Zmail : Zero-Sum Free Market Control of Spam

Benjamin J. Kuipers Alex X. Liu

Aashin Gautam

Mohamed G. Gouda

Department of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712-1188, U.S.A.
{kuipers, alex, aashin, gouda}@Qcs.utexas.edu

Abstract

The problem of spam is a classic “tragedy of the
commons” [13]. We propose the Zmail protocol as a
way to preserve email as a “free” common resource for
most users, while imposing enough cost on bulk mail-
ers so that market forces will control the volume of
spam. A key idea behind Zmail is that the most im-
portant resource consumed by email is not the trans-
mission process but the end user’s attention. Zmail re-
quires the sender of an email to pay a small amount
(called an “e-penny”) which is paid directly to the re-
ceiver of the email.

Zmail is thus a “zero-sum” email protocol. Users
who receive as much email as they send, on average,
will neither pay nor profit from email, once they have
set up initial balances with their ISPs to buffer the fluc-
tuations. Spammers will incur costs that will moderate
their behavior. Importantly, Zmail requires no defini-
tion of what is and is not spam, so spammers’ efforts to
evade such definitions become irrelevant. We describe
methods within Zmail for supporting “free” goods such
as volunteer mailing lists, and for limiting exploitation
by email viruses and zombies.

Zmail is not a micro-payment scheme among end-
users. It is an accounting relationship among “compli-
ant ISPs”, which reconcile payments to and from their
users. Zmail can be implemented on top of the exist-
ing SMTP email protocol. We describe an incremen-
tal deployment strategy that can start with as few as
two compliant ISPs and provides positive feedback for
growth as Zmail spreads over the Internet.

1. Overview
1.1. The Problem of Spam

The volume of unsolicited commercial email — spam
— has grown to the point where it is not only a nui-
sance to individual users, but it imposes a major load
on ISPs and threatens the social viability of the Inter-
net itself. The problem of spam is a classic “tragedy
of the commons” [13]. The Internet provides email (as
well as other services) as a “free” common resource
shared by all users. Spam is an abuse of this common
resource for private profit, enabled by the extremely
low cost of sending large amounts of email. For email
users, spam costs significant time and effort to sepa-
rate legitimate email from spam, during which impor-
tant personal or business email could be accidentally
lost. For ISPs, spam costs a great deal of bandwidth,
storage, and processing time.

In the last few years, spam has grown dramatically.
According to Brightmail [5], more than 60% of all email
traffic in April 2004 was spam as compared to only
8% in 2001. In 2003, the cost of deploying additional
email processing servers due to the influx of spam was
$10 billion in the United States according to Ferris Re-
search and $20.5 billion worldwide according to Radi-
cati Group [25]. These two figures do not include losses
of worker productivity caused by spam. Gartner Group
has estimated that on average, a business with 1,000
employees loses $300,000 a year in worker productiv-
ity due to spam [19]. Spam has become a problem of
national importance and solving this problem has be-
come an urgent need.

A variety of legislative, filtering, and economic ap-
proaches to the spam problem have been proposed. (In
Section 2, we review these approaches in detail.) How-
ever, previous approaches could not solve the spam
problem effectively.

1.2. A Zero-Sum Free Market Solution

In this paper, we propose the Zmail protocol as a
way to preserve email as a “free” common resource for
most users, while imposing enough cost on bulk mail-
ers so that market forces will control the volume of
spam. By reversing the economics of the current In-
ternet email system, spammers lose their free ride. A
key idea behind Zmail is that the most important re-
source consumed by email is not the transmission pro-
cess but the recipient’s attention. Zmail requires the
sender of an email to pay a small amount of money di-
rectly to the receiver of the email. The money earned
by a user can be used to send email or can be exchanged
for real money. The cost of sending (or value of receiv-
ing) one email message is a unit called an e-penny. For
simplicity, assume that the “real money” cost of one
e-penny is $0.01.

Zmail is thus a “zero-sum” email protocol because
any complete transaction in Zmail is zero-sum: the
amount of money charged to a sender is equal to the
amount of money rewarded to the corresponding re-
ceiver. Unlike the postal system in real life where the
money that a sender paid goes to the postal service
providers to pay for physical message transmission, in
Zmail, the money that a sender paid goes to the re-
ceiver, while the role of ISPs is to facilitate email trans-
fer and payment management.

Next we discuss the impact of market forces on the
three relevant players: spammers, normal email users

and ISPs.

1. Spammers: The cost of sending spam will increase
by at least two orders of magnitude, significantly
changing the economics of sending huge numbers
of unsolicited email messages. The response rate
required to break even will increase similarly. Bulk
email advertising will continue to exist, but the
incentives will favor more targeted advertising to
populations of readers who are likely to be inter-
ested in the product. The amount of spam will
undoubtedly decrease substantially.

