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Abstract

We discuss several aspects of consciousness — the Easy
Problem, the Intentionality Problem, and the Hard Problem
— from the pragmatic perspective of artificial intelligence
and robotics. Our computational approach is driven by the
enormous information content of the sensory stream, and the
properties of methods by which an agent may cope with its
demands.

Introduction
Consciousness is one of the most intriguing and mysterious
aspects of the phenomenon of mind. Artificial Intelligence
(AI) is a scientific field built around the creation of com-
putational models of mind (including such methods as neu-
ral networks, probabilistic inference, and dynamical systems
as well as logic-based knowledge representation and infer-
ence). Computational approaches to understanding the phe-
nomena of mind have been controversial, to say the least,
but nowhere more than when applied to the problem of con-
sciousness.

In a recent paper (Kuipers 2005), I described how the
problem of consciousness looks to a researcher in AI and
robotics, sketched out a computational model of conscious-
ness, and evaluated its prospects against a set of eleven cri-
teria “that any philosophical-scientific theory should hope
to explain” according to John Searle (2004), a prominent
philosopher and critic of AI. This paper extends that argu-
ment, fills some gaps, and attempts to make some useful
distinctions.

Inspired by the important distinction between the “Easy”
and “Hard” problems of consciousness (Chalmers 1996),
and by the core issue behind the famous “Chinese room”
story (Searle 1980)), we will consider three major aspects of
the problem of consciousness: the Easy Problem, the Inten-
tionality Problem, and the Hard Problem.
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Overview
The key ideas here are the following.

1. The sensory data stream provides information to the agent
at an extremely high rate (gigabits/second).

2. This information is managed and compressed by select-
ing, tracking, and describing spatio-temporal portions of
the sensory input stream.

3. A collection of parallel processes operates on informa-
tion from the sensory input stream to construct a coherent
sequential narrative describing the agent’s sensorimotor
interaction with the world.

4. The agent autonomously learns intentionality by con-
structing models of hypothetical entities in the external
world. These entities explain regularities in the sensori-
motor interaction, and serve as referents for the symbolic
knowledge representation.

5. The high information content of the sensory stream al-
lows the agent to continually evaluate these hypotheses,
refuting the ones that result in poor predictions. The high
information content of the sensory input stream explains
certain key features of subjective experience.

The Easy Problem
The “Easy Problem” is: What does consciousness do for us,
and how does it work? Only a philosopher could call this
problem “Easy”, since solving it will likely require decades
at least, and dozens or hundreds of doctoral dissertations.
What the name means is that scientists applying the meth-
ods of various disciplines have been able to formulate useful
technical statements of the problem, and they have tools that
apply to those problem statements. Progress may be dif-
ficult, but we know what it means. (The “Hard Problem”
does not enjoy these benefits.)

Trackers into the Firehose of Experience
To a researcher in AI and robotics, one of the driving forces
behind cognitive architecture is the need to cope with the
enormous volume of sensory data, arriving asynchronously
along many different channels. This is the “firehose of expe-
rience” in the title of (Kuipers 2005), where the first version
of this theory is presented in more detail.



The primitive elements in this architecture are called
trackers. Each tracker can be thought of as having two ends.
One end consists of a number of pointers into the firehose
of experience, designating a spatio-temporal region in the
input stream, tracking that region as its natural boundaries
evolve in real time. The other end consists of a dynamic
symbolic representation of that particular portion of sensory
experience, supporting inference about its static properties,
its current state, and its history. The symbolic representa-
tion is “dynamic” in the sense that the values of certain at-
tributes are automatically updated by processes operating on
the tracked elements of the sensory stream. For example,
one tracker might describe the changing location and shape
of a pedestrian walking through the agent’s field of view.
Another might dynamically describe the agent’s pose within
the frame of reference of the enclosing room as the agent
moves through it.

Some trackers integrate information from multiple asyn-
chronous sensor streams. If an explosion occurs, informa-
tion from the sudden noise and sudden flash of light arrive
at common parts of the brain after different delays (about
50 ms for the auditory channel; about 200 ms for the visual
channel). They are experienced as simultaneous, and de-
scribed as aspects of the same event, in spite of significant
differences in absolute time.

