably embed-
ded in the complex and unknown functionsF andG. How
mood affects behavior is embedded (in part) in the mecha-
nism for selecting the next control lawHi.

Pleasure/Unpleasure

Related to, but not identical with, mood is the phe-
nomenon that for any conscious state there is some de-
gree of pleasure or unpleasure. Or rather, one might
say, there is some position on a scale that includes the
ordinary notions of pleasure and unpleasure(Searle
2004, p. 141).

The pleasure/unpleasure scale has a natural role as a re-
ward signal during reinforcement learning. The links be-
tween particular qualia and their positions on the plea-
sure/unpleasure scale are very likely determined by evolu-
tionary learning (Dennett 1991). For example, pain is un-
pleasant and sex is pleasant because of their functional roles
in the survival of the individual and the species.

The Sense of Self

It is typical of normal conscious experiences that I have
a certain sense of who I am, a sense of myself as a self
(Searle 2004, p. 144).

In many ways, the most pragmatically useful aspect of
consciousness is the ability to observe, describe, store,
recall, reflect on, and in some ways control one’s own
thoughts, experiences, goals, plans, and beliefs.

As we have seen, the apparently sequential and continu-
ous nature of conscious experience is the post-hoc construc-
tion of a plausible coherent narrative to explain a somewhat
irregular collection of sensory inputs.

Once such a narrative exists, it can be stored in long-term
memory, recalled, and reasoned about like any other piece of
symbolic knowledge. The construction, storage, recall, and
manipulation of this kind of knowledge poses no fundamen-
tal difficulties for computational modeling (Minsky 1968).

It is important to acknowledge that memory can store
more than abstracted symbolic descriptions of experience.
Memory can include qualia such as snapshots or fragments
of the sensory stream with high information content. The
contentof the conscious narrative, as well as the content
of these qualia, and the associations they provide into the
agent’s long-term memory, are highly specific to the agent
whose experience they reflect, so they contribute to a unique
“sense of self.”2

2“What do you see when you turn out the light? I can’t tell you,
but I know it’s mine.”– John Lennon.



Discussion
The claim presented here (a “strong AI” claim) is that
the conditions for consciousness are expressible as a com-
putational model, including dynamical trackers maintain-
ing symbolic references to perceptual images in the sensor
stream. The phenomenal character of consciousness (“what
it is like”) comes from the enormous flow of information in
the sensory stream, and from the turbulent “churn” of pro-
cess activation, on the way to being serialized as conscious
thought (Baars 1988).

Qualia reflect the information density of the sensor
stream. Trackers ground a symbolic knowledge represen-
tation in the “firehose of experience” and constrain its inter-
pretations. Intentionality is intrinsic if useful trackers can be
learned from uninterpreted experience. And the sequential
stream of subjective consciousness is a plausible, coherent
narrative, constructed retrospectively (by 500 ms or so) from
data provided by parallel unconscious processes.

The empirical and philosophical study of consciousness
in humans helps clarify the nature of the phenomenon. The
study of the brain helps us understand the one implemen-
tation of a conscious system in whose existence we have
confidence. But according to our claim, consciousness is
not restricted to biological implementation. The essential
features of consciousness can, in principle, be implemented
on a robot with sufficient computational power and a suffi-
ciently rich sensorimotor system, embodied and embedded
in its environment.
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Figure 1: A simulated robot applies the SSH exploration
and mapping strategy. It identifies a topological graph of
distinctive places and connecting path segments according
to the behavior of control laws in the environment.

Wiener, N. 1948.Cybernetics or Control and Communica-
tion in the Animal and the Machine. Cambridge MA: MIT
Press.

Learning from Uninterpreted Sensors
and Effectors

3

In the Spatial Semantic Hierarchy (SSH) (Kuipers 2000),
a robot explores and maps an unknown environment by iden-
tifying neighborhoods within which hill-climbing control
laws can bring the robot reliably to isolatedlocally distinc-
tive states. A trajectory-following control law carries the
robot reliably from one distinctive state to the neighborhood
of another, where hill-climbing brings it to the next distinc-
tive state and prevents the accumulation of position error.