2. Normal Users: Users who receive as much email as
they send, on average, will neither pay nor profit
from email, once they have set up initial balances
with their ISPs to buffer the fluctuations. Typ-
ically a normal user does not need to pay real
money to buy e-pennies for sending email. Even a
normal user who needs to send more email than
she receives and who is unwilling to spend money
can easily solve this problem by subscribing to
some commercial email services in which she is
interested. When a normal user receives spam ac-

cidentally, it can be viewed as a windfall rather
than a nuisance because of the payment received.

3. ISPs: The Zmail protocol significantly reduces
spam and therefore reduces the overhead costs of
ISPs by saving their disk space, bandwidth, and
computational cost for running spam filters.

One important property of Zmail is that it requires
no definition of what is and is not spam. One great dif-
ficulty experienced by existing anti-spam approaches is
that it is almost impossible to define what spam is. One
person’s annoying spam may be another person’s use-
ful information. Spammers can often find ways to by-
pass existing spam filters by techniques such as deliber-
ate misspelling. False positives in filtering out spam are
not acceptable because modern life depends so heav-
ily upon email communication and because huge losses
could result from incorrectly discarded email. Using
Zmail, spammers’ efforts to evade definitions of spam
become irrelevant.

Zmail has many other nice features, such as support-
ing mailing lists and limiting the exploitation by email
virus and zombies, which we discuss in Section 6.

1.3. The Zmail Protocol

Zmail can be implemented on top of the current
Internet email protocol SMTP (Simple Mail Transfer
Protocol) [24]. Zmail requires no change to SMTP. In
the Zmail protocol, all the payments are handled au-
tomatically and the underlying economics remains al-
most transparent to the users. Note that Zmail is not
a micro-payment scheme among end-users. It is an ac-
counting relationship among “compliant ISPs”, which
reconcile payments to and from their users. The ac-
tions that a user needs to take to send or receive an
email remain the same as those of the current Inter-
net email system. Normal users will hardly find any
difference from current email systems.

Zmail can be deployed incrementally. It can be boot-
strapped with as few as two compliant ISPs. People will
not experience disruption in using email services. The
good experience of the users of compliant ISPs will at-
tract more people to switch to compliant ISPs and more
ISPs will therefore become compliant. Eventually, we
envision that Zmail will spread over the Internet.

The rest of this paper proceeds as follows. In Sec-
tion 2, we review and examine existing or proposed ap-
proaches to the problem of spam. We present a brief
introduction to the Abstract Protocol notation in Sec-
tion 3, while in Section 4, we describe the details of the
Zmail protocol using this notation. In Section 5, we dis-
cuss several related issues of the Zmail scheme. Section

6 concludes. The formal specification of the Zmail pro-
tocol is given in the appendix.

2. Related Work

The various approaches that have been developed or
proposed to cut down spam fall roughly into the fol-
lowing three categories: legal approaches, filtering ap-
proaches, and economic approaches. Next, we review
these three approaches.

2.1. Legal Approaches

Legal approaches are intended to regulate email
communications. Many U.S. states such as Texas, Vir-
ginia and Washington have passed anti-spam laws. For
example, a Texas anti-spam law enacted in June 2003
requiring that unsolicited commercial email messages
include a label (“ADV:” or “ADV: ADULT ADVER-
TISEMENT”) at the beginning of the subject line, and
include a functioning return email address for recip-
ients to request removal from future mailings which
must be honored. This law also prohibits unsolicited
commercial email messages with falsified routing infor-
mation. False, deceptive, or misleading subject lines are
prohibited in all commercial email messages, as is the
unauthorized use of a third party’s domain name. The
federal anti-spam law, the Controlling the Assault of
Non-Solicited Pornography and Marketing Act (CAN-
SPAM Act), was recently passed in December of 2003.
This act also let the Federal Trade Commission (FTC)
to establish a national “do-not-email” registry of ad-
dresses of persons and entities who do not wish to re-
ceive spam. The FTC would be empowered to impose
civil penalties upon those who send spam to addresses
listed on the registry. A list of anti-spam laws together
with their summaries is available at [27].

There are two major disadvantages of legal ap-
proaches. First, it is extremely hard to define precisely
what kind of email should be prohibited. If an anti-
spam law is written narrowly, then it does not have
much effect on stopping spam. Ironically, some exist-
ing anti-spam laws in fact legalize some forms of spam.
If an anti-spam law is written widely, then it could in-
trude upon the First Amendment right to free speech.
One person’s annoying spam may be another person’s
welcome source of information.

Second, even assuming that a perfect anti-spam law
exists, enforcement of this law is difficult because spam-
mers can simply move their operations to a country
that has no anti-spam laws. In fact, a lot of spam-
mers have already done so. According to the latest re-
port published by Sophos in August 2004 on the coun-
tries from which most spam messages originate, 57.47%

spam are originated from outside U.S [8]. Due to the
fact that the spam problem has been internationalized
and the difficulties of jurisdiction, the national “do-not-
email” registry can not effectively stop spam. The re-
cent report [23] that was made by FTC to Congress
in June 2004 concluded that a National Do Not Email
Registry would fail to reduce the amount of spam con-
sumers receive, might increase it, and could not be en-
forced effectively.

