
Zmail : Zero-Sum Free Market Control of Spam

Benjamin J. Kuipers, Alex X. Liu1, Aashin Gautam2, Mohamed G. Gouda

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188, U.S.A.

{kuipers, alex, aashin, gouda}@cs.utexas.edu

Abstract

The problem of spam is a classic “tragedy of the com-
mons” [10]. We propose the Zmail protocol as a way to
preserve email as a “free” common resource for most users,
while imposing enough cost on bulk mailers so that mar-
ket forces will control the volume of spam. A key idea be-
hind Zmail is that the most important resource consumed
by email is not the transmission process but the end user’s
attention. Zmail requires the sender of an email to pay a
small amount (called an “e-penny”) which is paid directly
to the receiver of the email.

Zmail is thus a “zero-sum” email protocol. Users who
receive as much email as they send, on average, will neither
pay nor profit from email, once they have set up initial bal-
ances with their ESPs (Email Service Providers) to buffer
the fluctuations. Spammers will incur costs that will moder-
ate their behavior. Importantly, Zmail requires no definition
of what is and is not spam, so spammers’ efforts to evade
such definitions become irrelevant. We describe methods
within Zmail for supporting “free” goods such as volunteer
mailing lists, and for limiting exploitation by email viruses
and zombies.

Zmail is not a micro-payment scheme among end-users.
It is an accounting relationship among “compliant ESPs”,
which reconcile payments to and from their users. Zmail
can be implemented on top of the existing SMTP email pro-
tocol. We describe an incremental deployment strategy that
can start with as few as two compliant ESPs and provides
positive feedback for growth as Zmail spreads over the In-
ternet.

1Alex X. Liu is the corresponding author of this paper.
2Aashin Gautam is currently with National Instruments. He partici-

pated in this work while he was an undergraduate student in The University
of Texas at Austin.

1 Overview

1.1 The Problem of Spam

The volume of unsolicited commercial email – spam
– has grown to the point where it is not only a nui-
sance to individual users, but it imposes a major load
on Email Service Providers (ESPs), such as Hotmail
(http://www.hotmail.com), and threatens the social viabil-
ity of the Internet itself. The problem of spam is a clas-
sic “tragedy of the commons” [10]. The Internet provides
email (as well as other services) as a “free” common re-
source shared by all users. Spam is an abuse of this com-
mon resource for private profit, enabled by the extremely
low cost of sending large amounts of email. For email users,
spam costs significant time and effort to separate legitimate
email from spam, during which important personal or busi-
ness email could be accidentally lost. For ESPs, spam costs
a great deal of bandwidth, storage, and processing time.

In the last few years, spam has grown dramatically. Ac-
cording to Brightmail (http://www.brightmail.com/), more
than 60% of all email traffic in April 2004 was spam as
compared to only 8% in 2001. In 2003, the cost of deploy-
ing additional email processing servers due to the influx of
spam was $10 billion in the United States according to Fer-
ris Research and $20.5 billion worldwide according to Rad-
icati Group [14]. Spam has become a problem of national
importance and solving this problem has become an urgent
need.

1.2 A Zero-Sum Free Market Solution

In this paper, we propose the Zmail protocol as a way to
preserve email as a “free” common resource for most users,
while imposing enough cost on bulk mailers so that market
forces will control the volume of spam. By reversing the
economics of the current Internet email system, spammers
lose their free ride. A key idea behind Zmail is that the most

1

important resource consumed by email is not the transmis-
sion process but the recipient’s attention. Zmail requires the
sender of an email to pay a small amount of money directly
to the receiver of the email. The money earned by a user can
be used to send email or can be exchanged for real money.
The cost of sending (or value of receiving) one email is a
unit called an e-penny. For simplicity, assume that the “real
money” cost of one e-penny is $0.01.

