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Qualitative reasoning about physical systems has become one of the most ac-
tive and productive areas in AI in recent years. While there are many different
kinds of qualitative reasoning, the central role is played byqualitative simulation:
prediction of the possible behaviors consistent with incomplete knowledge of the
structure of physical system.

In the retrospective on my 1984 paper, “Commonsense reasoning about causal-
ity: deriving behavior from structure”, I describe the framework for qualitative
reasoning that has motivated this work, and the applications that have come out
of that framework. That paper includes the conjecture that the structural and be-
havioral representations for qualitative simulation could be rigorously shown to be
abstractions of ordinary differential equations and their solutions. My 1986 pa-
per, “Qualitative simulation”, established that conjecture and legitimized the term
qualitative differential equationor QDE. It also presented the clear and efficient
QSIM algorithm. In this retrospective, I describe aspects of the body of work on
qualitative simulation that has developed from there.
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Figure 1: All models are abstractions of the world. Qualitative models are related to
ordinary differential equations, but are more expressive of incomplete knowledge.

1 Background

Three motivating insights led to the development of the QSIM algorithm. First, the
design for the QDE representation for qualitative models, presented in the 1984
AIJ paper, had been inspired both by observations of human experts [Kuipers &
Kassirer, 1984] and by the language of ordinary differential equations, so it was
natural to ask how the mathematical similarity could be proved to be a true ab-
straction relation (Fig. 1).

Second, my previous ENV algorithm and its implementation had become un-
wieldy both in theory and in practice, so it was time to redesign the algorithm and
reimplement the simulator. My research assistant at the time, Christopher Eliot,
suggested the approach of proposing transitions and filtering inconsistent combi-
nations. We were both inspired by David Waltz’ compelling animation of his con-
straint filtering algorithm in the classic MIT AI Lab film, “The Eye of the Robot.”
Rather later, it became clear that the QSIM algorithm was almost a textbook ap-
plication of Mackworth’s node, arc, and path consistency algorithms for constraint
satisfaction, but our inspiration came from the film, not the theory.

The third insight came from attempting to do a qualitative simulation, by hand,
of the simple undamped oscillator:x′′ = −M+(x). At the end of the first complete
cycle, the simulation branches three ways according to whether the oscillation was
increasing, steady, or decreasing, although only the steady case is consistent with
this equation. After some confusion, it became clear that this apparent bug in the
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algorithm reflected a fundamental and revealing limitation in the mathematics of
qualitative simulation.

2 Abstraction, Soundness, and Incompleteness

Once the abstraction relations from ODEs to QDEs, and from continuously differ-
entiable functions to qualitative behaviors, are carefully defined1, the mathematical
results are relatively straight-forward.

We can view an ordinary differential equation solver as a theorem-prover for
theorems of a special form:

DiffEqs ` ODE ∧ State(t0) → Beh. (1)

A qualitative simulation algorithm can also be viewed as a special-purpose theorem-
prover:

QSIM ` QDE ∧QState(t0) → or(QBeh1, . . . QBehn). (2)

The soundness theorem says that when QSIM proves a theorem of form (2),
it is true: that is, for any ODE described by the QDE, andState(t0) described
by QState(t0), the solutionBeh to the ODE is described by one of the qualita-
tive behaviors,QBeh1, . . . QBehn. The constraint filtering algorithm makes the
proof very simple: all possible real transitions from one qualitative state to the next
are proposed, and only impossible ones are filtered out, so all the real ones must
remain.

The incompleteness theorem says that some qualitative behaviors in the dis-
junct may bespurious: that is, not abstracting any real solution to an ODE corre-
sponding to the QDE. In the simple oscillator example, the increasing and decreas-
ing behaviors are spurious. This situation is properly considered incompleteness,
since QSIM has failed to prove the stronger theorem with fewer disjuncts.

3 Progress in Qualitative Simulation

The constraint filtering architecture of the QSIM algorithm lends itself to natural
extension with a set of global filters2 on complete qualitative states or behaviors.

1A QDE is a description of a set of ODEs, with two essential abstractions. First, aquantity space
is an abstraction of the real number line to an ordered set oflandmark values, symbolic names for
qualitatively significant values. Second, the arithmetic and differential constraints in the ODE are
augmented by amonotonic functionconstraint describing a fixed but unknown function in terms of
its direction of change.

2These filters are “global” in the sense that they apply to complete qualitative state descriptions,
not just to individual assignments of values to variables, or tuples of assignments. The filters also
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The goal of each filter is to make certain consequences of the qualitative description
explicit, and to detect inconsistencies so the behavior can be filtered out. The
creation of a suitable set of global filters has been an ongoing and productive line
of research.

3.1 State-Based Filters

• Infinite Values and Infinite Times. The QSIM abstraction is defined over the
extended number line, so+∞ and−∞ are represented by landmark values
in each quantity space. There are useful constraints on the possible com-
binations of finite and infinite values, times, and rates of change [Kuipers,
1986].

• Higher-Order Derivatives. Certain unconstrained or “chattering” sets of
qualitative behaviors can be pruned by deriving and applying expressions
for higher-order derivatives of key variables in the QDE [Kuipers & Chiu,
1987; Kuipers, et al, 1991], building on earlier work by Williams [1984],
and by de Kleer and Bobrow [1984]. The derivation may require additional
assumptions about the behavior of unspecified monotonic functions.

• Ignoring Direction of Change. Chattering behaviors can also be collapsed
into a single description without an additional assumption by ignoring cer-
tain qualitative features, at the cost of additional possible spurious behaviors
[Kuipers & Chiu, 1987; Kuipers, et al, 1991].