The idea of trackers is not new. Versions of the sensorimo-
tor tracker concept include Minsky’s “vision frames” (1975),
Marr and Nishihara’s “spatial models” (1978), Ullman’s “vi-
sual routines” (1984), Agre and Chapman’s “indexical ref-
erences” (1987), Pylyshyn’s “FINSTs” (1989), Kahneman
and Triesman’s “object files” (1992), Ballard, et al, “deic-
tic codes” (1997), and Coradeschi and Saffiotti’s “perceptual
anchoring” (2003).

Trackers are created and destroyed quite frequently, with
perhaps dozens or even hundreds active at any given time.
They make it possible to “use the world as its own model”,
directing attention to a particular aspect of the world to an-
swer a query, rather than attempting to retrieve or infer an
answer from stored knowledge. Trackers may have a hier-
archical structure, allowing the sensory image of a person,
for example, to be tracked at varying levels of detail: en-
tire body; head-torso-arms-legs; upper-arm-forearm-hand;
palm-fingers; etc (Marr & Nishihara 1978).

Creating a Coherent Sequential Narrative
The cognitive architecture must be organized to make use of
the information provided by the trackers. There appears to
be a growing consensus that the mind includes a collection
of processes that interact to create a coherent sequential nar-
rative from its multiple parallel asynchronous sensory input
streams. This narrative is the agent’s explanation to itself
of what is going on around it. Just as an individual tracker
provides an index into the sensory stream corresponding to a
symbolic description, this coherent sequential narrative pro-
vides organizing structure on the agent’s overall experience.

There is a great deal of work to be done to determine the
precise structure of this architecture, but the consensus ap-
pears to be converging on some sort of Global Workspace
Theory (Baars 1988), drawing on Minsky’s “Society of

World:
[ẋ, ẇ] = F (x,w,u) (1)

z = G(x,w) (2)
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Agent:
mk(t) = τk(z(t)) (3)

m := Update(m, z) (4)
Hi := Select(m, z) (5)

u = Hi(z,m) (6)

Figure 1: Dynamical model of a cognitive agent
The cognitive agent can be modeled at a high level as a dy-
namical system interacting with its environment. For the
cognitive agent, its physical body is part of its environment.
At any time t, the agent receives a sense vector z(t) and
sends a motor vector u(t) to the world. The robot’s body has
state vector x(t) whose derivative is denoted ẋ(t), and the
state vector of the rest of the world is described by w and ẇ.
The functions F and G represent the physics of the world
and the sensor model, and neither is known to the agent.
The agent acts by selecting a control law Hi based on the
current sensor input z and the symbolic state m of its inter-
nal computational processes. Given this control law, equa-
tions (1,2,6) define a dynamical system, describing how the
robot-environment system evolves until a new control law
is selected. Meanwhile, trackers τk (equation 3) contribute
dynamic descriptions to the computational state m.

Mind” (1985), Dennett’s “multiple drafts” (1991), and oth-
ers. Neuroscientists in search of the “neural correlates of
consciousness” (Koch 2003; Edelman 1987) are identifying
neural processes in the brain that appear to be participating
in a similar architecture.

Natural selection ensures that, on average, these pro-
cesses do a pretty good job of describing the relevant objects
and events in the external world. Some of the processes
are innate to the individual, wired into the brain, but were
“learned” by the species over evolutionary time. Other pro-
cesses are learned by the individual from its own experience.

Defining Consciousness
According to the model proposed in (Kuipers 2005), what
it means for an agent to be conscious, to have a subjective,
first-person view of the world, is for the agent to have the in-
teraction with its world described in Figure 1. This includes:

1. a high-volume sensor stream z(t) and a motor stream u(t)
that are coupled, through the world and the robot’s body,
as described by equations (1-2);

2. a non-trivial collection of trackers mk(t) = τk(z(t))
grounded in the sensor stream (equation 3) capable of pro-
viding dynamically updated symbolic descriptions for the
agent’s knowledge representation system, with top-down
and bottom-up activation methods;



3. a non-trivial collection of control laws u(t) =
Hi(z(t),m(t)) (equations 5-6) that can be used to im-
plement reasonably reliable actions in the world;

4. a sufficiently good correspondence between the actual
properties of action and perception in the physical world
(1-2), and the agent’s symbolic theory of the world (m(t)
(equation 4)) including symbols grounded via trackers (3)
and actions implemented by control laws (5-6), so that the
agent can interact effectively with its world. (This corre-
spondence is the subject of the Intentionality Problem.)