Zmail is thus a “zero-sum” email protocol because any
complete transaction in Zmail is zero-sum: the amount of
money charged to a sender is equal to the amount of money
rewarded to the corresponding receiver. Unlike the postal
system in real life where the money that a sender paid goes
to the postal service providers to pay for physical message
transmission, in Zmail, the money that a sender paid goes
to the receiver, while the role of ESPs is to facilitate email
transfer and payment management.

Next we discuss the impact of market forces on the three
relevant players: spammers, normal email users and ESPs.

1. Spammers: The cost of sending spam will increase by
at least two orders of magnitude, significantly chang-
ing the economics of sending amount of unsolicited
email. The response rate required to break even will in-
crease similarly. Bulk email advertising will continue
to exist, but the incentives will favor more targeted ad-
vertising to populations of readers who are likely to
be interested in the product. The amount of spam will
undoubtedly decrease substantially.

2. Normal Users: Users who receive as much email as
they send, on average, will neither pay nor profit from
email, once they have set up initial balances with their
ESPs to buffer the fluctuations. Typically a normal
user does not need to pay real money to buy e-pennies
for sending email. Even a normal user who needs
to send more email than she receives and who is un-
willing to spend money can easily solve this problem
by subscribing to some commercial email services in
which she is interested. When a normal user receives
spam accidentally, it can be viewed as a windfall rather
than a nuisance because of the payment received.

3. ESPs: The Zmail protocol significantly reduces spam
and therefore reduces the overhead costs of ESPs by
saving their disk space, bandwidth, and computational
cost for running spam filters.

One important property of Zmail is that it requires no
definition of what is and is not spam. One great difficulty
experienced by existing anti-spam approaches is that it is
almost impossible to define what spam is. One person’s an-
noying spam may be another person’s useful information.
Spammers can often find ways to bypass existing spam fil-
ters by techniques such as deliberate misspelling. False pos-

itives in filtering out spam are not acceptable because mod-
ern life depends so heavily upon email communication and
because huge losses could result from incorrectly discarded
email. Using Zmail, spammers’ efforts to evade definitions
of spam become irrelevant.

Zmail has many other nice features, such as supporting
mailing lists and limiting the exploitation by email virus and
zombies, which we discuss in Section 6.

1.3 The Zmail Protocol

Zmail can be implemented on top of the current Internet
email protocol SMTP (Simple Mail Transfer Protocol) [13].
Zmail requires no change to SMTP. In the Zmail protocol,
all the payments are handled automatically and the under-
lying economics remains almost transparent to the users.
Note that Zmail is not a micro-payment scheme among end-
users. It is an accounting relationship among “compliant
ESPs”, which reconcile payments to and from their users.
The actions that a user needs to take to send or receive an
email remain the same as those of the current Internet email
system. Normal users will hardly find any difference from
current email systems.

Zmail can be deployed incrementally. It can be boot-
strapped with as few as two compliant ESPs. People will
not experience disruption in using email services. The good
experience of the users of compliant ESPs will attract more
people to switch to compliant ESPs and more ESPs will
therefore become compliant. Eventually, we envision that
Zmail will spread over the Internet.

The rest of this paper proceeds as follows. In Section
2, we review and examine existing or proposed approaches
to the problem of spam. We present a brief introduction to
the Abstract Protocol notation in Section 3, while in Section
4, we describe the details of the Zmail protocol using this
notation. In Section 5, we discuss several related issues of
the Zmail scheme. Section 6 concludes.

2 Related Work

A variety of legal, filtering, and economic approaches to
the spam problem have been proposed. Legal approaches
deal with spam by punishing spammers using anti-spam
laws. This type of approach has two major drawbacks.
First, it is hard to define precisely what kind of email should
be prohibited considering the First Amendment right to free
speech. Second, it is hard to enforce anti-spam laws because
many spammers have moved their operations to countries
that have no anti-spam laws and lack of international legal
cooperation.

Filtering approaches deal with spam by filtering out
spam from incoming email based on text contents. Consid-
erable amount of research has been conducted on this type

2

of approach (see [3–5, 8, 11, 15, 16]). However, filtering ap-
proaches still suffer from two serious drawbacks. First, a
spam filter may incorrectly classify a legitimate email as
spam, which could cause significant losses. Second, spam
filters can be foiled by intelligent, adaptive spammers. For
example, spammers may embed text information into an im-
age.