The robot can thus abstract the continuous environment to
a discrete topological map, with symbols representing places
and paths, as well as distinctive states and the actions linking
them. Figure 1 shows the behavior trace of a robot exploring
a simulated environment, hill-climbing to distinctive states
equidistant from multiple obstacles, and following trajecto-
ries defined by midline- or wall-following control laws.

For the robot to learn these symbolsfor itself, it must learn
its own collection of hill-climbing and trajectory-following
control laws, starting with an uninterpreted set of sensors
and effectors. Pierce and Kuipers (1997) accomplished this
task for a simulated robot with unknown sensors and effec-
tors, which required learning the structure of a ring of sonar-
like range sensors and learning an abstract model of mo-
tor commands that set the velocities of the right and the left
wheel.

Figure 2 shows a lattice of learning methods that analyze
data from several different experiments, building a progres-
sively richer description of the sensory and motor systems,
and eventually supporting the creation of hill-climbing and
trajectory-following control laws. Figure 3 shows explo-

3The appendix is an addition to the original AAAI-05 version
of this paper, describing in more detail some specific robot learning
results.
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Figure 2: The lattice of learning methods and their results,
from Pierce & Kuipers (1997).

ration traces corresponding to three different levels of com-
petence during learning.

The steps of the learning process are (Pierce & Kuipers
1997):

(1) Gather observations during random sequences of ac-
tions. First, coarsely cluster the sensors according to the
qualitative properties of a histogram of values returned by
each sensor. Then, within appropriate clusters, compute
pairwise correlations among sensor values and interpret
them as similarity measures.

(2) Assign the sensors in a cluster to positions in a
high-dimensional space reflecting their pairwise similarities.
Project to a low-dimensional subspace (2D in our examples)
that best accounts for most of the variance in the cluster.
Once sensor values have a spatial as well as temporal depen-
dence, we can calculate spatial as well as temporal deriva-
tives, and thus define motion fields.

(3) The motion fields corresponding to different motor
signals are analyzed using principal component analysis to
determine the most significant motion effects and the motor
signals that correspond to them. These signals are used as
the natural primitives for the motor space.

(4) Higher-level sensory features are proposed, based on
the spatial and temporal attributes of the field of primitive
sensory values. These include features such as discontinu-
ities, local minimum and local maximum, with magnitude,
position, and scope. Proposed features are evaluated accord-
ing to stability, predictive power, and extensibility.

(5) Evidence is collected of the effects of primitive mo-
tor commands on higher-level features, searching for motor
commands that change features in predictable ways. “Lo-



(a) (b) (c)
Figure 3:Exploring a simple world at three levels of competence.
(a) The robot wanders randomly while learning a model of its sen-
sorimotor apparatus. (b) The robot explores by randomly choosing
applicable homing and open-loop path-following behaviors based
on the static action model while learning the dynamic action model
(see text). (c) The robot explores by randomly choosing applica-
ble homing and closed-loop path-following behaviors based on the
dynamic action model.

cal state variables” are defined for particular neighborhoods
in the environment. Trajectory-following and hill-climbing
control laws are defined according to which local state vari-
ables correspond to features that are both observable and
controllable.

(6) Open-loop control laws are defined by identifying
commands that reliably change one feature while keeping
another one relatively constant. Closed-loop control laws
are defined by searching for and identifying commands that
can reduce deviations in the relatively constant feature, ac-
tively keeping it close to a desired setpoint. (Think of mov-
ing along a wall, turning slightly to maintain a desired dis-
tance from it. Compare figures 3(b,c).)

Higher-level sensory and motor features are learned with-
out drawing on prior knowledge of the robot’s environment.
They are learned by identifying statistical and dynamical
regularities in the experiences the robot receives after send-
ing motor commands. In these experiments, the concepts
whose intentionality is learned by the robot itself are a set
of specific distinctive states (position and orientation), and
the places and paths that make up a topological map of the
environment.

Extending this learning to include objects, actions, affor-
dances, other agents, and the other aspects of commonsense
knowledge occupies several years of learning for a human
child, and very likely several more decades of research for
artificial intelligene and the cognitive sciences.