This definition omits an important factor. High-volume
closed-loop interaction is necessary but not sufficient. In the
metaphorical language that Bernard Baars uses to describe
his Global Workspace Theory, this definition covers not only
the processes in the spotlight of attention or waiting on the
stage as candidates for the spotlight, but also all the active
processes out in the “audience”, participating in cognition
but far from the spotlight of consciousness.

The coherent sequential narrative constructed to explain
experience seems to be a necessary additional factor. That
narrative describes the events and activities that occupy the
focus of consciousness. Sometimes the shifts in the focus of
consciousness from one thing to another have explanations
in terms of events represented in the narrative (“Suddenly
there was an explosion!”), but other times, the cause of the
shift may not be a represented event, so it appears to “just
happen”, like flipping the Necker cube.

McDermott (2001) and others argue that vivid conscious
experience — the experience of qualia — is a retrospective
phenomenon, using the coherent sequential narrative to ac-
cess portions of the sensory input stream from the recent
past. “Recent” in this case means within the last 50 to 500
milliseconds, so a great deal of sensory information remains
available in short-term sensory memory. Processes oper-
ating on the coherent sequential narrative determine which
trackers fall within the “spotlight of consciousness”, making
them globally visible to the “audience” of active processes,
and which may simply participate in a particular low-level
control loop without conscious experience (Baars 1988).

The Intentionality Problem
The “Intentionality Problem” is: How can symbols in an in-
ternal cognitive knowledge representation refer to objects
and events in the external world? Or equivalently, Where
does meaning come from? The core of Searle’s “Chinese
room” argument (Searle 1980) is that the mind necessarily
has intentionality (the ability to refer to objects in the world),
while computation (the manipulation of formal symbols ac-
cording to syntactic rules) necessarily lacks intentionality.
Therefore (claims Searle), the mind must be more than a
computation.

The same problem comes up in a much more pragmatic
form in point 4 of the definition of consciousness pre-
sented previously, which specified that the internal knowl-
edge representation, grounded by trackers in the sensory in-
put stream, must correspond sufficiently well with the prop-
erties of the external world for useful predictions and actions
to be possible. Since the agent has no direct access to the

state of the world, and its only indirect access is through its
own sensory and motor streams, the problem of establishing
and maintaining such a correspondence is critical.

Note that Searle, and I, and everyone else, are born locked
inside our own skulls, receiving coded information along
nerve fibers, and sending coded responses along other nerve
fibers. We humans have the same intentionality problem that
the Chinese Room illustrates. The source of the meaning by
which knowledge representations refer to the external world
is as much a mystery for us biological humans as it is for
computational systems.

William James describes the baby as perceiving the world
as “one great blooming, buzzing confusion”. Any roboti-
cist recognizes in this phrase the difficulty of interpreting
the raw elements of the sensory stream, and the difficulty of
accomplishing anything useful with incremental motor sig-
nals. We will refer to these together as the “pixel level” of
understanding of the sensorimotor system.

We have taken significant steps toward learning intention-
ality. The Spatial Semantic Hierarchy (Kuipers & Byun
1991; Kuipers 2000) maps an unknown environment by
identifying locally distinctive states and linking them into
a topological map. The ability of a symbol to refer to a
distinctive state in the physical environment depends on the
behaviors of the dynamical systems defined by the control
laws, not on any pre-existing intentionality in the set of sym-
bols. Pierce and Kuipers (1997) showed that these control
laws could be learned from the dynamical regularities in the
robot’s own experience with its uninterpreted sensors and
effectors, constrained by their causal connections with the
environment. (An appendix provides more detail.) Modayil
and Kuipers (2007) have developed these into methods for
learning to individuate, track, and describe coherent objects
from the “blooming, buzzing confusion” of sensory input,
and then to learn meaningful actions to perform on them.

A tracker follows a spatio-temporal region in the sensory
input stream, and creates a dynamic symbolic description of
it. We observers may know that such a region is the sensory
projection of an object in the external world, but the agent
doesn’t have that knowledge.

The learning agent constructs a model of the world. Each
tracker posits the existence of external entities whose pro-
jections onto the sensors account for its portion of the sen-
sory stream. The properties of those entities are inferred
from, and account for, the information observed in the sen-
sory stream. This is a version of Quine’s “web of belief”
(Quine 1961).