Previous economic approaches fight spam by requiring
senders to pay either human efforts or computational costs.
They work in a challenge-response fashion: when an ESP
receives an email, it first holds the email and sends back
a challenge. To solve the challenge, the sender needs to
spend either some human efforts (such as visually recog-
nizing the text content of an image), or some computational
costs (such as doing some CPU or memory intensive com-
putations). The economic approaches that use human ef-
forts have been adopted by some commercial email prod-
ucts such as Mailblocks (http://about.mailblocks.com/) and
Active Spam Killer (http://www.paganini.net/ask/). The
major drawback of this type of approach is that it is in-
convenient, inefficient and sometimes a challenge can be
perceived as rude by the sender. The economic approaches
that use computational cost have been extensively studied
(see [1, 2, 6, 7, 12]). The major drawback of this type of
approach is that it dramatically increases the computational
cost incurred on ESPs, which in turn makes ESPs reluctant
to deploy this type of approach.

Zmail falls into the category of economic approaches.
However, Zmail overcomes the above mentioned weak-
nesses. In Zmail, the email senders are not required to pay
human efforts or computational costs. The efficiency of the
email systems is not affected. In addition, a spam message
would be viewed as a windfall rather than a nuisance by its
receiver because the receiver is paid for receiving it.

3 Abstract Protocol Notation

Here we give a brief introduction to the Abstract Protocol
notation [9]. In this notation, each process in a protocol is
defined by sets of constants, variables, parameters, and ac-
tions. For instance, in a protocol consisting of two processes
p and q and two opposite-direction channels, one from p to
q and one from q to p, process p can be defined as follows:

process p
const 〈name of constant〉 : 〈type of constant〉

· · ·
inp 〈name of input〉 : 〈type of input〉

· · ·
var 〈name of variable〉 : 〈type of variable〉

· · ·
par 〈name of parameter〉 : 〈type of parameter〉

· · ·

begin
〈action〉

2 〈action〉
2 · · ·
2 〈action〉
end

The constants of process p have fixed values. Inputs of
process p can be read, but not updated, by the actions of
process p. Variables of process p can be both read and up-
dated by the actions of process p. Comments can be added
anywhere in process p; every comment is placed between
the two brackets { and }.

Each 〈action〉 of process p is of the form:

〈guard〉 → 〈statement〉

The guard of an action of process p is of one of the fol-
lowing three forms: (1) a boolean expression over the con-
stants and variables of p, (2) a receive guard of the form
“rcv 〈message〉 from q”, (3) a timeout guard that con-
tains a boolean expression over the constants and variables
of every process and the contents of all channels in the pro-
tocol. A parameter declared in a process is used to write a
finite set of actions as one action, with one action for each
possible value of the parameter.

Executing an action consists of executing the statement
of the action. Executing the actions of different processes in
a protocol proceeds according to the following three rules.
First, an action is executed only when its guard is true. Sec-
ond, the actions in a protocol are executed one at a time.
Third, an action whose guard is continuously true is even-
tually executed.

The 〈statement〉 of an action of process p is a se-
quence of 〈skip〉, 〈send〉, 〈assignment〉, 〈selection〉, or
〈iteration〉 statements of the following forms:

〈skip〉 : skip

〈send〉 : send 〈message〉 to q

〈assignment〉: 〈variable in p〉 := 〈expression〉
〈selection〉 : if 〈boolean expression〉 → 〈statement〉

· · ·
2 〈boolean expression〉 → 〈statement〉
fi

〈iteration〉 : do 〈boolean expression〉 → 〈statement〉
od

There are two channels between the two processes: one
is from p to q, and the other is from q to p. Each message
sent from p to q remains in the channel from p to q until it
is eventually received by process q. Messages that reside
simultaneously in a channel form a sequence and are re-
ceived, one at a time, in the same order in which they were
sent.