2.2. Filtering Approaches

Filtering approaches are used to filter out spam af-
ter an ISP receives an email and before the ISP delivers
the email to its intended receiver. Based on the crite-
ria used to filter out spam, we categorize filtering ap-
proaches into header based filtering approaches and con-
tent based filtering approaches.

Header based filtering approaches try to filter out
spam according to the header information of email.
There are two major types of header based filtering ap-
proaches: blacklist approaches and whitelist approaches.
A blacklist is a set of IP addresses that are “known” to
be used by spammers. There are some publicly avail-
able blacklists such as MAPS Realtime Blackhole List
[21], SpamCop Blocking List [29] and SPEWS [30]. A
spam filter that uses a blacklist discards any email from
an IP address on the blacklist. In contrast, a whitelist
is a set of email addresses that are “known” to be non-
spammers. A spam filter that uses a whitelist accepts
any email from an email address on the whitelist.

Content based filtering approaches try to filter out
spam according to email content. Content based spam
filters use heuristic or statistical information learned
from a collection of spam and legitimate email. Certain
research has been done on how to filter out spam based
on email content (see [9,26]). A number of content
based spam filters have been developed and deployed,
such as SpamAssassin [28], Brightmail [5] and Cloud-
mark [7]. Note that header based filtering approaches
and content based filtering approaches can be used to-
gether. For example, an email that passes a whitelist
check could be delivered to its intended receiver di-
rectly and an email that does not pass a whitelist check-
ing could be sent to a content based spam filter for fur-
ther examination.

There are two major disadvantages of filtering ap-
proaches. First, spam filters are vulnerable to false pos-
itive errors. A false positive is when a legitimate email
is mistaken as spam and wrongly discarded by a spam
filter. Newsletters and paid subscriptions have a high
probability of being classified as spam. A false positive
error could possibly be a disaster for a user. For exam-
ple, if a job offer email with “Great Offer” as its subject

title is discarded by a spam filter, the intended receiver
of the email could lose a good job opportunity. Accord-
ing to Jupiter Research [15], the cost of discarding such
legitimate email is expected to soar to $419 million in
2008 from $230 million in 2003, although the percent-
age of wrongly blocked legitimate email will drop from
17% today to just under 10% in 2008.

Second, spammers can foil spam filters. To combat
blacklists, spammers can use well-known ISPs or some
hacked computers to send spam. To take advantage of
whitelists, spammers usually forge their domain names.
To deceive content based spam filters, spammers have
begun to use tricks. For example, spammers may de-
liberately misspell sensitive words, such as spell “sex”
as “se><”. Sometimes spammers embed text informa-
tion into a picture. No matter how smart a spam fil-
ter program is, spammers can always find ways to de-
ceive it.

2.3. Economic Approaches

Economic approaches fight spam by requir-
ing senders pay for their email. According to what
senders pay, we categorize economic approaches into
three types: human effort based approaches, computa-
tional cost based approaches, and monetary value based
approaches.

In human effort based approaches, what senders pay
is human effort. This type of approach works in a
challenge-response fashion: when an ISP receives an
email, it first holds the email and sends back a chal-
lenge. A challenge, for example, can be an image that
contains numbers and letters; the sender is then re-
quired to send back the text content of the image.
Visually processing such an image is trivial for a hu-
man but hard for a computer. If the response from the
sender is correct, then the email will be delivered to
its intended receiver; otherwise the email will be dis-
carded. This human action based approach has been
adopted by some commercial email products such as
Mailblocks [18] and Active Spam Killer [3]. The ma-
jor disadvantage of this approach is that it is inconve-
nient, inefficient and sometimes a challenge can be per-
ceived as rude by the sender.

In computational cost based approaches, what
senders pay is computer processing time. This type
of approach works also in a similar challenge-response
fashion. The difference here is that a challenge is a com-
puter solvable problem. Such a problem must be CPU
or memory intensive enough to prevent a spammer
from sending out a huge amount of email in a short pe-
riod. For example, one challenge might need one
minute to compute, which therefore limits the send-
ing rate of a spammer to no more than one email per

minute. Some research has been done on computa-
tional based economic approaches (see [1,2,4,6,10,11]
and the Microsoft Penny Black Project [22] for de-
tails). There are two major disadvantages of this
approach. First, email systems become significantly in-
efficient in sending and receiving email. Second, the
cost to ISPs for sending out email is dramatically in-
creased, which makes ISPs extremely reluctant to use
this type of approach.