The meanings to which the symbols in the agent’s knowl-
edge representation refer are the entities in that constructed
model. Meanings therefore do not reside in the external
world, but in the constructed model we build of it. If the
agent’s constructed model corresponds sufficiently well with
the external world, then it can function effectively, and it has
created its own intentionality. When the internal model and
external world diverge, plans and predictions fail, and the
sensory system provides relevant information that can be
used to correct the model. If the divergence is sufficiently
serious, the agent becomes non-viable, so natural selection
ensures the quality of the constructed model.



The Hard Problem
The “Hard Problem” is: “Why does consciousness feel like
anything at all?” Suppose that the mind is a computation,
running on the physical substrate of the brain. Why should
a computational process — even one that constructs its own
intentionality and builds a coherent sequential narrative from
its experience — feel like anything at all to the agent?

It is undeniable that many experiences “feel like” some-
thing. Pain hurts, sugar tastes sweet, the sight of a loved one
after an absence raises feelings that are strong and real, even
and especially though they can’t be fully articulated. In the
words of Francisco Varela, “. . . why is it that consciousness
feels so personal, so intimate, so central to who we are, . . . ”
(Blackmore 2006, p. 226).

We are not zombies (or at least I am not). Why not?
This problem is Hard, even to a philosopher. So far it

has resisted all attempts even to state what it would mean to
provide a solution. It’s not just that we can’t find a solution.
We can’t even figure out what a solution would look like.

However, perhaps we can sneak up on the Hard Problem
and get a closer peek at what makes it tick. Rather than
directly approach the question of why anything feels like
anything at all, we will ask why some experiences are more
vivid than others.

Why are some experiences more vivid than others?
Looking now at the apple sitting in front of me, I experi-
ence a vivid perceptual image. This apple is very round,
and a light greenish-yellow with a few brownish-red streaks.
(Someone else might describe it as yellowish-green or with
reddish-brown streaks.) This is a classic quale, a primary
sensory experience. I claim that it is vivid, in part, because
my internal symbolic concept of this apple is directly bound
to the corresponding region in my sensory input stream,
which provides a huge flow of information in real time.

Writing now some days later, my recalled image of that
apple is still vivid, but not nearly as vivid as the experience
itself. I can recall fragments (“snapshots?”) of the sensory
experience of perceiving the apple, but they are clearly in-
complete. Even with effort, there are questions about the
apple that I cannot answer now, with the amount of stored in-
formation available to me, that could have been effortlessly
answered during the experience itself, simply by shifting my
focus of attention.

You, the reader, have just read descriptions of my expe-
rience with a particular apple. But it is not your apple, or
your experience, so your concept of this apple, like mine of
some apple I read about, is much less vivid than either direct
experience or personal memory.

These stories illustrate three widely separated points on a
spectrum of the vividness of subjective experience. I claim
that the differences in vividness are well-explained by the
differences in information content. Ongoing visual experi-
ence of the apple means that the agent has trackers directly
connected to the “firehose of experience”, with its vast in-
formation content and its potential for answering new ques-
tions with a quick change of focus of attention. Memory
of personal experience draws on whatever can be captured

from the sensory “firehose” and stored in long-term mem-
ory. (Vivid dreams and evoked memory from direct neural
stimulation probably fall between these first two points on
the spectrum.) A word like “apple” in a written story trans-
mits perhaps a few dozen bits. What vividness it has comes
from evoking personal memories in the reader.

Why is subjective experience so personal?
Long-term memory is enormous. Like snowflakes, no two
separately-created multi-mega-pixel digital images are ever
identical, simply because of the huge number of bits they
encode, and the number of unpredictable processes that de-
termine those bits. Likewise with sensory experiences. Each
snapshot from the sensory stream, and each fragment stored
in long-term memory has huge information content.

The sheer number of bits in a particular sensory experi-
ence makes it astronomically unlikely that any other individ-
ual could have precisely the same experience. Even more so
the entire contents of long-term memory. The sheer number
of bits, created through individual sensory experience and
stored in an agent’s long-term memory, ensures that long-
term memory must be unique and personal to its self.

Note that this argument depends on the number and un-
predictability of the low-level processes that create sensory
experiences. If memory is created purely through symbolic
input, or if bulk memory can be backed up and restored as
with a disk drive, then it might be possible to create identical
individuals.

