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ABSTRACT 
This paper presents a qualitative-reasoning method for predicting the behavior of mechanisms 
characterized by continuous, time-varying parameters. The structure of a mechanism is described in 
terms of a set of parameters and the constraints that hold among them : essentially a 'qualitative 
differential equation'. The qualitative-behavior description consists of a discrete set of time-points, at 
which the values of the parameters are described in terms of ordinal relations and directions of 
change. The behavioral description, or envisionment, is derived by two sets of rules: propagation rules 
which elaborate the description of the current time-point, and prediction rules which determine what is 
known about the next qualitatively distinct state of the mechanism. A detailed example shows how the 
envisionment method can detect a previously unsuspected landmark point at which the system is in 
stable equilibrium. 

I. Introduction 

People have a fundamental  desire to understand how things work, and an 
equally fundamental  desire to explain their understanding to others. In this 
paper,  I describe a class of knowledge structures to support  prediction, 
explanation and question answering using causal descriptions of physical sys- 
tems. Within the following f ramework for causal reasoning (inspired by De 
Kleer [6,7]), I address the problem of how a qualitative description of the 
behavior  of a system is derived from a qualitative description of its structure. 

Structural Behavioral Functional 
description description description 
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The structural description consists of the individual variables that characterize 
the system and their interactions; it is derived from the components  of the 
physical device and their physical connections. The behavioral description (or 
envisionment) describes the potential behaviors of the system as a network of 
the possible qualitatively distinct states of the system. I reserve the term 
functional description for a description that reveals the purpose of a structural 
component  or connection in producing the behavior of a system. Thus, the 
function of a steam-release valve in a boiler is to prevent an explosion; the 
behavior of the system is simply that the pressure remains below a certain 
limit. The existing literature frequently obscures this distinction by using the 
term 'function'  to refer to behavior.  

The goal of this research is to develop a knowledge representat ion capable of 
describing human commonsense  reasoning and explanation about physical 
causality. Commonsense causal reasoning is qualitative reasoning about the 
behavior  of a mechanism which can be done without external memory  or 
calculation aids, although it may draw on concepts learned from the advanced 
study of a particular domain, e.g. automobile  mechanics, computer  architec- 
ture, or medical physiology. In 6rder to be useful for modeling human 
commonsense  knowledge, the computat ional  primitives of our representation 
must not require excessive memory  or processing resources. 

Simulation of the behavior  of a mechanism is useful, for example in medical 
diagnosis, for determining the consequences of a hypothesized primary change, 
for predicting the expected course of the pat ient 's  disease, and for investigating 
the effects of hypothetical therapies. Qualitative simulation is important  
because the physician typically lacks precise numerical values for many 
parameters  characterizing the pat ient 's  state, and some parameters  may be 
difficult or impossible to measure.  In spite of this, the physician is clearly 
capable of making useful predictions. The knowledge representat ion described 
here was inspired by the at tempt  to capture the knowledge revealed by a 
physician explaining a case of kidney disease with an unusual presentation. A 
detailed analysis of the physician's behavior  is presented elsewhere [20]. 

In this paper,  1 propose a simple but very general descriptive language for 
structural descriptions, and a qualitative-simulation process for producing the 
behavioral  description. The representat ion described here begins with a de- 
scription of the structure of a mechanism that is similar to, but weaker  than, a 
differential equation. The qualitative simulation produces a description of its 
behavior  that corresponds to, but is weaker  than, the continuous function that 
is a solution to the differential equation. Thus, the representat ion is intended to 
produce a useful qualitative description of behavior,  starting with a qualitative 
description of structure that would be too weak to support  more traditional 
reasoning methods (see Fig. 1). 

Within the structural description, a mechanism is described as a collection of 
constraints holding among time-varying, real-valued parameters. The behavioral 
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FIG. 1. The qualitative structural description is capable of capturing a less complete state of 
knowledge than a differential equation, and the qualitative simulation produces a partial descrip- 
tion of the mechanism's behavior. Because the qualitative simulation uses heuristics, the two paths 
through the above diagram do not always yield the same result. 

description consists of a finite set of time-points representing the qualitatively 
distinct states of the system, and values for each parameter  at each time=point. 
A value is a description of the real number  corresponding to a paramete r  at a 
particular t ime-point.  This description consists of the ordinal relations holding 
among the different values in the behavioral description, and the I 0  value (the 
sign of the time derivative) of the paramete r  at that time. The envisionment 
proceeds first by propagating the implications of initial facts through the 
constraints to complete a description of the system's  state at the current 
time-point,  and second by predicting the characteristics of the next distinct 
qualitative-state description. 

After  reviewing related work, a simple example demonstrates  the basic 
propert ies  of the representat ion and the envisionment process. Then a more 
elaborate  example shows how, without external information, the simulation 
process deduces the existence of a previously unsuspected landmark value, and 
shows that the mechanism moves to a stable equilibrium about that value. The 
envisionment process has been implemented  in MACUSP, as a program called 
ENV [10], which has run all the examples included here. The figures presenting 
the results of the envisionment have been laid out by hand for publication and 
are not in the actual output format.  Appendices provide more formal 
specifications of the representat ion and the envisionment process, as well as an 
additional example addressing related issues. 

2. Related Research 

Answering a question about the behavior  of a physical system involves two 
quite different operations.  Problem formulation includes selecting which of 
several ways the physical situation should be described to allow a deeper  
examination.  Problem solving, in the narrow sense, starts with a formal 
description of a well-structured problem and derives an acceptable solution. 
The different approaches to problem formulation taken by experts and novices 
have been examined by psychologists such as Chi, Feltovich, and Glaser [3] and 
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Larkin, McDermott ,  Simon, and Simon [22]. In particular, when solving 
problems in physics Chi et al. show that experts describe the given situation in 
terms appropriate to the underlying physical principle (e.g. conservation of 
momentum) required for a solution, while novices describe the same situation 
in terms of the physical objects in the surface statement of the problem. 
Naturally, the expert is then able to proceed directly to the solution, while the 
novice must search a larger space of alternate solutions. The work described 
here is a method of solving problems previously formulated, applicable at 
either level of expertise. 

Artificial intelligence methods for qualitative reasoning about mechanisms 
were first developed by Rieger and Grinberg [25], whose knowledge represen- 
tation consists of events, tendencies, states, and state changes, related by several 
different types of causal links. Their  system produces realistic qualitative 
simulations of the behavior of mechanisms. However,  their representation 
lacks a strong distinction between the structure and behavior of a mechanism, 
which we feel is critical to causal reasoning. More generally, their represen- 
tation is ambiguous about whether its elements refer to the structure, potential 
behavior, or actual behavior of the mechanism being described. The CASNET 
program of Weiss, Kulikowski, Amarel  and Safir [27] uses causal links to 
propagate confirmation scores among pathophysiological states describing the 
progression of glaucoma. However,  the program has no knowledge of the 
relationship between physiological mechanisms and pathophysiological states, 
and so expresses causal relationships known to its authors, rather than doing 
causal reasoning itself. McDermot t  [24] has proposed an ambitious temporal logic 
for reasoning about events, actions, and plans as well as processes involving 
continuously varying parameters.  In a sense, he has taken Rieger and Grinberg's 
representation based on states and events, and created a much extended 
representation on a better logical foundation, that is capable of addressing a larger 
set of issues. His logic, however, is oriented toward expressing the behavioral 
description as actions and events of various kinds, so the structural description is 
stated as conditionalized events, not as a separate type of description. Since 
McDermott ' s  goal is to establish a logical framework for temporal reasoning, he 
demonstrates his logic by expressing many small example sentences rather than 
larger inference scenarios. Thus, he does not present a detailed set of rules and 
axioms for inferring behavior from structure. The aim of the present paper is to 
specify such a set of rules for causal inference, and to use only those features of 
a logic needed to express the rules. 

The envisionment approach to reasoning about mechanisms based on the 
relationship between structure and behavior, rather than between actions and 
events, has been developed by researchers such as De Kleer [6, 7] and Forbus 
[11, 12]. When the qualitative description of a system's state is not strong 
enough to specify which of several futures it will actually follow, the envision- 
ment becomes non-deterministic and the behavioral description contains a 
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branch. Much of the research on envisionment processes has studied the use of 
external sources of information (e.g. quantitative [6] or teleological [7]) to 
resolve non-determinism in the envisionment. 