3.2 History-Based Filters

• Non-Intersection of Trajectories in Qualitative Phase Space. The solution to
a differential equation can be viewed as a trajectory in phase space. These
trajectories cannot intersect themselves or each other at finite times. Methods
for testing for self-intersection, applicable even under the qualitative behav-
ior description, were developed independently by Lee & Kuipers [1988] and
by Struss [1988].

• Kinetic Energy Theorem. Under very general circumstances, a QDE can be
viewed as representing motion in response to a force, which in turn can be
decomposed into a conservative and a non-conservative component. Then,
over any segment of behavior, the change in kinetic energy of the system
must be equal to the sum of conservative and non-conservative work. This

vary according to whether their scope is an individual state or an entire behavior.
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equation can often be evaluated qualitatively, and eliminates an important
source of spurious behaviors [Fouché & Kuipers, 1992].

3.3 Quantitative Constraints

Methods for adding quantitative information to qualitative behaviors can be used
both to exploit additionala priori knowledge, and to interpret quantitative obser-
vations by unifying them with a qualitative behavior.

• Q2: Bounds on Landmarks and Monotonic Functions. A qualitative be-
havior predicted by QSIM can serve as a framework for representing quan-
titative information by annotating landmark values with real intervals and
monotonic function constraints with real-valued functions serving as bound-
ing envelopes. The quantitative bounds can be propagated across constraints
to derive tighter bounds, or to detect a contradiction and filter out the behav-
ior [Kuipers & Berleant, 1988, 1990].

• Q3: Adaptive Discretization. The quantitative precision of the prediction
from Q2 is drastically limited by the coarse grain-size of the qualitative be-
havior. The grain-size can be adaptively refined by inserting additional qual-
itative states, to converge to a real-valued function as uncertainty goes to
zero [Berleant & Kuipers, 1990].

3.4 Operating Region Transitions

A given QDE model has a region of applicability. When a behavior is about to cross
the boundary of that region, simulation stops within the current region. If a model
exists for the region on the other side of the boundary, a transition is created to a
new state defined with respect to that model. In QSIM this is done by an explicit
transition function that specifies which values are inherited, asserted, or inferred in
the new state. The two states linked by a region transition are both considered time-
points, and refer to the “same” point in time. This has two different interpretations:

• The two regions may have different constraints, but have identical descrip-
tions of the state on their shared boundary. Therefore, the two transition
states are alternate descriptions of the same physical state in time.

• The transition may represent the two sides of a “discontinuous” change: re-
ally a continuous but fast process whose extent is abstracted to zero for the
purposes of the current model [Nishida & Doshita, 1987].
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This distinction can be illustrated with two models of a bouncing ball (provided
as examples with the distributed version of QSIM): one models the bounce as a
continuous transition between a gravity model and a spring model, and the other
models the bounce as a discontinuous reflection of the velocity when the ball strikes
the floor.

3.5 Time-Scale Abstraction

Time-scale abstraction allows us to decompose a model of a complex system into
a hierarchy of simpler models of the system operating at different time-scales. A
process in the midst of a time-scale hierarchy can view slower processes as con-
stant and faster processes as acting instantaneously. That is, it can take a quasi-
equilibrium view of the faster process, and abstract its behavior to a monotonic
function [Kuipers, 1987]. There is much more to be done in this area, particularly
drawing on traditional mathematical work on time-scales.

4 Open Problems

There are many important open problems that naturally arise from the QDE repre-
sentation and the QSIM algorithm. I list three interesting ones.

• Qualitative phase portrait analysis: derive the set of all possible qualitative
phase portraits of a given second-order QDE.

A phase portrait captures the set of all possible behaviors of a dynamical
system, for all initial states. It thus fills the same role as the “total envision-
ment”, but with a more expressive language for qualitative features. Sacks
[1990] and Yip [1991] have demonstrated important results in the intelli-
gent control of numerical experiments to map phase portraits of dynamical
systems, given numerically specific equations.

It is known that the phase portraits of all second-order systems can be de-
scribed in terms of a simple qualitative language [Hirsch & Smale, 1974].
Preliminary experiments suggest that these terms can be inferred from intel-
ligently guidedqualitativesimulation of a QDE model. This project would
require automated algebraic analysis of the QDE to search for Lyapunov
functions and other derived qualitative properties of the QDE. The resulting
qualitative phase portrait would depend on fewer assumptions and thus have
wider applicability than the corresponding numerically-based description.
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• Automatic formulation of numerical problems: use the tree of qualitative be-
haviors to formulate problems for a numerical equation-solver, for example
an optimizer.

Each predicted qualitative behavior represents a qualitatively equivalent set
of continuous behaviors. The qualitative behavior description can be mapped
naturally onto a set of equations over landmark values and other symbolic
terms [Kuipers & Berleant, 1990]. It should be possible to transform that set
of equations into the appropriate forms for input to a variety of numerical
equation-solving algorithms. For example, an optimizer could be used to
find the numerical values for certain landmarks that optimize the value of
some objective function.

The set of continuous behaviors corresponding to a single qualitative behav-
ior provides useful assumptions to the equation-solver. Where there are sev-
eral qualitative behaviors, the numerical solutions found along each branch
can be combined, in the case of an optimizer by searching for the maximum
value.

• Completeness: Is the problem of spurious behaviors a fundamental limitation
of qualitative reasoning, or is the QDE language sufficiently limited that
soundandcomplete qualitative simulation is possible?

On the one hand, recently developed methods are capable of detecting and
filtering out many of the previously-troublesome sources of spurious behav-
iors. On the other hand, algebraic equivalence to zero is recursively un-
solvable for a language rich enough to include the transcendental functions
[Moses, 1971]. Either outcome to this question would be of considerable
interest to the QR community.
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