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ABSTRACT 

Qualitative simulation is a key inference process in qualitative causal reasoning. However, the precise 
meaning of the different proposals and their relation with differential equations is often unclear. In 
this paper, we present a precise definition of qualitative structure and behavior descriptions as 
abstractions of differential equations and continuously differentiable functions. We present a new 
algorithm for qualitative simulation that generalizes the best features of existing algorithms, and 
allows direct comparisons among alternate approaches. Starting with a set of constraints abstracted 
from a differential equation, we prove that the OSIM algorithm is guaranteed to produce a qualitative 
behavior corresponding to any solution to the original equation. We also show that any qualitative 
simulation algorithm will sometimes produce spurious qualitative behaviors: ones which do not 
correspond to any mechanism satisfying the given constraints. These observations suggest specific 
types of care that must be taken in designing applications of qualitative causal reasoning systems, and 
in constructing and validating a knowledge base of mechanism descriptions. 

I. Introduction 

An expert system is often a "shallow model" of its application domain, in the 
sense that conclusions are drawn directly from observable features of the 
presented situation. Researchers have long felt that genuinely expert perfor- 
mance must also rest on knowledge of "deep models," in which an underlying 
mechanism, whose state variables may not be directly observable, accounts for 
the observable facts [13]. 

One major line of research toward the representation of deep models is the 
study of qualitative causal models [3-20, 24, 25]. Research on qualitative causal 
models differs from more general work on deep models in focusing on 
qualitative descriptions of the deep mechanism, capable of representing incom- 
plete knowledge  of  the s t ructure  and behav io r  of  the mechan i sm.  Symbol ic  
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manipulation of qualitative descriptions also appears to be a plausible model of 
human expertise [18, 19]. 

Qualitative causal reasoning consists of a number of different operations. A 
set of constraint equations describing the relevant structural relationships in a 
system may be derived by examination of its physical structure. The possible 
behaviors of the system may be predicted by qualitative simulation from the 
constraint equations and an initial state. The behavioral description may be 
used to explain a set of observations or the way a mechanism produces its 
behavior. 

Researchers working in different problem domains have taken very different 
approaches to the derivation of constraint equations from physical structure. 
De Kleer and Brown [8] and Williams [25] describe a physical system in terms 
of components and connections. Constraint equations are derived from the 
component models and from the interaction paths provided by the connections. 
This point of view has led them to propose principles of good form, such as 
"no-function-in-structure," which states that component models must be for- 
mulated independently of the device contexts in which they will appear [8]. 
Studying naive physics reasoning about everyday physical situations, Forbus 
[12] determines the current set of active processes. The constraint equations are 
derived from the complete set of currently active processes. Working primarily 
in medical physiology, Kuipers [16, 19] treats constraint equations as given, 
either by textbook or experimental learning, but outside the scope of im- 
mediate causal problem solving. 

The central inference within all of these approaches is qualitative simulation: 
derivation of a description of the behavior of a mechanism from the qualitative 
constraint equations. Differential equations provide a useful analogy (Fig. 1). 
A differential equation describes a physical system in terms of a set of state 
variables and constraints. The solution to the equation may be a function 
representing the behavior of the system over time. A description of structure in 
terms of constraint equations is a further abstraction of the same system, and 
qualitative simulation is intended to yield a corresponding abstraction of its 
behavior. 

The goal of this paper is to clarify and formalize the qualitative mathematics 
behind the prediction of behavior from qualitative constraint equations. The 
results presented here apply across approaches to qualitative physics. The 
representation for constraints and behavior was originally described in [16]. 
The QSIM algorithm presented here replaces the previous ENV qualitative 
simulation algorithm. QsIM is both more efficient and more amenable to clear 
mathematical proof of correctness and limitations. 

A theory and algorithm for qualitative reasoning must address several issues, 
which provides a framework for comparing the proposals of different re- 
searchers, and the contribution of this paper: 
- h o w  quantities are described qualitatively, 
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Fro. 1. Qualitative simulation and differential equations are both abstractions of actual behavior. 

- h o w  state transitions are selected, 
- w h e t h e r  quantities correspond to standard mathematical analysis, 
- w h e t h e r  qualitative simulation produces all and only valid behaviors. 

All qualitative simulation systems describe quantities in terms of their 
ordinal relations with a small set of landmark values. De Kleer, Bobrow, and 
Brown [6, 8] and Williams [24, 25] normally take the only landmark to be zero, 
and thus define three qualitative values, {+,  0 , - } .  While they allow for the 
possibility of more complex quantity spaces, the definitions of addition and 
multiplication as operators over qualitative values do not extend usefully to the 
more complex situation, and all of their results use the " { + ,  0, - }  semantics." 
A nonzero landmark a of a quantity x can be accommodated by defining an 
auxiliary quantity y = x - a  whose zero refers to the value x = a. Values 
defining operating region boundaries may also be used, but they are not part of 
the qualitative addition and multiplication operations. 

Forbus [10, 12] and Kuipers [16] define a quantity space as a partially ordered 
set of landmark values, so that a quantity is described in terms of its ordinal 
relations with the landmarks. The Kuipers [16] approach is different from the 
others in allowing new landmarks to be discovered during the qualitative 
simulation, and used to define new qualitative distinctions. The QSIM algorithm 
presented here describes quantities in terms of a linearly ordered set of 
landmarks, but still allowing new landmarks to be discovered and inserted. In 
this paper, we demonstrate that without discovering and using new landmark 
values, important qualitative distinctions can be missed, such as the distinction 
between increasing, decreasing, and stable oscillation. 
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Different qualitative simulation systems take different positions on whether 
quantities should be an abstraction of the standard mathematical notion of real 
numbers--in which case E is described as an alternating sequence of points and 
open intervals--or whether a nonstandard model should be used, allowing two 
points to be infinitesimally separated. Both Forbus [10, 12] and de Kleer and 
Brown [8] adopt nonstandard models of time in which "mythical" or "infinites- 
imal" time may separate qualitative states that correspond to the same physical 
point in time. Such sequences of states appear to be required when the 
computational inference cycle must run more than once to generate a state 
corresponding to the next physical state. De Kleer and Bobrow [6] adopt the 
standard model for quantities, but appear less committed to alternating points 
and intervals in the time domain. Kuipers [16] and Williams [24, 25] follow the 
standard model. As Williams' work and this paper demonstrate, the standard 
model makes it possible to state and prove useful theorems about the validity 
of the predictions made by qualitative simulation. 

All qualitative simulation systems produce the set of possible behaviors by 
generating and filtering the set of possible transitions from one qualitative state 
description to its successors. Most systems simulate forward, by generating all 
possible successors of the current state; de Kleer, Brown, and Bobrow [6, 8] 
generate all possible qualitative states, then determine the valid transitions 
among them. De Kleer's approach can only succeed if there is a fixed set of 
qualitative values, so that the set of possible states can be generated in 
advance. In both cases, the filtering criteria are local: they depend on the 
quantities in the two state descriptions, and on the structural constraints. 

An important class of filtering criteria are transition-ordering rules [6, 16, 25]. 
For example, if A + B = C with A, B, C > 0 ,  and B and C are approaching 
zero, then B must reach zero before C. A large number of these rules can be 
formulated, corresponding to different signs, directions of approach, and 
combinations of quantities approaching limits. In designing a system, it is 
difficult to be sure that all possible such rules have been captured; in 
implementing it, it is difficult to check that they have been written correctly. 
As described in Appendix B, all of the transition-ordering rules can be 
recognized as special cases of a simple test of valid relationships between the 
current values of a set of quantities and a set of corresponding values. These 
tests, applying to the ADD, MULT, M +, and M constraints, capture all 
single-constraint transition-ordering criteria of this type, can be implemented 
efficiently, and most importantly, can be straightforwardly proven correct. 

All qualitative simulation systems predict multiple possible behaviors given 
certain sets of qualitative constraints and initial conditions. Researchers in this 
area (myself included) have hoped to prove that the predicted behaviors 
include all and only the possible behaviors of real mechanisms satisfying the 
given constraints. Half of this is correct: we prove below that qualitative 
simulation cannot miss any actual behavior. However, because of the local 
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nature of its decision criteria, qualitative simulation can predict behaviors that 
are not possible for any real mechanism satisfying the given description, and 
we construct a counterexample. We discuss the implications of these results for 
the construction of a qualitative causal reasoning system. 

Qualitative simulation systems vary widely in speed, l In order to be useful as 
part of an expert problem solver, a qualitative simulation system must be 
efficient. The QSIM algorithm is very fast. Furthermore, experiments with 
semantic variants (e.g. the { + , 0 , - }  semantics) can be made easily by 
changing the entries in a table of possible state transitions. It has been 
implemented in LISP on the Symbolics 3600, and all examples in this paper have 
been run, as well as numerous others in elementary physics and in medical 
physiology [20]. 

1.1. Overview 

This section provides an overview of qualitative simulation and the QSIM 
algorithm. The concepts presented here are defined more formally below. 

Qualitative simulation of a system starts with a description of the known 
structure of the system, and an initial state, and produces a directed graph 
consisting of the possible future states of the system and the "immediate 
successor" relation between states. The possible behaviors of the system are 
the paths from the initial state through the graph. After defining terminology, 
the next section discusses the constraints and behavior describing a simple 
mechanism in both informal and formal terms. 

The structure of a system is described by a set of symbols representing the 
physical parameters of the system (continuously differentiable real-valued 
functions), and a set of constraint equations describing how those parameters 
may be related to each other. The constraints are two- or three-place relations 
on physical parameters. Some specify familiar mathematical relationships: 
DERIV(vel,acc), ADD(net,out,in), MULT(mass,acc,force), MINUS(fwd,rev). 
Others assert qualitatively that there is a functional relationship between two 
physical parameters, but only specify that the relationship is monotonically 
increasing or decreasing: M+(price,power) and M (mph,mpg). The constraints 
are designed to permit a large class of differential equations to be mapped 
straightforwardly into qualitative constraint equations. 

Each physical parameter is a continuously differentiable real-valued function 
of time. Its value at any given point in time is specified qualitatively in terms of 
its relationship with a totally ordered set of landmark values. The landmark 
values may be either numerical (e.g. zero) or symbolic; their ordinal relation- 
ships are their essential properties. As the qualitative simulation proceeds, it 
can discover and add new landmark values to the sequence. The qualitative 

~De Kleer, personal communication; Forbus, personal communication. 
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state of a parameter  consists of its ordinal relations with the landmark values 
and its direction of change. 

Time, similarly, is represented as a totally ordered set of symbolic distin- 
guished time-points. The current time is either at or between distinguished 
time-points. All of the time-points are generated as a result of the qualitative 
simulation process. 

At a distinguished time-point, if several physical parameters linked by a 
single constraint are equal to landmark values, they are said to have corre- 
sponding values which can be discovered and used by the qualitative simul- 
ation. The special case of a monotonic function constraint with corresponding 
values (0, 0) is sufficiently common that it is signified by the constraints M~ 
and M o. 

A set of constraints on the physical parameters of the system is only valid in 
some operating region, defined by the legal ranges of values that some 
parameters may take on. The legal range of a parameter  is a closed interval 
whose endpoints are landmark values of that parameter.  These endpoints may 
be associated with transitions to other operating regions where a different set 
of constraints apply. 

The initial state of the system is defined by the operating region and a s~ of 
qualitative values for the physical parameters. The qualitative simulation 
proceeds by determining all of the possible changes in qualitative value 
permitted to each parameter,  then filtering the combinations by applying 
progressively broader  constraints. If more than one qualitative change is 
possible, the current state has multiple successors, and the simulation 
branches. 

Two qualitative states in the same operating region are identical if all 
parameters are equal to the same landmark values, and all the directions of 
change are the same. If one of the successors to a given state is identical to a 
direct predecessor, a cyclic behavior can be created, resulting in a graph of 
states. 

1.2. Example:  The U-tube 

A U-tube, consisting of two partially filled tanks connected at the bottom by a 
thin tube, is in equilibrium when an increment of water is added to one side 
(Fig. 2). The system reaches a new equilibrium with the level in both tanks 
higher than before. 

Constraints 
- E a c h  tank has a pressure which depends on its amount of water. 
- T h e  rate of flow through the tube depends on the difference between the 

pressures. 
- A flow through the tube increases the amount in one tank and decreases the 

other. 
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FIG. 2. The U-tube in equilibrium receives an increment of water. 