There is little agreement on the exact role or expressive power of the 
functional description, which shows how the structure and components of the 
system contribute to its ability to perform its overall function [8, 19]. The 
functional description of a system should make explicit not only what behaviors 
are possible for a system, but why. Thus, a functional description must include 
terms that refer implicitly to changes past the final state of the system (e.g. 
stable equilibrium), or even to states that do not occur in the envisionment (e.g. 
the steam-release valve prevents explosions). The function of the steam-release 
valve, for example, must include a teleological relationship with the design 
process, in which the valve was added to the structure in order to prevent a 
certain behavior. 

There is significant disagreement, as well, about the exact nature of the 
envisionment process. The main issue is the means for describing continuously 
variable parameters. De Kleer [6, 7] describes changing parameters according to 
the sign of the derivative (the IQ value, standing for incremental qualitative 
value), and an algebra for propagating IQ values across addition constraints. 
Forbus [11] observes that IO values alone are inadequate for more than 
incremental-perturbation analysis, and expands the description to include the 
signs and magnitudes of both the amount and the derivative of a parameter. In 
practice, his system uses only the ordinal relations among quantities belonging 
to partially ordered quantity spaces, rather than performing arithmetic opera- 
tions on numerical magnitudes. Hayes [16, 17] initially proposed the concept of 
a quantity space, but his efforts were directed toward developing an adequate 
ontology for causality involving liquids, and he did not use the quantity space 
in a significant way in his examples, remaining agnostic about its properties. 
Thus, there is a recognized need for a qualitative method for reasoning 
about quantities without losing the fine distinctions needed in particular 
applications. 

Another important issue, not fully addressed by previous proposals, is the 
ability of the envisionment to detect previously unsuspected points at which 
qualitatively significant changes take place. Forbus [11] and Hayes [16] both 
assume that landmark values indicating qualitatively significant changes are 
provided as part of the initial description of the situation. De Kleer's "roller 
coaster" envisionment [6] usually makes the same assumption, although it is 
able to posit a change taking place within an interval if the roller coaster's 
behavior is different at the two ends. However, the point at which the change 
takes place is not then introduced into the envisionment for further qualitative 
reasoning. Determining where that point is, and what its properties are, is 
passed off to the quantitative-reasoning component. As we shall see in Section 
5, the envisionment process proposed here is able to detect a previously 
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unsuspected point at which qualitatively significant changes occur and dcter- 
mine many of its properties, without going beyond qualitative reasoning. 

A number of researchers are developing methods for deriving behavior from 
structure in digital electronics, for the purpose of circuit verification (Barrow 
[1]) or fault diagnosis (Davis [4, 5], Genesereth [14]). Because of the discrete 
nature of the parameter  values, digital electronics is a significantly different 
domain from physical systems characterized by continuous, analog parameters. 
In particular, although the simulation of the device may be symbolic [1], the 
precise values of the parameters can be described and used, so the simulation is 
not, strictly speaking, qualitative. Furthermore,  current work has studied the 
propagation of information to establish a coherent state for the circuit at a 
single instant in time. These reasoning techniques do not address (yet) the 
evolution of the state of a circuit over time. Finally, as we shall see below, there 
is a relatively small set of possible constraints that may hold among parameters 
in an analog system, and relatively few ways that a set of changing parameters 
can change over time. In digital electronics, on the other hand, the constraints 
that can hold among parameters, and the way future states can depend on the 
past, are limited only by the set of available or constructible component types. 
Thus, many of the important issues in deriving behavior from structure will be 
different in the two domains. 

3. Two Other Ways to Reason about Physical Systems 

We can develop certain aspects of our qualitative-reasoning method by com- 
parison with other formal reasoning methods using differential equations. 
Physical scientists reason about physical systems by describing the structure of 
a system with a differential equation, then determining its behavior by solving 
the equation, either analytically or by numerical simulation. The solution can 
then be analyzed to detect previously unsuspected landmark values of the 
system's parameters where its behavior changes qualitatively: zero-crossings, 
maximum or minimum values, and inflection points. Perturbation analysis of 
the system in the neighborhood of such a point can reveal the existence of 
(e.g.) a stable equilibrium. There are two costs to using such a reasoning 
method: the computational resources to perform its primitive operations, and 
an interpretation process to construct a meaningful description from its output. 

Consider an example of a simple physical system (Fig. 2) consisting of a 
closed container of gas (at temperature 1") receiving heat from a source (at Ts). 

A commonsense description of the behavior of this system is "The tem- 
perature of the gas increases until it is equal to the temperature of the source". 
Our goal is a causal reasoner which can produce a description of this form from 
a description of the causally-relevant structure of the system. 

A numerical simulation [13] of this system requires a complete description, 
in that the value of each parameter  at each point in time must be given as a 
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FIG. 2. A container of gas (at temperature T) receiving heat from a source (at a constant 
temperature Ts). There is no heat loss. The rate of flow of heat into the gas (inflow) is a function of 
the difference (AT = Ts - T) between the two temperatures, with AT = 0 corresponding to inflow = 0. 

real number. The relationship between AT and inflow must also be specified 
precisely, so we assume strict proportionality with a numerically specified 
constant. The simulation algorithm is conceptually simple, computing the 
values of all parameters at a time-point from their values in the previous 
time-point. It does, however, require arithmetic operations on real numbers, 
which are more than we might be willing to assume as primitive operations in 
the human. Fig. 3 gives the structural and behavioral description of the simple 
heat-flow system, as appropriate for numerical simulation. 

The output of the numerical simulation requires substantial further inter- 
pretation to recognize and classify important events in the behavior of the 
system. There is no information about the nature of the dependencies between 
the different parameters, or how the outcome might vary for different values of 
the numerical parameters.  The fundamental problem is that the numerical 
description required for this type of simulation has very few states of partial 

The structural description: 

~ T = T ~ - T  

AT 
inflow = - -  

10 

d 
- -  T = inflow 
dt 

The behavioral description produced by numerical simulation: 

t 1 2 3 4 
T 300 370 433 490 

Ts 1000 1000 1000 1000 etc. 

AT 700 630 567 510 
inflow 70 63 57 51 

FIG. 3. The structural and behavioral description of the simple heat-flow system for numerical 
simulation. The behavior of the system is described in terms of a discrete set of time-points, each of 
which specifies the numerical values for the system's parameters. 
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knowledge: either the value of a parameter  is known or it is not. The 
simulation process cannot run without complete knowledge, and its output can 
only be matched to a numerically identical system. 

The analytic solution of a differential equation provides a substantially 
different description of the system. In order to describe the causal structure of 
the simple heat-flow system (Fig. 2) as a differential equation we must specify 
the relationship between inflow and AT explicitly, in this case as a strict 
proportionality,  but with a symbolic constant k. It can then be solved analytic- 
ally as is shown in Fig. 4. 

The language of differential equations provides very useful states of partial 
knowledge about the system, in that quantities may be represented symbolic- 
ally instead of as real values. There is also a very rich symbolic vocabulary of 
relationships that may be asserted between quantities in formulating the 
problem or describing the solution: the arithmetic operators,  the tr igonometric 
functions, logarithm, exponentiation,  and many others. While these propert ies 
make differential equations the fundamental  descriptive tool of the physical 
sciences, they cannot be solved analytically by humans without external 
memory  resources. In spite of this descriptive power, the analytic solution of 
differential equations requires global and knowledge-intensive operations such 
as indefinite integration. 