In monetary value based approaches, what senders
pay is a certain value of money. Existing monetary
value based approaches mainly include the SHRED
scheme [16] and the Vanquish scheme [31]. In SHRED
and Vanquish, the receiver of an email can trigger a
payment from the sender of the email to the sender’s
ISP if the receiver finds the email unwanted. There
are four major disadvantages of SHRED and Vanquish.
First, SHRED and Vanquish not only fail to reduce hu-
man effort on separating legitimate email from spam,
but actually increase it. For each spam received by a
user, instead of taking one action to delete the email,
she needs to take an extra action to trigger the pay-
ment associated with the email. Second, the receiver of
a spam may not be motivated to spend this extra effort
because she is not directly rewarded for doing so. Note
that if the receiver of a spam indeed triggers the pay-
ment associated with the payment, it is the sender’s
ISP, not the receiver, who gets the payment. Third, a
spammer can collude with its ISP and avoid any mon-
etary cost. Last, the storage and computational cost
for an ISP to collect an individual payment could pos-
sibly exceed the monetary value of the payment be-
cause the payment for each spam is handled individu-
ally in both SHRED and Vanquish, and the monetary
value of the payment is usually small, only one penny
or even a fraction of a penny.

Zmail also falls into this category. However, Zmail
overcomes the above four weaknesses of SHRED and
Vanquish. First, in Zmail, the receiver of a spam does
not need to take any action for the sender of the email
to be charged. All payments are handled automatically
without user’s intervention or even notice. Second, in
our approach, a spam would be viewed as a windfall
rather than a nuisance by its receiver because the re-
ceiver is paid for receiving the email. Third, in our ap-
proach, if an ISP colludes with spammers, the ISP can
be discovered. Last, in our approach payments are han-
dled in a bulk fashion; therefore, the cost of handling
payments is small.

3. Abstract Protocol Notation

Here we give a brief introduction to the Abstract
Protocol notation [12]. In this notation, each process
in a protocol is defined by sets of constants, variables,
parameters, and actions. For instance, in a protocol
consisting of two processes p and q and two opposite-
direction channels, one from p to q and one from ¢ to
D, process p can be defined as follows:

process p

const (name of constant) : (type of constant)

inp (name of input) : (type of input)
var (name of variable) : (type of variable)

par (name of parameter) : (type of parameter)

begin

(action)
a (action)
0 ..
o (action)
end

The constants of process p have fixed values. Inputs
of process p can be read, but not updated, by the ac-
tions of process p. Variables of process p can be both
read and updated by the actions of process p. Com-
ments can be added anywhere in process p; every com-
ment is placed between the two brackets { and }.

Each (action) of process p is of the form:

(guard) — (statement)

The guard of an action of process p is of one of the fol-
lowing three forms: (1) a boolean expression over the
constants and variables of p, (2) a receive guard of the
form “rcv (message) from q”, (3) a timeout guard that
contains a boolean expression over the constants and
variables of every process and the contents of all chan-
nels in the protocol. A parameter declared in a process
is used to write a finite set of actions as one action,
with one action for each possible value of the parame-
ter.

Executing an action consists of executing the state-
ment of the action. Executing the actions of different
processes in a protocol proceeds according to the fol-
lowing three rules. First, an action is executed only
when its guard is true. Second, the actions in a proto-
col are executed one at a time. Third, an action whose
guard is continuously true is eventually executed.

The (statement) of an action of process p is a se-
quence of (skip), (send), {assignment), (selection), or
(iteration) statements of the following forms:

skip) : skip

send) : send (message) to q

assignment) : (variable in p) := (expression)
selection) : if (boolean expression) — (statement)

o~ o~~~

O (boolean expression) — (statement)
fi
: do (boolean expression) — (statement)
od

(iteration)

There are two channels between the two processes:
one is from p to q, and the other is from q to p. Each
message sent from p to q remains in the channel from
p to q until it is eventually received by process q. Mes-
sages that reside simultaneously in a channel form a se-
quence and are received, one at a time, in the same or-
der in which they were sent.

4. Specification of Zmail Protocol

In this section, we describe the details of the Zmail
protocol using the Abstract Protocol notation. In the
Zmail protocol, there are two types of parties: ISPs and
banks. The major role of ISPs is to send and receive
email for their users. We do not assume that every ISP
has to join the Zmail protocol, although we expect that
eventually most ISPs will. We call the ISPs that are
running the Zmail protocol “compliant ISPs”. The ma-
jor role of the banks is to manage e-pennies: exchange
real money for e-pennies and exchange e-pennies for
real money. For simplicity, we assume there is only one
central bank. Every compliant ISP is registered with
the bank and has an account in the bank. Instead of
having the bank itself manage e-pennies for all indi-
vidual email users, which is inefficient, we let the bank
manage e-pennies for each compliant ISP and let each
compliant ISP manage e-pennies for its own users.