Behavior 
- After the increment of water, the amount and pressure are increased in tank 

A, leading to a flow from A to B. 
- W a t e r  flows from A to B. The level in A falls, the level in B rises, and the 

pressure difference and rate of flow approach zero. 
- T h e  pressure difference and rate of flow become zero as the U-tube reaches 

equilibrium with the level in both tanks higher than before the increment. 
Qualitative simulation determines the essentially different regions of the 

system's behavior. It need not be given the initial levels nor the amount of the 
increment. It does not determine how high the level in A is increased, what its 
final position is, or how long the equilibration process requires. It does 
guarantee, however, that the level in A falls, the level in B rises, that neither 
tank returns to its initial level, and that a new equilibrium is reached. The 
parameters and constraints describing the structure of the U-tube are shown 
graphically in Fig. 3. The qualitative behaviors of the six parameters, respond- 
ing to an increment of water, is shown by the six "qualitative plots" in Fig 4. 

A qualitative plot graphically describes the qualitative behavior description 
of a parameter. The vertical axis represents the set of landmark values for that 
parameter; the only meaningful vertical positions are at, or midway between, 
landmark values. The horizontal axis is slightly more complex. Known states 
are shown first for reference, followed by the sequence of time-points. To 
reduce visual clutter in the plot, time-points are not labeled, though distin- 
guished time-points are indicated by tick-marks on the axis, and other time- 
points are plotted midway between adjacent ticks. In Fig. 4, the four positions 
on the horizontal axis represent the known state NORMAL and the three time- 
points to, (to, t 1), and t 1. Although the plot of level(A) is horizontal from t o to 
(to,  t l )  , its value is not constant. Rather, the qualitative state description of 
level(A) remains the same (i.e. between two landmarks and decreasing) while 
the underlying real value changes. The graphical conventions for qualitative 
behavior plots are somewhat unfamiliar, but the graphical output improves the 
comprehensibility of the output of qualitative simulation, and thus facilitates 
development and debugging of sets of constraints. 
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FIG. 3. The constraints describing the structure of the U-tube.  
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QUALITATIVE SIMULATION 297 

2. Qualitative Behavior 

In the following sections, we present a more rigorous definition of qualitative 
simulation, leading up to a definition of the QsIM algorithm and the proof of 
several theorems characterizing its strengths and limitations. The validity 
proofs for several steps of the algorithm are contained in the appendices. 

A physical system is characterized by a number of real-valued parameters, 
which vary continuously over time. We consider each physical parameter to be 
a function f :  [a, b]---> ~*, where ~* = [ - ~ ,  ~], the extended real number line. 
The domain and range of a function f are both closed intervals in the extended 
reals, ~*. We use ~* instead of ~, treating ~ as a genuine landmark value, 
because it is useful (though not essential) to have the invariant that t and f(t) 
are always bounded by explicitly stated landmark values in the domain and 
range of f. The function f : [0, ~]--> ~* is defined to be continuous at ~ exactly 
if l i m , ~  f(t) exists. For example, both e - '  and e' are continuously differenti- 
able on [0, ~], but sin t is not. This allows us to express asymptotic approach as 
a move to a limit, where the limit is reached at t = ~. 

2.1. Behavior of a single function 

We will define the qualitative behavior description first for a single, continu- 
ously differentiable function f : [ a ,  b]--> ~*. 

Definition 2.1. For [a, b] C_ lt~*, define f :  [a, b]--> ~* to be a reasonable func- 
tion if 

(1) f is continuous on [a, b], 
(2) f is continuously differentiable on (a, b), 
(3) f has only finitely many critical points in any bounded interval, 
(4) lim, ~,f '(t) and lim, r bf'(t) exist in ~*; define f '(a) and f ' (b) to be equal 

to these limits. 
The restriction to finitely many critical points in any bounded interval 

excludes examples like f(t) = t 2 sin 1/t that are continuously differentiable, but 
whose behavior changes infinitely quickly around t = 0. Without the fourth 
restriction, f '(t) can still behave pathologically around the endpoints of the 
interval, even without crossing zero. 

Definition 2.2. Every reasonable function f : [ a ,  b]--> E* has associated with it a 
finite set of landmark values. The landmark values must include 0, f(a), f(b),  
and the value of f(t) at each of its critical points, and may include any number 
of additional values. 

Definition 2.3. Where f is a reasonable function, t E [a, b] is a distinguished 
time-point of f if t is a boundary element of the set { t E [a, b] I f(t) = x, where 
x is a landmark value of f} .  



298 ]E~. j. KUIPERS 

That is, the distinguished time-points are those points where something 
important happens to the value of f, such as passing a landmark value or 
reaching an extremum. The restriction to boundary elements handles the case 
where f becomes constant over an interval: only the endpoints of the interval 
are distinguished time-points. De Kleer and Bobrow [6] eliminate this case by 
assuming that parameters have derivatives of all orders, in which case any 
function which is constant over an interval is constant everywhere. 

All functions mentioned in the rest of this paper should be presumed 
reasonable unless specified otherwise. A reasonable function f :[a,  b]--, ~* has 
the finite set of distinguished time-points: 

a = t~j < t t < .  • • < t , ,  = b , 

and the finite set of landmark values: 

l~ < 1~ < • • • < l~ . 

We can now define the qualitative state of f a t  t in terms of its ordinal relations 
with its landmarks, and its direction of change. 

We reluctantly contribute to the proliferation of notations for qualitative 
description of continuous functions. The advantages of the notation used here 
are that it (1) naturally allows for an arbitrary and changing set of landmark 
values, (2) uses a single term for the qualitative description of a function's 
magnitude and derivative, and (3) emphasizes that the qualitative description 
of the derivative is of low and fixed resolution, while qualitative description of 
magnitude is of higher and possibly changing resolution. 

Definition 2.4. Let 11 < ' ' '  < l k be the landmark values of f : [ a ,  b]---~ ~*. For 
any tE[a,  b], QS(f ,  t), the qualitative state o f f  at t, is a pair (qval ,qdir) ,  
defined as follows: 

(1) 

lj, if f(t) = lj, a landmark value, 

qva l=  (lj, l,+~), if flt) E(li, lj+,); 

(2) 

inc, if f ' ( t )>O,  

qdir = std, if f ' ( t)  =0 ,  

dec, if f ' ( t )<O.  

For example, QS(water-temp, now)=  <(32°F, 212°F), inc). 
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Proposition 2.5. W h e r e  a = t o < • • • < t,, = b are the d i s t ingu i shed  t ime -po in t s  o f  

f ,  cons ider  s, t @ (a, b)  such  that  t i < s < t < ti+ l f o r  s o m e  i. Then  QS(f ,  s) = 
Qs(L t). 

Proof. By the Intermediate Value Theorem, since f is continuously differenti- 
able, f ( t )  cannot pass a landmark value, and f ' ( t )  cannot change signs between 
adjacent distinguished time-points. [] 

This justifies our basic intuition that the qualitative state of the function is 
constant over intervals between landmarks. Hence, we may make the following 
definitions. 

Definition 2.6. For adjacent distinguished time-points t i and t~+~, define 
QS(f ,  ti, t~+l), the qual i ta t ive  state o f f  on  (t  i, ti+l), to be QS(f ,  t) for any 
t E  (t,, ti+,). 

Definition 2.7. The qual i ta t ive  b e h a v i o r  of f on [a, b] is the sequence of 
qualitative states of f :  

QS(f ,  to), QS(f ,  t 0, q) ,  QS(f ,  tl) . . . . .  QS(f ,  t ,_ l ,  t ,) ,  QS(f ,  t ,)  

alternating between qualitative states at distinguished time-points, and qualita- 
tive states on intervals between distinguished time-points. 

2.2. Systems of functions 

Definition 2.8. A s y s t e m  is a set F = {fl . . . .  , fro} of reasonable functions 
f : [ a ,  b]--->~*, each with its own set of landmarks and distinguished time- 
points. The dis t ingu i shed  t ime -po in t s  o f  a s y s t e m  F are the union of the 
distinguished time-points of the individual functions f, E F. The qual i ta t ive  state 

of a system F of m functions is the m-tuple of individual qualitative states: 

QS(F, t,) = [QS(f~, t,) . . . . .  QS(fm, t ,)] ,  
QS(F, t,, t,+,) = [QS(fz, t,, t , + , ) , . . . ,  QS(fm, ti, t ,+,)].  

If ti, and/or  ti+ ~ are not distinguished time-points of a particular ~,  then ti and 
the interval (ti, t~+ 1) must be between two distinguished time-points o f ~ ,  say t k 
and tk+ ~. Then QS(~ ,  t~) and QS(~ ,  t~, t~+~) are defined to be the same as the 
containing QS(f j ,  t k, tk+l). The qual i ta t ive  b e h a v i o r  of F is the sequence of 
qualitative states of F: 

QS(F, to) , QS(F, to, t~), QS(F, tl) . . . . .  QS(F, t , ) .  
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These definitions give us a precise semantics for the qualitative description of 
continuous functions, and clarifies the concept of the "next state." Every state 
has a qualitative description QS(F, t), but that description changes only at 
discrete distinguished time-points, and remains constant on the open intervals 
between them. Thus the "next state" of a mechanism is more properly called 
the next distinct qualitative state description of the mechanism. 

2.3. Qualitative state transitions 

Since a reasonable function f is continuously differentiable, the Intermediate 
Value Theorem and the Mean Value Theorem restrict the way it can change 
from one qualitative state to the next. There are two types of qualitative state 
transitions: P-transitions, moving from a point to an interval, and I-transitions, 
moving from an interval to a point. 

Definition 2.9. Where t~, is a distinguished time-point, a P-transition of f is a 
pair of adjacent qualitative states of f,  

QS(f ,  t,) ~ OS(f,  t,, t~+l), 

whose first state is the qualitative state at a distinguished time-point. An 
I-transition is a pair of adjacent qualitative states of f, 

OS(f ,  t~ ~, ti) ~ OS(f ,  t i ) ,  

TABLE 1. The possible transitions 
(A reasonable function f : [a, b] ~ ~* is restricted to the following set of possible 
transitions from one qualitative state to the next. The contents of this table are 
justified by Propositions A.1, A.2, A.4, and A.5) 

P-tran- l-tran- 
sitions QS(J; L) ~ Q S ( f ,  ti, t i ~t) sitions QS(f,  L, ti, ,) ~ Q S ( f ,  ti, ,) 

P1 (lj. std) (lj. std) 11 (1,. std) ( / .  std) 
P2 {/~. std) {(l/. lj,, ). inc) 12 ((l i, lj,, ). inc) (/j+ ,. std) 
P3 (lj, std) ((/j ~, lj), dec) 13 ((lj, Is+ ,), inc) (lj+ ,, inc) 
P4 (1,, inc) ((//,/j, ,), inc) 14 ((/j, l,+ ,), inc) ((/~,/~+ ,), inc) 
P5 ((I,, l,+ ,), inc) ( ( / ,  1~ ,), inc) 15 ((l,, l,, ,), dec) (/,, std) 
P6 (l~, dec) ((1i_,, li), dec) 16 ((Ij, l , , ,) ,dec) (/j, dec) 
P7 ((l , , l , . , ) ,dec) ( ( / / , / / , , ) ,dec)  17 ((1,, 1,+ ~), dec) ( (6 , (+ , ) , dec )  

18 ((l~, l~ ~), inc) (l*, std} 
19 ((lj, l~+,),dec) (l*, std) 

In cases 18 and 19, f becomes std at l*, a new landmark value such that lj < l* < lj+ ~. In these 
cases, a previously unknown landmark value is discovered because other constraints force f '(t) to 
become zero. 
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whose first state is the qualitative state on the interval between distinguished 
time-points. 

Table 1 specifies the set of possible transitions that can take place in the 
qualitative behavior of a single function. The validity of this table is proved by 
the propositions in Appendix A. 

3. Qualitative Structure 

The structure of a mechanism may be described by a set of qualitative 
constraint equations applied to the parameters that represent the state of the 
mechanism. Simulation attempts to assign behaviors to the parameters. Con- 
straints holding between parameters in the structural description serve to limit 
the possible combinations of qualitative behavior. The constraint notation used 
here has the advantage, like de Kleer's confluences, of having a clear corre- 
spondence with differential equations by making explicit all the functions and 
operators in the equation. 