We have seen two quite distinct t reatments  of continuously varying 
parameters  in these two representations.  One treats quantities as real numbers,  
revealing their changes in the course of incremental simulation, but requires a 
sophisticated interpretation to derive an understanding of the behavior of the 
mechanism given the simulation. The other representat ion treats parameters  as 
real-valued continuous functions, and yields an easily interpretable solution, 
but requires a sophisticated mathematical  inference method which often fails to 
produce a closed-form solution. Qualitative reasoning about physical systems 
must be able to handle states of incomplete knowledge such as weakly specified 
functional relationships, and non-numerical initial parameter  values. As a form 
of human commonsense  reasoning, it must also require only modest com- 
putational facilities [18], but must still be able to handle systems without 

d 
dt  T = inflow = k A T  = k ( T ~ -  T )  

I dT =fk 
"Is-  T J d t  

In(T~ - T ) =  - k t +  C 

T ~ -  T = C '  e k, 

T =  T s - C '  e kl 

FIG. 4. The  first equation is the structural description of the simple heat-flow system (Fig. 2), and 
the final equation is its behavioral description, created by solving the differential equation 
analytically. 
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closed-form solutions, and must be able to recognize unexpected points of 
qualitative change. 

4. Qualitative Simulation with Ordinal Quantities 

The qualitative simulation, like the other formal models, begins with a struc- 
tural description which consists of a set of constraints holding among time- 
varying, real-valued parameters .  The three principal types of constraints are: 

(1) Arithmetic: ( X = Y + 7 ) .  The values of the parameters  must have the 
indicated relationship at each point in time. 

(2) Functional: (Y = M+(X)). Y is a strictly increasing function of X (decreasing 
if M ). M; and M; pass through the origin as well. 

(3) Derivative: (Y = dX/dt). At  each time-point,  Y is the rate of change of X. 
The functional relationship, in particular, provides a weaker  level of descrip- 

tion than is possible with numerical or analytic solutions of differential equa- 
tions. The relationship inflow = M;(AT) in Fig. 5 states only that the relationship 
is strictly monotonically increasing, and that inflow = 0 corresponds to AT = 0. 
Fig. 5 gives the qualitative structure description for the simple heat-flow system 
in Fig. 2. 

The problem we observed in the last section with numerical simulation and 
analytic solutions of differential equations lies in the restricted states of partial 
knowledge and in the excessively powerful computat ional  machinery required. 
In order for qualitative reasoning about physical causality to have more states 
of partial knowledge with a weaker  set of primitive relations, it must operate,  

T Ts 

(unit (temp t-in t-s delta-t) 
(heat inflow) 

(constant (t-s (*range* 0 nil))) 
zxT (constraint 

(adder add A t-in 
B delta-t 
C t-s) 

(mO + foo X delta-t 
Y inflow) 

(d//dt deriv RATE inflow 
X t-in)) 

inflow (initialize (It t-in t-s))) 

FIG. 5. The qualitative causal structure description for the simple heat-flow system (Fig. 2). Note 
that the M; constraint is a strictly weaker description of the functional relationship than was 
required for numerical simulation or analytic solution. The dofnet form on the right is the actual 
internal form of the structure description. 
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not on real numbers,  but on symbolic descriptions of real numbers and the 
relations among them. The behavioral description consists of a finite set of 
time-points representing the qualitatively distinct states of the system, and 
values for each paramete r  at each time-point,  A value is a description of the 
real number  corresponding to a parameter  at a particular time-point.  This 
description consists of the ordinal relations (i.e. >,  <,  and =)  holding among 
the different values in the behavioral description, and the I 0  value (stated as 
increasing, steady, or decreasing) of the parameter  at that time. Certain values 
are distinguished or landmark values which play a special role in the qualita- 
tive simulation. Table 1 summarizes the terminology of this model of qualita- 
tive causal reasoning. 

Beginning with a set of assertions about the initial state of the system, the 
envisionment process takes place through the propagation~prediction cycle. 

Propagation. The consequences of information known about the state of the 
mechanism at the current t ime-point are propagated through the constraints to 
create a more complete qualitative description. The current time-point is 
complete when the direction of change for each value is known. Appendix B 
provides the detailed specification of the propagation rules. 

Prediction. The configuration of changing values is examined to determine 
what can be inferred about the next qualitatively distinct state of the 
mechanism. A new time-point is defined (or three in case of a branch) and 
those conclusions asserted within its context. Appendix C provides the detailed 
specification of the prediction rules. 

The prediction rules for determining the next qualitatively distinct state are 
elaborations on the following three types of qualitative changes, which depend 
on the ordinal relationship between the current value of a parameter  and 
nearby landmark values. 

(1) Move from landmark value: If the current value of a changing parameter  
is equal to a landmark value, then let the next value be perturbed in the 
direction of change, closer to the starting point than any other landmark value. 

(2) Move to limit: If the current value of a changing parameter  is not equal 
to a landmark value, and there is a landmark value in the direction of change, 
let the value of that parameter  in the next t ime-point be equal to the next 
landmark value. 

(3) Collision: If there are two changing values moving toward each other, 
not equal to landmark values nor separated by a landmark value, let their next 
values be equal, and make that new value a landmark. 

Fig. 6 demonstra tes  these rules graphically. 
When the description of the system's current state is not sufficiently complete 

to determine the next state uniquely, the envisionment branches on the 
possible states of a particular IQ value or ordinal relation. An additional set of 
recognition rules (Appendix C) detect propert ies of the behavioral description, 
such as cycles, case joins, and quiescence. 

Fig. 7 demonstra tes  that the result of the qualitative simulation is a two-state 
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TABLE 1. The objects and relations in the qualitative causal reasoning 
representation. Appendix A provides a more formal definition. Appendix B 
contains the rules by which individual constraints propagate ordinal and IQ 
value assertions. The representation for causal knowledge consists of the 
following objects. They are described here in terms of the real values and 
real-valued functions for which they provide a partial description. 

Object Description 

Parameter 

Switch 

Value 

Landmark value 

Boolean 

A term corresponding to a continuous real-valued function of time. 

A term corresponding to a Boolean-valued function of time. 

A term corresponding to a real number, the value of a parameter at a particular 
point in time. 

A specially designated value. 

A term corresponding to the Boolean value of a switch at a particular point in 
time. 

Time-point 

IQ value 

Assertion 

Ordinal 
IO 
Constant 

Value space 

Correspondence 

Constraint 

Arithmetic 
Functional 
Derivative 
Inequality 
Conditional 

A value of the special parameter,  time. 

A term corresponding to the sign of the derivative of a parameter at a 
particular point in time. It may have one of three values: increasing (inc), steady 
(std), or decreasing (dec). 

One of the predicates describing the relation between two values, or between a 
value and the IQ value at the same time. The reasoning system acquires 
knowledge about the magnitudes of quantities by inferring new assertions. 
((rel) (value) (value)); (tel) :: = gt I eql I lt. 
(IQ (value) (iq-value)); (iq-value) : : = inc I std I dec 
(constant (value)). 

The set of values, partially ordered by the transitive closure of the ordinal 
assertions. Its primary use is to retrieve the next landmark value in a given 
direction from a given value. 

An alist of (parameter landmark-value) pairs consisting of all the parameters at 
a particular time-point whose values are equal to landmark values. 

One of five types of predicate describing the relationship between several 
parameters and switches. A set of parameters,  switches, and constraints con- 
stitutes the structural description of a mechanism, whose behavioral description 
is determined by examining the assertions generated through qualitative simu- 
lation. 
((parameter) (parameter) (parameter)) [+*] 
((parameter) (parameter)) [M ÷ M M~ + M~]. 
((parameter) (parameter) (switch)) [d/dt]. 
((parameter) (parameter) (switch)) [= ~ < > <~ >/]. 
((switch) (parameter) (parameter) (parameter)). 
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results in 
0 0 

+ 

0 0 
Move-to-limit 

results in 

~---+ 

0 0 

÷ 

0 0 
Move-from-landmark-value 

q- ---+ <---+ 

0 0 
results in 

0 0 
Collision 

FIG. 6. A graphical illustration of three of the simple prediction rules. The actual set of rules is 
considerably more complex because there are frequently more than one or two changing values. 

envisionment that corresponds closely with the commonsense description of the 
simple heat-flow system: "The temperature of the gas increases until it is equal to 
the temperature of the source". The qualitative structural and behavioral de- 
scriptions offer simplicity of mechanism, in that the qualitative-simulation 
process depends on the ability to create and match simple assertions, rather 
than on arithmetic operations or symbolic integration. They also offer the 
ability to represent partial knowledge, in that both values and functional 
relationships are only constrained to lie in qualitatively defined classes. Both 
simplicity of mechanism and states of partial knowledge are valuable properties 
of a commonsense knowledge representation. 