3

4 Specification of Zmail Protocol

In this section, we describe the details of the Zmail proto-
col using the Abstract Protocol notation. In the Zmail proto-
col, there are two types of parties: ESPs and banks. The ma-
jor role of ESPs is to send and receive email for their users.
We do not assume that every ESP has to join the Zmail pro-
tocol, although we expect that eventually most ESPs will.
We call the ESPs that are running the Zmail protocol “com-
pliant ESPs”. The major role of the banks is to manage e-
pennies: exchange real money for e-pennies and exchange
e-pennies for real money. For simplicity, we assume there
is only one central bank. Every compliant ESP is registered
with the bank and has an account in the bank. Instead of
having the bank itself manage e-pennies for all individual
email users, which is inefficient, we let the bank manage e-
pennies for each compliant ESP and let each compliant ESP
manage e-pennies for its own users.

The constants, inputs, variables and parameters in each
ESP process are defined as follows:

process ESP[i:0..n-1]

const n : integer, {# of ESPs}
m: integer, {# of users per ESP}
compliant : array [0..n-1] of boolean
{array compliant indicates which ESP is compliant}

inp Bb: integer, {public key of bank}
limit : array [0..m-1] of integer,

{limit[j]: max # of emails sent per day for user j}
maxavail, minavail : integer,

{maxavail, minavail are two thresholds for avail}

var avail : integer, {# of e-pennies available for users to buy}
account : array [0..m-1] of integer, {balance of real pennies}
balance : array [0..m-1] of integer, {balance of e-pennies}
sent : array [0..m-1] of integer, {# of emails sent}
credit : array [0..n-1] of integer, {sending&receiving record}
cansend, canbuy, cansell : boolean, {initial value: true}
buyvalue, sellvalue : minavail..maxavail ,
accepted : boolean,
seq, seq′ : integer, {initial value: 0}
ns1 , nr1 , ns2 , nr2 : integer, {nonces}
x : integer,
s, r : 0..m-1,
j : 0..n-1

par g : 0..n-1
t : 0..m-1

Note that each ESP process has three constants n,
m, and compliant , and all ESP processes share the
same value for each of the three constants. Constant
n is the number of ESPs. The n ESP processes are
ESP [0],ESP [1], · · · ,ESP [n − 1]. For simplicity, we as-
sume each ESP has the same number of users, and constant
m is this number. Constant “compliant” is a boolean ar-
ray of length n, and it indicates which ESP is compliant.
This array is maintained and published by the bank. When
an ESP ESP [j] changes its status from non-compliant to
compliant, the bank flips compliant [j] from false to true,
and broadcast this new “compliant” array to every compli-

ant ESP. For simplicity, in this paper, we assume that the
“compliant” array does not change its value.

The constants, inputs, variables, and parameters in the
bank process are defined as follows:

process bank

const n : integer, {# of ESPs}
compliant : array [0..n-1] of boolean
{array compliant indicates which ESP is compliant}

inp Bb : integer, {public key of bank}
Rb : integer {private key of bank}

var account : array [0..n-1] of integer,
{balance of real pennies for every ESP}

verify : array [0..n-1] of array [0..n-1] of integer,
{initial value: 0}

seq : integer, {initial value: 0}
total : integer, {initial value: 0}
i, j : integer, {initial value: 0}
credit : array [0..n-1] of integer,
x , y : integer,
nr : integer, {nonce}
canrequest : boolean, {initial value: 0}

par g : 0..n-1

Next, we discuss the details of the compliant ESP ESP [i]
and the bank, during which we will explain the meaning of
every input and variable of ESPs and the bank.