Constraints are expressed as predicates rather than as functions for two 
reasons. First, they will be used as predicates in the QsIM algorithm to test the 
consistency of sets of qualitative values. Second, if a constraint were to be 
treated as a function, it is unclear how to define precisely the function's range. 
On the other hand, while keeping these semantic considerations in mind, the 
reader will probably find it clearer to read constraints as functions: mpg = 
M-(mph) rather than M-(mph,mpg). 

3.1. Arithmetic constraints 

Constraints corresponding to the basic arithmetic and differential operators are 
fundamental to a structural description. 

Definition 3.1. ADD(f ,  g, h) is a three-place predicate on reasonable functions 
f, g, h :[a, b]--~ E* which holds iff f(t) + g(t) = h(t) for every t C [a, b]. 

Definition 3.2. MULT(f ,  g, h) is a three-place predicate on reasonable func- 
tions f, g, h:[a, b]--* ~* which holds iff f ( t ) .  g(t) = h(t) for every t E  [a, b]. 

Definition 3.3. MINUS(f,  g) is a two-place predicate on reasonable functions 
f, g:[a,  b]--~ R* which holds iff f(t) = -g( t )  for every tE[a ,  b]. 

Since addition and multiplication are commutative, 

ADD(f ,  g, h) ¢:~ ADD(g,  f, h), 
MULT(f ,  g, h) ¢:~ MULT(g,  f, h) ,  
MINUS(f,  g) ¢:~ MINUS(g, f ) .  
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Definition 3.4. DERIV(f ,  g) is a two-place predicate on reasonable functions 
f, g:[a, b]---> ~* which holds iff f '(t) = g(t) for every t ~ [a, b]. 

3.2. Qualitative function constraints 

In describing the qualitative structure of a mechanism, one might need to state 
that one physical parameter is a function of another, without specifying the 
function completely. Rather, the relationship should be described qualitatively 
in terms of regions of monotonic increase or decrease, and landmark values 
passed through. 

The most common and important cases are functional relationships that are 
strictly monotonic everywhere. The monotonic function constraint M ÷ applies 
in the situation when the function is strictly monotonically increasing, and M 
when it is decreasing. In fact, the definition is slightly more restrictive: the 
derivative of the function must be nonzero, except possibly at the endpoints of 
the domain. 

Definition 3.5. M + is a two-place predicate on reasonable functions 
f, g : [a ,  b]--> I~*. M+(f, g) is true iff f(t)  = H(g(t)) for all tE[a, b], where H 
is a function with domain g([a, b]) and range f([a,  b]), differentiable and with 
H'(x) > 0 for all x in the interior of the domain. M is defined similarly, except 
that H'(x) < O. 

The restrictions on H are motivated by two requirements. First, the critical 
points o f f  and g must match across an M+(f ,  g) constraint. Second, it must be 
possible to break a function such as sin x "at the joints" into regions of 
monotonic increase and decrease, so H'(x)= 0 must be allowed at the boun- 
dary of the domain. 

Clearly, M+(f ,  g)¢:> M+(g,  f ) ,  and M - ( f ,  g)C:>M-(g, f ) .  
Note that M+(f ,  g) does not imply that f and g are monotonic functions on 

[a, b]. For example, M+(2 sin t, sin t) holds on [0, 2"rr], where H(x)= 2x. 

Proposition 3.6. Consider two continuously differentiable functions f, g: 
[a, b]---> [~*, where M+(f, g). Then for all tE(a,  b), 

f ' ( t )>O iff g'(t)>O, 
f ' ( t)=O iff g'(t)=O, 
f ' ( t)<O iff g'(t)<O. 

Proof. M+(f ,  g) means that f(t) = H(g(t)), so f '(t) = H'(g(t)). g'(t). Since 
H'(x) > 0, g'(t)= 0 if and only if f ' ( t )= 0. The two strict inequalities follow 
from the monotonicity of H. [] 
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Thus, the sets of distinguished time-points may not correspond precisely 
across f and g, but the subset of distinguished time-points which are critical 
points, and hence the regions of constant directions-of-change, are identical. 

Although constraints for expressing monotonic relationships are used by all 
researchers on qualitative simulation, the precise definition of the constraint 
varies significantly. Kuipers [16] expresses an increasing monotonic relationship 
between X and Y as Y = M+(X) or M+(X, Y), meaning that there is some 
well-defined but unspecified function f with the desired properties, such that 
Y=f (X) .  Forbus [12] uses the notation X~Q+Y, meaning that Y =  
f(  . . . .  X , . . . )  where the dependence of Y on X is monotonically increasing, all 
else held equal. The reason for this is that constraints are associated with 
processes, and only when the complete process configuration is known can the 
set of constraints be closed and the final dependencies computed. Thus, these 
qualitative proportionality constraints are implicitly added once the complete 
set is known. De Kleer, Brown, and Bobrow [6, 8] express the same relation- 
ship with the confluence aX = 0Y, meaning sgn dX/dt = sgn dY/dt. Strictly 
speaking, X(t) and Y(t) need not have any functional relationship at all, as 
long as the signs of their derivatives remain identical. The implications of these 
different definitions have not yet been fully explored. However,  the correctness 
proof for the QSIM algorithm presented in this paper relies on the strong 
definition of the monotonic constraints M + and M . 

A qualitative functional relationship need not be strictly monotonic if it can 
be divided into sections that are alternately increasing or decreasing 
monotonic,  with critical points at the joints between sections. For example, 
suppose that x = c o s 0  for x E [ - 1 , 1 ]  and 0E[0 ,2 r r ] .  We may say that 
FC(0, x, descrip), where 

descrip = 

(0, 1) 
((0, 'n'), (-1, 1), M-) 
(w, -1) 
((~, 2'r¢), (-1, 1), M +) 
(2~, 1) 

That is, if 0 = 0, x = 1; when 0 E (0, ~), then x E ( - 1 ,  1) and M (0, x); and so 
on. At the joints between monotonic sections, the restrictions on permissible 
combinations of directions of change are weakened. In particular, it is possible 
for one parameter  to have direction of change std while the other is inc or dec. 
Between the joints, qualitative simulation can treat an FC constraint exactly 
like the specified M + or M . 

In a similar spirit, we may define S + and S-  constraints, which behave like 
monotonic function constraints in the interval between two sets of correspond- 
ing values, and leave one parameter  constant while the other is unconstrained 
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outside that interval. It is not difficult to imagine other extensions such as 
"log-like," "polynomial-l ike," and "exponential-l ike" monotonic function con- 
straints which support inferences about relative asymptotic magnitudes. These 
topics are beyond the scope of this paper. 

3.3. Qualitative differential equations 

The constraint definitions now allow us to define precisely the abstraction 
relation between qualitative constraint equations and ordinary differential 
equations (ODEs).  If a mechanism can be described by an O D E meeting 
certain restrictions there is a corresponding but weaker set of qualitative 
constraint equations for the same mechanism. "Weaker"  in this context means 
that any behavior that satisfies the ODE must satisfy the constraints, but not 
necessarily vice versa. Thus the constraints constitute a form of qualitative 
differential equation. 

Starting with a suitable ODE,  we can decompose it into an equivalent set of 
simultaneous equations by introducing terms for each subexpression of the 
original ODE.  When this process is complete, each equation can be mapped to 
a qualitative constraint. For example, consider the ODE:  

d2u du 
+ arctan k u  = O. (1)  

dt  2 dt  

The simultaneous equations (a) and the qualitative constraints (b) are derived 
as follows: 

(a) (b) 
L =du/dt ,  DERIV(u, )"~), 
f2 = df~/dt, DERIV(f,, L),  
L = ku, Mt0LV(k, u, L) ,  
f4 = arctan L ,  M+(L, f4), 
L - f ,  + L =0,  ADD(L, L, f , ) .  

Any solution u( t )  to equation (1) uniquely determines the auxiliary functions 
f~ . . . . .  f4, and so defines a solution to the simultaneous equations (a). Each 
constraint in (b) is mathematically equivalent to the corresponding equation, 
with the exception of the M +, which is less restrictive. Thus the solution to the 
O D E  (1) must also satisfy the constraints (b). The introduction of the 
monotonic function constraint, of course, requires that the corresponding 
function from the ODE have nonzero derivative, except possibly at the 
endpoints of the domain. 

We may summarize this discussion as the following theorem. 
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Theorem 3.7. Let 

F [ u ( t ) ,  u ' ( t )  . . . . .  u~")(t)]  = 0 (2) 

be an ordinary differential equation of  order n, to be satisfied by a function 
u:[a, b]--*E, where F is defined only in terms of  the arithmetic operations 
addition, multiplication, and negation, along with functions of  continuous and 
strictly nonzero derivative. Then a set of  parameters and constraints can be 
defined, corresponding with (2), such that any reasonable function u:~--* 
which satisfies (2) also satisfies the set of  constraints. 

The procedure for decomposing an ODE into simultaneous equations can 
easily be specified so that each ODE generates a unique set of constraints. 
However, different functions may be mapped to the same M + constraint so a 
given qualitative differential equation can be the abstraction of multiple ODEs. 

4. Qualitative Simulation 

This section describes the QS|M qualitative simulation algorithm, and refers to 
the proofs of the various steps, appearing in the appendices. 

4.1. Input and output 

The qualitative simulation algorithm is given the following description of a 
mechanism. 

(l)  A set { f ~ , . . . ,  fm} of symbols representing the functions in the system. 
(2) A set of constraints applied to the function symbols: M+(f,  g), 

M - ( f ,  g), ADD(f ,  g, h), MULT(f ,  g, h), MINUS(f,  g), or DERIV(f,  g). 
Each constraint may have associated corresponding values for its functions. 

(3) Each function is associated with a totally ordered set of symbols 
representing landmark values; each function has at least the basic set of 
landmarks { - ~ ,  0, ~}. 

(4) Each function may have upper and lower range limits, which are 
landmark values beyond which the current set of constraints no longer apply. 
A range limit may be associated with a new operating region which has its own 
constraints and range limits. 

(5) An initial time-point symbol, to, and qualitative values for each of the fi 
at t o are given. 

The result of the qualitative simulation is one or more qualitative behavior 
descriptions for the function symbols given. Each qualitative behavior descrip- 
tion consists of the following: 

(1) A sequence {t o . . . .  , tn} of symbols represents the distinguished time- 
points of the system's behavior. 
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(2) Each function fi has a totally ordered set of landmark values, possibly 
extending the originally given set. 

(3) Each function has at each distinguished time-point or interval between 
adjacent time-points, a qualitative state description expressed in terms of the 
landmark values of that function. 

4.2. The algorithm QSIM 

The qualitative simulation algorithm, QSIM, repeatedly takes an active state and 
generates all possible successor states, filtering out states that violate some 
consistency criterion. Because it may not be able to determine the next state 
uniquely, QsIM builds a tree of states representing the possible behaviors of the 
mechanism. 

Place the initial state on the list ACTIVE of states whose successors need to be 
determined. Repeat  the following steps until ACTIVE becomes empty or a 
resource limit is exceeded. 

Step 1. Select a qualitative state from ACTIVE. 
Step 2. For each function, determine (from Table 1) the set of transitions 

possible from the current qualitative state. 
Step 3. For each constraint, generate the set of tuples (pairs or triples) of 

transitions of its arguments. Filter for consistency with that constraint. 
Step 4. Perform pairwise consistency filtering on the sets of tuples associated 

with the constraints in the system, applying the consistency criterion that 
adjacent constraints must agree on the transition assigned to the shared 
parameter.  

Step 5. Generate  all possible global interpretations from the remaining 
tuples. If there are none, mark the behavior as inconsistent. Create new 
qualitative states resulting from each interpretation, and make them successors 
of the current state. 

Step 6. Apply global filtering rules to the new qualitative states, and place 
any remaining states on ACXIVE. 

After an example, the individual steps of the algorithm are discussed in 
detail. 