The next example shows that the qualitative simulation can also provide an 
essential property of a description of physical causality: the ability to detect 
previously unsuspected values at which qualitatively significant changes take 
place. 

5. Detecting and Establishing a Stable Equilibrium 

We have seen that the qualitative-simulation process can handle a simple 
heat-flow problem like the one above, where the system reaches an equilibrium 
at a previously known landmark value. However, one important product of 
causal reasoning about a physical system is the existence of previously un- 
suspected values at which qualitatively significant changes take place. We can 
explore this issue in the context of a more realistic heat-flow problem, where 
there are flows of heat both into the gas from the source, and away from the 
gas into the surrounding cooler air. The causal structure description of the 
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constant(Ts) 

(1) T<Ts  
AT>O 
inflow > 0 
increasing(T) 
decreasing(AT) 
decreasing(inflow) 

(2) 
T = Ts 
AT= 0 
inflow = 0 
steady(T) 
steady(AT) 
steady(inflow) 

- Initial conditions are constant  (Ts) and T < Ts. 
- In time-point (1), the addition constraint propagates 

T < T s : f f  A T > 0 .  
- The functional constraint propagates AT > 0 :::> inflow > 0. 
- T h e  derivative constraint yields inflow > 0 f f  increasing(T). 
- T h e  1Q values propagate similarly to complete the description of 

time-point (1). 
- A  version of the move-to-limit rule determines that T, AT, and 

inflow are all changing toward landmark values, and that they must 
reach their limits simultaneously. 

-T ime-po in t  (2) is created with the initial assertions T = Ts, AT = 0, 
and inflow = 0. 

- T h e  constraints propagate ordinal assertions and IQ values until 
the description of time-point (2) is complete. 

- S i n c e  all IQ values are steady,  the system is quiescent. 
- " T h e  temperature of the gas increases until it is equal to the 

temperature of the source". 

FIG. 7. The envisionment of Fig. 5 produced by qualitative simulation. 

double heat-flow system (Fig. 8) is constructed by merging two descriptions of 
simple heat flows. The problem is to deduce the existence of an equilibrium 
temperature (1",) between the temperatures of the heat source (Xs) and the air 
(Z,), and to show that the system moves to a stable equilibrium about that 
temperature.  

This description is a qualitative version of the differential equation 

d 
d--t T = k (T~-  T ) -  k ' (T  - Ta) 

whose solution is 

T -  kT~+ k'Ta C,e_(k+k,)~. 
k + k '  
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Ta 

I 

z~Ta 

I 

outflow 

T 

net flow 

I 
z~Ts 

inflow 

Df 

~s  

FIG. 8. The  causal structure description of the container of gas with two heat  flows. 

A commonsense description of the behavior of this system is "The temperature 
of the gas moves to a temperature between the temperature of the air and that of 
the source, and remains steady". 

The envisionment process attempts to produce a complete description of the 
system's behavior through time. As we shall see, it first propagates newly 
discovered information through the constraints to complete the description of 
the system at a given time-point. Once that description is sufficiently complete, 
the envisionment process examines the set of currently changing values to 
determine the next qualitatively distinct state. If the description of the current 
state is not sufficiently well specified to determine the next state uniquely, the 
behavioral description branches according to the three possible states of an 
unspecified IQ value or ordinal relation. If the alternating cycle of sprouting a 
new time-point and propagating information among its values should become 
bogged down in intractible branching, the causal-structure description may be 
summarized and simplified (cf. Fig. 10 and Appendix D). The new description 
is less constrained, hence weaker than the old one, but by being simpler it may 
avoid branching and allow the envisionment process to continue. The 
envisionment process continues to simulate the system until some terminating 
condition is detected: quiescence, a cycle, a contradiction, or intractible 
branching. 
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The set of values in the behavioral description, partially ordered by the 
ordinal assertions that are currently known, is called the value space. The 
prediction rules that determine the next state of the system give special status 
to landmark values. The prediction rules consider only the subset of the value 

(1) 

constant(Ta) 
constant(Ts) 

T a < T < T s  
&Ta > 0 ~Ts > 0 
outflow > 0 inflow > 0 
net flow = unknown 

Case split: relation(net flow, 0) 

1"1 T 1"= l Y/' S 
i 

t 

(1 G) (1 L) (1 E) 
net flow > 0 net flow < 0 net flow = 0 
inflow > outflow > 0 0 < inflow < outflow inflow = outflow > 0 
T a < T < T s  T a < T < T s  T a < T < T s  
ATa, ATs > 0 z~Ta. ATs > 0 ATa, ATs > 0 
increasing(T) decreasing(T) steady(T) 
increasing(&Ta) decreasing(&Ta) steady(~Ta) 
increasing(outflow) increasing(outflow) steady(outflow) 
decreasing(ATs) increasing(&Ts) steady(&Ts) 
decreasing(inflow) increasing(inflow) steady(inflow) 
decreasing(net flow) increasing(net flow) steady(net flow) 

- I n  t ime-point (1), starting with the condition that T a < T < T s ,  ordinal assertions propagate 
through the network, producing the succeeding facts, but failing to provide information about net 
flow. 

- In order to allow the derivative constraint to derive IQ values, the envis ionment  is split into cases 
according to the sign of net  flow. In the branches,  with net  flow specified, IQ values propagate 
through the network to complete  the description. 

- Time-point  (1 E) is quiescent,  with all IQ values steady, so new landmark values are created, and 
the correspondence between parameters  taking on landmark values is recorded. 

(net flow: 0) ¢:;, (inflow: flow*) <::¢, (outflow: flow*) 
¢~ (aT.: 2tT*~) ¢:> (AT,: ~T~ )~  (T: "re) 

-Time-points (1G) and (1L) each contain six changing values. However, not enough is known to 
show that they arrive at their limits s imultaneously,  making the required case split intractibly 
large, so the envis ionment  halts. 

FIG. 9. Envis ionment  of the double heat-flow system. The  envis ionment  diagrams (Figs. 9 and 11) are 
read from top to bot tom, each line following from those above. Each cell contains assert ions relevant 
to a single t ime-point.  Time progresses from top to bot tom, and alternate branches are side by side. 
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space consisting of the current values plus the landmark values. Initially, zero is 
the only landmark value; the current value of a parameter  becomes a landmark 
when that value has an IQ value of steady. 

Figs. 9, 10 and 11 show the stages of the qualitative simulation as it creates 
the envisionment.  Fig. 9 shows how the envisionment of the double-flow system 
branches in order to derive missing IO values, how a new landmark point is 
discovered on one of the branches, and how a set of corresponding values is 
recorded when several parameters  take on landmark values simultaneously. 
Fig. 10 shows how the structural description is summarized when the first 
envisionment bogs down at an intractible branch, creating a much more 
manageable  structural description which, though containing much less in- 
formation, is still a valid description of the system. Fig. 11 shows how the 
summarized structural description, and the newly discovered correspondence,  
allow the successor t ime-points on the remaining two branches to be deter- 
mined uniquely so the envisionment can be completed.  Diagnosis of a stable 
equilibrium takes place using the final envisionment structure, by showing that 
a perturbation from the final quiescent state places the system into one of the 
previously described states from which there is a restoring change. 

FIG. lO(a). 