The constants, inputs, variables and parameters in
each ISP process are defined as follows:

process isp[i:0..n-1]

const n : integer, {# of ISPs}
m: integer, {# of users per ISP}
compliant : array [0..n-1] of boolean
{array compliant indicates which ISP is compliant}

inp By, integer, {public key of bank}
limit: array [0..n-1] of integer,
{limit[j]: max # of emails sent per day for user j}
mazxavail, minavail : integer,
{mazavail, minavail are two thresholds for avail}

var avail :integer, {# of e-pennies available for users to buy}
account: array [0..m-1] of integer, {balance of real pennies}
balance : array [0..m-1] of integer, {balance of e-pennies}
sent :array [0..m-1] of integer, {# of emails sent}

credit :array [0..n-1] of integer, {sending&receiving record}

cansend, canbuy, cansell : boolean, {initial value: true}
buyvalue, sellvalue : minavail..mazavail,

accepted : boolean,
seq, seq’ : integer, {initial value: 0}
nsl, nrl, ns2, nr2 :integer, {nonces}

T :integer,
s, T :0.m-1,
K :0..n-1

par g:0.n-1
t:0.m-1

Note that each ISP process has three constants n,
m, and compliant, and all ISP processes share the
same value for each of the three constants. Constant
n is the number of ISPs. The n ISP processes are
isp[0], isp[1],- - -, isp[n — 1]. For simplicity, we assume
each ISP has the same number of users, and constant
m is this number. Constant “compliant” is a boolean
array of length n, and it indicates which ISP is com-
pliant. This array is maintained and published by the
bank. When an ISP isp[j] changes its status from non-
compliant to compliant, the bank flips compliant[j]
from false to true, and broadcast this new “compliant”
array to every compliant ISP. For simplicity, in this pa-
per, we assume that the “compliant” array does not
change its value.

The constants, inputs, variables, and parameters in
the bank process are defined as follows:

process bank

const n :integer, {# of ISPs}
compliant : array [0..n-1] of boolean
{array compliant indicates which ISP is compliant}

inp B, :integer, {public key of bank}
Ry, :integer {private key of bank}

var account : array [0..n-1] of integer,
{balance of real pennies for every ISP}
verify :array [0..n-1] of array [0..n-1] of integer,
{initial value: 0}

seq : integer, {initial value: 0}
total :integer, {initial value: 0}
i, j : integer, {initial value: 0}
credit :array [0..n-1] of integer,
T,y :integer,

nr : integer, {nonce}

canrequest : boolean, {initial value: 0}
par g:0.n-1

Next, we discuss the details of the compliant ISP
isp[i] and the bank, during which we will explain the
meaning of every input and variable of ISPs and the
bank.

4.1. Zero-sum email transfer

In process isp[i], each user specifies the maximum
number of emails that they can send out to compli-
ant ISPs in the array limit. The purpose of setting this
limit is to mitigate the potential cost incurred by email
viruses. Detail discussion of email viruses is in Section

5. Process isp[i] uses the array sent to keep track of
the number of emails that each user sends to compli-
ant ISPs in each day. At the end of every day, array
sent is reset to 0. Process isp[i] maintains the balance
of e-pennies for every user using the array balance. Pro-
cess isp[i] records the transaction of e-penny exchanges
with other ISPs in the array credit. The initial value of
every element in array credit is zero.

Process isp[i] maintains a variable called “cansend”.
When cansend is true, process ispi] can send out email.
When process isp[i] sends an email to a compliant ISP
isplj], credit[j] is increased by one; when process ispli]
receives an email from a compliant ISP isp[j], credit[j]
is reduced by one. Later we will show that the bank can
detect misbehaved ISPs using the information in the
credit array of every ISP. The initial value of cansend
is true. The pseudocode of the process isp|i] for sending
email is as follows. Note that the keyword any means
an arbitrary value from its domain of values, which is
used to simulate a user’s input.

O cansend —
s:=any; j:=any; r:= any,;
{user s of isp[i] wants to send email to user r of isp[j]}
if i = j — if balance[s] > 1 A sent[s] < limit[s] —
balance[s]:= balance[s] — 1;
balance[r]:= balance[r] + 1;
sent[s] := sent[s] + 1;
{deliver email(s,r) to user r}
O balance[s] = 0 V sent[s] > limit[s] — skip
fi

04 # j — if compliant[j] —

if balance[s] > 1 A sent[s] < limit[s] —
balance[s]:= balance[s] — 1;
credit[j] := credit[j] + 1;
sent[s] = sent[s] + 1;
send email(s,r) to isp[j]

O balance[s] = 0 V sent[s] > limit[s] — skip

fi

O ~ compliant[j] — send email(s, r) to isp[j]
fi
fi

The pseudocode for receiving email is as follows:

Orev email(s,r) from isp[g] —
if compliant(j] — balance[r] := balance|r] + 1;
credit[g] := credit[g] — 1
{deliver the email to r}
O ~ compliant[g] — skip {deliver to r or discard it}