4.3. Example: The Bali system 

To illustrate one cycle of the QsIM algorithm, consider a very simple system 
consisting of a ball thrown upward in a constant gravitational field. This section 
will demonstrate the derivation from its predecessor of the third qualitative 
state (t = t t), where the ball reaches its maximum height. The constraints are: 

DERIV(Y, V ) ,  DERIV(V, A ) ,  A(t) = g < O. 
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FIG. 5. The ball thrown upwards: constraints and behavior. 

Figure 5 shows a graphical representation of the constraints and a qualitative 
plot of the behavior of Y(t). 

We start with an active state, t = (t 0, t]), whose description is: 

QS(A, t o , t , ) =  (g,  s td ) ,  
QS(V, t o, t,) = ((0, oo), d e c ) ,  
QS(Y, t 0, t ,) = ((0, ~), inc) . 

For each function, retrieve from Table 1 the set of possible qualitative state 
transitions from the current state of that function. Since the current state 
represents the time-interval (to, q) ,  only I-transitions are applicable. For 
simplicity, we exclude the possibility that Y(t 1) = ~, and so exclude transitions 
I2 and I3 from Y's list. Even without this assumption, the methods in 
Appendix A.2 would exclude these behaviors. 

A II: (g ,  std) ~ (g,  s td ) ;  

V I5: ((0, oo), dec) ~ (0, s td ) ,  
I6: ( ( 0 , ~ ) , d e c )  ~ (0, d e c ) ,  
I7: ((0, oo),dec) ~ ((0, oo),dec),  
I9: ((0, oo),dec) ~ ( L * , s t d ) ;  

Y I4: ( (O,~) , inc)  ~ ((O, oo),inc),  
I8: ( (O,~) , inc)  =), (L*,  s td ) .  
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Next, each constraint forms a set of transition tuples. Those marked with c 
are eliminated by constraint consistency filtering. For example, tuple (I4, |5) 
would require Y to continue to increase while V= 0, an obvious inconsisten- 
cy. Then those marked with w are eliminated by pairwise consistency filtering. The 
tuple (I4, I9) finds no remaining tuple associated with DERIV(V, A) that can agree 
that V might take transition I9. 

D E R I V ( Y , V )  DERIV{V,A)  

(I4, I5) c (I5, I1) c 
(I4, I6) c (I6, II)  
(I4,17) (IT, II)  
(I4, I9) w (I9, I1) c 
(I8, I5) w 
(I8, I6) 
(I8, I7) c 
(I8, I9) c 

The remaining tuples can be formed into the following two global inter- 
pretations: 

Y V A 

14 I7 I1 
I8 I6 I1 

The first of these interpretations would leave states (t 0, t~), t~ and (t 1, t2) 
with identical qualitative state descriptions, and the problem of determining 
the state at t: would be precisely what we have just done. This possibility is 
already adequately described by the qualitative state over (t 0, t~), so we need 
not generate a successor state for it. 

Every time-interval must have an endpoint (see Appendix A.2),  so the only 
remaining possibility becomes the unique successor, defining a new landmark 
value for Y. 

QS(A, t , ) =  ( g, std) , 
QS(V, tl) = (0, dec) , 
QS(Y, t,) = ( Ym,x, inc) , 

The following sections explain the steps of the QSIM algorithm in detail and 
discuss the proofs of their validity. 

4.4. Function consistency 

The possible transitions that a single parameter can take from one qualitative 
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state to the next are given in Table 1. In Step 2, the current state of each 
function is used to retrieve the set of applicable transition patterns from Table 
1. Constraints between neighboring functions are not considered until Step 3. 
Transitions are also checked against invariant assertions at this stage, to 
eliminate impossible transitions for functions that are (e.g.) always finite or 
never negative. 

For any particular qualitative state, Table 1 provides at most 4 possible 
transitions. Thus, if there are n functions in the system, the possible next states 
are to be found within a product space of at most 4 n points. At this stage, 
however, we do not explicitly generate this product space, so we need create at 
most 4n individual transitions. 

Appendix A presents the proofs that justify the possible transitions given in 
Table 1. It also discusses the handling of divergence to ~ and asymptotic 
approach to limiting values. 

4.5. Constraint consistency 

Step 3 of the QSIM algorithm aggregates the individual transitions into 2-tuples 
and 3-tuples corresponding to the arguments of individual constraints. These 
tuples can then be checked for consistency according to two criteria local to 
individual constraints (see Appendix B). 

(1) The directions-of-change tuple must be consistent with the constraint in 
the state resulting from the transition. 

(2) The result of the transition tuple can be compared with corresponding 
values of the arguments to that constraint. 

Definition 4.1. Landmark values p and q are corresponding values o f f  and g if 
there is some t E [a, b] such that f ( t )  = p and g(t) = q. 

Mo( f, g) and Mo( f, g) are abbreviations for M+(f, g) and M-( f ,  g), 
respectively, with corresponding values (0, 0). 

Definition 4.2. Suppose QS(f, t i, t i+l )= ( ( l  k, lk+l) , inc). Then lk+ t is the limit 
o f f  during (ti, ti+l). If f(ti+l)= lk+l, we say that f has moved to its limit. 
Otherwise, f(ti+l)< lk+l, and we say that f has moved toward, but not 
reached, its limit. Similarly if f is decreasing during QS(f, t~, t~+ ~). 

Informally, if f is between landmark values but moving toward a limit, it may 
or may not reach that limit by the next distinguished time-point. If several 
functions are moving toward limits, constraints between functions limit the 
space of possibilities. For example, if M+(f, g) is true, and f and g are moving 
toward corresponding limit values, then either both will reach their limits, or 
neither will. Similarly, if f + g = h, and two functions are moving toward 
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corresponding limits, while one is bounded away from the third corresponding 
value, the possible transitions can be filtered. 

These constraint-based consistency criteria generalize the transition-ordering 
rules of Williams [24, 26] to quantity spaces which may contain nonzero 
landmark values, and where sets of corresponding landmark values play a 
significant role. Appendix B discusses the generalization to quantity spaces 
with nonzero landmarks, and justifies the comparison of proposed transition 
tuples with known corresponding values. 

4.6. Pairwise consistency filtering 

Two constraints are adjacent if they share an argument. At this point, each 
constraint has an associated set of transition tuples, consistent with that 
individual constraint. A tuple is a proposed assignment of transitions to the 
functions in that constraint. To be pairwise consistent, tuples on adjacent 
constraints must assign the same transition to the function they share. For 
certain tuples, there may be no opposite number to make such a consistent 
pair. If so, that tuple may be deleted. 

Waltz [23] developed this local consistency filtering algorithm to converge 
quickly on a small set of possible labelings for a graph representing the edges, 
vertices, and regions of a visual scene. (Mackworth and Freuder [21,22] 
present this and a related class of algorithms, and assess their relative 
complexities.) A key step in the development of the QsIM algorithm was the 
observation that if transitions, rather than qualitative states are taken as the 
analog of edge labels, the Waltz algorithm could be applied directly. 

Filtering on transitions rather than states simplifies several steps of the 
algorithm. The possibility of creating new landmarks can be considered without 
actually creating landmarks that might have to be retracted. The pairwise and 
global consistency filtering can match atomic transition names rather than 
much more expensive structure-matching on the predicted next state. Finally, 
some of the global filters (Section 4.8) depend on the sequence of transitions 
leading up to a proposed state, and would be more difficult to express in terms 
of state descriptions. 

The Waltz algorithm visits each constraint in turn, looking at all the adjacent 
constraints and the function joining the pair. It applies the following rule to 
each transition tuple associated with the constraint it is visiting. 

if that tuple assigns a transition to the function which is not assigned by 
any tuple associated with the other constraint, 

then delete that tuple. 

The algorithm then visits each constraint adjacent to a constraint at which a 
tuple was deleted, and terminates when no more filtering is possible. This 
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process is important to the efficiency of the QSIM algorithm, since deleting a 
single tuple eliminates an entire region of the cross-product space of global 
interpretations. 

4.7. Generating global interpretations 

A global interpretation is an assignment of a transition to each function in the 
system. The result of Waltz filtering is a reduced set of tuples associated with 
each constraint. Not all combinations of these tuples are possible global 
interpretations. Suppose, for example, that we have the following constraints 
and associated transitions tuples: 

M + ( f , g )  M+(g,  h) 

(I2, I2) (I2, I2) 
(I3,13) (I3, I3) 

Clearly, although no further local consistency filtering is possible, there are 
only two possible assignments of transitions to (f ,  g, h), namely (12, I2, I2) 
and (I3, 13, I3). This pruning takes place as the global interpretations are 
created. 

Global interpretations are built one at a time by a depth-first traversal of the 
space of assignments of tuples to constraints. An attempted interpretation fails 
if the next tuple cannot be assigned without conflicting with transitions assigned 
to functions by previous tuples. In case all possible next states are eliminated, 
the current state must be the endpoint of the domain. 

A global interpretation is then used to construct a new qualitative state 
description, which is added to the tree of state descriptions as a successor to 
the current state. At this point, if all functions in a constraint are equal to 
landmark values, the constraint records them as a set of corresponding values. 

4.8. Global filters 

The completed qualitative state descriptions are mathematically plausible 
successors to the current state. There are, however, several global filters that 
can be applied before a new state is added to ACTIVE. 

The mathematically valid filters applied at this stage are the following. 
- N o  Change. Delete the new state if all transitions are in the set 

{I1, I4, I7}, because the new state description would be identical to its im- 
mediate predecessor, which therefore already adequately describes its qualita- 
tive behavior. In other words, something must reach a limit point for an 
I-transition to take place. 
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- C y c l e .  If the new state is identical to one of its predecessors (all functions 
have identical l a n d m a r k  values, and all directions of change are the same), 
then mark the behavior  as cyclic, install a pointer  to the identical predecessor,  
and do not add the new state to ACTIVE. 

-- D i v e r g e n c e .  If any function takes on the value ~ or - 2 ,  the current 
t ime-point must be the endpoint of the domain,  so the new state does not go 
onto ACTIVE. 

The first filter does not reduce the number  of behaviors described, but only 
eliminates a redundant  description. The second detects when all the conse- 
quences of a particular state have already been determined,  and need not be 
explored anew. The third determines when a state must be at the endpoint  of 
the domain,  and thus can have no successors. 

We refer to the qualitative simulation algorithm described here as the p u r e  

QsIM algorithm. For a particular application, additional heuristic filters may be 
added .2 

4.9. Complexity 

The process of formalizing qualitative simulation led to the improved QS1M 
algorithm, which turned out to be 30 to 60 times faster than its predecessor ENV 
[15, 16] on a variety of examples ranging f rom 3 parameters  and 2 constraints 
(the ball) up to 16 parameters  and 14 constraints (the Starling equilibrium 
[18, 19]). We can estimate the algorithmic complexity of QSIM as follows. 
Suppose there are p parameters  in the system, c constraints, and the longest 
behavior has length t. ( t ' i s  then, on average, log of the total number  of 
qualitative states.) Since a constraint can have no more than three parameters ,  
p = o ( c ) .  

- A  set of possible state transitions is assigned to each paramete r  from a 
fixed-length table, and no more than 4 transitions can be assigned to any 
parameter .  This defines a search space of 4 p state transitions, but only 4p 
transitions need actually be created, requiring o ( p )  time. 

- A  constraint can have no more  than 43=  64 transition tuples. Filtering a 
tuple against the direction-of-change tables (Appendix B) takes constant time, 
but the number  of corresponding values grows linearly (though slowly) with 
the length t of the behavior.  Thus constraint filtering requires o ( c t )  time. 

~' Some possible heuristics include: 
- Quiescence.  If all functions have derivative zero, conclude that the system is quiescent, the 

new time-point is the endpoint of the domain (possibly t = ~c), and do not place the new state on 
ACTIVE. 

- No  Divergence.  In physical systems, elimi,late transitions in which any state goes to ~ or :~. 
A more accurate description of the system would include an operating region change correspond- 
ing to some component breaking. 
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-Waltz filtering visits each constraint at least once, but beyond that visits 
only neighbors of constraints where it was able to delete a tuple. Thus, the 
number of constraints visited is proportional to the total number of tuples, 
which is linear in the number of constraints. Each visit takes bounded time. 
Thus, Waltz filtering takes o(c) time [22]. 

-Generating the global interpretations explicitly constructs the remaining 
parts of the product space. Typically, the remaining space is small, but 
unfortunately there are pathological cases which yield 2 p possible successor 
states. 