Ta Ts 

F D 
z~Ta 

outflow 

I 

4 

T 

I 
net flow 

~Ts 

I 

inflow 

D 

(a) 



I 

ATa 

outflow 

T 

outflow inflow 

I I  ne, ow  
(c) 

E) 
I 

net flow 

1 q 
z~Ts 

(b) 

inflow 

I 

T 

net flow 

(d) 

FIG. 10 (b), (c), (d). The arithmetic and functional parts of the causal-structure description are 
simplified in three steps, applying the following simplification rules. (See Appendix D.) The rules are 
applied repeatedly until the structural description can not be simplified further. 

x + y = z & constant(y) => z = M ÷(x) (a) ~ (b) 
x + y = z & constant (z)  => y = M- ( x )  (a) ~ (b) 
y =  M+(M+(x)) => y =  M+(x) (b)--*(c) 
y =  M-(M+(x)) => y =  M-(x) ( b ) ~ ( c )  
y = M - ( x ) - M + ( x )  => y = M-(x) (c)-*  (d) 
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(1) 

(T: Te) ¢~ (net flow: 0) 

Ta < Te < Ts 
T a < T < T s  
net flow = unknown 

Case split: relation(net flow, 0) 

B. KUIPERS 

f low 

(1G) 
net flow > 0 
T a < T < T e  
increasing(T) 
decreasing(net flow) 

(2G) 
T Te 
net flow = 0 
steady(T) 
steady(net flow) 

(1 L) 
net flow < 0 
T e < T < T s  
decreasing(T) 
increasing(net flow) 

(2L) 
T =  Te 
net flow = 0 
steady(T) 
steady(net flow) 

(I E) 
net flow 0 
T - T e 

steady(T) 
steady(net flow) 

(2E) 
T =  To 
net flow = 0 
steady(T) 
steady(net flow) 

Case join: identical outcomes on all branches 

(2) 
net flow = 0 
T = To 
steady(T) 
steady(net flow) 

- In time-point (1), ordinal assertions propagate as before, and the need for IQ values prompts a case 
split. 

-Time-point  (1 E) is quiescent as before. 
- T h e  previously determined correspondence makes it possible to infer the relation between T and 

Te in time-points (1G) and (1L), 
-Since time-point,: (1G) and (1L) each contain only two changing parameters and their limits are 

known to correspond, their subsequent states, (2G) and (2L), are easily and unambiguously 
determined by the move-to-limit rule. 

-Since the three branches of the split have identical end-states, they are joined to create state (2). 
The quiescent state (1E) is copied to an identical but temporally later state (2E) so that the 
temporal relation between states (1) and (2) is well defined. 

FIG. 1 1. Envisionment of the summarized double heat-flow description. 

T h e  e n v i s i o n m e n t  s t r u c t u r e ,  o r  b e h a v i o r a l  d e s c r i p t i o n ,  is n o w  c o m p l e t e ,  s i n c e  

e a c h  s t a t e  w i t h  c h a n g i n g  v a l u e s  h a s  a w e l l - d e f i n e d  s u c c e s s o r .  T h e  o v e r a l l  s t r u c t u r e  

of  t h e  e n v i s i o n m e n t  is s h o w n  in Fig .  12. S i n c e  t h e  e n v i s i o n m e n t  s t r u c t u r e  h a s  o n l y  

e i g h t  s t a t e s ,  it is f e a s i b l e  t o  e x a m i n e  it f o r  g l o b a l  p r o p e r t i e s  s u c h  as t h e  n a t u r e  of  i ts  

e q u i l i b r i u m .  
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(1) (2) 

L) (2L) 

(1G) (2G) 

Weaker 
description 

Stronger 
descriptions 

FIG. 12. The qualitative description of behavior is sufficiently compact that it can be examined for 
global properties such as stable equilibrium. 

Since the system ends in a quiescent state, a set of recognition rules is applied 
to determine whether the quiescence can be diagnosed as some type of 
equilibrium. Perturbations from state (2) put the system into states (1 G) or (1L), 
from which they return to (2), so the system is in stable equilibrium. 

It is worth noting that almost the same conclusion would have been reached if 
the double heat-flow structure (Fig. 8) had been simplified immediately, without 
the initial envisionment. The reader may find it instructive to work through the 
envisionment in Fig. 11 without the correspondence given ahead of time. The 
more complete description is required, however, to show that 1, < To < T,, if it is 
not initially assumed. Furthermore,  there is no reason, before doing the initial 
simulation, for the envisionment process to transform a stronger description into a 
weaker (though simpler) one. 

6. On the Qualitative Description of Time 

A mechanism changes continuously with time. Thus, there is no 'next' instant 
after the current one. The qualitative simulation we use here, however, consists 
of a discrete set of time-points, and we frequently speak of the prediction phase 
as predicting the "next qualitatively distinct state" of the system. 

Consider the example of a ball thrown into the air with velocity vo> 0 at 
time t = 0. The ball passes through a continuum of states during its journey up, 
the down again. However,  these states are mapped into five distinct qualitative- 
state descriptions (see Fig. 13). 

Each time-point in the sequence produced by the qualitative simulation 
corresponds to either a point or an open interval in physical time. In the 
open-interval case, the physical system clearly continues to change, but within 
the scope of the same qualitative-state description. 

7. Individual Variation 

Individual variation is an important  characteristic of commonsense knowledge 
(cf. [23]). An individual might have the structural description shown in Fig. 14 
for the single heat-flow system. The qualitative simulation is similar to that in 
Fig. 7, in that it matches the commonsense description: "The temperature of the 
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The quanti tat ive-structure description: 

d d 
y = v ,  ~ v = a =  32ft/sec 2. 

The quanti tat ive-behavior  description: 

v(0) = 32 ft/sec ~ y(t) - - 16t 2 . 32t ft. 
y(0) = 0 ft. 

The  quali tat ive-structure description: 

d d 
~ y = v .  ~ v = a < 0 .  

The quali tat ive-behavior description: 

(0) (1) (2) (3) (4) 

t3. KUIPERS 

Y Yo = 0 0 < Y1 < YMAX Y2 = YMAX 0 < Y3 < YMAX Y4 = 0 
V Vo>0  0.~ Vl .~ Vo V 2 - 0  V3<~0 V4 <~ V3 <~ 0 
A Ao<0  A~<0 A2<0  A3<0  A4<0  

FIG. 13. The  structural and behavioral descriptions of the ball system, described both quantitatively 
and qualitatively. For all t in the open interval 0 < t < 1, the quanti tat ive descriptions are mapped 
into the same qualitative description (State (1)). Thus  state (1) is the next qualitatively distinct state 
description after state (0), even though there is clearly no "next' value of t after t = 0. 

Temp(Gas) 
ra te>0  

Temp(Source) 

~ rate > 0 

(1) 
T < T s  
Q = true 
increasing(T) 

(2) 
T = Ts 
Q = f a l s e  

steady(T) 

FIG. 14. An alternate causal-structure description of the single heat-flow system, and the correspond- 
ing behavioral description. Al though the behavioral description is effectively the same as that in Fig. 7 
for the simple heat-flow system, the structure description does not generalize to handle the double 
heat-flow situation. 
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gas increases until it is equal to the temperature of the source". The structural 
description is correct, but is at the wrong level of detail to support productive 
causal reasoning because it does not include the fact that the difference 
between the temperatures of the gas and the source controls the rate of heat 
increase. This structural description could not be generalized to produce a 
reasonable envisionment of the double heat-flow example. 

We may speculate that some physics students learn models of physical 
phenomena such as shown in Fig. 14 which are accurately predictive for a 
certain class of simple mechanisms, but lead to intractible or incoherent 
structural descriptions when generalized. The Repair Theory approach of 
Brown and Van Lehn [2], applied to the composition of simple mechanism 
descriptions to produce more complex ones, may illuminate the misconceptions 
of naive physics students [15]. 

8. Conclusion 

This paper is concerned with the qualitative simulation of physical systems 
whose descriptions are stated in terms of continuously varying parameters. 
These continuous systems are interesting because they pose unsolved problems 
in the representation of knowledge, and because they appear fundamental to 
commonsense knowledge of causality in the physical world. There appears to 
be a 'cluster' of knowledge of manageable size about the possible interactions 
among continuously changing parameters which we can hope to capture and 
represent [16]. 

The examples presented above demonstrate a representation for qualitative 
reasoning about causality in physical mechanisms. The system as described in 
this paper has been completely implemented in MACLlSP. The structural des- 
cription is essentially a qualitative form of a differential equation, specifying a 
set of parameters which characterize the state of the mechanism and a set of 
constraints holding among the parameters. Qualitative simulation produces a 
behavioral description which specifies the ordinal relationships and directions 
of change of the parameter values at each point in time. 