The pseudocode for resetting array sent to 0 at the
end of every day is as follows:

O true— {execute at the end of every day}
z:=0;doz < n— sent[z] :==0 od

4.2. Transaction With Users

Process isp[i] maintains a pool of e-pennies that its
users can buy. The amount of e-pennies in this pool is
stored in a variable named awvail. Each user has an ac-
count of real money with their ISP, and process ispli]

maintains the balance of real pennies for every user us-
ing array account. A user can buy and sell e-pennies
with their ISP. The pseudocode of the process isp|i] for
managing transactions with users is as follows:
O account[t] > 0 — z := any; {user ¢ wants to buy = e-pennies}
if account[t] > x A avail > © — account[t]:= account[t] — x;
balancelt] := balance[t] + x;
availlt] = avail[t] — x;
O account[t] < x V avail < z —skip

O balancelt] > 0 — z := any; {user ¢ wants to sell z e-pennies}
if balance[t] > © — account[t]:= account[t] + x;
balance[t] := balance[t] — x;
avail[t] = availt] + x;
O balance[t] < z —skip
fi

4.3. Transaction With Bank

For the variable awvail, process isp[i] specifies one
lower bound named minavail and one upper bound
named mazavail. When avail < minavail, process
isp[i] needs to buy some e-pennies from the bank; when
avail > mazavail, process isp[i] needs to sell some e-
pennies back to the bank. In the communication be-
tween the bank and the process isp[i] for buying and
selling e-pennies, we add nonces to prevent message re-
play attacks. A nonce is an integer generated by a func-
tion called NNC. The sequence of nonces generated by
a process using the function NNC has two properties:
unpredictability and nonrepetition. The pseudocode of
the process isp[i] for managing transactions with the
bank is as follows. Note that DCR(Bs,x) denotes the
result of decrypting = using the key By, NCR(k,d) de-
notes the encryption of data item d using key k, and
DCR(k,d) denotes the decryption of data item d us-
ing key k.

O canbuy—
if avail < minavail —
canbuy := false; buyvalue := any; ns1 := NNC;
send buy(NCR(By, (buyvalue|ns1)) to bank;

O avail > minavail — skip
fi

O rev buyreply(z) from bank —

nrl, accepted := DCR(By, x);

if ns1 = nr1 — canbuy := true
if accepted — avail := avail + buyvalue
O ~ accepted — skip
fi

O ns! # nrl — skip

fi

O cansell —
if avail > mazavail —
cansell := false; sellvalue := any; ns2 := NNC;
send sell(NCR(By, (sellvalue|ns2)) to bank;
0 avail < mazavail — skip
fi

O rev sellreply(z) from bank —
nr2 := DCR(By,);

if ns2 = nr2 — avail := avail — sellvalue; cansell := true

0 ns2 # nr2 — skip
fi

Every compliant ISP has an account of real money
with the bank, and the bank stores the balance of real
pennies of compliant ISPs in its array account. The
pseudocode of the process bank for managing transac-
tions with compliant ISPs is as follows:

O rcv buy(z) from isp[g] —

nr,y := DCR(Ry, z); {isp[g] wants to buy y e-pennies}
if account[g] > y — account|g] := account[g] — y;

send buyreply(NCR(Ry, nr|true)) to isp[g];
O account[g] < y — send buyreply(NCR(Ry, nr|false)) to isp[g];
fi

O rcv sell(z) from isp[g] —
nr,y := DCR(Ryp, z); {isp[g] wants to sell y e-pennies}
account|g] := account[g] + y;
send sellreply(NCR(Ry,, nr)) to isp|g];

4.4. Detecting Misbehavior

We have seen the operations on the credit array in
both the sender’s and receiver’s end. Note that in a cer-
tain time period that all the email sent from isp[i] to
isp[j] and all the email from isp[j] to isp[i] are received
by these two ISPs, the value of credit[j] in process isp|i]
plus the value of credit[i] in process isp[j] should be
zero. Otherwise, at least one of the two ISPs has mis-
behaved. The bank needs to gather the credit array
from every ISP periodically, say one time a month, and
then detect the suspected misbehaved ISPs, based on
which the bank may make further investigation. Be-
cause each compliant ISP has been authenticated to
be “good guys”, we expect the chance of inconsistency
in credit arrays is extremely small.

To take a snapshot of credit arrays of all compli-
ant ISPs, we use a simple timeout method. When the
bank wants to gather credit arrays, it sends out a re-
quest message to every compliant ISP. When a compli-
ant ISP receives the request message, it stops sending
out any email for a certain time period, say 10 min-
utes, to ensure that every email that it sent out is re-
ceived. After this time period, the ISP sends its credit
array to the bank. Thereafter, the ISP reset its credit
array to zero because a new billing period starts. Each
request message from the bank has a sequence num-
ber, which is used to prevent message reply attacks.
The pseudocode of process isp[i] for receiving request
message from the bank and sending the credit array to
the bank is as follows.

