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1. Introduction 

Qualitative reasoning about physical systems has become one of the most 
productive areas in AI in recent years, due in part to the 1984 special issue 
of Artificial Intelligence on that topic. My contribution to that issue was a 
paper entitled "Commonsense reasoning about causality: deriving behavior 
from structure" [9]. From my perspective, that paper laid out a research 
program that has continued to be productive to this day, and promises to 
continue well into the future. 

After establishing a framework for qualitative reasoning, the primary tech- 
nical contribution of the paper was a simple, clear representation for qualita- 
tive structure and behavior, abstracted from ordinary differential equations. 
My subsequent Artificial Intelligence paper, "Qualitative simulation" [ 10 ], 
made that abstraction relation precise, presented the vastly improved QSIM 
algorithm for qualitative simulation, and used the abstraction relation to 
prove the soundness and incompleteness of QSIM. I will discuss develop- 
ments in qualitative simulation in my retrospective on that paper [12], and 
concentrate here on the larger issue of reasoning with qualitative models. 
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2. Context 

In 1978, thanks to Peter Szolovits, I started working on the problem of 
causal reasoning about physiological mechanisms by expert physicians. I was 
initially attracted to Rieger and Grinberg's causal link models, presented at 
IJCAI-77 [14], and I began working with Jerome P. Kassirer, an eminent 
nephrologist at Tufts Medical School. We applied Newell and Simon's pro- 
tocol analysis methods to interviews with expert physicians, to extract clues 
about the cognitive representation of physiological mechanisms. This proto- 
col analysis provided one of two essential constraints on the design of the 
qualitative representation: empirically, it should account for the behavior of 
the human subjects, and computationally, it should be capable of deriving 
the observed conclusions. 

From analyzing the protocols, it quickly became clear that there was a cog- 
nitively meaningful distinction between the time-independent structure of a 
mechanism, and its time-dependent behavior. This distinction did not seem 
to map clearly onto causal networks, but fit better with Johan de Kleer's 
work on qualitative envisionment. Starting with this foundation, my appli- 
cations and my intuitions led me away from the quasi-static equilibrium 
assumption, and toward monotonic function constraints and nonzero land- 
marks: essentially the QSIM representation, although the name came later. 
Kassirer and I published our protocol analysis and its explanation in terms of 
the qualitative representation in Cognitive Science [13], where it appeared 
at about the same time as the Artificial Intelligence special issue. 

Meanwhile, Johan de Kleer, Ken Forbus, Dan Weld, Brian Williams and 
others were also developing and extending methods and applications for 
qualitative reasoning. While there were many fruitful discussions among 
the early participants in this research community, differences in outlook, 
assumptions, and notation often made it difficult for us to communicate 
clearly. Although it is sometimes said that differences in notation have acted 
as a barrier to unifying the different perspectives in qualitative reasoning, it 
now seems clear that the notational differences reflect genuine semantic dis- 
tinctions among types of knowledge used in different types of reasoning: for 
example, model building versus model simulation, and dynamic simulation 
versus comparative statics. 

3. Contributions and applications 

An enormous amount of subsequent work has been inspired by the papers 
in the 1984 special issue, including international workshops on qualitative 
reasoning, model-based reasoning, and the principles of diagnosis. I will 
discuss developments specifically related to the qualitative simulation and 
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Fig. 1. All models are abstractions of the wodd. Qualitative models are related to ordinary 
differential equations, but are more expressive of incomplete knowledge. 

the QDE representation in the retrospective [12 ] on the paper "Qualitative 
simulation", and focus here on applications of qualitative reasoning to diag- 
nosis, monitoring, and design, and on several conceptual schemes that have 
been helpful to me in clarifying and factoring the problems and applications 
of qualitative reasoning. 

3.1. Abstraction relations 

Qualitative structure and behavior can be most clearly understood and 
analyzed as abstractions of ordinary differential equations and their solu- 
tions (Fig. 1 ). (Both types of models are, of course, abstractions of the 
physical world.) This abstraction relation (hypothesized in this paper, and 
proved rigorously in [ 10 ] ) has been critical to making qualitative simulation 
mathematically tractable, and to communicating it successfully with the en- 
gineering and mathematics communities. It legitimizes the term qualitative 
differential equation or QDE for the qualitative structural description. 

3.2. Structure, behavior, function, and design 

There is an important distinction between three types of descriptions of 
a mechanism, and how they depend on each other: 

structure ~ behavior ~ function. 

A clear distinction among these is particularly important because function 
and behavior are often confused. The essence of a functional description is 
teleology or purpose, and hence the relation of the structure and behavior 
of a mechanism to its larger context. Now that the roles of structural and 
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Fig. 2. Diagnosis viewed as a generate-and-test process, proposing models capable of explaining 
observations. 

behavioral descriptions are better understood (Fig. 1 ), it has become clearer 
how to represent and reason with functional description of a device. 

A motivating example from the 1984 paper is the assertion, "The function 
of the pressure release valve is to prevent explosions." Semantic analysis 
reveals that the verb prevent represents a relation between an element of 
structure (the pressure release valve) and a possible behavior (an explosion). 
However, simulation of the working device model does not include an 
explosion among its possible behaviors. The explosion referred to appears 
"upstream" in the design process for the device, prior to the addition of the 
pressure release valve. 

David Franke [6,7] has defined a precise semantics for teleological rela- 
tions such as guarantee and prevent, in terms of the incremental transfor- 
mations to the device model that take place during design and a branching- 
time temporal logic over the set of behaviors predicted from each qualitative 
model. His system is associated with a CAD system, in order to acquire tele- 
ological descriptions when they are most available: during the design process. 
The teleological descriptions are then used to index design transformations 
for reuse, and to propose plausible candidates during diagnosis. 