Just as differential equations do not provide a theory of physics, but rather a 
language for stating theories of physics, the work presented here is a 'qualita- 
tive mathematics' intended as a language for stating theories of qualitative 
reasoning about particular mechanisms [9]. The preceding discussion of in- 
dividual variation illustrates this point. Qualitative simulation of behavior from 
structure is a key element in a complete theory of 'naive physics'. Other critical 
elements include specifying which knowledge to represent to capture the 
properties of particular domains [17, 21], and specifying how the right struc- 
tural descriptions can be evoked to handle particular physical situations 
[11, 12]. 
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Future directions for research on these 'qualitative differential equations '  
include a mathematical  exploration of their propert ies and the correctness of 
the qualitative-simulation algorithm (cf. Fig. 1), a reformulation of the predic- 
tion rules (Appendix C), and an extension to the formalism to allow time to be 
treated as a structural, as well as a behavioral,  parameter .  

Appendix A. A Formal Definition of the Causal Representation 

Def. A parameter is symbol denoting a continuously differentiable real-valued function 
of time (p~: R --, R). 

Def. A constraint is a pair (P, A) consisting of: 
(1) a set P of parameters, 
(2) a set A of axioms stating relationships between the values and IQ values of the 

parameters in P. (See Appendix B.) 

Def. A structural description is a 4-tuple (P, U, C, A) consisting of: 
(1) a set P of parameters, 
(2) a set U of subsets of P, called units, partitioning P into mutually exclusive 

subsets, 
(3) a set C of constraints, holding among the parameters in P, 
(4) a set A of axioms stating additional, situation-specific relationships between the 

values and IQ values of the parameters in P. 
(E.g. constant(p) => (for-all (t) (IQ-value(p, t) = steady)).) 

Def. A time-point is a symbol denoting a real number in the domain of some 
parameter. 

Def. A value is a symbol denoting a real number in the range of some parameter. 

Def. An IQ value is one of the three symbols {increasing, steady, decreasing}, 
denoting the sign of the derivative of a parameter at a particular time-point. 

Def. Two landmark values d~ and dj are corresponding values if there is some 
time-point t and two parameters p, and p~ related by a monotonic function constraint, 
such that val(p~, t) = d= and val(pj, t) = di. 

Def. An envisionment is a 7-tuple (SD, T, V, D, R, IQ-value, Corr) consisting of: 
(1) a structural description SD, 
(2) a set T of time-points, with a subset T* designated as active time-points, 
(3) a set V of values, with a mapping val: P× T--.V which is a 1-1 correspondence, 
(4) a subset D of V called the landmark values, 
(5) an order relation R on the elements of V which is a total order when restricted to 
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the landmark values D in a given unit U= plus any other value corresponding to a 
parameter in U~. 

(6) a partial mapping IQ:P x T ~  {increasing, steady, decreasing}, which assigns to 
each parameter at each time the sign of the derivative of its parameter at that time, 

(7) a set Corr of subsets of D denoting corresponding values. 

Def. An envisionment process is a sequence Eo.. .  En of envisionments, where 
(1) Eo consists of a structural description SD, and the sets T, V, D, R, IQ, and Corr 

contain a description of a single, active, initial time-point to, 
(2) Ek.l is derived from Ek by selecting an active time-point from E,, and applying the 

rules in Appendix C below to that time-point to determine 1 (or 3 in the case of a 
branch) successor time-points which are added to T, along with a corresponding set of 
values to V, and possibly additional information to D, R, IQ-value, and Corr, 

(3) none of the rules below apply to the final state En. 

Appendix B. Definition of the Constraints 

Constraints are relationships among parameters, but assert ordinal relations 
and IQ values among the values associated with those parameters at a given 
time, and also among the values associated with a single parameter at different 
times. The rules by which these assertions are created are given below. The 
constraint propagation mechanism is inspired by the scheme developed by 
Steele [26], modified to propagate ordinal and IQ value assertions rather than 
integers. 

The addition constraint: 

B C 

Ordinal relations can propagate among the values of the adder pins at any given 
time: 

A = 0  ~ B = C  
B = 0  <=> A = C  
A > 0  <=> B < C  
A < 0  <=> B > C  
B > 0  ~ A < C  
B < 0  ¢=~ A > C  

The sign of the derivative of A, B, and C at a given time can propagate through the 
adder. 
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C = A + B  B = C - A  

+ IQ(A) inc std dec - IQ(C) inc std dec 
IQ(B) IQ(A) 

inc inc inc ? inc ? inc inc 
std inc std dec std dec std inc 
dec ? dec dec dec dec dec ? 

When inequalities are derived between values taken on by adder pins at different times, 
they can be propagated through the adder as well. 

A I = A 2 & B I = B 2  ~ C1=C2 
A I = A 2 & B I > B 2  =~ C1>C2  
A I = A 2 &  B I < B 2  ~ C1<C2 
A I > A 2 & B I = B 2  ~ C1>C2 
A I > A 2 & B I > B 2  ~ C1>C2  
A I < A 2 & B I = B 2  ::> C1<C2 
A I < A 2 & B I < B 2  :~ C1<C2 

A I = A 2 & C I = C 2  ~ B I = B 2  
A I = A 2 & C I > C 2  :~ B I > B 2  
A I = A 2 & C I < C 2  => B I < B 2  
A I > A 2 & C I = C 2  :~ B I < B 2  
A I > A 2  & C I < C 2  :~ B I < B 2  
A I < A 2 & C I = C 2  ~ B I > B 2  
A I < A 2 & C I > C 2  ~ B I > B 2  

The multiplication constraint: 

Ordinal relations can propagate among the values of the multiplier pins at any given 
time: 

A=O => C = 0  
B = 0  :> C = 0  

A > 0 & B > 0  => C > 0  
A < O & B < 0  :~ C > 0  
A > 0 & B < 0  => C < 0  
A < 0 & B > 0  => C < 0  

A > 0 & C > 0  ~, B > 0  
A < 0  & C < 0  ~ B > 0  
A > 0 & C < 0  :> B < 0  
A < 0 & C > 0  :~ B < 0  
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[The following rules are only valid assuming A, B, C > 0. However, the only examples 
of multiplication so far are the calculations of concentration and pressure, which all 
involve physically positive values.] 

The sign of the derivative of A, B, and C at a given time can propagate through the 
multiplier. 

C = A * B  B= C/A 
*IQ(A) inc std dec /IQ(C) inc std dec 

IQ(B) IQ(A) 
inc inc inc ? inc ? inc inc 
std inc std dec std dec std inc 
dec ? dec dec dec dec dec ? 

When inequalities are derived between values taken on by multiplier pins at different 
times, they can be propagated through the multiplier as well. 

A I = A 2 & B I = B 2  ~ C 1 = C 2  
A I = A 2 . & B I > B 2  ~ C 1 > C 2  
A I = A 2 & B I < B 2  =~ C 1 < C 2  
A I > A 2 & B I = B 2  => C 1 > C 2  
A I > A 2 & B I > B 2  => C 1 > C 2  
A I < A 2 & B I = B 2 ~  C 1 < C 2  
A I < A 2 & B I < B 2  ~ C 1 < C 2  

A I = A 2 & C I = C 2  => B I = B 2  
A I = A 2 & C I > C 2  ~ B I > B 2  
A I = A 2 & C I < C 2  =~ B I < B 2  
A I > A 2 & C I = C 2  =~ B I < B 2  
A I > A 2 & C I < C 2  ~, B I < B 2  
A I < A 2 & C I = C 2  =~ B I > B 2  
A I < A 2 & C I > C 2  =~ B I > B 2  

The functional relationship constraints state that the two parameters so linked have 
a functional relationship which is either monotonically increasing (M +) or monotonically 
decreasing (M-), and possibly in which zero corresponds to zero (subscript z). 

Y is a strictly monotonically increasing function of X: 

Information about values of X and Y at a given time can only be propagated if the 
function passes through the origin (subscript z) 

X > 0  ~ Y > 0  
X = 0 ~ Y = 0  
X < O  ~ Y < 0  
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The sign of the derivative at a given time can be propagated. 

IQ(X) = inc ~ IQ(Y) = inc 
IQ(X) = std ~ IQ(Y) = std 
IQ(X) = dec ~ IQ(Y) = dec 

An inequality between values of one of the pins at two different times can be 
propagated to the other pin. 