4.1 Zero-sum email transfer

In process ESP [i], each user specifies the maximum
number of emails that they can send out to compliant ESPs
in the array limit . The purpose of setting this limit is to
mitigate the potential cost incurred by email viruses. Detail
discussion of email viruses is in Section 5. Process ESP [i]
uses the array sent to keep track of the number of emails
that each user sends to compliant ESPs in each day. At the
end of every day, array sent is reset to 0. Process ESP [i]
maintains the balance of e-pennies for every user using the
array balance . Process ESP [i] records the transaction of e-
penny exchanges with other ESPs in the array credit . The
initial value of every element in array credit is zero.

Process ESP [i] maintains a variable called “cansend”.
When cansend is true, process ESP [i] can send out email.
When process ESP [i] sends an email to a compliant ESP
ESP [j], credit [j] is increased by one; when process ESP [i]
receives an email from a compliant ESP ESP [j], credit [j]
is reduced by one. Later we will show that the bank can
detect misbehaved ESPs using the information in the credit

array of every ESP. The initial value of cansend is true.
The pseudocode of the process ESP [i] for sending email is
as follows. Note that the keyword any means an arbitrary
value from its domain of values, which is used to simulate
a user’s input.

2 cansend →
s := any; j := any; r := any;
{user s of ESP [i] wants to send email to user r of ESP [j]}

4

if i = j → if balance[s] ≥ 1 ∧ sent[s] < limit[s] →
balance[s]:= balance[s] − 1;
balance[r]:= balance[r] + 1;
sent[s] := sent[s] + 1;
{deliver email(s, r) to user r}

2balance[s] = 0 ∨ sent[s] ≥ limit[s] → skip
fi

2i 6= j → if compliant[j] →
if balance[s] ≥ 1 ∧ sent[s] < limit[s] →

balance[s]:= balance[s] − 1;
credit[j] := credit[j] + 1;
sent[s] := sent[s] + 1;
send email(s, r) to ESP[j]

2 balance[s] = 0 ∨ sent[s] ≥ limit[s] → skip
fi

2∼ compliant[j] → send email(s, r) to ESP[j]
fi

fi

The pseudocode for receiving email is as follows:

2 rcv email(s, r) from ESP [g] →
if compliant[j] → balance[r] := balance[r] + 1;

credit[g] := credit[g] − 1
{deliver the email to r}

2 ∼compliant[g]→ skip {deliver to r or discard it}
fi

The pseudocode for resetting array sent to 0 at the end
of every day is as follows:

2 true→ {execute at the end of every day}
x := 0; do x < n → sent[x] := 0 od

4.2 Transaction With Users

Process ESP [i] maintains a pool of e-pennies that its
users can buy. The amount of e-pennies in this pool is
stored in a variable named avail . Each user has an account
of real money with their ESP, and process ESP [i] main-
tains the balance of real pennies for every user using array
account . A user can buy and sell e-pennies with their ESP.
The pseudocode of the process ESP [i] for managing trans-
actions with users is as follows:

2 account[t] > 0 → x := any; {user t wants to buy x e-pennies}
if account[t] ≥ x ∧ avail ≥ x → account[t]:= account[t] − x;

balance[t] := balance[t] + x;
avail := avail − x;

2account[t] < x ∨ avail < x →skip
fi

2 balance[t] > 0 → x := any; {user t wants to sell x e-pennies}
if balance[t] ≥ x → account[t]:= account[t] + x;

balance[t] := balance[t] − x;
avail := avail + x;

2balance[t] < x →skip
fi

4.3 Transaction With Bank

For the variable avail , process ESP [i] specifies one
lower bound named minavail and one upper bound named
maxavail . When avail < minavail , process ESP [i]
needs to buy some e-pennies from the bank; when avail >

maxavail , process ESP [i] needs to sell some e-pennies
back to the bank. In the communication between the bank

and the process ESP [i] for buying and selling e-pennies,
we add nonces to prevent message replay attacks. A nonce
is an integer generated by a function called NNC. The se-
quence of nonces generated by a process using the func-
tion NNC has two properties: unpredictability and nonrep-
etition. The pseudocode of the process ESP [i] for man-
aging transactions with the bank is as follows. Note that
DCR(Bb, x) denotes the result of decrypting x using the
key Bb, NCR(k, d) denotes the encryption of data item d

using key k, and DCR(k, d) denotes the decryption of data
item d using key k.