Specific pieces of information are easily retrieved, even
from the enormous store of long-term memory, by following
paths of associations. Each step in the path might require
only a few bits of information, for example from a word in a
sentence. However, it is clear from personal experience that,
on occasion, a vivid sensory experience can leapfrog over
the associative paths to evoke something buried deep within
long-term memory.

The information content of such a link must be enor-
mous, because it is activated by a sensory experience (con-
sisting of many bits), and it retrieves a target from within
the large space of long-term memory (requiring an address
of many bits). Like sensory experience, and like the pattern
of the simpler symbolic links, the sheer information content
of such a direct link makes it, with very high probability,
distinctive to the individual agent and therefore unique and
personal.

Can qualia be learned and taught?
Certainly! Anyone who has deliberately learned to discrimi-
nate among experiences with chocolate or wine (or any other
domain of sensory experience) knows that the categories for
subjective experience can and do change with experience,
even explicitly guided pedagogical experience.

The young child might distinguish sweet from non-sweet,
and then among vanilla, chocolate, and strawberry. The
older child distinguishes milk chocolate from dark. The
adult learns to recognize and appreciate (or not) the distinc-
tive flavors of Hershey, Ghirardelli, Lindt, and many others.

Qualia, therefore, do not correspond to biologically de-
termined categories of sensory input. They correspond to



learned categories of represented experience, bound to por-
tions of the sensory input stream. In the framework we are
describing, sensory trackers are learned from experience,
and qualia correspond to active trackers.

Different emotions feel different. But why?
Another way to sneak up on the Hard Problem is to consider
why different emotions feel different. After all, emotions
are a particular class of subjective experience, and there is a
long literature on the nature and determinants of emotion.

William James (1884) attributed emotion to a combina-
tion of bodily arousal and the perceived situation. However,
bodily arousal by itself is not sufficiently discriminating to
account for the range and variety of experienced emotions.
While arousal is important, other factors contribute to deter-
mining the emotional content of experience. A classic series
of experiments showed that subjects who were aroused by
injections of adrenaline, but then presented with different
perceptual or cognitive influences, had dramatically differ-
ent perceptions of their own emotional state (Maranon 1924;
Cantril & Hunt 1932; Schachter & Singer 1962).

This suggests that what makes emotion feel like anything
at all is bodily arousal, but what it actually feels like (the
emotional content) is determined by cognitive and situa-
tional factors.

Why should information feel like anything?
Generalizing from emotion, we conjecture that what subjec-
tive experience “feels like” is determined in part by bodily
arousal due to information transfer (the firehose of experi-
ence), combined with factors from the content of the infor-
mation and the cognitive and behavioral context of the agent.

High-bandwidth information transfer is necessarily real-
ized as a physical process involving rapid state-changes in
a physical device. Such a process consumes and dissipates
energy. An agent with suitable sensors to monitor its own
physical state can sense the rate at which information is be-
ing processed.

This is a type of physiological arousal, which can then be
interpreted in the context of the content of the information
being provided, as well as the other goals and activities of
the agent. Thus, qualia “feel like something” because the
body senses the rush of information transfer, and associates
a content-dependent interpretation with that feeling.

Conclusions
We approach the problem of consciousness from the prag-
matic design perspective of AI and robotics. One of the ma-
jor requirements on an embodied agent is the ability to cope
with the overwhelming information content of its own sen-
sory input (the “firehose of experience”). A plausible cogni-
tive architecture that meets this requirement includes track-
ers that ground dynamic symbolic descriptions in spatio-
temporal regions of the sensory stream, and a coherent se-
quential narrative that explains the objects and events from
the external world that are observed in the sensory stream.
Researchers from a variety of perspectives appear to be con-
verging on such an architecture, which would be a solution
to the Easy Problem of consciousness.

The Intentionality Problem applies to any embodied
agent, human or robot, that interacts with the world only
through coded sensor and motor signals. We argue that there
is no magic, for humans or robots, whereby symbols inside
the mind can refer, directly and correctly, to corresponding
objects in the outside world. On the other hand, we can ex-
hibit early versions of learning algorithms that can construct
explanations for the regularities of pixel-level sensorimotor
interaction in terms of higher-level entities such as places,
paths, objects and actions. The “meaning” of a symbol in
the internal knowledge representation is an entity hypothe-
sized by such a learning algorithm, that is, another internal
construct. If these internal entities correspond usefully with
the external world, the agent will be able to plan and act
effectively. If not, not.