O rev request(x) from bank —
seq' := DCR(By, x);

if seq = seq’ — cansend := false; timeout after 10 minutes

O seq # seq’ — skip
fi

O timeout expired —
send reply(NCR(By, credit)) to bank;
z:=0;doxz < n — credit[z] :=0; z:=z+ 1od;
cansend := true;
seq 1= seq + 1

Note that the 10 minutes timeout period is only ex-
perienced by ISPs, not email users. An email user still
can instruct their ISP to send emails during the time-
out period, although these emails will be buffered and
sent right after the timeout expires. Here we choose
this timeout method for the simplicity of discussion.
In implementing Zmail, one could choose other meth-
ods to take a snapshot of the credit arrays of all com-
pliant ISPs.

Every time the bank wants to verify the compli-
ance of ISPs, it first sends request to every compliant
ISP. After the bank receives the credit array from ev-
ery compliant ISP, the bank starts to verify that for ev-
ery two compliant ISPs isp[i] and isp[j], the value of
credit[j] in process isp[i] plus the value of credit[i] in
process isp[j] should be zero. The frequency of this con-
sistency checking may be once a week or once a month,
for example. The pseudocode of the process bank for
consistency checking is as follows:

O canrequest —
i:=0; total := 0;
doi < n—if compliant[i] —
total := total 4+ 1;
send request(NCR(Ryp, seq)) to ispli];
O ~ compliant[i] — skip
=1+ 1
od;
canrequest := false

O rcv reply(x) from isp[g] —
if compliant[g]—
credit := DCR(Ry,x); total := total — 1; 4 := 0;
do i < n — verifyli, g] := credit[i]; i :== ¢+ 1 od;
O ~ compliant[g] — skip
fi

O total = OA ~ canrequest —

1:=0; j:=0;

doi<n—
=0
doj<n—

if verify(i, j] + verify[j,i] = 0 — skip

O verifyi, j] + verify[j,i] # 0 — skip {report error}

verify[i, 7] :=0; ji=7+1

od;
=141

od;

canrequest := true

5. Discussion

In this section, we discuss the issues of mailing lists,
email viruses, incremental deployment and bank setup.

Mailing Lists. A mailing list works as follows. Each
mailing list has a list server that runs a mailing list
server program. Two of the most popular mailing list
server programs are Listserv [17] and Majordomo [20].
A list server consists of a subscriber database and an
email distributor. The subscriber database consists of
all the email addresses of the people who have joined
the list. Each time a subscriber wants to send an email
to everyone in the mailing list, she sends one email to
the email address of the email distributor. Each time
the email distributor receives an email from one of its
subscribers, it will forward the same email to every
email address in the subscriber database. In moder-
ated mailing list, the email distributor could be a hu-
man, while in unmoderated mailing list, the email dis-
tributor is usually a program.

Directly applying the economic model of the Zmail
protocol to mailing lists may impose too much cost
to the distributor because every time that it receives
an email from a subscriber, it needs to send out a
huge number of emails. To compensate the cost of the
distributor, we define a special-purpose email message
that would be automatically generated by the receiver’s
ISP or email client and sent back to the email distribu-
tor, acknowledging the receipt of the mailing-list mes-
sage. This acknowledgment email returns the e-penny
back to the distributor. The difference between ac-
knowledgment email and normal email is that acknowl-
edgment email can be processed automatically, rather
than being delivered to the receiver’s inbox for human
attention.

An additional benefit of this automated acknowl-
edgement mechanism is that the email distributor can
automatically keep track of which addresses do not ac-
knowledge messages and should be removed from its
subscriber database. Therefore, the email distributor
can keep its subscriber database clean and up-to-date.

Zombies and Email Viruses. A virus can allow a
user’s PC to be exploited without the user’s consent or
even knowledge. An email virus may send messages to
the user’s entire address book. If a virus has made the
user’s PC into a “zombie”, it could be used to send out
large amounts of spam at the user’s expense.

To limit this, and more importantly to allow the de-
tection of “zombified” PCs, ISPs can enforce a user
specified limit on the number of e-pennies the user is
willing to spend per day. (Recall the limit array in our
formal specification of Zmail in Section 4). Exceeding
this limit blocks further outgoing mail (for that day),
and the user is sent a warning message to check for
viruses. In addition to limiting the user’s liability for
the e-penny cost of virus-sent email, this provides a
new mechanism for detecting, limiting, and disinfect-

ing “zombie” PCs once they become active.

Incremental Deployment. One feature of the Zmail
protocol is that it can be deployed incrementally, start-
ing with two compliant ISPs. We have seen that in
the Zmail protocol a non-compliant ISP can still send
email to a compliant ISP, but a user in a compliant
ISP may decide to segregate or discard email from
non-compliant ISPs, or require any email from a non-
compliant ISP to pass a spam filter. As more and more
ISPs become compliant, more people would choose not
to accept any email from a non-compliant ISP, which
in turn causes more people to use compliant ISPs and
more ISPs to become compliant.