- The most expensive of the global filters is the check for previous identical 
states, which requires o(pt)  time. 

Mackworth and Freuder [22] show that in a sparse graph such as this, an 
interpretation satisfying the constraints may be generated in linear time. 
However, the number of global interpretations may be exponential in the 
number of parameters, and the OslM algorithm generates them all. An ex- 
ample of this pathological case can be constructed easily. Consider a system 
with three parameters f, g, and h, and two constraints, DERIV(f,  g) and 
DERIV( g, h), in a state where f, g, and h are all positive and increasing. Then the 
possible tuples are: 

DERIV( f ,g )  DERIV(g, h) 

(I3, I3) (I3, I3) 
(I3, I4) (I3,14) 
(14,13) (14,13) 
(14, I4) (14, I4) 

Neither local consistency filtering nor the formation of global interpretations 
eliminate any of the possible assignments, so for p parameters linked by a 
chain of DERIV constraints, there are 2 p interpretations. 

f g h 

I3 I3 13 
I3 13 I4 
I3 14 13 
I3 14 14 
I4 13 I3 
I4 13 14 
I4 14 13 
14 14 I4 

In practice, creation of the global interpretations significantly reduces the 
number of compatible assignments. While this estimates the complexity of a 
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single cycle of QSIM, the algorithm need not halt, and can continue forever 
producing longer and longer behaviors, each of which satisfies the qualitative 
constraints. 

Although the QSIM algorithm is exponential in the worst case, in practice 
generating the successors of a given state appears to be approximately o(ct). A 
rough sense of the effective speed of QsiM on the Symbolics 3600 can be seen 
from the following examples. 

Example 4.3. The Spring example (3 parameters, 3 constraints) produces a 
three-way branching behavior of length 8 with 11 states, simulation halting after 
one branch is identified as a cycle (see Fig. 7). Run time: approximately 0.4 
seconds. 

Example 4.4. The Starling mechanism (16 parameters, 14 constraints) [18, 19] 
produces a single unbranching behavior of 3 states in response to a perturba- 
tion from equilibrium, halting on reaching a new equilibrium state. Run time: 
approximately 1.0 seconds. 

5. Questions and Answers 

Now that we have defined the QSIM algorithm, with a clear structure and 
mathematically accessible properties, we can examine it to answer some of our 
questions about the utility of qualitative simulation as a reasoning method. We 
can also compare different approaches to qualitative simulation by changing 
the table of permissible transitions. 

5.1. Should simulation create landmarks? 

The most important semantic difference between QSIM and other approaches to 
qualitative simulation is that QSIM can create new landmark values during the 
simulation, while the other algorithms require all landmarks to be specified 
when the structure is defined. In this section, we show that the inability to 
create new landmark values makes it impossible to express certain important 
qualitative distinctions, such as that between increasing, decreasing, and stable 
oscillation. 

The fixed-landmark assumption is particularly deeply embedded in the de 
Kleer, Brown and Bohrow approach [6, 8], which depends on arithmetic 
operators defined over a fixed set of qualitative values, { +, 0, - } .  A change in 
landmarks would change the qualitative values, and thus require the operators 
to be redefined. Such a redefinition is not always possible. 

The structure of QSIM makes it possible to experiment with { + , 0 , - }  
semantics for qualitative simulation simply by replacing Table 1 with an 
alternate table of legal transitions (Table 2). 
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TABLE 2. Possible transitions under {+, 0, - }  semantics 
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P-tran- I-tran- 
sitions QS(f, t~) :ff QS(f, t,, tl. ,) sitions QS(f, t~, t,+x) ::> QS(f, t,+l) 

P1 (lj, std) (1, std) Ia (lj, std) ( I ,  std) 
P2 ( l ,  std) ((l,, l,. ~), inc) I2 ((l,. l ~ ) ,  inc) (lj~ ~, std) 
P3 (lj, std) ((l, .... l,), dec) I3 ((l,, lj+L), inc) (lj+ ~, inc) 
P4 (l,, inc) ((l,. l,+ ~). inc) I4 ((l,, lj+, ), inc) ((//, l~+ ~), inc) 
P5 ((l~, l,. ~), inc) ((1,, 1+, ), inc} I5 ((lj, lj+ ,), dec) (lj, std) 
P6 (/, ,dec) ((l~ , , / , ) ,dec) 16 ((/j,/j~,), dec) (/j, dec) 
P7 ((li, l,+,),dec) ( ( l , , / ~ ) ,  dec) I7 ((/j, 1,+1), dec) ((l~,l/+~),dec) 
Q8 ((/,,/,+,), std) ((/,,/,+,), std) J8 ((1,,/,+~), inc) {(/, , / , , ,) ,  std) 
Q9 ((l,,/,+t), std) ((/,, /i+,), inc) J9 ((Ij,/j+,), dec) ((/j,/~+,). std) 
Q10 ((1, l , / ,) ,std) ((1, , , / , ) ,dec) J10 ((li, lj~,),std ) ((l , , l , , , ) ,std} 

The landmarks are fixed as { - 2  0, co}. The transitions that create new landmarks (18 and 19 
from Table I) are eliminated, and new transitions are added (with Q and J names) to permit 
direction of change std between landmarks. 

Figure 6 shows the behavior of the spring system under the { + , 0 , - }  
semantics. This behavior can be considered a cycle only if two functions are 
allowed to match between landmark values. That is, only if we may conclude 
from this simulation that V(t4) = V(lo).  m match between the states t 4 and t o in 
this behavior suppresses the distinction between increasing, stable, or decreas- 
ing amplitude (see Fig. 7). De Kleer and Bobrow [6] present an example of a 

f Mf 
"'~,---o---~'" 

A(t) 

l i f t  

-o---¢. .t---o- 

"'¢---o---*r" 

v(t) 

f " 
.,---o---¢. 

X(tl 
FIG. 6. The spring behavior with {+, 0 , - }  semantics. In this behavior, we have QS(V, to)= 
((0, ~), std) = QS(V, ta), but not necessarily V(to) = V(t,). 
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spring with frictional damping, whose actual behavior is a decreasing oscil- 
lation. The behavioral description they present is cyclic, and similar to that 
given in Fig. 6, with the addition of terms for the frictional force. Their 
description accurately captures the repetitive series of increase and decrease in 
the different parameters, but since it does not express a distinction between 
increasing, decreasing and steady amplitude, it cannot even ask which qualita- 
tive behavior is correct. 

The heart of the problem is the inability to create new landmarks, or 
equivalently, to give n a m e s  to newly discovered critical values. Without 
representing the initial value (or subsequent critical values) of a parameter in a 
way that permits ordinal comparison, it is not possible to ask whether the next 
repetition of a cycle leaves that parameter increased, decreased, or stable. If. 
in addition, states can be matched between landmark values, three very distinct 
types of behavior can be collapsed into a single, apparently cyclic, behavior. 
Thus, we argue that the { +, 0, - }  semantics, and in fact any semantics with a 
fixed set of landmarks, can collapse importantly distinct behaviors. 

5.2. Is the real behavior found? 

In this section, we show that all actual behaviors of a mechanism are predicted 
by its qualitative simulation. We take as our "gold standard" the solutions to 
the ordinary differential equation describing the mechanism. 

We say that a real-valued function sa t i s f i e s  a given qualitative behavior 
description if the qualitative description of the function matches the given 
qualitative behavior. We then prove that any solution to a differential equation 
satisfies some qualitative behavior produced by the corresponding constraint 
equations. The proof is straightforward, since the bulk of the work has already 
been done in validating the individual steps of the QSIM algorithm. The 
algorithm generates a space including all possible behaviors of a given set of 
functions and constraints, and then discards only behaviors which are internally 
inconsistent. Thus, the remaining behaviors necessarily include all of the actual 
behaviors of the mechanism. 

Definition 5.1. Suppose we have a reasonable function u : [ a , b ] - - - ~ l ~  and a 
qualitative behavior description of the function symbol f, 

OS(f ,  to) ,  OS(f ,  t o, t,) . . . . .  OS(f ,  tn ~, t . ) .  QS(f ,  t,,) 

with distinguished time-points {t 0 . . . . .  tn} and landmarks {l~ . . . . .  l k } .  We 
say that u sa t i s f i es  the behavior description if there is an order-preserving 
mapping m of { t  o . . . . .  tn} into [a, b] with m ( t o ) =  a and m ( t n ) =  b, and an 
order-preserving mapping of {l 1 . . . . .  lk}  into ~, such that, for all distin- 
guished time-points t i, QS(u, m (  t i ) ) matches QS(f ,  t i ) and QS(u, m (  t i ) ,  m (  t i + l )) 

matches QS( f, t i, t i + l ).  
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Theorem 5.2. Let 

F[u(t), u'(t) . . . . .  u~")(t)] = 0 (3) 

be an ordinary differential equation of order n, and let {U(to)= Yo, u '( to)= 
y ~ , . . .  , u~")(to) = y,}  be the initial conditions on the solution to (3). Suppose 
that (3) and its initial conditions are satisfied by a reasonable function 
u :[a, b]---> ~. Let C be the set of  functions and constraints derived from (3) by 
the methods of  Section 3.3, and let QS(F, to) be the qualitative state description 
derived from the given set of  initial conditions. Let T be the tree of  qualitative 
state descriptions derived from C and QS(F, to) by the pure QSlM algorithm. 
Then the function u and the subexpression functions derived from it satisfy some 
behavioral description in T. 

Proof. QSIM works by progressively restricting the region of a space of qualita- 
tive behaviors that it is considering. By showing that any actual solution u is 
initially in the space, and that no filtering operation can eliminate a genuine 
solution, we conclude that u and its derived functions must satisfy some 
behavior in T. 

The function u satisfies the initial state description QS(F, to) because it is a 
qualitative abstraction of the initial conditions to equation (3). Step 2 in QSlM 
generates all possible qualitative state transitions for the functions in C from a 
given qualitative state, using Table 1 which is justified by Propositions A.1, 
A.2, A.4, and A.5. Thus, any change in qualitative state of the system must be 
included in the possibilities generated. Step 3 of QsIM filters out combinations 
of transitions whose result is a state which fails to satisfy individual constraints. 
Inconsistent sets of directions of change are detected by comparison with tables 
in Appendix A. The proper implications of sets of corresponding values are 
checked against Propositions B.1-B.3, and B.9. The pairwise consistency 
filtering of Step 4 simply eliminates from consideration transitions tuples which 
are inconsistent with all neighboring tuples, and thus could not contribute to a 
global interpretation. Step 5, similarly, eliminates combinations of tuples which 
do not make consistent assignments of state transitions to particular functions. 
Finally, the global filters included in the pure QsIM algorithm are discussed in 
Section 4.8 and shown not to eliminate possible behaviors of the system. Thus, 
at each stage of the simulation, all possible successors to the current qualitative 
state lie in the space generated, and no genuinely possible successor is 
eliminated. [] 

5.3. Are all the behaviors real? 

In this section, we show that the QSIM algorithm, and local qualitative simula- 
tion algorithms in general, cannot be guaranteed against producing spurious 
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behaviors: behaviors which are not actual behaviors for any physical system 
satisfying the constraint equations. 

A qualitative differential equation may provide few constraints, and thus 
predict many possible behaviors. However,  the constraints are also consistent 
with many possible ODEs,  and we might hope that each qualitative be- 
havior corresponds to the solution to some O D E corresponding to the 
constraints. Although this is often the case, and has been conjectured to be 
universally true, there are cases where spurious behaviors are generated. Thus, 
if several behaviors are generated, some of them may not be possible behaviors 
of the mechanism. 

One of the attractive applications of qualitative simulation is to predict 
possible future states, particularly to warn of surprising or disastrous events. 
Theorem 5.2 guarantees that there can be no false negatives: every actual 
behavior is predicted. However,  if a valid description of the mechanism can 
produce invalid predictions (false positives), its usefulness is limited. As we 
discuss below, the problem is not fatal, but requires substantial care in the 
construction and use of a problem solver. 

Theorem 5.3. Let C be a set of  function symbols and qualitative constraints, and 
let QS(F, to) be the initial qualitative state description. Let T be the tree of 
qualitative state descriptions derived from C and QS(F, to) by the pure OSIM 
algorithm. For some C and QS(F, to) there are behaviors in T which do not 
correspond to any solution u :[a, b]--~ ~ to any differential equation and initial 
condition corresponding to C and QS(F, to). 