We have attempted to “sneak up” on the Hard Problem
by offering relative information content as an explanation
for why different experiences have different levels of vivid-
ness. This leaves open the Hard Problem itself: Why should
any amount of information transfer feel like anything at all?
However, we do know that information transfer in an em-
bodied agent necessarily corresponds to some sort of phys-
ical state-changes, which must have physical correlates that
can be sensed. Drawing on an analogy with classic models
of emotion, we may speculate that it is the physical corre-
lates of raw information transfer that “feels like anything at
all”, and that “what it feels like” depends on the content of
the information and the cognitive and behavioral context of
the agent.
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émotive de l’adrénaline. Française d’Endocrinologie
21:301–325.
Marr, D., and Nishihara, H. K. 1978. Representation and
recognition of the spatial organization of three-dimensional
shapes. Proceedings of the Royal Society B 200:269–294.
McDermott, D. V. 2001. Mind and Mechanism. Cambridge
MA: MIT Press.
Minsky, M. 1975. A framework for representing knowl-
edge. In Winston, P. H., ed., The Psychology of Computer
Vision. NY: McGraw-Hill.
Minsky, M. 1985. The Society of Mind. NY: Simon and
Schuster.
Modayil, J., and Kuipers, B. 2007. Autonomous develop-
ment of a grounded object ontology by a learning robot. In
National Conference on Artificial Intelligence (AAAI-07).
Pierce, D. M., and Kuipers, B. J. 1997. Map learning with
uninterpreted sensors and effectors. Artificial Intelligence
92:169–227.
Provost, J.; Kuipers, B. J.; and Miikkulainen, R.
2006. Developing navigation behavior through self-
organizing distinctive-state abstraction. Connection Sci-
ence 18(2):159–172.
Provost, J. 2007. Reinforcement Learning in High-
Diameter, Continuous Environments. Ph.D. Dissertation,
Computer Science Dept., University of Texas at Austin.
Pylyshyn, Z. W. 1989. The role of location indexes in spa-
tial perception: A sketch of the FINST spatial-index model.
Cognition 32:65–97.
Quine, W. V. O. 1961. Two dogmas of empiricism. In
Quine, W. V. O., ed., From a Logical Point of View. Harvard
University Press, second, revised edition.
Schachter, S., and Singer, J. E. 1962. Cognitive, social, and
physiological determinants of emotional state. Psycholog-
ical Review 69:379–399.
Searle, J. 1980. Minds, brains, and programs. Behavioral
and Brain Sciences 3:417–424.
Searle, J. R. 2004. Mind: A Brief Introduction. Oxford
University Press.
Ullman, S. 1984. Visual routines. Cognition 18:97–157.

Figure 2: Hill-climbing control laws (seeking states
equidistant from obstacles) define locally distinctive places,
and trajectory-following control laws (midline- or wall-
following) define path segments joining them. By providing
reliable motion among distinctive states, these control laws
enable a principled abstraction from the continuous world to
a discrete topological map.

Appendix: Learning from Uninterpreted
Sensors and Effectors

In the Spatial Semantic Hierarchy (SSH) (Kuipers & Byun
1991; Kuipers 2000), a robot abstracts its continuous envi-
ronment to a discrete graph — the topological map — which
includes symbols for places, paths, and the actions linking
them. These symbols are grounded in the behavior of con-
trol laws in the environment (Figure 2).

Pierce and Kuipers (1997) showed how a robot learning
agent, starting with an uninterpreted set of sensors and ef-
fectors, could learn these these symbols for itself, including
its own collection of hill-climbing and trajectory-following
control laws (Figure 3).

More recent work (Provost, Kuipers, & Miikkulainen
2006; Provost 2007) has used self-organizing maps and hi-
erarchical reinforcement learning to improve these methods.
We have also taken steps toward learning objects, actions,
and their affordances and effects, to the point of being able
to devise and carry out simple plans (Modayil & Kuipers
2007).

(a) (b) (c)
Figure 3: Exploring a simple world at three levels of competence.
(a) The robot wanders randomly while learning a model of its sen-
sorimotor apparatus. (b) The robot explores by randomly choosing
applicable homing and open-loop path-following behaviors based
on the static action model while learning the dynamic action model
(see text). (c) The robot explores by randomly choosing applica-
ble homing and closed-loop path-following behaviors based on the
dynamic action model. (Pierce & Kuipers 1997)