2 canbuy→
if avail < minavail →

canbuy := false; buyvalue := any; ns1 := NNC;
send buy(NCR(Bb, (buyvalue|ns1)) to bank ;

2 avail ≥ minavail → skip
fi

2 rcv buyreply(x) from bank →
nr1 , accepted := DCR(Bb, x);
if ns1 = nr1 → canbuy := true

if accepted → avail := avail + buyvalue

2 ∼ accepted → skip
fi

2 ns1 6= nr1→ skip
fi

2 cansell →
if avail > maxavail →

cansell := false; sellvalue := any; ns2 := NNC;
send sell(NCR(Bb, (sellvalue|ns2)) to bank ;

2 avail ≤ maxavail → skip
fi

2 rcv sellreply(x) from bank →
nr2 := DCR(Bb, x);
if ns2 = nr2 → avail := avail − sellvalue; cansell := true

2 ns2 6= nr2 → skip
fi

Every compliant ESP has an account of real money with
the bank, and the bank stores the balance of real pennies of
compliant ESPs in its array account . The pseudocode of
the process bank for managing transactions with compliant
ESPs is as follows:

2 rcv buy(x) from ESP [g] →
nr , y := DCR(Rb, x); {ESP [g] wants to buy y e-pennies}
if account[g] ≥ y → account[g] := account[g] − y;

send buyreply(NCR(Rb, nr |true)) to ESP[g];
2 account[g] < y→ send buyreply(NCR(Rb, nr |false)) to ESP [g];
fi

2 rcv sell(x) from ESP [g] →
nr , y := DCR(Rb, x); {ESP [g] wants to sell y e-pennies}
account[g] := account[g] + y;
send sellreply(NCR(Rb, nr)) to ESP [g];

4.4 Detecting Misbehavior

We have seen the operations on the credit array in both
the sender’s and receiver’s end. Note that in a certain time
period that all the email sent from ESP [i] to ESP [j] and all
the email from ESP [j] to ESP [i] are received by these two
ESPs, the value of credit [j] in process ESP [i] plus the value
of credit [i] in process ESP [j] should be zero. Otherwise, at

5

least one of the two ESPs has misbehaved. The bank needs
to gather the credit array from every ESP periodically, say
one time a month, and then detect the suspected misbehaved
ESPs, based on which the bank may make further investiga-
tion. Because each compliant ESP has been authenticated
to be “good guys”, we expect the chance of inconsistency
in credit arrays is extremely small.

To take a snapshot of credit arrays of all compliant ESPs,
we use a simple timeout method. When the bank wants to
gather credit arrays, it sends out a request message to every
compliant ESP. When a compliant ESP receives the request
message, it stops sending out any email for a certain time
period, say 10 minutes, to ensure that every email that it
sent out is received. After this time period, the ESP sends its
credit array to the bank. Thereafter, the ESP reset its credit

array to zero because a new billing period starts. Each re-
quest message from the bank has a sequence number, which
is used to prevent message reply attacks. The pseudocode
of process ESP [i] for receiving request message from the
bank and sending the credit array to the bank is as follows.

2 rcv request(x) from bank →
seq′ := DCR(Bb, x);
if seq = seq′ → cansend := false; timeout after 10 minutes

2seq 6= seq′ → skip
fi

2 timeout expired →
send reply(NCR(Bb, credit)) to bank ;
x := 0; do x < n → credit[x] := 0; x := x + 1 od;
cansend := true;
seq := seq + 1

Note that the 10 minutes timeout period is only expe-
rienced by ESPs, not email users. An email user still can
instruct their ESP to send emails during the timeout period,
although these emails will be buffered and sent right after
the timeout expires. Here we choose this timeout method
for the simplicity of discussion. In implementing Zmail,
one could choose other methods to take a snapshot of the
credit arrays of all compliant ESPs.