Proof. Consider a mass on a spring, oscillating on a frictionless surface. The 
constraints for this system are 

DERIV(X,  V ) ,  DERIV(V, A ) ,  M{7 (A, X ) ,  (4) 

which might also be written in the form of a second-order differential equation: 

d2X 
- M i ~ ( X ) .  (5 )  

dt 2 

With initial state X(to) = 0, V(to) = Vm., A(to) = 0, this system is periodic for 
+ 

any function A = - M o ( X  ), because if we define total energy as 

TE(x,  v) j + dy ½v 2 = M o ( y  ) + , 
0 

then (5) implies that d T E / d t  = 0. 
The local inference methods of QSIM are not able to determine, at the end of 
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one cycle, whether the oscillation of the system is periodic, or increases or 
decreases in magnitude. It does, however, branch to express all three be- 
haviors. 

Figure 7 shows the behavioral description produced by qualitative simulation 
of the spring system. The simulation proceeds without branching through the 
cycle, predicting and creating new landmarks for the extrema of X, V, and A 
until they approach 0, V* and 0, respectively. X and A must reach their limits 
together, but the simulation branches according to whether V reaches its limit 
at the same time (behavior 1), later (behavior 2), or earlier (behavior 3). In 
the first case, the state at t 4 matches the state at t 0, so the behavior is stable and 
periodic. In the second, the oscillation is decreasing with a new critical point 
less than V*. And in the third case, motion continues past V* to a different 
new critical point greater than V*. Furthermore, having taken this branch, 
there is no way to represent the decision as a permanent selection of di- 
vergence, convergence, or stable oscillation. The same choice recurs at ap- 
proaches to other landmarks. 

Only the stable periodic behavior is an actual behavior possible for the 
constraints, but the local inference methods of QS~M cannot prove this fact. 
Thus, there are behaviors produced by the qualitative simulation algorithm 
which do not correspond to the behavior of any system satisfying the qualita- 
tive constraints. [] 

The problem also occurs with the algorithms of de Kleer and Forbus, even 
without creating new landmarks, if we can describe the initial state completely 
in terms of landmark values. In Forbus' case, we introduce a landmark value 
initial-length(S) for the initial displacement of the spring mass, such that 
A[initial-length(S)] > A[rest-length(S)] [12, pp. 144-146]. In de Kleer and 
Brown's case we may define a translated variable W(t)= V(t)- V* so that 
W(t) = 0  corresponds to V(t)= V* [8]. In both cases, when the system is 
approaching its initial state both position and velocity are approaching limits, 
with no way to determine which arrives first. Without the translated variable, 
neither approach expresses the distinction between increasing, steady, and 
decreasing amplitudes [17]. 

The underlying problem is the combination of locality with qualitative 
description. Both numerical and qualitative simulation are inherently local: the 
transition to a state is derived from its immediate predecessor. In numerical 
simulation, excluding truncation errors, the numerical values of the parameters 
implicitly encode invariant relations such as energy conservation that might be 
derivable from the equation. A numerical simulation of the oscillating spring 
will thus identify the single periodic behavior. In qualitative simulation, 
however, the qualitative state description of the spring is compatible with a 
variety of states, not all of which satisfy the invariant. There is simply not 
enough information in the previous state, or even the complete history of 
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states, to exclude all impossible behaviors. This combination of locality with 
qualitative state descriptions leads to the problem of spurious predictions. Thus 
none of the qualitative simulation algorithms can avoid this problem. 

If we explicitly add the constraints representing conservation of energy to the 
oscillating spring constraint equations, the single correct behavior is found. 
However, although the additional constraints are derivable from the original 
equations, it is not at all clear how to do such a derivation automatically for an 
arbitrary mechanism. 

These observations yield some important warnings about the proper use of 
qualitative descriptions of mechanisms, and the result of their simulation. 

- Theorems 5.2 and 5.3 have a corollary that highlights their implications for 
knowledge engineering. 

Corollary 5.4. I f  a set of  constraints is consistent, and if QsIM predicts a single 
behavior, then that behavior represents the actual behavior of  the mechanism. 

- T h e  consistency of a set of constraints must be demonstrated, to ensure 
that the qualitative simulation includes at least one genuine behavior (Theorem 
5.2). When the constraints are constructed by hand, this can be done by 
exhibiting the ODE that they abstract. However if the set of constraints is to 
be derived automatically from the current process structure [12], guaranteeing 
consistency may be more difficult. 

- If qualitative simulation yields several possible behaviors, further analysis 
is required before concluding that they represent possible futures. 

Qualitative simulation is an important step in the process of qualitative 
reasoning about the behavior of mechanisms, and QSIM is a particularly 
complete, efficient implementation of it. However, like all tools, it has 
important limitations. The formal analysis we have used in this paper is 
valuable both for the design of the OSIM algorithm and for determining the 
strengths and limitations of qualitative simulation in general. 

5 . 4 .  W h a t  n e x t ?  

Two directions for further research appear promising for more accurate 
qualitative predictions of behavior. First, the dynamical systems approach to 
qualitative analysis of differential equations (e.g. [1]) has greater expressive 
and inferential power than local qualitative simulation methods. By describing 
the behaviors of the spring as trajectories through phase space rather than 
temporal sequences of qualitative states, it is possible to take a single branch 
between increasing, decreasing, and stable oscillation, rather than repeating 
the choice at each move toward limits. The theory of dynamical systems also 
includes global classification theorems delimiting the possible qualitatively 
distinct behaviors. Further study is needed to determine how practical prob- 
lems can be stated and solved, and how the solutions can be applied. 



322 B.J. KUIPERS 

Second, if one structural description of a mechanism has spurious behaviors, 
a different description might not. By changing the problem to take into account 
the conservation of total energy, an expanded view of the spring mechanism 
allows QSIM to determine that there is a single, periodic behavior. A physicist 
can look at equation (5) and recognize or derive the fact that it represents an 
energy conserving system, and therefore that the behavior must be periodic. 
Part of this knowledge is the ability to recognize the physical system described 
by a set of constraints, and to know that there is a better structural description 
for it; one which adds parameters and constraints (e.g. energy) that illuminate 
the actual behavior. This approach takes us outside the realm of qualitative 
simulation, and into the realm of problem formulation. Chi, Feltovich, and 
Glaser [2] have shown that expert causal reasoning involves the use of 
domain-specific knowledge to select the correct formulation of a problem, 
leading to its direct solution. 

Returning to the larger problem of qualitative causal reasoning about 
mechanisms, an important problem is to formulate a suitable set of constraints 
given a physical situation, using the device-topology approach of de Kleer, 
Brown and Bobrow [6, 8], the process-based approach of Forbus [12], or some 
approach yet to be discovered. 

Appendix A. The Qualitative State Transitions 

This appendix applies the Intermediate Value and Mean Value Theorems to 
prove the validity of the transition rules in Table 1 that restrict the possible 
qualitative behaviors of a single function. 

Let f : [ a ,  b]---~E be a reasonable function with distinguished time-points 

a = t o < .  • . < t,, = b , 

and landmark values 

l~ < . - . < / k  . 

We repeat Definition 2.9. 

Definition. Where t~ is a distinguished time-point, a P-transition of f is a pair of 
adjacent qualitative states of f, 

QS(f ,  ti) ~ QS( f ,  t i, t i+ , ) ,  

whose first state is the qualitative state at a distinguished time-point. An 
l-transition is a pair of adjacent qualitative states of f, 

QS(f ,  t i 1, t~) ~ QS(f ,  ti) 
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whose first state is the qualitative state on the interval between distinguished 
time-points. 

Proposition A.1. Let QS(f ,  ti) and QS(f ,  t i, ti+~) be adjacent qualitative states 
o f  f. Then there is some landmark value lj such that f(ti) = lj, and the only 
possible P-transitions o f f  are given by the table below: 

OS(f ,  t,) :ff QS(f ,  t~, t~+~) 

P1. (lj, std) (lj, std) 
P2. (lj, std) ( (6 '  6+1),inc) 
V3. (lj, std) ((lj_t, l j) ,dec} 
P4. (lj, inc) ((li, l~+,),inc) 
P6. (l  i, dec) ((It t, It), dec} 

Proof. If t~ is a distinguished time-point, then by definition there must 
be a landmark value lj such that f(ti)= 6. In cases P1-P3,  there are 
reasonable functions f with QS(f ,  t , )=  (lj, s td),  and with direction of change 
std, inc, or dec in QS(f ,  t~, t~+ ~), so no subsequent direction of change can be 
excluded. In these cases, by the Mean Value Theorem, f( t)  must be equal to, 
greater than, or less than f(ti) = lj, respectively, on the interval (t~, tg+~). By 
Proposition 2.5 and the Intermediate Value Theorem, f i t )  must be within 
(6, 6+~) if it is increasing, or (6 ,, 6) if it is decreasing. In case P4, if the 
direction of change is inc, then f'(t~) > 0. Since the derivative is continuous, 
there is an interval around t = t i in which f ' ( t ) >  0. By Proposition 2.5, since 
there are points within (t,, ti+ ~) where the direction of change is inc, it must be 
inc throughout (ti, t,+ ~), so f i t )  must be within (lj, lj+~). Case P6 is similar. [] 

The three P-transitions from the state ( l  j, std) handle the case where a 
higher-order derivative, which is not explicitly represented by QsIM, determines 
the direction of motion. In such a situation, all three transitions are generated, 
and other constraints filter out the impossible cases. De Kleer and Bobrow [6] 
determine and use higher-order derivatives explicitly to make that decision, at 
least for linear equations. Their approach determines the order of the structur- 
al description, and thus knows how many higher-order derivatives to compute. 
The advantages of the current approach are that it places much weaker 
conditions on the differentiability of the parameters, and that it is not restricted 
to linear equations. 

Proposition A.2. Let OS(f ,  t i, ti+l) and QS(f ,  ti+l) be adjacent qualitative 
states o f f .  Then there are landmark values lj and Ij +~ such that the only possible 
I-transitions are given by the table below: 
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OS(f,  t i, ti+,) © OS(f,  t i l l )  

I1. (lj ,std> (lj, std) 
I2. <(lj, lj+x), inc) (lj+~, std) 
I3. ((lj, lj+,), inc) (li+,, inc) 
I5. ((lj, lj+,), dec> ( lj, std) 
I6. ((l/, l/+~), dec) ( / / ,dec)  

Proof. Similar to the proof of Proposition A.1 Cases I1, 12, I3, I5, and I6 
correspond to cases P1, P3, P6, P2 and P4, respectively. [] 

When considering f in the context of a system F, we need transitions 
appropriate to a time-point t which is distinguished for the system but not for 
the individual function. In other words, t might reach a distinguished time- 
point before f ( t )  reaches its next landmark value. 

Proposition A.3. S u p p o s e  that an addi t ional  t ime-po in t  t* @ [ a, b] is i n t roduced  

into the set o f  d is t inguished t ime-poin ts  o f f :  

a = t o < • • • < t k < t* < t k + i < " " " < tn = b .  

Then  

QS(f,  t k, t*) = QS(f ,  t*) = QS(f,  t*, tk+,) = OS(f,  t k, t~+.). 