3.3. Diagnosis and monitoring 

Diagnosis can be defined in several ways. The modeling and simulation 
perspective makes it natural to view diagnosis as an instance of the more 
general problem of causal explanation: a set of observations are explained by 
a set of  general laws and specific initial conditions such that the observations 
can be predicted as consequences of the laws and initial conditions (Kuipers 
[11], Simmons and Davis [15]) (Fig. 2). 

According to this view, the goal of diagnostic reasoning is to find a useful 
predictive model of  a possibly faulty device, given a description of the 
working device and knowledge of possible fault modes, either of components 
or of the device as a whole. The task thus blends smoothly into monitoring, 
where the task is to maintain an accurate model of a mechanism and 
its state, even while faults occur and are repaired. This position contrasts 
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with the "constraint suspension" view of diagnosis, where the task is to 
identify minimal sets of  components whose correct behavior is inconsistent 
with observations. Constraint suspension seems most appropriate for devices 
where faults are relatively isolated, and where it is practical to shut the system 
down to replace components. Large-scale systems such as chemical plants, 
space vehicles, and the human body have many self-regulatory systems, 
and are expected to continue functioning even in the presence of numerous 
faults. These intuitions have led to the development of the MIMIC approach 
to monitoring and diagnosis (Dvorak and Kuipers [3,4]). 

The basic idea behind MIMIC is very simple: track the observed state of a 
system against predictions derived from one or more models; discrepancies 
are used to refute some current models and suggest new ones. However, 
the success of this approach depends critically on the ability to cover a 
realistically large set of hypotheses with a tractably finite set of models. 
Traditional ODE models contain many assumptions of specific functional 
forms and numerical parameter values, often going beyond the knowledge 
available, particularly for fault models. Qualitative models can cover a wide 
range of possible ODEs with a single QDE, and can refine the qualitative 
predictions using numerical information when it is available. 

3.4. Modeling and simulation 

There is an important distinction between the tasks of model building and 
model simulation: 

• Model building: starts with a description of a physical situation and 
builds an appropriate simplified model, in this case a QDE. 

• Model simulation: starts with a model and predicts the possible be- 
haviors consistent with the model. 

The research issues involved in model building and model simulation 
are quite distinct, and the two tasks interact via the QDE representation. 
Therefore, as a research strategy, this factoring of the problem makes it 
possible for a qualitative reasoner to benefit from independent advances in 
the two areas. 

Much of the work that my students and I have done within this framework 
has concentrated on the representation and tractable simulation of QDE 
models, with the view that QDE models could be constructed by a variety 
of different methods, including those pioneered in the work of de Kleer and 
Brown [2] and Forbus [5]. It has seemed to me that both of these pieces of 
work are clarified by separating their contributions to model building and 
model simulation. Accordingly, we have built two compilers that produce 
QDE models for simulation by QSIM. 
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• CC (Franke and Dvorak [8]) builds a QDE from a description of a 
physical system in terms of explicit connections among instances of 
components defined in a component library. 

• QPC (Crawford et al. [1]) builds QDE models after the manner of 
qualitative process theory by identifying sets of active views and pro- 
cesses in a view library, and applying the Closed World Assumption 
to transform influences into constraints. 

The two approaches to model building differ in the nature of the knowledge 
supplied by the modeler, and in the way the Closed World Assumption is 
applied. Specifically, by describing a device with a component-connection 
(CC) model, the modeler asserts that all relevant interactions between the 
components take place via explicit connections. In QPC, by contrast, the 
system is responsible for determining the set of relevant interactions and 
deciding when to apply the Closed World Assumption. 

In the simplest, linear view, the modeler builds a model which the simu- 
lator uses to predict behaviors. More realistically, the process iterates, with 
the model builder responding to feedback from the simulator about the im- 
plications of the model and from the world about the success of the model 
to explain the physical phenomenon of interest. 

Figure 3 illustrates the main linear path through model building and 
model simulation, separating the process into weakly interacting modules. 
Each module draws on certain information (e.g., the component library 
or asserted quantitative bounds), may make certain assumptions as needed 
(e.g., smoothness of monotonic functions or the CWA), and provides certain 
guarantees (i.e., that its conclusion follows soundly from its premises). One 
perspective on the field of qualitative reasoning is that its goal is to specify 
the modules and their intermediate representations so as to make this 
framework real. 

4. Open problems 

There are several "paths not taken" whose beginnings were visible in the 
1984 paper, and which still seem very fruitful. 

The title of the 1984 paper refers to "causal" reasoning about physical 
mechanisms. In fact, we developed modeling and simulation methods 
based on constraint propagation and satisfaction. Any causality in 
these models is imposed from the outside by the viewer. The problem 
of describing and reasoning about causality seems important and has 
received a great deal of attention, but on careful examination both 
its content and its value are surprisingly hard to pin down, at least 
with the tools now available. 
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Fig. 3. Each step in modeling a physical system and predicting its behavior requires particular 
types of assumptions. Using qualitative models makes this set of assumptions tractable. 

A qualitative differential equation is a set of constraints, from which 
other constraints and equations can be derived by algebraic manipu- 
lation. One point of the 1984 paper was that certain conclusions that 
were intractable in the given model could be derived easily from an 
algebraically simplified abstraction of the model, automatically de- 
rived using the set of algebraic transformation rules in Appendix D. 
A good general-purpose algebraic manipulation utility applicable to 
QDE models would make it possible to search for Lyapunov func- 
tions or to symbolically evaluate the sign of a discriminant expression, 
and thus improve the power of qualitative simulation. Williams [16 ] 
made progress toward this goal, by clarifying the relationship between 
qualitative and real algebras, and demonstrating the use of MINIMA, 
an algebraic reasoner for qualitative models based on Macsyma. 
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