Bank Setup. In the Zmail protocol, we assume that
there is a central bank. A central authority is not diffi-
cult to set up on the Internet. In fact, the Internet al-
ready has some central authorities such as TANA [14]
that controls the assignment of TP addresses. In fact,
the role of the bank in the Zmail protocol can be imple-
mented as a set of distributed banks or a hierarchy of
banks. It is fairly straightforward to extend the Zmail
protocol to incorporate multiple collaborating banks.

6. Conclusions

In the current Internet, spam traffic has exceeded
the traffic of legitimate email. Solving the spam prob-
lem has become an urgent need due to the huge finan-
cial losses caused by spam. The root of the spam prob-
lem is that the current email system of the Internet pro-
vides free ride to spammers. In this paper, we propose
the Zmail protocol that stops the free ride for spam-
mers and therefore solves the spam problem fundamen-
tally, while preserving the essentially ”free” nature of
email for normal users. We provide a formal specifica-
tion of the Zmail protocol using the Abstract Protocol
notation.

References

[1] M. Abadi, A. D. Birrell, M. Burrows, F. Dabek, and
T. Wobber. Bankable postage for network services. In
Proc. of the 8th Asian Computing Science Conference,
December 2003.

[2] M. Abadi, M. Burrows, M. Manasse, and T. Wobber.
Moderately hard, memory-bound functions. In Proc. of
the 10th Annual Network and Distributed System Secu-
rity Symposium, February 2003.

[3] Active Spam Killer, http://www.paganini.net/ask/.
2004.

[4] Adam Back. Hashcash - A Denial of Ser-

Counter-Measure. Available at

http://www.hashcash.org/papers/hashcash.pdf.

2002.

vice

(10]

(11]

(12]

(13]

14]
(15]

[16]
(17]
(18]
(19]
20]
(21]

22]

(23]

(24]
(25]

[26]

27]
28]
29]

(30]
(31]

Brightmail, http://www.brightmail.com/. 2004.

CAMRAM, http://www.camram.org/. 2004.

Cloudmark, http://www.cloudmark.com/. 2004.

Dirty dozen spam producing countries,
http://sophos.com/spaminfo/articles/dirtydozenaug04.html.
2004.

H. Drucker, D. Wu, and V. N. Vapnik. Support vector
machines for spam categorization. IEEE Transactions

on Neural Networks, 10(5):1048-1054, 1999.

C. Dwork, A. Goldberg, and M. Naor. On memory-
bound functions for fighting spam. In Crypto 2003, 2003.

C. Dwork and M. Naor. Pricing via processing or com-
batting junk mail. In Proc. of the 12th Annual Interna-
tional Cryptology Conference on Advances in Cryptol-

ogy (Crypto-92), Springer-Verlag Lecture Notes in Com-
puter Science, volume 740, pages 139147, 1992.

M. G. Gouda. FElements of Network Protocol Design.

John Wiley & Sons, New York, New York, 1th edition,

1998.

G. Hardin. The tragedy of the commons.
162(1968):1243-1248.

TANA, http://www.iana.org/. 2004.
Jupiter Research, http://www.jupiterresearch.com/.
2004.

B. Krishnamurthy and E. Blackmond. Shred: Spam ha-
rassment reduction via economic disincentives. Unpub-
lished manuscript, 2004.

Listserv, http://www.lsoft.com/. 2004.

Mailblocks, http://about.mailblocks.com/. 2004.
MailWatch, http://www.easylink.com/
services_north_america/boundary_spam.cfm. 2004.
Majordomo, http://www.greatcircle.com/majordomo/.
2004.

Science,

MAPS RBL, http://www.mail-
abuse.com/services/mds_rbl.html. 2004.
Microsoft Penny Black Project,

http://research.microsoft.com/research/sv/PennyBlack/.
2004.

National Do Not Email Registry: A Report to Congress,
http://www.ftc.gov/reports/dneregistry /report.pdf.
2004.

J. B. Postel. Simple mail transfer protocol.
http://www.fags.org/rfcs/rfc821.html. August 1982.
S. Hansell. Diverging estimates of the costs of spam.
New York Times, August 28, 2003.

M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz.
A bayesian approach to filtering junk E-mail. In Proc. of
AAAI Workshop on Learning for Text Categorization,
Madison, Wisconsin, 1998.

Spam Laws, http://www.spamlaws.com/. 2004.
SpamAssassin, http://spamassassin.apache.org/. 2004.
SpamCop Blocking List,
http://www.spamcop.net/bl.shtml. 2004.

SPEWS, http://www.spews.org/filter.html. 2004.
Vanquish AntiSpam Appliance,
http://www.vanquish.com/products/pr_vgsa.shtml.
2004.