Every time the bank wants to verify the compliance of
ESPs, it first sends request to every compliant ESP. After
the bank receives the credit array from every compliant
ESP, the bank starts to verify that for every two compliant
ESPs ESP [i] and ESP [j], the value of credit [j] in process
ESP [i] plus the value of credit [i] in process ESP [j] should
be zero. The frequency of this consistency checking may be
once a week or once a month, for example. The pseudocode
of the process bank for consistency checking is as follows:

2 canrequest →
i := 0; total := 0;
do i < n → if compliant[i] →

total := total + 1;
send request(NCR(Rb, seq)) to ESP [i];

2∼compliant[i] → skip
fi;
i := i + 1

od;
canrequest := false

2 rcv reply(x) from ESP [g] →
if compliant[g]→

credit := DCR(Rb, x); total := total − 1; i := 0;
do i < n → verify[i, g] := credit[i]; i := i + 1 od;

2∼compliant[g]→ skip
fi

2 total = 0∧ ∼ canrequest →
i := 0; j := 0;
do i < n →

j := 0
do j < n →

if verify[i, j] + verify[j, i] = 0 → skip
2verify[i, j] + verify[j, i] 6= 0 → skip {report error}
fi;
verify[i, j] := 0; j := j + 1

od;
i := i + 1

od;
canrequest := true

5 Discussion

In this section, we discuss the issues of mailing lists,
email viruses, incremental deployment and bank setup.

Mailing Lists. A mailing list works as follows. Each
mailing list has a list server that runs a mailing list server
program. Two of the most popular mailing list server pro-
grams are Listserv (http://www.lsoft.com/) and Majordomo
(http://www.greatcircle.com/majordomo/). A list server
consists of a subscriber database and an email distributor.
The subscriber database consists of all the email addresses
of the people who have joined the list. Each time a sub-
scriber wants to send an email to everyone in the mailing
list, she sends one email to the email address of the email
distributor. Each time the email distributor receives an
email from one of its subscribers, it will forward the same
email to every email address in the subscriber database. In
moderated mailing list, the email distributor could be a hu-
man, while in unmoderated mailing list, the email distribu-
tor is usually a program.

Directly applying the economic model of the Zmail pro-
tocol to mailing lists may impose too much cost to the dis-
tributor because every time that it receives an email from a
subscriber, it needs to send out a huge number of emails. To
compensate the cost of the distributor, we define a special-
purpose email message that would be automatically gen-
erated by the receiver’s ESP or email client and sent back
to the email distributor, acknowledging the receipt of the
mailing-list message. This acknowledgment email returns
the e-penny back to the distributor. The difference between
acknowledgment email and normal email is that acknowl-
edgment email can be processed automatically, rather than
being delivered to the receiver’s inbox for human attention.

An additional benefit of this automated acknowledge-
ment mechanism is that the email distributor can auto-
matically keep track of which addresses do not acknowl-

6

edge messages and should be removed from its subscriber
database. Therefore, the email distributor can keep its sub-
scriber database clean and up-to-date.

Zombies and Email Viruses. A virus can allow a user’s
PC to be exploited without the user’s consent or even knowl-
edge. An email virus may send messages to the user’s entire
address book. If a virus has made the user’s PC into a “zom-
bie”, it could be used to send out large amounts of spam at
the user’s expense.

To limit this, and more importantly to allow the detec-
tion of “zombified” PCs, ESPs can enforce a user specified
limit on the number of e-pennies the user is willing to spend
per day. (Recall the limit array in our formal specification
of Zmail in Section 4). Exceeding this limit blocks further
outgoing mail (for that day), and the user is sent a warn-
ing message to check for viruses. In addition to limiting
the user’s liability for the e-penny cost of virus-sent email,
this provides a new mechanism for detecting, limiting, and
disinfecting “zombie” PCs once they become active.