Proof. Since, for all t E (t k, tk+l), QS(f ,  t ) =  QS(f ,  t k, tk+~) by definition, we 
conclude that QS(f,  t k, tk+~) is identical to each of QS(f,  t~., t*), QS(f,  t*), 
a n d Q S ( f , t * , t  k+~). [] 

Proposition A.4. Le t  f :  [a, b]---~ ~ be a reasonable  f u n c t i o n ,  and  let a = t o < 
• • • < t n = b be a set o f  t ime-poin ts  inc lud ing  all the d is t inguished t ime-poin ts  o f  

f ,  bu t  poss ib ly  addi t ional  po in t s  in [a, b]. Then  the poss ib le  transi t ions o f  f 

consist  o f  those listed in Propos i t ions  A.1 and  A.2, p lus  the f o l l o w i n g  l- 

transi t ions and  P-transi t ions:  

OS(f,  t,, ti+,) ~ OS(f,  ti+l) 
I4. ((lj, 6+~), inc) ((lj, l/+~), inc) 
I7. ((l~, lj+,), dec) ((li, li+~), dec ) 

QS(L t~) ~ QS(f,  t~, t~+,) 

P5. ((6, 6+,), inc) ((6, l,+,), inc) 
p7. ((/,, 6+,), dec) ((6, 6+,), dec) 
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Proof. Consider an I-transition beginning with QS(f ,  t~, ti+l). If ti+ 1 is a 
distinguished time-point of f, the transition is specified by Proposition A.2. If 
ti+ 1 is not a distinguished time-point of f, Proposition A.3 shows that the 
qualitative state remains constant across the transition, providing the above 
alternatives as the only additional possibilities. If the transition is a P-transition 
beginning with QS(f ,  ti) the proof is similar, depending on whether t~ is a 
distinguished time-point of f. [] 

A.1. Discovering a new landmark 

Suppose that QS(f ,  t i, ti+l)= ((lj, l j+l) , inc) .  Since there is no landmark in 
(Ij, li÷i), we can exclude the transition to 

OS(f ,  ti+,) = ((l i, li+l), std) 

because that would imply that f'(ti+ 1) = O, making f(t~+ 1 ) a landmark value, by 
definition. However,  if l~ < . . .  < l k is only a partial set of the landmarks of f, 
then the above transition is possible, but only when f(tg+l)= l*, a landmark 
value of f such that lj < 1" < lj+t. 

In this case, the following partial behavior is possible: 

qualitative state known landmarks 

QS(f ,  t i, t/+l) -- ((lj, lj+l), inc) lj < li+ 1 
QS(f ,  t,+l) = (l*, std) lj < l* < lj+ t 

QS(f ,  t i, t~+l) is now seen to be syntactically incorrect, given subsequent 
information acquired about the true set of landmarks. It should be revised to 
be QS(f ,  t i, ti+l) = ((lj, l*), inc). Furthermore, it is possible for f to move 
across l* several times before encountering the critical point that reveals its 
existence as a landmark. However ,  the modifications needed to correct the 
behavioral description are straightforward and locally computable. In the ball 
system example discussed above, the maximum height of the ball is such a new 
landmark, discovered when V(t), and therefore Y'(t),  become zero. We 
summarize this discussion in: 

Proposition A.5. Suppose that 11 < . . .  < I k are all the known landmarks of  a 
reasonable function f, which may have other landmarks as yet unknown. Then, 
in addition to the transitions listed in Propositions A.1, A.2, and A.4 the 
following l-transitions are possible: 

Qs(L t,, t,+l) ~ QS(L ti+,) 

IS. ((li, lj+l), inc ) (/*, std) 
I9. ((lj, li+l), dec} ( l* , s td )  
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In case one of these transitions is followed, the set of  landmark values in 
QS(f ,  ti+,) is augmented by lj < l* < lj+ 1. Note that the total ordering on the set 
of  landmarks is preserved. 

Table 1 collects and names the transitions permit ted by Propositions A.1, 
A.2, A.4, and A.5 for use in the QSIM algorithm. 

A.2. Infinity and asymptotic approach 

I-transitions express the possible consequences of a changing paramete r  reach- 
ing a limiting landmark value. But what if a paramete r  approaches its limit 
asymptotically? By allowing both domain and range to include + ~  and - ~  as 
endpoints,  we can express asymptotic approach as reaching the limit point at 
t = ~. The same method allows us to treat  divergence to infinite values as a 
possible behavior.  Thus, every time-interval has an endpoint,  but some distin- 
guished time-points (e.g. t = ~, or t such that f ( t)  = ~) may have no successor 
states. There  are two constraints on these types of behavior.  

First, at t = ~, every function in the system must be equal to some landmark 
value and must,  if that landmark is finite, have derivative zero (i.e. direction of 
change std). Recall that oscillatory systems are handled with a finite domain 
and repeated states, rather  than with an infinite domain. 

Proposition A.6. Let f : [a, oo] --~ ~* be a reasonable function. I f  the limit o f f ( t )  
as t - - ~  is finite, then l i m , ~ f ' ( t ) =  0. 

Proof. If l i m , ~ f ' ( t )  > 0, then for some interval (c, ~), f ' ( t )  must be bounded 
away from zero. In this interval, f ( t ) = f ( c ) + f ' ( t * ) .  ( t - c )  for some t * E  
(c, oo), by the Mean Value Theorem.  Thus, l i m , ~ f ( t ) =  ~. Similarly in case 
l i m , ~ f ' ( t )  < 0 ,  so the limit must be zero. [] 

Second, if f ( t)  = ~, then t = b, the right-hand endpoint of the domain,  since 
a function cannot be continuously differentiable across ~. If b < ~, then the 
direction of change must be inc. 

Proposition A.7. Let f:[a,b]--->E* be a reasonable function such that 
i im,~bf( t  ) = ~, where b is finite. Then l im ,~b f ' ( t  ) = ~. 

Proof. Suppose that l imt~bf ' ( t )  has a finite limit M > 0 .  Then for some 
interval (b - 6, b), f ' ( t )  E (M - e, M + e), which implies that 

f ( b - ~ ) +  6 . ( M -  e ) < f ( b ) < f ( b - ~ ) +  ~ ' ( M  + e) 

which contradicts f (  b ) = ~. [] 
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Using these propositions, we can test whether a distinguished time-point can 
match t = 2, and test moves to ~ for consistency. With these observations, the 
extended reals [ - 2 ,  2] can be treated like any other closed interval, and 
asymptotic approach is handled. 

Appendix B. Constraint Consistency 

This appendix specifies the rules by which each type of constraint tests a tuple 
of qualitative state transitions for consistency. There are separate tests for 
consistency of the qualitative magnitudes and the directions of change. 

B.1. Qualitative magnitude consistency 

This appendix defines and justifies the evaluation of M +, M-,  ADD, or MULT 
constraints when applied to particular qualitative values. 

The magnitude of a quantity is described qualitatively in terms of its ordinal 
relations with a set of landmark values. The validity of a particular application 
of an M +, M-, ADD, or MULT predicate is tested using not only the signs of 
the arguments, but also their relations with other sets of corresponding values. 
For example, if we know that A D D ( p ,  q, r) is true, then (p,  q, r) is a set of 
corresponding values for this ADD constraint, and i f p '  < p and r' > r, we can 
determine that ADD(p ' ,  q, r ' )  must be false. In the QSIM algorithm, these 
predicates are evaluated in order to test the validity of a possible tuple of 
transitions at a particular constraint. 

The criteria below compare transition tuples with known sets of correspond- 
ing values. Each criterion checks whether the ordinal relations between the 
current values of the functions and the corresponding values will be consistent 
with the constraint after the proposed transition. The qualitative state before 
the transition is presumed to be consistent. 

These criteria generalize the transition-ordering rules of Williams [24, 25], 
which evaluate combinations of transitions to zero across various constraints. 
The presence of nonzero landmark values means that, for example, a particular 
function could be moving toward zero, but be separated from it by an 
intervening landmark. Thus, transition-ordering rules must take into account 
not only of directions of change, but also relative position in an ordering. 
Furthermore, a problem with transition-ordering rules in general is that their 
proofs, while not deep, often consist of numerous cases and are difficult to 
check. The simple and transparently valid criteria of Propositions B.3 and B.9 
subsume the other rules and are more efficiently applied. 

B. 1.1. Monotonic function constraints 

If two function f and g, related by M÷(f ,  g), are approaching corresponding 
limits, we know that either both reach their limits together, or neither 
does. 
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Proposition B.I.  Suppose M+(f ,  g), with corresponding values (p ,  q), and 

QS(f ,  t,, t2) = ( ( p ,  p ' ) ,  d e c ) ,  
OS(g,  t , , t2 ) = ( ( q, q' ), dec) . 

Then one o f  the following two possibilities must be true at t2: 
(1) f ( t : )  = p,  g(t:) = q; 
(2) f ( tz )  > p ,  g(t2) > q .  

Proof. Since M+( f, g) is true, there is a strictly monotonic function H such 
that f ( t )  = H(g( t ) )  for all t E [a, b]. In particular, since p and q are correspond- 
ing values, p = H(q) .  Thus, if g(t2) = q, we know that f(t2) = p, and conversely 
by the symmetry of M+(f ,  g). [] 

If f and g are approaching limits, but only one of the limit points belongs to a 
corresponding value pair, then only the other limit point is possibly reachable 
in the next state. 

Proposition B.2. Suppose M+(f ,  g), with corresponding values (p ,  q) and 

QS(f ,  tl, t2) = ( ( p ,  p ' ) ,  d e c ) ,  
QS(g,  t,, t2) = ((q", q ' ) ,  dec) , 

where q" ~ q. Then one o f  the following two possibilities must  be true at t2: 

(1) f ( t z ) > p ,  g(t2) = q", 
(2) f ( tz )  > p, g(t2) > q".  

Proof. Since (p ,  q) is a corresponding value pair, there must be some t* E 
[a, b] such that f ( t* )  = p and g(t*) = q. It is not possible for q'  ~< q, because 
then g(t) < g(t*) while f ( t )  > f ( t * )  for t ~  (t~, t2), which contradicts M-~(f, g). 
Thus q < q" < q'. 

f cannot reach p without g simultaneously reaching q, as shown in the 
previous proposition. Thus the only possibilities are that g reaches q", or that 
neither reaches its limit. [] 

By symmetry, it is clear that analogous propositions hold whether the 
constraint is M + or M-,  or whether the corresponding limits are approached 
from above, below, or one from each side. 

B.1.2. Addit ion constraint 

We can use exactly the same technique to prove similar consistency criteria for 
A D D ( f ,  g, h) and M U L T ( f ,  g, h), in cases where three, two or only one of 
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the limit points belongs to a known set of corresponding values. The com- 
plexity of determining, implementing, and verifying all such tests is formidable. 
Fortunately, there is a general relationship that captures all possible such 
criteria. 

Proposition B.3. Let  p ,  q, and r be corresponding values o f f ,  g, and h, where 
ADD( f ,  g, h).  Then, for  any t E [ a ,  b], the fo l lowing holds: 

( f ( t )  - p)  + ( g(t)  - q) = (h(t)  - r). (B.1) 

Proof. f ( t )  + g(t)  = h(t)  and p + q = r. [] 

If we know that ADD(f ,  g, h), and if the limits approached by f, g, and h 
intersect with the corresponding values p + q = r, then (B. 1) may be applied. A 
proposed transition tuple is checked for consistency by seeing whether its result 
would change the sign of any of the terms in (B. 1). The signs of the three terms 
can be determined directly from the ordinal relations among function values 
and landmarks, and the resulting state is checked for consistency with the 
ADD relation by table lookup. 

The following propositions demonstrate the effect of this filter on cases 
where the limits of f, g, and h share three, two, or only one value with a 
particular correspondence. 

Proposition B.4. Suppose ADD(f ,  g, h), with corresponding values p + q = r, 
and 

QS(f,  ti, t2) = ( (p ,  p ' ) ,  d e c ) ,  
OS(g, t 1, tz) = ( (q ,  q ' ) ,  dec ) ,  
QS(h, t 1, t2) = ((r, r ' ) ,  dec) . 

Then exactly one o f  the fo l lowing four  possibilities mus t  be true at t2: 
(1) f ( t2) = p ,  g(t2) = q, h(t2) = r; 
(2) f(t2) = p, g(t2) > q, h(t2) > r; 
(3) f(t2) > p ,  g(t2) = q, h(t2) > r; 
(4) f ( t2)  > p,  g(t2) > q, h(t2) > r. 

Proof. For t E [tl, t2], f ( t )  - p >10, g(t)  - q >10, and h(t)  - r >lO. The three 
terms of (B.1) must have compatible signs, and cannot change discontinuously 
from their state in (tl ,  t2), so (1)-(4) are the only possibilities. [] 

In case we are not so fortunate as to have f, g, and h approaching corre- 
sponding limits, we may have two of the functions approaching corresponding 
limits, and know where the corresponding value of the third function is with 
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respect  to its limit. This allows us fur ther  to constrain  the set of  possible next 
states. 