X I > X 2  ~ Y I > Y 2  

X I = X 2  ~ Y I = Y 2  

X I < X 2  ~ Y I < Y 2  

Y is a slTicUy monotonically decreasing function of X: 

The sign of the derivative at a given time can also be propagated. 

IQ(X) = inc ¢:~ IQ(Y) = dec 

IQ(X) = std ~ IQ(Y) = std 
IQ(X) = dec ~ IQ(Y) = inc 

An inequality between values of one of the pins at two different times can be 
propagated to the other pin. 

X I > X 2  ~ Y I < Y 2  
X I = X 2  ~ Y I = Y 2  
X I < X 2  ~ Y I > Y 2  

The derivative constraint holds between a parameter and a rate. 

X 

At any given time, the sign of the rate can be propagated to the sign of the derivative 
of X. 

R > 0 <~ IQ(X) = inc 
R = 0 <~ IQ(X) = std 
R < 0 <~ IQ(X) = dec 
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There are two versions of these rules, named after the classical theories of 
motion they resemble [23]. The Aristotelian rule has the benefit of simplicity, 
while the Newtonian rules are mathematically correct. Appendix E presents an 
example that illustrates the ditierences in the behavioral description produced. 

Aristotelian: 
IQ(Xl) = std :~ X2 = Xl  

Newtonian 
IQ(Xl) = std & IQ(X2) = std => X2 = Xl  
IQ(X1) = std & IQ(X2) = inc :~ X2>X1  
IQ(X1) = std & IQ(X2) = dec ~ X2 < Xl  

The inequality constraint holds between two parameters and a switch, so that the 
switch holds the boolean value corresponding to the truth of the given relationship 
between the values of the parameters at that time. 

A - - ~  cond 

A >  B =~ cond = true 
A = B =~ cond = false 
A < B  ~ cond=false 

cond = true :~ A >  B 

The condit ional constraint (gate) holds among three parameters, A, B, and C, and a 
boolean switch, implementing the relationship 

i f cond = true then C = A else C = B.  

cond 

B 

cond=t rue => C = A  
cond = false ~ C=  B 

C = A =~ cond = true 
C = B & C = ~ A  =~ cond=false 
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Appendix C. The Envisionment Rules 

The envisionment, or qualitative simulation of the behavior of a device, 
proceeds using three types of rules. 

(1) Propagation rules propagate information across constraints about the 
values of parameters at a given time-point. 

(2) Prediction rules determine the nature of the next distinct qualitative-state 
description from what is known about the current state. 

(3) Recognition rules detect global properties of the envisionment such as 
cycles, case-joins, and quiescence. 

C.I. Propagation rules 

Propagation rules propagate information about the values of parameters at the 
current time-point according to the relationships among the parameters and 
constraints describing the structure of the mechanism. 

Rule P1. Propagate information (i.e. create a new assertion) for a constraint if enough 
of its arguments holds new information. (Rules given in Appendix B.) 

Rule P2 (Make landmark value). If a value's IQ-value = steady, make that value a 

landmark value. 

Rule P3 (Correspondences). If more than one of the values at the current time-point 
are landmark values, create a correspondence: an alist of (parameter landmark-value) 
pairs consisting of all the parameters whose current values are landmarks, and which 
are linked directly or indirectly by monotonic function constraints. 

Rule P4 (Contradiction). If propagation derives a contradiction refute the branch 
containing the value which received the assertion causing the contradiction. If this is 
the main branch, the entire structural description is at fault. 

Rule P5 (Branch on undetermined rate). If the IQ value of a parameter is unknown at 
the current time-point, and if it is the 'X' argument of a derivative relation, then branch 
the envisionment according to the assumptions: 

IO(X) = inc; IQ(X) = std; IQ(X) = dec. 

Landmark values are only acquired by being built into the structural des- 
cription (e.g. the speed limit is 55 mph), or being detected as critical points of 
functions (Rule P2). 

C.2. Prediction rules 

The configuration of changing values (the parameters whose current IQ value is 
not steady) can be analyzed to select the state or states that immediately 
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succeed the current state. The decision tree below can be seen by inspection to 
exhaust all cases. 

The notation specifies only the values of those parameters which are chang- 
ing; all others are assumed steady. The current value of a parameter  is given by 
a capital letter, followed by its IQ value (direction of change) in parentheses: 
A(inc) or B(dec). The value of the same parameter  in the time-point created by 
the envisionment rule is A' or B' respectively. Landmark values are starred; 
sharing the same letter (A and A*) simply signifies that A* is a landmark value 
which does or will have some important relationship with A. If the result of an 
envisionment rule is a branch, the rule is written with multiple arrows ( ' i f ' )  and 
consequents. 

0. No changing values ~, no next state. 
1. One changing value (A) 

1.1 equal to a landmark value: (move from landmark value) 
[A(inc) = A*] ~ [A* < A'] 

1.2 moving toward a landmark value: (move to limit) 
[A(inc) < A*] ~, [A* = A'] 

1.3 not moving toward a landmark value: 
[A(inc)] => [A < A'] (next state will have same description as current state) 

2. Two changing values (A and B) 
2.1 both equal to landmark values: 

[A(inc) = A*; B(inc) = B*] ~ [A* < A'; B* < B'] 
2.2 one equal to landmark value: 

[A(inc) = A*; B(inc)] => [A* < A; B < B'] 
2.3 neither equal to landmark values: 

2.3.1 A and B in different units: not comparable. 
2.3.1.1 neither approaching a limit: 

[A(inc); B(inc)] ~, [A < A'; B < B'] 
2.3.1.2 one approaching a limit: 

[A(inc) < A*; B(inc) ~ [A* = A'; B < B'] 
2.3.1.3 both approaching limits: (non-deterministic move-to-limit) 

[A(inc) < A*; B(inc) < B*] => [A* = A'; B* = B'] 
=> [A* = A'; B <  B '<  B*] 

[ A < A ' < A * ;  B* = B'] 
2.3.2 A < B 

2.3.2.1 both moving the same way: A(inc) < B(inc) 
(a) no limits: 

[A(inc) < B(inc)] => [A' = B'] 
=> [A' < B'] 

(b) one limit for both values: 
[A(inc) < B(inc) < L*] => [A' = B' = L*] 

=~ [A'<B'= L*] 
=~ [ B < A ' =  B '<  L*] 
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(c) one limit point between A and B: (= case 2.3.1.2) 
[A(inc) < A* < B(inc)] ~ [A' = A* < B < B'] 

(d) two separate limit points: (= case 2.3.1.3) 
[A(inc) < A* < B(inc) < B*] :~ [A* = A' < B ~ = B'] 

[A* = A ' <  B <  B '<  B*] 
:> [ A < A ' < A * < B * =  B'] 

2,3.2.2 moving toward each other: A(inc) < B(dec) 
(a) no limits between them: 

[A(inc) < B(dec)] :~ [A' = B'] 
(b) one limit point between them: (= case 2.3.1.3) 

[A(inc) < L < B(dec)] ~, [A' = L "~ = B'] 
:~ [ A ' = L ~ < B  '] 
:~ [ A ' < L ~ = B  '] 

(c) two limit points between them: (= case 2.3.1.3) 
[A(inc) < A* < B* < B(dec)] :::> [A' = A* < B* = B'] 

:> [ A ' = A * < B * < B  '] 
[ A ' < A * < B * = B  '] 

2.3.2.3 moving away from each other: A(dec) < B(inc) 
(a) no limits on either side: 

[A(dec) < B(inc)] :> [A' < A < B < B'] 
(b) one limit point: (= case 2.3.1.2) 

[A* < A(dec) < B(inc)] ::> [A ~ = A' < B'] 
(c) a limit point on each side: (=case 2.3.1.3) 

[A* < A(dec) < B(inc) < B ~] ~ [A* = A' < B' = B*] 

[A* = A ' <  B '<  B*] 
::> [ A * < A ' < B ' = B  *] 

2.3.3 A = B 
2.3.3.1 moving same way: 

[A(inc) = B(inc)] ~ [A '= B'] 
=> [A' < B'] 
=> [A' > B'] 

2.3.3.2 moving opposite ways: 
[A(dec) = B(inc)] => [A '<  B'] 

2.3.4 comparable but unknown relationship: 
(branch on relation; then use cases 2.3.2 and 2.3.3) 

3. More than two changing values 
3.1 If any changing value is equal to a landmark value 

or moving in a direction with no limit point, 
then perturb each value in the direction of motion 

(see cases 1.1 and 1.3). 
3.2 If no changing values are equal to landmark values 

and some changing values are moving toward limit points 
and a correspondence exists among all those limit points, 
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then the next values of those changing parameters are equal to their limit points 
and any changing parameters without limits are perturbed in their direction of 
change. 