Incremental Deployment. One feature of the Zmail pro-
tocol is that it can be deployed incrementally, starting with
two compliant ESPs. We have seen that in the Zmail proto-
col a non-compliant ESP can still send email to a compliant
ESP, but a user in a compliant ESP may decide to segre-
gate or discard email from non-compliant ESPs, or require
any email from a non-compliant ESP to pass a spam filter.
As more and more ESPs become compliant, more people
would choose not to accept any email from a non-compliant
ESP, which in turn causes more people to use compliant
ESPs and more ESPs to become compliant.

Bank Setup. In the Zmail protocol, we assume that there
is a central bank. A central authority is not difficult to set
up on the Internet. In fact, the Internet already has some
central authorities such as IANA (http://www.iana.org/) that
controls the assignment of IP addresses. In fact, the role of
the bank in the Zmail protocol can be implemented as a
set of distributed banks or a hierarchy of banks. It is fairly
straightforward to extend the Zmail protocol to incorporate
multiple collaborating banks.

6 Conclusions

In the current Internet, spam traffic has exceeded the traf-
fic of legitimate email. Solving the spam problem has be-
come an urgent need due to the huge financial losses caused
by spam. The root of the spam problem is that the current
email system of the Internet provides free ride to spammers.
In this paper, we propose the Zmail protocol that stops the

free ride for spammers and therefore solves the spam prob-
lem fundamentally, while preserving the essentially ”free”
nature of email for normal users. We also provide a for-
mal specification of the Zmail protocol using the Abstract
Protocol notation.

References

[1] M. Abadi, A. D. Birrell, M. Burrows, F. Dabek, and T. Wob-
ber. Bankable postage for network services. In Proc. of the
8th Asian Computing Science Conference, December 2003.

[2] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Mod-
erately hard, memory-bound functions. In Proc. of the 10th
Annual Network and Distributed System Security Sympo-
sium, February 2003.

[3] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and
C. D. Spyropoulos. An experimental comparison of naive
bayesian and keyword-based anti-spam filtering with per-
sonal e-mail messages. In Proceedings of SIGIR-2000,
pages 160–167, 2000.

[4] X. Carreras and L. Marquez. Boosting trees for anti-spam
email filtering. In Proceedings of the 4th International Con-
ference on Recent Advances in Natural Language Process-
ing, 2001.

[5] H. Drucker, D. Wu, and V. N. Vapnik. Support vector ma-
chines for spam categorization. IEEE Transactions on Neu-
ral Networks, 10(5):1048–1054, 1999.

[6] C. Dwork, A. Goldberg, and M. Naor. On memory-bound
functions for fighting spam. In Crypto 2003, 2003.

[7] C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In Proc. of Crypto-92, LNCS 740, pages 139–147,
1992.

[8] K. R. Gee. Using latent semantic indexing to filter spam. In
Proceedings of the 2003 ACM symposium on Applied com-
puting, pages 460–464, 2003.

[9] M. G. Gouda. Elements of Network Protocol Design. John
Wiley & Sons, New York, New York, 1th edition, 1998.

[10] G. Hardin. The tragedy of the commons. Science,
162(1968):1243–1248.

[11] A. Kolcz, A. Chowdhury, and J. Alspector. The impact
of feature selection on signature-driven spam detection. In
First Conference on Email and Anti-Spam (CEAS), July
2004.

[12] K. Li, C. Pu, and M. Ahamad. Resisting spam delivery by
tcp damping. In First Conference on Email and Anti-Spam
(CEAS), July 2004.

[13] J. B. Postel. Simple mail transfer protocol.
http://www.faqs.org/rfcs/rfc821.html. August 1982.

[14] S. Hansell. Diverging estimates of the costs of spam. New
York Times, August 28, 2003.

[15] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A
bayesian approach to filtering junk E-mail. In Proc. of AAAI
Workshop on Learning for Text Categorization, Madison,
Wisconsin, 1998.

[16] K. Yoshida, F. Adachi, T. Washio, H. Motoda, T. Homma,
A. Nakashima, H. Fujikawa, and K. Yamazaki. Density-
based spam detector. In Proceedings of the 2004 ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 486–493, 2004.

7