Proposition B.5. Suppose  A D D ( f ,  g, h) ,  with corresponding values p + q = r, 
and 

Q S ( f ,  t~, t2) = ( ( p ,  p ' ) , d e c )  , 
Q S ( g ,  tl, t2) = ( ( q ,  q ' ) ,  dec)  , 
QS(h ,  t l ,  t2)  = ( ( r " ,  r ' ) ,  dec)  , 

where r" ~ r. Then it is not  possible to have both f ( t2)  = p and g(t2) = q. 

Proof.  Cons ider  (B.1) .  If r>~r ', then the t e rm h ( t ) - r  is negat ive for t E  
(t~, t2), while the o the r  two te rms  are posi t ive,  which is a contradict ion.  Thus  
r ~ r". 

All t e rms  of (B. 1 ) are posi t ive on (t~, t2), and h(t)  - r must  be strictly posit ivc 
at t = t 2, so at most  one  of  the o the r  te rms  can be zero at t 2. [] 

Proposition B.6. Suppose  A D D ( f ,  g, h) ,  with corresponding values p + q = r, 
and 

o s ( f ,  '1, t 2 )=  ( ( p ,  p ' ) ,  d e c ) ,  
QS(g ,  t 1 , t2) = ((q",  q ' ) ,  dec)  , 
QS(h,  t l ,  t2 )  = ( ( r ,  r ' ) ,  dec)  , 

where q " ¢  q. Then it is not possible to have both f ( t 2 ) = p  and h ( t2 )=  r. I f  
q < q", it is impossible to have h(t2) = r. l f q  > q", it is i m p o s s i b l e f o r f ( t 2 )  = p. 

Proof. If q < q", the middle  t e rm of  equa t ion  (B.1)  is strictly posit ive on 
Its, t2], so only the first t e rm can possibly b e c o m e  zero at t 2, so only f a n d  g can 
possibly reach their  limits. If q > q", then the second te rm of (B.1)  is strictly 
negat ive on (t 1, t2], so only the third t e rm can possibly b e c o m e  zero at t 2, so 
only g and h can possibly reach their  limits. [] 

The  same technique  can be used in case only one  of a set of  cor responding  
values appea r s  in the current  set of  limits. 

Proposition B.7. Suppose  A D D ( f ,  g, h) ,  with corresponding values p + q = r, 
and 

Q S ( f ,  t , ,  t2) = ( ( p ,  p ' ) ,  dec)  , 
O S ( g ,  t I, t2)--- ( (q" ,  q ' ) , d e c ) ,  
OS(h ,  tl, t2) = {(r", r ' ) ,  dec)  , 
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where q" # q and r" # r. Then if q" > q and r" < r, or if q" < q and r" > r, it is 
impossible for f(t2) -- p. 

Proof. Examination of (B.1) shows that these cases would result in the first 
term being zero, while the other two have opposite signs, which is 
impossible. [] 

Proposition B.8. Suppose ADD(f ,  g, h), with corresponding values p + q = r, 
and 

OS(f,  tl, t2) = ((p", p ' ) ,  dec) , 
OS(g, tt, t2) = {(q", q') ,  dec ) ,  
QS(h, 6,  t2) = ( (r, r'),  dec) , 

where p" ~ p and q" ~ q. Then if p" > p and q"> q, or if p" < p and q" < q, it is 
impossible for h(t2) = r. 

Proof. Examination of (B.I) shows that these cases would result in the last 
term being zero, while the other two have the same signs, which is 
impossible. [] 

By symmetry, similar propositions hold in the cases where f, g, and h are 
approaching their limits from various combinations of directions, not only 
when all are decreasing. Fortunately, equation (B.1) makes it unnecessary to 
implement checks based directly on Propositions B.4-B.8. 

B. 1.3. Multiplication constraint 

If the three functions in a MULT constraint are approaching related limits, we 
can constrain the possible results, similarly to what we did with ADD 
constraints in the previous section. A separate consistency test checks for legal 
combinations of signs (+,  0 , - )  at a multiplication constraint. 

Proposition B.9. Let p, q, and r be nonzero corresponding values o f  the 
functions f, g, and h, respectively, where MULT(f ,  g, h). Then, for  any 
t ~ [a, b], the following holds: 

<.=> p / ~ q /  

Proof. f ( t ) ' g ( t ) = h ( t )  a n d p - q = r .  [] 

As with the addition constraint, QSIM uses equation (B.2) directly to test the 
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consistency of various combinations o f f ,  g, and h reaching their limit values, in 
comparison with a corresponding set of values, p • q = r. When f ( t )  and p have 
the same sign, we can retrieve their ordinal relations to classify the term f ( t ) / p  
as greater than, less than, or equal to 1. With respect to this classification, the 
legal combinations of A, B, and C, where MULT(A,  B, C) are given by the 
following table: 

A •  <1 =1 >1 

<1 <1 <1 any 

=1 <1 =1 >1 

>1 any >1 >1 

Note that it is not necessary for the value 1 to be a landmark value of any of 
the functions involved. The table is a guide to the implementation of a 
consistency test for M U L T ( f ,  g, h), rather than representing an inference that 
QSIM makes explicitly. The consistency test applies when the ordinal relation 
between f ( t )  and p changes as f reaches its limit. 

Propositions can be proved to demonstrate the degree of filtering possible 
with different sets of corresponding values, similar to Propositions B.4-B.8  for 
addition, but they are omitted here. 

B.1.4. Landmark values as a representation for critical points 

There are several ways to represent the critical values of a parameter,  but they 
are not identical in power and cost. QSIM creates landmark values in the 
quantity space of a parameter  to represent critical values, where the derivative 
of the parameter  becomes zero. The { +,  0, - }  semantics can express nonzero 
landmarks by appending a new, translated parameter  and constraint to the set 
of constraints. Thus, given a parameter  V(t),  if we wish to represent a new 
landmark value Vma X > 0 ,  we define a translated parameter  W(t) and the 
constraint W(t) = V(t) - Vm,~x. 

The translated parameter  technique captures many, but not all, of the 
properties of landmark values. In particular, each constraint in a QsIM model 
records sets of corresponding landmark values that are known to satisfy it. 
These corresponding values are very useful for limiting the possible next states 
predicted by QSIM, by applying the qualitative magnitude filtering methods of 
this appendix. The translated parameter  technique does not support this 
filtering method in any straightforward way, if at all. 

Suppose we have parameters x, y, and z, such that x + y = z. At some 
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time-point, all three are observed to be equal to landmark values, so the 
addition constraint stores the corresponding values (p ,  q, r). Now suppose that 
we are in a state where x > p, y > q, and z > r, all decreasing toward their 
landmark values. In the OSIM representation, the methods of Propositions B.3 
and B.4 let us conclude that only four of the eight possible resulting qualitative 
states are consistent. 

Using the technique of translated parameters,  in order to represent the 
landmark values p, q, and r, we need to define additional parameters and 
redescribe the current state, as follows: 

x ' = x - p ,  x ' > 0 ,  
y ' = y - q ,  y ' > O ,  
z ' = z - - r ,  z ' > O .  

Existing techniques, such as Williams' transition-ordering rules [24, 25] would 
then be able to reason about the order  that x', y' ,  and z '  would reach zero, 
except that we do not necessarily have the constraint that x '  + y '  = z ' !  

The event that led OSIM to record a set of corresponding values would be 
represented using translated parameters as x '  = 0, y '  = 0, and z '  = 0. Short of 
deriving all algebraic consequences of all combinations of constraints, it is not 
clear how a qualitative simulation algorithm would focus its attention sufficient- 
ly to derive the relation x '  + y '  = z '  as a way of capturing the correspondence 
(p ,  q, r). There is at least no straightforward translation of corresponding 
values into the translated parameter  technique. 

Without the corresponding values, the translated parameter  approach must 
predict eight possible successor states for the three parameters,  while QSIM can 
restrict the set to four. 

B.2. Direction-of-change consistency 

An important difference between QSIM and the algorithms used by de Kleer 
and Forbus is that quantities are rePresented by qualitative descriptions rather 
than qualitative values. Thus, rather than being a partial function that some- 
times fails to compute a result, A D D  is a three-place relation evaluating to true 
or false according to whether its arguments satisfy the addition constraint. This 
appendix specifies the tables of acceptable directions of change for A D D  and 
MULT.  The corresponding tables for M + and M-  are obvious. 

B.2.1. ADD(] ' ,  g, h) 

The following table summarizes the combinations of directions of change that 
satisfy the A D D ( f ,  g, h) constraint. 
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X 
inc 

std 

dec 

inc std 

inc inc 

inc std 

any dec 

dec 

any 

dec 

dec 

inc std dec 

any dec dec 

inc std dec 

inc inc any 

dec dec any 

dec std inc 

any inc inc 

dec 

inc std dec 

inc inc any 

inc std dec 

any dec dec 

(3) If 

(2) If 

inc 

std 

dec 

f <O,g<O,h>O,  

f ~  inc std 

inc 

std 

dec 

f > O ,  g<O,  h<O,  

X 
inc 

std 

dec 

B.2.2. MULT(f ,  g, h) 

The combinations of directions of change that satisfy the MULT constraint 
depend on the signs of f, g, and h, as shown in the following tables, derived 
from the identity h' = f 'g  + fg'. 

(1) I f f > 0 ,  g > 0 ,  h > 0 ,  
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In case f < 0 and g > 0, the table is transposed. 

(4) I f f > 0 ,  g = 0 ,  h = 0 ,  

f ~  inc std dec 

inc inc std dec 

std inc std dec 

dec inc std dec 

335 

In case f < 0, the table remains the same, but with the signs reversed. If f = 0 
and g ~ 0, the table is transposed. 

(5) If f = 0 ,  g = 0 ,  h =0 ,  

inc std dec 

std std std 

std std std 

std std std 

inc 

std 

dec 

Appendix C. The QSIM Program and its Output 

This appendix provides the constraints, the initialization, and a trace of one 
cycle of the output of OSlM on the spring mechanism 

(define-structure spring 
(functions a v x) 
(landmarks (v (minf 0 v* inf))) 
(constraints (d//dt v a) (d//dt x v) (m0-a x)) 
(invariants 

(a ((minf inf) nil)) 
(v ((minf inf) nil)) 
(x ((minf inf) nil)))) 

(defun initialize-spring () 
(make-initialization spring (generate-time-point) 

"((x (0 inc)) 
(v (v* std)) 
(a (0 dec))))) 

With appropriate trace switches set, the QSIM program will print out infor- 
mation about the quantitative progress of the filtering algorithm. The following 
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fragment shows the spring reaching its first extremum. The sections of the trace 
describe: 
- t h e  initial qualitative state description; 
- t h e  number of qualitative state transitions assigned to each individual 

function; 
- t h e  decrease in number of transition tuples as each constraint applies its 

filters; 
- t h e  effect of Waltz filtering when consideration of an adjacent constraint 

decreases the number of tuples; 
- the effect of global filters; 
- t h e  assignment(s) of transition rules that will create the successor state(s). 

Predicting successors of $2 in region SPRING. 
0 < V[DEC] < V* 
0 < X[INC] < INF 
MINF < A[DEC] < 0 

Function A has 2 transitions. 
Function V has 4 transitions. 
Function X has 2 transitions. 
Constraint M (A X) has (4)---~(2) tuples. 
Constraint D/ /DT(X V) has (8)---~ (4) tuples. 
Constraint D/ /DT(V A) has (8)---,(4) tuples. 
Waltz filter of D/ /DT(X V): (4)---~ (3). 
Waltz filter of D/ /DT(X V): (3)---*(2). 
Global interpretations: (2)---~ (1). 
Predicting: 

V: I6 ((M1 M2) D E C ) ~  (M1 DEC) 
X: I8 ((M1 M2) I N C ) ~  (M* STD) 
A: 19 ((M1 M2) D E C ) ~  (M* STD) 
1 successors. 

Predicting successors of $3 in region SPRING. 
0 = V  [DEC] 
X1 = X [STD] 
A1 = A [STD] 
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AVAILABILITY OF THE QSIM PROGRAM 

The QSlra program is available to researchers interested in qualitative simulation, in order to encourage 
detailed exploration and evaluation of these ideas and their possible applications beyond what is possible 
in a published paper. The current implementation runs in ZETALISP on the Symbolics 3600. It is not 
advertised or warranted as a software product, and any commercial rights to the program are retained. 
Please contact me if you are interested. 
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