3.3 If no changing values are equal to landmark values 
and some changing values are moving toward limit points 
and the limit points divide into exactly two sets of corresponding values, 

then branch according to the non-deterministic move-to-limit rule (case 2.3.1.3) 
and any changing parameters without limits are perturbed in their direction of 
change. 

3.4 Otherwise the current state is declared "lntractible". 

We are currently experimenting with alternate formulations of the prediction 
rules which may enable us to handle certain cases difficult to express in the 
decision-tree format. Thus the definition of 'intractible' for the envisionment 
system is likely to change. 

C.3. Recognition rules 

Recognition rules recognize global configurations in the envisionment that 
allow the set of time-points to be simplified. 

Rule R1. If all IQ values are steady, then recognize a quiescent system. Remove the 
current time-point from the set of active time-points. If there are no more active 
time-points, stop. 

Rule R2. If all values at the current time-point are equal to landmark values, and all 
values were equal to the same landmark values at a previous time-point, and all IQ 
values match in the two time-points, then recognize a cycle. Replace the current 
time-point with a pointer to the previous, identical, time-point, and remove the current 
time-point from the set of active time-points, since its successors are now known. 

Rule R3. If all values at the current time-point are equal to landmark values, and there 
is a time-point on an alternate branch all of whose values are equal to the same 
landmark values, and all of the IQ values match, then recognize a case-loin. Replace 
both time-points with pointers to a special case-join descriptor. In case the case-join 
captures all the surviving branches of a case-split, map the join into a new time-point 
related to the one at which the case-split occurred. (See Fig. 12 in the text.) 

Appendix D. Summarizing the Structural Description 

The syntactic transformation rules for summarizing the causal-structure des- 
cription are the following (in mathematical notation, rather than graph 
diagrams). They are applied repeatedly until the structural description cannot 
be simplified further. 
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The transformation is implemented by installing the new constraint, linked 
with the existing parameters .  The existing constraints are left in place but 
' turned off' so their rules are no longer activated in response to newly asserted 
values. 

1. Ar i thmet ic  const ra in t  with one  constant .  

x + y = z & constant (y )  => z = M+(x) 

x + y  = z & constant (z)  => y = M (x) 

x * y = z & y > 0 & constant (y)  :> z = M ; ( x )  

x , y =  z & z > 0  & constant (z)  :ff y = M- (x )  

2. Compos i t i on  of funct iona l  constra ints .  

y = M+(M+(x))  => y = M+(x) 

y = M+(M-(x ) )  ~ y = M- (x )  

y = M- (M+(x) )  => y -  M- (x )  

y =  M (M-(x) )  =b y =  M+(x) 

y = M ; ( M ; ( x ) )  :ff y = M ; ( x )  

y = M ; ( M 2 ( x ) )  => y = M i ( x )  

y = M ; ( M ; ( x ) )  f f  y = M ; ( x )  

y = M ; ( M ~ ( x ) )  :ff y = M ; ( x )  

3. Sum of funct ional  const ra in ts  wi th s a m e  net  effect. 

y = M + ( x ) +  M+(x) :ff y = M÷(x) 

y = M- (x )  + M- (x )  => y = M- (x )  

y = M + ( x ) -  M (x) :ff y = M+(x) 

y = M - ( x ) -  M+(x) => y = M- (x )  

y =  M=+(x)+ M~(x) :ff y = M ; ( x )  

y = M ; ( x )  + M~(x)  =~ y = M ; ( x )  

y = M ; ( x ) -  M ; ( x )  ~ y =  M~(x)  

y = M i ( x )  - M~(x)  =~ y = M ; ( x )  

Appendix E. Momentum and Cyclic Behavior 

In examining the envisionment of the double heat-flow system, people 
occasionally ask about momentum:  "What if the value k e e p s  on going rather than 
stopping at its limit?" Naturally, this can only occur if the system is sufficiently 
complex to support  that behavior,  and if that complexity is reflected in the 
causal structure description. The example of the oscillating spring demonstrates  
both momen tum  and the creation of important  new landmark values. This 
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system is governed by the differential equation: 

d 2 
dt--- 5 X = M z ( X )  , 

or, more precisely, by the system of equations: 

d x d V = A  A = M z ( X )  
dt  =- V ,  d-t ' 

In addition to demonstrating cyclic behavior, the oscillating spring (Fig. 15) 
demonstrates the use of the Aristotelian and Newtonian motion rules asso- 
ciated with the derivative constraint (see Appendix B). In particular, the chart 
below uses the Aristotelian rule applied to the variable V, in the transition from 
(3) to (4). This has the curious effect that the IQ value of V changes from steady 
to incroasin9 while V remains equal to VMIN. Only in the transition from (4) to 
(5) does the change to the |Q  value propagate to cause V > VMIN. Thus, when 
comparing the behavioral description with the physical world, state (4) is not 
actually distinct from states (3) and (5), but is a computationally required 
transitional pseudo-state. 

The more complex Newtonian motion rule makes the correct transition from 
(3) directly to (5). It produces the same behavioral description as shown below, 
omitting states (4), (7), (10), and (14). One may speculate that the obvious 
differences in rule complexity is one reason for the observed differences in 
theories of motion, both across history and in naive subjects [23]. 

X 

velocity 

[ ~ - ]  accelleration 

FIG. 15. Causal-structure description: oscillating spring without energy dissipation. 
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T h e  fo l lowing char t  gives the  o rd ina l  asse r t ions  and  the I Q  value  asser t ion  
for the  va lue  of x, v, and  a, respec t ive ly ,  at each t ime-po in t .  The  last co lumn 
gives the  rules ,  o t h e r  than s imple  p r o p a g a t i o n ,  used to g e n e r a t e  each value 
( A p p e n d i x  C). The  te rms  that  are unde r l i ne d  in each row are  the initial 
i n fo rma t ion  with which that  t ime-po in t  was c r ea t ed  f rom its p redecesso r .  

(1) x > O  std v = 0  dec a<O std given 
(2) x > O  dec v<O  dec a<O inc Rule 1.1 
(3) x = O  dec v < O  std a=O inc Rule 3.2 

vmin = v3 Rule P2 (v) 
(4) X<O dec v = v m i n < O  inc a>O inc Rule2.1 

(5) x < O  dec v m i n < v < O  inc a>O inc Rule3.1 
(6) x < O  std v=O  inc a>O std Rule 3.2 

xmin = x6 amax = a6 Rule P2 (x, a) 
(7) x = x m i n < O  inc v > O  inc a = a m a x > O  dec Rule 1.1 
(8) x m i n < x < O  inc v > O  inc < <O_~_a__~__ataax dec Rule 3.1 
(9) x = o  inc v > O  std a=O dec Rule 3.2 

vmax = v9 Rule P2 (v) 
(10) x > O  inc v = v m a x > O  dec a < O  dec Rule2.1 
(11) x > O  inc < <fi__~__v._~_v.ma~ dec a < O  dec Rule3.1 
(12) x > O  std v = O  dec a<O std Rule3.2 

xmax = x12 amin = a12 Rule P2 (x, a) 
(13) x = x m a x  dec v m i n < v < O  dec a=amin  inc Rule1.1 
(14) O < x < x m a x  dec v m i n < v < O  dec ~ inc Rule3.1 
(15) x = O  dec v=vm in  std a = O  inc Rule 3.2 
MATCH detected with state (3). Rule R2 

Summarized cycle (landmark values only): 

(3) x = O  dec v = v m i n  std a = O  inc 
(6) x = x m i n  std v = O  inc a=amax  std 
(9) x = O  inc v = v m a x  std a=O dec 

(12) x = x m a x  std v--O dec a=amin  std 
(3) x = O  dec v=vm in  std a=O inc 
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